LOCAL MULTIPLIER ALGEBRAS, INJECTIVE ENVELOPES, AND TYPE I W*-ALGEBRAS

MARTÍN ARGERAMI and DOUGLAS R. FARENICK

Communicated by William B. Arveson

ABSTRACT. Characterizations of those separable C^* -algebras that have W^* -algebra injective envelopes or W^* -algebra local multiplier algebras are presented. The C^* -envelope and the injective envelope of a class of operator systems that generate certain type I von Neumann algebras are also determined.

KEYWORDS: Local multiplier algebra, injective envelope, regular monotone completion, C*-algebra, AW*-algebra.

MSC (2000): Primary 46L05; Secondary 46L07.

1. INTRODUCTION

The local multiplier algebra $M_{loc}(A)$ of a C^* -algebra A is the C^* -algebraic direct limit of multiplier algebras M(K) along the downward-directed system $\mathcal{E}(A)$ of all (closed) essential ideals K of A. Such algebras first arose in the study of derivations and were formally introduced by Pedersen in [18], where he proves that every derivation on a separable C^* -algebra A extends to an inner derivation of $M_{loc}(A)$. The question of whether every derivation of $M_{loc}(A)$ is inner remains open for arbitrary separable C^* -algebras.

A systematic study of local multiplier algebras is presented in the recent monograph by Ara and Mathieu [3]. One of the most important general facts concerning local multiplier algebras is that the centre $\mathcal{Z}(M_{\text{loc}}(A))$ of $M_{\text{loc}}(A)$ is an AW*-algebra [2]. Although $M_{\text{loc}}(A)$ itself need not be an AW*-algebra, Frank and Paulsen [9] have showed recently that $M_{\text{loc}}(A)$ can nevertheless be realized as a C^* -subalgebra of a certain minimal injective AW*-algebra: namely, the injective envelope I(A) of A [10]. Further, even though $M_{\text{loc}}(A)$ is not in general an AW*algebra, there are examples in which $M_{\text{loc}}(A)$ is actually a W*-algebra. We show herein that for separable C^* -algebras, $M_{\text{loc}}(A)$ is a W*-algebra if and only if Ahas a minimal essential ideal that is isomorphic to a C^* -algebraic direct sum of elementary C^* -algebras. This result is an analogue, for local multiplier algebras, of an earlier theorem of Akemann, Pedersen, and Tomiyama [1] on multiplier algebras, and it also leads to a new proof of a theorem arising from work of Wright [21] and Hamana [13] that characterizes those separable A for which I(A) is a W^{*}-algebra.

As usual, we will denote by B(H) and K(H) the set of bounded and compact operators on a Hilbert space H.

The notion of injective envelope [10], [11], [17] first arose in two seminal papers of Arveson [5], [6]. One of the principal results of [6], the so-called boundary theorem, states that if *E* is an operator system acting on a Hilbert space *H* such that $K(H) \subset C^*(E)$, then the identity map on *E* has a unique completely positive extension to the algebra $C^*(E) \subset B(H)$ if and only if the quotient homomorphism onto the Calkin algebra is not completely isometric on *E*. This theorem is revisited in the present paper for a class of operator systems that generate discrete type I von Neumann algebras.

Let $\mathcal{E}(A)$ denote the set of (closed) essential ideals of a C^* -algebra A. For every $K \in \mathcal{E}(A)$, let M(K) denote the multiplier algebra of K. If $K_1, K_2 \in \mathcal{E}(A)$ are such that $K_1 \subseteq K_2$, then $M(K_1) \supseteq M(K_2)$; thus, the family $\mathcal{E}(A)$ of essential ideals of A determines a downward-directed system of C^* -algebras. The local multiplier algebra $M_{loc}(A)$ of A is C^* -algebraic direct limit that arises from $\mathcal{E}(A)$:

$$M_{\text{loc}}(A) = \lim \{ M(K) : K \in \mathcal{E}(A) \}.$$

Every C^* -algebra A is a C^* -subalgebra of its injective envelope I(A) [10]. Moreover, by Corollary 4.3 in [9],

$$M_{\text{loc}}(A) = \left(\bigcup_{K \in \mathcal{E}(A)} \{x \in I(A) : xK + Kx \subseteq K\}\right)^{-},$$

where the closure is with respect to the norm topology of I(A). Thus,

$$A \subseteq M_{\rm loc}(A) \subseteq I(A)$$

is an inclusion of *C**-subalgebras. In [8], Frank showed an additional sequence of inclusions as *C**-subalgebras:

$$A \subseteq M_{\text{loc}}(A) \subseteq M_{\text{loc}}(M_{\text{loc}}(A)) \subseteq \overline{A} \subseteq I(A).$$

In the inclusions above, \overline{A} is the regular monotone completion [12] of A. For separable C^* -algebras, \overline{A} coincides with \overline{A}^{σ} , the regular monotone σ -completion [20] of A.

It is not known whether $\overline{A} \neq I(A)$ for separable C^* -algebras A, but all other inclusions above can be proper. Most striking is the recent example of Ara and Mathieu [4] in which they show that $M_{\text{loc}}(A) \neq M_{\text{loc}}(M_{\text{loc}}(A))$ for a certain prime AF C^* -algebra A. Further relations are: $I(M_{\text{loc}}(A)) = I(A)$ (Theorem 4.6 in [9]) and $\mathcal{Z}(M_{\text{loc}}(A)) = M_{\text{loc}}(\mathcal{Z}(A)) = \mathcal{Z}(I(A))$ (Theorem 2 in [8]), where this last fact holds because $\mathcal{Z}(M_{\text{loc}}(A))$ is an AW*-algebra (by Proposition 3.1.5 in [3]) and, as it is abelian, is therefore injective.

We shall employ the following notation from [3]. If $\{A_{\alpha}\}_{\alpha \in \Lambda}$ is a family of *C**-algebras, then

$$\prod_{\alpha \in \Lambda} A_{\alpha} = \{(a_{\alpha})_{\alpha} : a_{\alpha} \in A_{\alpha} \text{ and } \sup_{\alpha} ||a_{\alpha}|| < \infty\};$$
$$\bigoplus_{\alpha \in \Lambda} A_{\alpha} = \{(a_{\alpha})_{\alpha} : a_{\alpha} \in A_{\alpha} \text{ and } \forall \varepsilon > 0 \text{ only finitely many } a_{\alpha} \text{ satisfy } ||a_{\alpha}|| > \varepsilon\}.$$

Note that the direct product $\prod_{\alpha} A_{\alpha}$ and the direct sum $\bigoplus_{\alpha} A_{\alpha}$ are *C**-algebras and $\bigoplus_{\alpha} A_{\alpha}$ is an ideal of $\prod_{\alpha} A_{\alpha}$.

2. THE LOCAL MULTIPLIER ALGEBRA AS A W*-ALGEBRA

It need not be true that $M_{loc}(A)$ is an AW*-algebra. For example, $M_{loc}(A) = A$ in the case where A is unital, simple, and separable — but AW*-algebras (of infinite dimension) are nonseparable. Although it is even less likely that $M_{loc}(A)$ is a W*-algebra, this is precisely the case for a number of important examples (such as if A is a von Neumann algebra or if A can be represented faithfully as acting on a Hilbert space H in such a way as to contain the ideal K(H) of compact operators).

Theorem 2.2 below characterizes those separable C^* -algebras that admit W*-algebra local multipliers. The regular monotone completion \overline{A} of A has a key role in the proofs.

PROPOSITION 2.1.
$$M_{\text{loc}}(A) = \overline{A}$$
 for every C^{*}-algebra A.

Proof. By Theorem 4.6 in [9] and by the remark on page 68 that follows it, the injective envelopes of *A* and $M_{loc}(A)$ coincide. By Hamana's construction in Theorem 3.1 of [12] the regular monotone completion of a *C**-algebra *B* is the monotone closure of *B* in the injective envelope *I*(*B*). Hence,

 $A \subseteq M_{\text{loc}}(A) \subseteq \overline{A} \subseteq I(A) = I(M_{\text{loc}}(A))$

implies that $\overline{A} \subseteq \overline{M_{\text{loc}}(A)} \subseteq \overline{\overline{A}}$. Thus, $\overline{M_{\text{loc}}(A)} = \overline{A}$.

Recall that an elementary C^* -algebra is one that is isomorphic to K(H) for some Hilbert space H.

THEOREM 2.2. The next statements are equivalent for a separable C*-algebra A:

(i) \overline{A} is a W^{*}-algebra.

(ii) I(A) is a W^{*}-algebra.

(iii) $M_{\text{loc}}(A)$ is a W*-algebra.

(iv) $M_{loc}(A)$ is a discrete type I W^{*}-algebra.

(v) A contains a minimal essential ideal that is isomorphic to a direct sum of elementary C*-algebras. *Proof.* (i) \Rightarrow (v). Since *A* is separable, \overline{A} has a countable order-dense subset (Wright notes in page 84 of [22] that the equivalence of the separability and having a countable order-dense subset follows from Theorem 4.3 of [20]). Hence, by Proposition A in [22], the set of pure states of \overline{A} (in the weak* topology) is hyperseparable. Since hyperseparability implies separability, another theorem of Wright (Corollary 7 in [21]) shows that \overline{A} is isomorphic to $\prod_{n} B(H_n)$ (a countable product), with each H_n separable. Further, since $\prod_{n} B(H_n)$ is injective, it follows that $I(A) = \overline{A} = \prod_{n} B(H_n)$. Finally, Lemma 3.1(iii) of [13] yields that $\bigoplus_{n} K(H_n) \subseteq A \subset \prod_{n} B(H_n)$. The minimality of $\bigoplus_{n} K(H_n)$ is given by Proposition 3.3 in [13].

(v) ⇒ (iv). Suppose that *A* has a minimal essential ideal *K* such that $K \cong \bigoplus_{n} K(H_n)$. Therefore, by Lemma 1.2.1 in [3],

$$M(K) = M\left(\bigoplus_{n} K(H_n)\right) = \prod_{n} M(K(H_n)) = \prod_{n} B(H_n),$$

which shows that M(K) is a (discrete type I) W*-algebra. Furthermore, because K is a minimal essential ideal of A, $M(K) = M_{loc}(A)$ by Remark 2.3.7 in [3]. Hence, $M_{loc}(A)$ is a discrete type I W*-algebra.

The implication (iv) \Rightarrow (iii) is trivial.

(iii) \Rightarrow (ii). Since $M_{\text{loc}}(A)$ is a W*-algebra, it is monotone complete; thus, $M_{\text{loc}}(A) = \overline{M_{\text{loc}}(A)}$. This implies that \overline{A} is a W*-algebra, by Proposition 2.1. The proof of (i) \Rightarrow (v) shows therefore that \overline{A} is a direct product of at most countably many type I factors. As type I factors are injective, so is \overline{A} . Therefore, the inclusion $\overline{A} \subseteq I(A)$, with \overline{A} injective, implies that $I(A) = \overline{A}$, which yields that I(A) is a W*-algebra.

(ii) \Rightarrow (i). As *A* is a *C**-algebra whose injective envelope I(A) is a W*-algebra, \overline{A} is also a W*-algebra (because a monotone closed *C**-subalgebra of a von Neumann algebra is a von Neumann algebra [14]).

COROLLARY 2.3. If any one of the equivalent conditions in Theorem 2.2 holds for a separable C*-algebra A, then

$$M_{\text{loc}}(A) = M_{\text{loc}}(M_{\text{loc}}(A)) = \overline{A} = I(A).$$

Proof. Assume that any one of the statements (i)–(iv) in Theorem 2.2 holds. Then $M_{loc}(A)$ is an injective W*-algebra. However, $A \subseteq M_{loc}(A) \subseteq I(A)$ as C^* -subalgebras, and so by definition of the injective envelope, it must be that $M_{loc}(A) = I(A)$, which proves that $M_{loc}(A) = M_{loc}(M_{loc}(A)) = \overline{A} = I(A)$.

COROLLARY 2.4. If A is a separable, prime C^* -algebra, then exactly one of the following two statements holds:

(i) $I(A) \cong B(H)$, for some separable Hilbert space H;

(ii) I(A) is a wild type III AW^{*}-factor.

In particular, if A has no nonzero postliminal ideals, then I(A) is a wild type III AW^{*}-factor.

Proof. Because *A* is prime, I(A) is an AW*-factor (Theorem 7.1 in [12]). This factor cannot be of type II for the following reasons.

If I(A) is a finite type II AW*-factor, then the identity $1 \in I(A)$ is a finite projection, and so 1 is a finite projection in \overline{A} as well. Therefore, \overline{A} is of type I by Theorem 2 in [16]. But type I algebras are injective; hence $\overline{A} = I(A)$, contradicting that I(A) is of type II. Thus, assume that I(A) is a type II_{∞} AW*-factor. Since I(A) admits a faithful state (because A is separable), I(A) is a W*-algebra by [7]. So Theorem 2.2 implies that I(A) is of type I, which is a contradiction. Hence, I(A) is a factor of either type I or type III.

In the case where I(A) is of type I we have $I(A) \cong B(H)$ for some Hilbert space H, because all type I AW*-factors have this form by Theorem 2 in [15]. Indeed, in this case, $\overline{A} = I(A) \cong B(H)$; since \overline{A} is countably decomposable, H can be chosen to be separable.

If I(A) is not of type I, then the type III AW*-factor I(A) cannot be a W*algebra, by Theorem 2.2. Every AW*-factor that is not W*-algebra is wild [22]; hence, I(A) is wild.

Finally, if *A* is prime and has a nonzero postliminal ideal, then I(A) is of type I [13]. Thus, a prime separable C^* -algebra with no nonzero postliminal ideals must have a wild type III injective envelope.

3. A VERSION OF THE BOUNDARY THEOREM

If *E* is an operator system, then the *C**-envelope [11], [17] of *E* is the *C**-subalgebra $C_{env}^*(E)$ of I(E) generated by *E*. The *C**-algebra $C_{env}^*(E)$ is independent of the choice of the embedding of *E* into an injective envelope (I, κ) of *E*; thus, the notation $C_{env}^*(E)$ is unambiguous.

The aim of the present section is to prove the following result.

THEOREM 3.1. Let $E \subseteq B(H)$ be an operator system for which the von Neumann algebra E'' is generated by its minimal projections, each of which is contained in the C^* -subalgebra $C^*(E)$ of B(H) generated by E. Then I(E) is a type I W*-algebra and

$$I(E) \cong E''$$
 and $C^*_{env}(E) \cong C^*(E)$.

Before turning to the proof of Theorem 3.1, recall that the original motivation for the concept of injectivity is Arveson's Hahn–Banach Extension Theorem [5] for completely positive linear maps, and that the idea of an injective envelope stems from Arveson's theory of boundary representations [6]. In Arveson's work on boundary representations, the operator systems were often realized as irreducible operator systems in B(H) and their generated C^* -algebras $C^*(E)$ were sometimes assumed to have nontrivial intersection with — and hence contain — the ideal K(H) of compact operators. In this spirit, Theorem 3.1 is a generalization of the boundary theorem from B(H) to discrete type I von Neumann algebras.

Two preliminary results are needed for the proof of Theorem 3.1. The first result is a proposition of Hamana that is a useful criterion for determining when an injective operator system I containing E is an injective envelope.

PROPOSITION 3.2 (Lemma 3.7 in [10]). Consider an inclusion $E \subseteq I$ of operator systems, where I is injective. Then the following statements are equivalent:

(ii) *I* is an injective envelope of *E*.

(ii) The only completely positive linear map $\omega : I \to I$ for which $\omega|_E = id_E$ is the identity map $\omega = id_I$.

The second preliminary result is a kind of partial converse to the main result of [19].

LEMMA 3.3. Suppose that A is a C^{*}-subalgebra of a von Neumann algebra M and that M = A''. If M is generated by its minimal projections, each of which is contained in A, then A is order dense in M.

Proof. Choose a nonzero $h \in M^+$ and consider the set

$$\mathcal{F} = \Big\{ (k_i) \subset A^+ : \sum_{\text{finite}} k_i \leqslant h \Big\}.$$

There is a strictly positive λ in the spectrum $\sigma(h)$ of h. Let $e \in M$ be the spectral projection $e = e^h([\lambda, \infty))$, where e^h denotes the spectral resolution of h. Thus, $0 \neq \lambda e \leq he$. Moreover, e majorizes a minimal projection p of M; by hypothesis, $p \in A$. Thus, $0 \neq \lambda p = e(\lambda p)e \leq e(\lambda)e = \lambda e \leq he \leq h$, and so $\lambda p \in \mathcal{F}$, which proves that $\mathcal{F} \neq \emptyset$. It is clear that \mathcal{F} is inductive under inclusions of those families and so, by Zorn's Lemma, \mathcal{F} has a maximal family W. Since every finite sum of this family is less than h,

$$y = \sup\left\{\sum_{k \in K} k : K \text{ is finite and } K \subset W\right\} \leqslant h.$$

If $y \neq h$, then $h - y \in M^+$, and so by the first paragraph there exists nonzero $k \in A^+$ such that $k \leq h - y$. If it were true that $k \in W$, then for each net (h_i) of those finite sums of elements in W such that $h_i \nearrow y$, the net $(h_i + k) \nearrow y + k$, which contradicts the fact that y is the supremum. Hence, $k \notin W$. But if $k \notin W$, then the family W is not maximal, which is again a contradiction. Therefore, it must be that y = h, which proves that A is order dense in M.

THEOREM 3.4. If $A \subseteq B(H)$ is a C*-algebra and if M = A'' is generated by its minimal projections, each of which is contained in A, then $\varphi = id_M$ for every completely positive linear map $\varphi : M \to M$ for which $\varphi_{|A} = id_A$.

Proof. Observe that because $\varphi : M \to M$ is a unital completely positive map that preserves *A*, φ has the following property:

$$\varphi(xk) = \varphi(x)k$$
, for every $k \in A$.

This fact follows from the Cauchy-Schwarz inequality and from the fact that *A* is in the multiplicative domain of φ (Theorem 3.18 in [17]). Using this fact we shall deduce below that

(3.1)
$$x \ge 0$$
 if and only if $\varphi(x) \ge 0$.

Indeed, one implication is obvious from the positivity of φ . To prove the other implication, assume that $\varphi(x) \ge 0$. Thus, Im $(\varphi(x)) = \varphi(\text{Im}(x)) = 0$. Let z = Im(x) and write $z = z^+ - z^-$, where $z^+, z^- \in M^+$ are such that $z^+z^- = z^-z^+ = 0$.

Our first goal is to prove that $z^+ = 0$. Suppose, on the contrary, that $z^+ \neq 0$. Thus, there is a strictly positive λ in the spectrum of z^+ ; hence, there is a spectral projection $p \in M$ such that $0 \neq \lambda p \leq pz^+ = z^+p$. Note that $z^-p = 0$, as the projection p is in the von Neumann algebra generated by z^+ and $z^+z^- =$ $z^{-}z^{+} = 0$. Let $q \in A$ be an arbitrary minimal projection of M and consider the projection $p \land q \in M$. Because $p \land q \leq q$ and q is minimal, either $p \land q = 0$ or $p \wedge q = q$. We will show that the latter case cannot occur (under the conventional assumption that minimal projections are defined to be nonzero). Assume that it is true that $p \wedge q = q$. Then $0 \neq q = p \wedge q \leq p$. Pre- and post-multiply the inequality $\lambda q \leq \lambda p \leq z^+ p = zp$ by q to obtain $\lambda q \leq q(zp)q \leq qzq$. Note that $\varphi(zq) = \varphi(z)q$ (because *A* is in the multiplicative domain of φ) and that $\varphi(z) = 0$ (by hypothesis). Likewise, for any hermitian $y \in M$, $\varphi(qy) = \varphi(yq)^* = q\varphi(y)$. Thus, $\varphi(qzq) = q\varphi(z)q = 0$ and $0 \le \lambda q = \varphi(\lambda q) \le q\varphi(z)q = 0$. This implies that q = 0, which contradicts the fact that q is minimal and, thus, nonzero. Therefore, it must be that $p \wedge q = 0$, for every minimal projection q of M. Because every nonzero projection in *M* majorizes a minimal projection, we conclude that p = 0, in contradiction to the fact that p is a nonzero spectral projection of z^+ . Hence, it must be that $z^+ = 0$.

A similar argument shows that $z^- = 0$. We can find a nonzero $\lambda \in \mathbb{R}^+$ and a minimal projection $q \in A$ such that $qzq \leq -\lambda q$; thus $-\lambda q = \varphi(-\lambda q) \geq \varphi(qzq) = q\varphi(z)q = 0$, and again q = 0.

We conclude that z = 0, which implies that x is selfadjoint. It remains to show that x is positive. Assume that x is not positive. Thus, there exists a nonzero spectral projection in the negative part of $\sigma(x)$; by taking once again a suitable minimal subprojection q, we can find $\lambda > 0$ such that $qxq \leq -\lambda q$. But then $\varphi(qxq) \leq -\lambda q$; and on the other hand, $\varphi(qxq) = q\varphi(x)q \geq 0$. The contradiction implies that no such q can exist, and so $x \geq 0$.

From (3.1) and the fact the φ preserves A, we have that for $k \in A$, $k \leq x$ if and only if $k \leq \varphi(x)$. Lemma 3.3 asserts that A is order dense in M. Hence, $\varphi(x) = x$ for every $x \in M^+$, which implies that φ is the identity map on M.

Proof of Theorem 3.1. By hypothesis, $C^*(E)$ contains all the minimal projections that generate E''. Theorem 3.4 together with Proposition 3.2 show that E'' is an injective envelope for E. Further, there is a completely positive projection ϕ on B(H) with range E''. Hence, if $x, y \in E''$, then $x \circ y$ — the product of x and y in the C^* -algebra I(E) — is given by $x \circ y = \phi(xy) = xy$, since E'' is an algebra. Thus, E'' = I(E) and $C^*(E)$ is precisely $C^*_{env}(E)$.

Acknowledgements. We wish to express our thanks to the referee and to Pere Ara and Martin Mathieu for a number of useful suggestions. Our original proof that (i) implies (v) in Theorem 2.2 was achieved by different methods than the proof included herein; the proof given here was communicated to us by Professor M. Hamana. This work has been supported in part by the Natural Sciences and Engineering Research Council of Canada.

REFERENCES

- C.A. AKEMANN, G.K. PEDERSEN, J. TOMIYAMA, Multipliers of C*-algebras, J. Funct. Anal. 13(1973), 277–301.
- [2] P. ARA, M. MATHIEU, A local version of the Dauns-Hofmann theorem, *Math. Z.* 208(1991), 349–353.
- [3] P. ARA, M. MATHIEU, *Local Multipliers of C*-Algebras*, Springer Monographs Math., London, 2003.
- [4] P. ARA, M. MATHIEU, A not so simple local multiplier algebra, J. Funct. Anal. 237(2006), 721–737.
- [5] W.B. ARVESON, Subalgebras of C*-algebras, Acta Math. 123(1969), 141–224.
- [6] W.B. ARVESON, Subalgebras of C*-algebras. II, Acta Math. 128(1972), 271–308.
- [7] G.A. ELLIOTT, K. SAITÔ, J.D.M. WRIGHT, Embedding AW*-algebras as double commutants in type I algebras, J. London Math. Soc. 28(1983), 376–384.
- [8] M. FRANK, Injective envelopes and local multiplier algebras of C*-algebras, Int. Math. J. 1(2002), 611–620.
- [9] M. FRANK, V.I. PAULSEN, Injective envelopes of C*-algebras as operator modules, *Pacific J. Math.* 212(2003), 57–69.
- [10] M. HAMANA, Injective envelopes of C*-algebras, J. Math. Soc. Japan 31(1979), 181–197.
- [11] M. HAMANA, Injective envelopes of operator systems, Publ. RIMS Kyoto Univ. 15(1979), 773–785.
- [12] M. HAMANA, Regular embeddings of C*-algebras in monotone complete C*algebras, J. Math. Soc. Japan 33(1981), 159–183.
- [13] M. HAMANA, The centre of the regular monotone completion of a C*-algebra, J. London Math. Soc. 26(1982), 522–530.
- [14] R.V. KADISON, Operator algebras with a faithful weakly-closed representation, Ann. of Math. 64(1956), 175–181.
- [15] I. KAPLANSKY, Algebras of type I, Ann. of Math. 56(1952), 460–472.

- [16] M. OZAWA, K. SAITÔ, Embeddable AW*-algebras and regular completions, J. London Math. Soc. 34(1986), 511–523.
- [17] V.I. PAULSEN, Completely Bounded Maps and Operator Algebras, Cambridge Univ. Press, Cambridge 2002.
- [18] G.K. PEDERSEN, Approximating derivations on ideals of C*-algebras, Invent. Math. 45(1979), 299–305.
- [19] M. TAKESAKI, Faithful states on a C*-algebra, Pacific J. Math. 52(1973), 605–610.
- [20] J.D.M. WRIGHT, Regular σ-completions of C*-algebras, J. London Math. Soc. 12(1976), 299–309.
- [21] J.D.M. WRIGHT, On von Neumann algebras whose pure states are separable, J. London Math. Soc. **12**(1976), 385–388.
- [22] J.D.M. WRIGHT, Wild AW*-factors and Kaplansky-Rickart algebras, J. London Math. Soc. 13(1976), 83–89.

MARTÍN ARGERAMI, DEPARTMENT OF MATHEMATICS AND STATISTICS, UNI-VERSITY OF REGINA, REGINA, SASKATCHEWAN, CANADA S4S 0A2 *E-mail address*: argerami@math.uregina.ca

DOUGLAS R. FARENICK, DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF REGINA, REGINA, SASKATCHEWAN, CANADA S4S 0A2 *E-mail address*: farenick@math.uregina.ca

Received November 28, 2005; revised December 21, 2005 and June 7, 2006.