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ABSTRACT. Characterizations of those separable C*-algebras that have W*-
algebra injective envelopes or W*-algebra local multiplier algebras are pre-
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1. INTRODUCTION

The local multiplier algebra Mj,.(A) of a C*-algebra A is the C*-algebraic
direct limit of multiplier algebras M(K) along the downward-directed system
E(A) of all (closed) essential ideals K of A. Such algebras first arose in the study
of derivations and were formally introduced by Pedersen in [18], where he proves
that every derivation on a separable C*-algebra A extends to an inner derivation
of Mjyc(A). The question of whether every derivation of Mj,.(A) is inner remains
open for arbitrary separable C*-algebras.

A systematic study of local multiplier algebras is presented in the recent
monograph by Ara and Mathieu [3]. One of the most important general facts
concerning local multiplier algebras is that the centre Z (M, (A)) of Mo (A) is an
AW*-algebra [2]. Although M,.(A) itself need not be an AW*-algebra, Frank and
Paulsen [9] have showed recently that Mj,.(A) can nevertheless be realized as a
C*-subalgebra of a certain minimal injective AW*-algebra: namely, the injective
envelope I(A) of A [10]. Further, even though M),.(A) is not in general an AW*-
algebra, there are examples in which Mj,.(A) is actually a W*-algebra. We show
herein that for separable C*-algebras, Mo.(A) is a W*-algebra if and only if A
has a minimal essential ideal that is isomorphic to a C*-algebraic direct sum of
elementary C*-algebras. This result is an analogue, for local multiplier algebras,



238 MARTIN ARGERAMI AND DOUGLAS R. FARENICK

of an earlier theorem of Akemann, Pedersen, and Tomiyama [1] on multiplier
algebras, and it also leads to a new proof of a theorem arising from work of Wright
[21] and Hamana [13] that characterizes those separable A for which I(A) is a
Wr-algebra.

Asusual, we will denote by B(H) and K(H) the set of bounded and compact
operators on a Hilbert space H.

The notion of injective envelope [10], [11], [17] first arose in two seminal pa-
pers of Arveson [5], [6]. One of the principal results of [6], the so-called boundary
theorem, states that if E is an operator system acting on a Hilbert space H such
that K(H) C C*(E), then the identity map on E has a unique completely positive
extension to the algebra C*(E) C B(H) if and only if the quotient homomorphism
onto the Calkin algebra is not completely isometric on E. This theorem is revis-
ited in the present paper for a class of operator systems that generate discrete
type I von Neumann algebras.

Let £(A) denote the set of (closed) essential ideals of a C*-algebra A. For
every K € £(A), let M(K) denote the multiplier algebra of K. If K1,K, € £(A)
are such that K; C Kj, then M(K;) O M(Kjy); thus, the family £(A) of essential
ideals of A determines a downward-directed system of C*-algebras. The local
multiplier algebra Mj,.(A) of A is C*-algebraic direct limit that arises from £(A):

Mo (A) = lim{M(K) : K € £(A)}.

Every C*-algebra A is a C*-subalgebra of its injective envelope I(A) [10].
Moreover, by Corollary 4.3 in [9],

Mige(A) = (KGEJ(A){x € I(A): xK+Kx C K})_,

where the closure is with respect to the norm topology of I(A). Thus,
AC Mloc(A) c I(A>

is an inclusion of C*-subalgebras. In [8], Frank showed an additional sequence of
inclusions as C*-subalgebras:

AC MIOC(A> C Mloc(Mloc(A)) - A c I(A)'

In the inclusions above, A is the regular monotone completion [12] of A. For
separable C*-algebras, A coincides with AY, the regular monotone o-completion
[20] of A.

It is not known whether A # I(A) for separable C*-algebras A, but all
other inclusions above can be proper. Most striking is the recent example of Ara
and Mathieu [4] in which they show that Mjy.(A) # Mjoc(Mioc(A)) for a certain
prime AF C*-algebra A. Further relations are: I(Mo.(A)) = I(A) (Theorem 4.6
in [9]) and Z(Mjoc(A)) = Mjoo(Z(A)) = Z(I(A)) (Theorem 2 in [8]), where this
last fact holds because Z(My.(A)) is an AW*-algebra (by Proposition 3.1.5 in [3])
and, as it is abelian, is therefore injective.
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We shall employ the following notation from [3]. If {A},cais a family of
C*-algebras, then

H Ay = {(an)n : 4y € Ay and sup |ja,|| < oo};
aeA “

@ Aa = {(30)a : 6 € Ay and Ve > 0 only finitely many ay satisfy [la. | > €}.
aEN

Note that the direct product [T A4 and the direct sum @ A, are C*-algebras and
[ [
& Ay is anideal of [T A,.
[ [

2. THE LOCAL MULTIPLIER ALGEBRA AS A W*-ALGEBRA

It need not be true that Mj,.(A) is an AW*-algebra. For example, M,.(A) =
A in the case where A is unital, simple, and separable — but AW*-algebras (of
infinite dimension) are nonseparable. Although it is even less likely that Mo (A)
is a W*-algebra, this is precisely the case for a number of important examples
(such as if A is a von Neumann algebra or if A can be represented faithfully as
acting on a Hilbert space H in such a way as to contain the ideal K(H) of compact
operators).

Theorem 2.2 below characterizes those separable C*-algebras that admit
W+-algebra local multipliers. The regular monotone completion A of A has a
key role in the proofs.

PROPOSITION 2.1. Myy.(A) = A for every C*-algebra A.

Proof. By Theorem 4.6 in [9] and by the remark on page 68 that follows it,
the injective envelopes of A and Mj,.(A) coincide. By Hamana’s construction
in Theorem 3.1 of [12] the regular monotone completion of a C*-algebra B is the
monotone closure of B in the injective envelope I(B). Hence,

A C Mioc(A) €A CI(A) = I(Mioc(A))
implies that A C Mj,.(A) C A. Thus, Mio.(A) =A. 1

Recall that an elementary C*-algebra is one that is isomorphic to K(H) for
some Hilbert space H.

THEOREM 2.2. The next statements are equivalent for a separable C*-algebra A:
(i) A is a W*-algebra.
(ii) I(A) is a W*-algebra.
(iil) Mo (A) is a W*-algebra.
(iv) Mioc(A) is a discrete type I W*-algebra.
(V) A contains a minimal essential ideal that is isomorphic to a direct sum of elemen-
tary C*-algebras.
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Proof. (i) = (v). Since A is separable, A has a countable order-dense sub-
set (Wright notes in page 84 of [22] that the equivalence of the separability and
having a countable order-dense subset follows from Theorem 4.3 of [20]). Hence,
by Proposition A in [22], the set of pure states of A (in the weak* topology) is
hyperseparable. Since hyperseparability implies separability, another theorem of
Wright (Corollary 7 in [21]) shows that A is isomorphic to []B(H,) (a count-

n

able product), with each H, separable. Further, since []B(H,) is injective, it
n
follows that I(A) = A = [[B(H,). Finally, Lemma 3.1(iii) of [13] yields that
n
@D K(Hy,) € A C [IB(Hy). The minimality of @ K(H,) is given by Proposi-
n n

n
tion 3.3 in [13].
(v) = (iv). Suppose that A has a minimal essential ideal K such that K =
P K(H,). Therefore, by Lemma 1.2.1 in [3],
n

M(K) = M( @D K(Hy)) = [TM(K(Hy)) = [TB(H),

which shows that M (K) is a (discrete type I) W*-algebra. Furthermore, because K
is a minimal essential ideal of A, M(K) = Mj,.(A) by Remark 2.3.7 in [3]. Hence,
Mjoc(A) is a discrete type I W*-algebra.

The implication (iv) = (iii) is trivial.

(iif) = (ii). Since Mjo.(A) is a W*-algebra, it is monotone complete; thus,
Mioc(A) = Mip(A). This implies that A is a W*-algebra, by Proposition 2.1. The
proof of (i) = (v) shows therefore that A is a direct product of at most countably
many type I factors. As type I factors are injective, so is A. Therefore, the inclusion
A C I(A), with A injective, implies that I(A) = A, which yields that I(A) is a
W+-algebra.

(ii) = (i). As A is a C*-algebra whose injective envelope I(A) is a W*-
algebra, A is also a W*-algebra (because a monotone closed C*-subalgebra of a
von Neumann algebra is a von Neumann algebra [14]). &

COROLLARY 2.3. If any one of the equivalent conditions in Theorem 2.2 holds for
a separable C*-algebra A, then

Mloc(A) = Mioc(Mioc(A)) = A= I(A).
Proof. Assume that any one of the statements (i)-(iv) in Theorem 2.2 holds.
Then Mj,.(A) is an injective W*-algebra. However, A C M,.(A) C I(A) as
C*-subalgebras, and so by definition of the injective envelope, it must be that

Mioc(A) = I(A), which proves that Mjo.(A) = Mjoe(Mioc(A)) = A=1(A). 1

COROLLARY 2.4. If A is a separable, prime C*-algebra, then exactly one of the
following two statements holds:
(i) I(A) = B(H), for some separable Hilbert space H;
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(ii) I(A) is a wild type IIT AW*-factor.
In particular, if A has no nonzero postliminal ideals, then 1(A) is a wild type III AW*-
factor.

Proof. Because A is prime, I(A) is an AW*-factor (Theorem 7.1 in [12]). This
factor cannot be of type II for the following reasons.

If I(A) is a finite type I AW*-factor, then the identity 1 € I(A) is a finite
projection, and so 1 is a finite projection in A as well. Therefore, A is of type I by
Theorem 2 in [16]. But type  algebras are injective; hence A = I(A), contradicting
that I(A) is of type II. Thus, assume that I(A) is a type I, AW*-factor. Since I(A)
admits a faithful state (because A is separable), I(A) is a W*-algebra by [7]. So
Theorem 2.2 implies that I(A) is of type I, which is a contradiction. Hence, I(A)
is a factor of either type I or type III.

In the case where I(A) is of type I we have I(A) = B(H) for some Hilbert
space H, because all type I AW*-factors have this form by Theorem 2 in [15].
Indeed, in this case, A = I(A) = B(H); since A is countably decomposable, H
can be chosen to be separable.

If I(A) is not of type I, then the type IIl AW*-factor I(A) cannot be a W*-
algebra, by Theorem 2.2. Every AW*-factor that is not W*-algebra is wild [22];
hence, I(A) is wild.

Finally, if A is prime and has a nonzero postliminal ideal, then I(A) is of
type I [13]. Thus, a prime separable C*-algebra with no nonzero postliminal
ideals must have a wild type Il injective envelope. 1

3. A VERSION OF THE BOUNDARY THEOREM

If E is an operator system, then the C*-envelope [11], [17] of E is the C*-
subalgebra C, (E) of I(E) generated by E. The C*-algebra Cg,, (E) is indepen-
dent of the choice of the embedding of E into an injective envelope (I, x) of E;
thus, the notation Cf,,, (E) is unambiguous.

The aim of the present section is to prove the following result.

THEOREM 3.1. Let E C B(H) be an operator system for which the von Neumann
algebra E" is generated by its minimal projections, each of which is contained in the
C*-subalgebra C*(E) of B(H) generated by E. Then I1(E) is a type I W*-algebra and

I(E) = E" and C.,(E)=C*(E).

Before turning to the proof of Theorem 3.1, recall that the original motiva-
tion for the concept of injectivity is Arveson’s Hahn—-Banach Extension Theorem
[5] for completely positive linear maps, and that the idea of an injective enve-
lope stems from Arveson’s theory of boundary representations [6]. In Arveson’s
work on boundary representations, the operator systems were often realized as
irreducible operator systems in B(H) and their generated C*-algebras C*(E) were
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sometimes assumed to have nontrivial intersection with — and hence contain —
the ideal K(H) of compact operators. In this spirit, Theorem 3.1 is a generalization
of the boundary theorem from B(H) to discrete type I von Neumann algebras.

Two preliminary results are needed for the proof of Theorem 3.1. The first
result is a proposition of Hamana that is a useful criterion for determining when
an injective operator system I containing E is an injective envelope.

PROPOSITION 3.2 (Lemma 3.7 in [10]). Consider an inclusion E C I of operator
systems, where I is injective. Then the following statements are equivalent:
(ii) I is an injective envelope of E.
(ii) The only completely positive linear map w : I — [ for which w|p = idg is the
identity map w = id].

The second preliminary result is a kind of partial converse to the main result
of [19].

LEMMA 3.3. Suppose that A is a C*-subalgebra of a von Neumann algebra M and
that M = A". If M is generated by its minimal projections, each of which is contained in
A, then A is order dense in M.

Proof. Choose a nonzero h € M and consider the set

]—‘={ ycAT: Y ki< }

finite

There is a strictly positive A in the spectrum o (h) of h. Let e € M be the spectral
projection e = ¢"([A,c0)), where e denotes the spectral resolution of 4. Thus,
0 # Ae < he. Moreover, e majorizes a minimal projection p of M; by hypothesis,
p € A Thus, 0 # Ap = e(Ap)e < e(A)e = Ae < he < h,and so Ap € F,
which proves that 7 # @. It is clear that F is inductive under inclusions of those
families and so, by Zorn’s Lemma, F has a maximal family W. Since every finite
sum of this family is less than k,

y:sup{ Zk:KisﬁniteandKCW} < h
kek

If y # h, then h —y € M', and so by the first paragraph there exists nonzero
k € AT such that k < h —y. If it were true that k € W, then for each net (h;)
of those finite sums of elements in W such that h; " y, the net (h; +k) / y+k,
which contradicts the fact that y is the supremum. Hence, k ¢ W. Butif k ¢ W,
then the family W is not maximal, which is again a contradiction. Therefore, it
must be that y = /1, which proves that A is order densein M. 1

THEOREM 3.4. If A C B(H) is a C*-algebra and if M = A" is generated by its
minimal projections, each of which is contained in A, then ¢ = idp; for every completely
positive linear map ¢ : M — M for which ¢4 = id 4.
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Proof. Observe that because ¢ : M — M is a unital completely positive map
that preserves A, ¢ has the following property:

p(xk) = p(x)k, foreveryk € A.

This fact follows from the Cauchy-Schwarz inequality and from the fact that A is
in the multiplicative domain of ¢ (Theorem 3.18 in [17]). Using this fact we shall
deduce below that

(3.1) x > 0if and only if ¢(x) > 0.

Indeed, one implication is obvious from the positivity of ¢. To prove the other
implication, assume that ¢(x) > 0. Thus, Im (¢(x)) = ¢(Im(x)) = 0. Letz =
Im (x) and write z =z — z7, where z*,z~ € M* are such thatz"z~ =z"z" =0.

Our first goal is to prove that z+ = 0. Suppose, on the contrary, that z* # 0.
Thus, there is a strictly positive A in the spectrum of z*; hence, there is a spectral
projection p € M such that 0 # Ap < pzt = zTp. Note that z7p = 0, as
the projection p is in the von Neumann algebra generated by z* and z"z~ =
z7zt = 0. Let g € A be an arbitrary minimal projection of M and consider the
projection p A g € M. Because p A g < g and ¢ is minimal, either p A g = 0 or
p A q = q. We will show that the latter case cannot occur (under the conventional
assumption that minimal projections are defined to be nonzero). Assume that it
is true that pAg = q. Then 0 # g = pAg < p. Pre- and post-multiply the
inequality Aq < Ap < zTp = zp by ¢ to obtain Ag < g(zp)g < gzq. Note that
¢(zq) = ¢(z)q (because A is in the multiplicative domain of ¢) and that ¢(z) =0
(by hypothesis). Likewise, for any hermitian y € M, ¢(qy) = ¢(yq)" = q9(y).
Thus, ¢(qzq9) = q¢(z)g = 0and 0 < Ag = ¢(Aq) < q¢(z)q = 0. This implies that
g = 0, which contradicts the fact that g is minimal and, thus, nonzero. Therefore,
it must be that p A g = 0, for every minimal projection q of M. Because every
nonzero projection in M majorizes a minimal projection, we conclude that p = 0,
in contradiction to the fact that p is a nonzero spectral projection of z*. Hence, it
must be that z* = 0.

A similar argument shows that z~ = 0. We can find anonzero A € R* and a
minimal projection g € A such that gzq < —Ag; thus —Ag = @(—Aq) > ¢(qzq) =
ge(z)g = 0, and again g = 0.

We conclude that z = 0, which implies that x is selfadjoint. It remains to
show that x is positive. Assume that x is not positive. Thus, there exists a nonzero
spectral projection in the negative part of o(x); by taking once again a suitable
minimal subprojection g, we can find A > 0 such that gxg < —Agq. But then
¢@(qxq) < —Ag; and on the other hand, ¢(qxq) = q¢(x)q > 0. The contradiction
implies that no such g can exist, and so x > 0.

From (3.1) and the fact the ¢ preserves A, we have that for k € A, k < x
if and only if k < ¢(x). Lemma 3.3 asserts that A is order dense in M. Hence,
¢(x) = x for every x € M*, which implies that ¢ is the identity map on M. 1
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Proof of Theorem 3.1. By hypothesis, C*(E) contains all the minimal projec-
tions that generate E”. Theorem 3.4 together with Proposition 3.2 show that E”
is an injective envelope for E. Further, there is a completely positive projection ¢
on B(H) with range E”. Hence, if x,y € E”, then x o y — the product of x and y
in the C*-algebra I(E) — is given by x oy = ¢(xy) = xy, since E” is an algebra.
Thus, E” = I(E) and C*(E) is precisely Ci.,(E). &
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