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ABSTRACT. Characterizations of those separable C∗-algebras that have W∗-
algebra injective envelopes or W∗-algebra local multiplier algebras are pre-
sented. The C∗-envelope and the injective envelope of a class of operator sys-
tems that generate certain type I von Neumann algebras are also determined.
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1. INTRODUCTION

The local multiplier algebra Mloc(A) of a C∗-algebra A is the C∗-algebraic
direct limit of multiplier algebras M(K) along the downward-directed system
E(A) of all (closed) essential ideals K of A. Such algebras first arose in the study
of derivations and were formally introduced by Pedersen in [18], where he proves
that every derivation on a separable C∗-algebra A extends to an inner derivation
of Mloc(A). The question of whether every derivation of Mloc(A) is inner remains
open for arbitrary separable C∗-algebras.

A systematic study of local multiplier algebras is presented in the recent
monograph by Ara and Mathieu [3]. One of the most important general facts
concerning local multiplier algebras is that the centreZ(Mloc(A)) of Mloc(A) is an
AW∗-algebra [2]. Although Mloc(A) itself need not be an AW∗-algebra, Frank and
Paulsen [9] have showed recently that Mloc(A) can nevertheless be realized as a
C∗-subalgebra of a certain minimal injective AW∗-algebra: namely, the injective
envelope I(A) of A [10]. Further, even though Mloc(A) is not in general an AW∗-
algebra, there are examples in which Mloc(A) is actually a W∗-algebra. We show
herein that for separable C∗-algebras, Mloc(A) is a W∗-algebra if and only if A
has a minimal essential ideal that is isomorphic to a C∗-algebraic direct sum of
elementary C∗-algebras. This result is an analogue, for local multiplier algebras,
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of an earlier theorem of Akemann, Pedersen, and Tomiyama [1] on multiplier
algebras, and it also leads to a new proof of a theorem arising from work of Wright
[21] and Hamana [13] that characterizes those separable A for which I(A) is a
W∗-algebra.

As usual, we will denote by B(H) and K(H) the set of bounded and compact
operators on a Hilbert space H.

The notion of injective envelope [10], [11], [17] first arose in two seminal pa-
pers of Arveson [5], [6]. One of the principal results of [6], the so-called boundary
theorem, states that if E is an operator system acting on a Hilbert space H such
that K(H) ⊂ C∗(E), then the identity map on E has a unique completely positive
extension to the algebra C∗(E) ⊂ B(H) if and only if the quotient homomorphism
onto the Calkin algebra is not completely isometric on E. This theorem is revis-
ited in the present paper for a class of operator systems that generate discrete
type I von Neumann algebras.

Let E(A) denote the set of (closed) essential ideals of a C∗-algebra A. For
every K ∈ E(A), let M(K) denote the multiplier algebra of K. If K1, K2 ∈ E(A)
are such that K1 ⊆ K2, then M(K1) ⊇ M(K2); thus, the family E(A) of essential
ideals of A determines a downward-directed system of C∗-algebras. The local
multiplier algebra Mloc(A) of A is C∗-algebraic direct limit that arises from E(A):

Mloc(A) = lim
→
{M(K) : K ∈ E(A)}.

Every C∗-algebra A is a C∗-subalgebra of its injective envelope I(A) [10].
Moreover, by Corollary 4.3 in [9],

Mloc(A) =
( ⋃

K∈E(A)

{x ∈ I(A) : xK + Kx ⊆ K}
)−

,

where the closure is with respect to the norm topology of I(A). Thus,

A ⊆ Mloc(A) ⊆ I(A)

is an inclusion of C∗-subalgebras. In [8], Frank showed an additional sequence of
inclusions as C∗-subalgebras:

A ⊆ Mloc(A) ⊆ Mloc(Mloc(A)) ⊆ A ⊆ I(A).

In the inclusions above, A is the regular monotone completion [12] of A. For
separable C∗-algebras, A coincides with Aσ, the regular monotone σ-completion
[20] of A.

It is not known whether A 6= I(A) for separable C∗-algebras A, but all
other inclusions above can be proper. Most striking is the recent example of Ara
and Mathieu [4] in which they show that Mloc(A) 6= Mloc(Mloc(A)) for a certain
prime AF C∗-algebra A. Further relations are: I(Mloc(A)) = I(A) (Theorem 4.6
in [9]) and Z(Mloc(A)) = Mloc(Z(A)) = Z(I(A)) (Theorem 2 in [8]), where this
last fact holds because Z(Mloc(A)) is an AW∗-algebra (by Proposition 3.1.5 in [3])
and, as it is abelian, is therefore injective.
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We shall employ the following notation from [3]. If {Aα}α∈Λis a family of
C∗-algebras, then

∏
α∈Λ

Aα = {(aα)α : aα ∈ Aα and sup
α
‖aα‖ < ∞};⊕

α∈Λ

Aα = {(aα)α : aα ∈ Aα and ∀ε > 0 only finitely many aα satisfy ‖aα‖ > ε}.

Note that the direct product ∏
α

Aα and the direct sum
⊕
α

Aα are C∗-algebras and⊕
α

Aα is an ideal of ∏
α

Aα.

2. THE LOCAL MULTIPLIER ALGEBRA AS A W∗-ALGEBRA

It need not be true that Mloc(A) is an AW∗-algebra. For example, Mloc(A) =
A in the case where A is unital, simple, and separable — but AW∗-algebras (of
infinite dimension) are nonseparable. Although it is even less likely that Mloc(A)
is a W∗-algebra, this is precisely the case for a number of important examples
(such as if A is a von Neumann algebra or if A can be represented faithfully as
acting on a Hilbert space H in such a way as to contain the ideal K(H) of compact
operators).

Theorem 2.2 below characterizes those separable C∗-algebras that admit
W∗-algebra local multipliers. The regular monotone completion A of A has a
key role in the proofs.

PROPOSITION 2.1. Mloc(A) = A for every C∗-algebra A.

Proof. By Theorem 4.6 in [9] and by the remark on page 68 that follows it,
the injective envelopes of A and Mloc(A) coincide. By Hamana’s construction
in Theorem 3.1 of [12] the regular monotone completion of a C∗-algebra B is the
monotone closure of B in the injective envelope I(B). Hence,

A ⊆ Mloc(A) ⊆ A ⊆ I(A) = I(Mloc(A))

implies that A ⊆ Mloc(A) ⊆ A. Thus, Mloc(A) = A.

Recall that an elementary C∗-algebra is one that is isomorphic to K(H) for
some Hilbert space H.

THEOREM 2.2. The next statements are equivalent for a separable C∗-algebra A:
(i) A is a W∗-algebra.

(ii) I(A) is a W∗-algebra.
(iii) Mloc(A) is a W∗-algebra.
(iv) Mloc(A) is a discrete type I W∗-algebra.
(v) A contains a minimal essential ideal that is isomorphic to a direct sum of elemen-

tary C∗-algebras.
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Proof. (i) ⇒ (v). Since A is separable, A has a countable order-dense sub-
set (Wright notes in page 84 of [22] that the equivalence of the separability and
having a countable order-dense subset follows from Theorem 4.3 of [20]). Hence,
by Proposition A in [22], the set of pure states of A (in the weak∗ topology) is
hyperseparable. Since hyperseparability implies separability, another theorem of
Wright (Corollary 7 in [21]) shows that A is isomorphic to ∏

n
B(Hn) (a count-

able product), with each Hn separable. Further, since ∏
n

B(Hn) is injective, it

follows that I(A) = A = ∏
n

B(Hn). Finally, Lemma 3.1(iii) of [13] yields that⊕
n

K(Hn) ⊆ A ⊂ ∏
n

B(Hn). The minimality of
⊕
n

K(Hn) is given by Proposi-

tion 3.3 in [13].
(v) ⇒ (iv). Suppose that A has a minimal essential ideal K such that K ∼=⊕

n
K(Hn). Therefore, by Lemma 1.2.1 in [3],

M(K) = M
( ⊕

n
K(Hn)

)
= ∏

n
M(K(Hn)) = ∏

n
B(Hn),

which shows that M(K) is a (discrete type I) W∗-algebra. Furthermore, because K
is a minimal essential ideal of A, M(K) = Mloc(A) by Remark 2.3.7 in [3]. Hence,
Mloc(A) is a discrete type I W∗-algebra.

The implication (iv) ⇒ (iii) is trivial.
(iii) ⇒ (ii). Since Mloc(A) is a W∗-algebra, it is monotone complete; thus,

Mloc(A) = Mloc(A). This implies that A is a W∗-algebra, by Proposition 2.1. The
proof of (i) ⇒ (v) shows therefore that A is a direct product of at most countably
many type I factors. As type I factors are injective, so is A. Therefore, the inclusion
A ⊆ I(A), with A injective, implies that I(A) = A, which yields that I(A) is a
W∗-algebra.

(ii) ⇒ (i). As A is a C∗-algebra whose injective envelope I(A) is a W∗-
algebra, A is also a W∗-algebra (because a monotone closed C∗-subalgebra of a
von Neumann algebra is a von Neumann algebra [14]).

COROLLARY 2.3. If any one of the equivalent conditions in Theorem 2.2 holds for
a separable C∗-algebra A, then

Mloc(A) = Mloc(Mloc(A)) = A = I(A).

Proof. Assume that any one of the statements (i)–(iv) in Theorem 2.2 holds.
Then Mloc(A) is an injective W∗-algebra. However, A ⊆ Mloc(A) ⊆ I(A) as
C∗-subalgebras, and so by definition of the injective envelope, it must be that
Mloc(A) = I(A), which proves that Mloc(A) = Mloc(Mloc(A)) = A = I(A).

COROLLARY 2.4. If A is a separable, prime C∗-algebra, then exactly one of the
following two statements holds:

(i) I(A) ∼= B(H), for some separable Hilbert space H;
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(ii) I(A) is a wild type III AW∗-factor.
In particular, if A has no nonzero postliminal ideals, then I(A) is a wild type III AW∗-
factor.

Proof. Because A is prime, I(A) is an AW∗-factor (Theorem 7.1 in [12]). This
factor cannot be of type II for the following reasons.

If I(A) is a finite type II AW∗-factor, then the identity 1 ∈ I(A) is a finite
projection, and so 1 is a finite projection in A as well. Therefore, A is of type I by
Theorem 2 in [16]. But type I algebras are injective; hence A = I(A), contradicting
that I(A) is of type II. Thus, assume that I(A) is a type II∞ AW∗-factor. Since I(A)
admits a faithful state (because A is separable), I(A) is a W∗-algebra by [7]. So
Theorem 2.2 implies that I(A) is of type I, which is a contradiction. Hence, I(A)
is a factor of either type I or type III.

In the case where I(A) is of type I we have I(A) ∼= B(H) for some Hilbert
space H, because all type I AW∗-factors have this form by Theorem 2 in [15].
Indeed, in this case, A = I(A) ∼= B(H); since A is countably decomposable, H
can be chosen to be separable.

If I(A) is not of type I, then the type III AW∗-factor I(A) cannot be a W∗-
algebra, by Theorem 2.2. Every AW∗-factor that is not W∗-algebra is wild [22];
hence, I(A) is wild.

Finally, if A is prime and has a nonzero postliminal ideal, then I(A) is of
type I [13]. Thus, a prime separable C∗-algebra with no nonzero postliminal
ideals must have a wild type III injective envelope.

3. A VERSION OF THE BOUNDARY THEOREM

If E is an operator system, then the C∗-envelope [11], [17] of E is the C∗-
subalgebra C∗

env(E) of I(E) generated by E. The C∗-algebra C∗
env(E) is indepen-

dent of the choice of the embedding of E into an injective envelope (I, κ) of E;
thus, the notation C∗

env(E) is unambiguous.
The aim of the present section is to prove the following result.

THEOREM 3.1. Let E ⊆ B(H) be an operator system for which the von Neumann
algebra E′′ is generated by its minimal projections, each of which is contained in the
C∗-subalgebra C∗(E) of B(H) generated by E. Then I(E) is a type I W∗-algebra and

I(E) ∼= E′′ and C∗
env(E) ∼= C∗(E).

Before turning to the proof of Theorem 3.1, recall that the original motiva-
tion for the concept of injectivity is Arveson’s Hahn–Banach Extension Theorem
[5] for completely positive linear maps, and that the idea of an injective enve-
lope stems from Arveson’s theory of boundary representations [6]. In Arveson’s
work on boundary representations, the operator systems were often realized as
irreducible operator systems in B(H) and their generated C∗-algebras C∗(E) were
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sometimes assumed to have nontrivial intersection with — and hence contain —
the ideal K(H) of compact operators. In this spirit, Theorem 3.1 is a generalization
of the boundary theorem from B(H) to discrete type I von Neumann algebras.

Two preliminary results are needed for the proof of Theorem 3.1. The first
result is a proposition of Hamana that is a useful criterion for determining when
an injective operator system I containing E is an injective envelope.

PROPOSITION 3.2 (Lemma 3.7 in [10]). Consider an inclusion E ⊆ I of operator
systems, where I is injective. Then the following statements are equivalent:

(ii) I is an injective envelope of E.
(ii) The only completely positive linear map ω : I → I for which ω|E = idE is the

identity map ω = idI .

The second preliminary result is a kind of partial converse to the main result
of [19].

LEMMA 3.3. Suppose that A is a C∗-subalgebra of a von Neumann algebra M and
that M = A′′. If M is generated by its minimal projections, each of which is contained in
A, then A is order dense in M.

Proof. Choose a nonzero h ∈ M+ and consider the set

F =
{

(ki) ⊂ A+ : ∑
finite

ki 6 h
}

.

There is a strictly positive λ in the spectrum σ(h) of h. Let e ∈ M be the spectral
projection e = eh([λ, ∞)), where eh denotes the spectral resolution of h. Thus,
0 6= λe 6 he. Moreover, e majorizes a minimal projection p of M; by hypothesis,
p ∈ A. Thus, 0 6= λp = e(λp)e 6 e(λ)e = λe 6 he 6 h, and so λp ∈ F ,
which proves that F 6= ∅. It is clear that F is inductive under inclusions of those
families and so, by Zorn’s Lemma, F has a maximal family W. Since every finite
sum of this family is less than h,

y = sup
{

∑
k∈K

k : K is finite and K ⊂ W
}

6 h.

If y 6= h, then h − y ∈ M+, and so by the first paragraph there exists nonzero
k ∈ A+ such that k 6 h − y. If it were true that k ∈ W, then for each net (hi)
of those finite sums of elements in W such that hi ↗ y, the net (hi + k) ↗ y + k,
which contradicts the fact that y is the supremum. Hence, k 6∈ W. But if k 6∈ W,
then the family W is not maximal, which is again a contradiction. Therefore, it
must be that y = h, which proves that A is order dense in M.

THEOREM 3.4. If A ⊆ B(H) is a C∗-algebra and if M = A′′ is generated by its
minimal projections, each of which is contained in A, then ϕ = idM for every completely
positive linear map ϕ : M → M for which ϕ|A = idA.
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Proof. Observe that because ϕ : M → M is a unital completely positive map
that preserves A, ϕ has the following property:

ϕ(xk) = ϕ(x)k, for every k ∈ A.

This fact follows from the Cauchy-Schwarz inequality and from the fact that A is
in the multiplicative domain of ϕ (Theorem 3.18 in [17]). Using this fact we shall
deduce below that

(3.1) x > 0 if and only if ϕ(x) > 0.

Indeed, one implication is obvious from the positivity of ϕ. To prove the other
implication, assume that ϕ(x) > 0. Thus, Im (ϕ(x)) = ϕ(Im (x)) = 0. Let z =
Im (x) and write z = z+ − z−, where z+, z− ∈ M+ are such that z+z−= z−z+ =0.

Our first goal is to prove that z+ = 0. Suppose, on the contrary, that z+ 6= 0.
Thus, there is a strictly positive λ in the spectrum of z+; hence, there is a spectral
projection p ∈ M such that 0 6= λp 6 pz+ = z+ p. Note that z−p = 0, as
the projection p is in the von Neumann algebra generated by z+ and z+z− =
z−z+ = 0. Let q ∈ A be an arbitrary minimal projection of M and consider the
projection p ∧ q ∈ M. Because p ∧ q 6 q and q is minimal, either p ∧ q = 0 or
p ∧ q = q. We will show that the latter case cannot occur (under the conventional
assumption that minimal projections are defined to be nonzero). Assume that it
is true that p ∧ q = q. Then 0 6= q = p ∧ q 6 p. Pre- and post-multiply the
inequality λq 6 λp 6 z+ p = zp by q to obtain λq 6 q(zp)q 6 qzq. Note that
ϕ(zq) = ϕ(z)q (because A is in the multiplicative domain of ϕ) and that ϕ(z) = 0
(by hypothesis). Likewise, for any hermitian y ∈ M, ϕ(qy) = ϕ(yq)∗ = qϕ(y).
Thus, ϕ(qzq) = qϕ(z)q = 0 and 0 6 λq = ϕ(λq) 6 qϕ(z)q = 0. This implies that
q = 0, which contradicts the fact that q is minimal and, thus, nonzero. Therefore,
it must be that p ∧ q = 0, for every minimal projection q of M. Because every
nonzero projection in M majorizes a minimal projection, we conclude that p = 0,
in contradiction to the fact that p is a nonzero spectral projection of z+. Hence, it
must be that z+ = 0.

A similar argument shows that z− = 0. We can find a nonzero λ ∈ R+ and a
minimal projection q ∈ A such that qzq 6 −λq; thus −λq = ϕ(−λq) > ϕ(qzq) =
qϕ(z)q = 0, and again q = 0.

We conclude that z = 0, which implies that x is selfadjoint. It remains to
show that x is positive. Assume that x is not positive. Thus, there exists a nonzero
spectral projection in the negative part of σ(x); by taking once again a suitable
minimal subprojection q, we can find λ > 0 such that qxq 6 −λq. But then
ϕ(qxq) 6 −λq; and on the other hand, ϕ(qxq) = qϕ(x)q > 0. The contradiction
implies that no such q can exist, and so x > 0.

From (3.1) and the fact the ϕ preserves A, we have that for k ∈ A, k 6 x
if and only if k 6 ϕ(x). Lemma 3.3 asserts that A is order dense in M. Hence,
ϕ(x) = x for every x ∈ M+, which implies that ϕ is the identity map on M.
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Proof of Theorem 3.1. By hypothesis, C∗(E) contains all the minimal projec-
tions that generate E′′. Theorem 3.4 together with Proposition 3.2 show that E′′

is an injective envelope for E. Further, there is a completely positive projection φ
on B(H) with range E′′. Hence, if x, y ∈ E′′, then x ◦ y — the product of x and y
in the C∗-algebra I(E) — is given by x ◦ y = φ(xy) = xy, since E′′ is an algebra.
Thus, E′′ = I(E) and C∗(E) is precisely C∗

env(E).
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