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ABSTRACT. In this paper, we establish the Lp boundedness of a class of max-
imal functions with rough kernels supported by subvarieties. Moreover, sev-
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1. INTRODUCTION AND STATEMENT OF RESULTS

In recent years, a considerable amount of attention has been given to the
study of singular integral operators with rough kernels ([7], [14], [17], among
others). The main purpose of this paper is establishing Lp estimates of certain
maximal functions related to a class of singular Radon transforms defined by
translates of a subvariety determined by polynomial mappings. For background
information on such singular Radon transforms, we refer the reader to Stein’s
survey article ([23], see also [7], [17]).

Let Rn, n > 2 be the n-dimensional Euclidean space and Sn−1 be the unit
sphere in Rn equipped with the normalized Lebesgue measure dσ. For non zero
y ∈ Rn, we shall let y′ = |y|−1y. Let Ω be a homogeneous function of degree zero
on Rn that satisfies the cancellation property

(1.1)
∫

Sn−1

Ω(y′)dσ(y′) = 0.

Let L2(R+, dr/r) be the space of measurable functions h : R+ → R that satisfy

(1.2) ‖h‖L2(R+,dr/r) =
( ∞∫

0

|h(r)|2r−1dr
)1/2

< ∞.
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We let U(L2(R+, dr/r), 1) denote the closed unit ball in L2(R+, dr/r).
Let P(y) = (P1, P2, . . . , Pd)be a mapping from Rn into Rd (d > 1), with each

Pj being a polynomial. For x ∈ Rd, define the maximal function MΩ,P by

(1.3) MΩ,P ( f )(x) = sup
h∈U(L2(R+,dr/r))

|TΩ,P ,h( f )(x)|,

where TΩ,P ,h is the singular integral operator given by

(1.4) TΩ,P ,h( f )(x) = p.v.
∫
Rn

f (x −P(y))|y|−nh(|y|)Ω(y′)dy.

If n = d and P(y) = (y1, y2, . . . , yd), we shall simply denote the operator
MΩ,P by MΩ and the operator TΩ,P ,h by TΩ,h.

The study of integral operators in the form (1.3) is motivated by the early
work of R. Fefferman on singular integral operators with kernels multiplied by
bounded radial functions [18]. More precisely, R. Fefferman showed that the op-
erator TΩ,h is bounded on Lp(Rn)for 1 < p < ∞ provided that h ∈ L∞(R+) and
Ω satisfies a Lipschitz condition of positive order on Sn−1 [18]. Since Fefferman’s
result, the Lp boundedness of integral operators with kernels multiplied by radial
functions has been investigated by many authors ([7], [9], [14], [17], [20]).

The classical operator MΩ was introduced by Chen and Lin in [11]. In [11],
Chen and Lin showed that if Ω is continuous in C(Sn−1)and satisfies (1.1), then
MΩis bounded on Lp(Rn)for any p > 2n/(2n − 1). In a very recent paper [5],
we were able to establish an Lp boundedness result for MΩ in which the C(Sn−1)
condition was substantially weakened. The precise statement of the result in [5]
is the following:

THEOREM 1.1 ([5]). If Ω ∈ L(log L)1/2(Sn−1)is a homogeneous function of de-
gree zero on Rnthat satisfies (1.1), then, for 2 6 p < ∞,

‖MΩ( f )‖p 6 Cp‖ f ‖p .

Also, in [5] the condition Ω ∈ L(log L)1/2(Sn−1) was shown to be nearly
optimal in the sense that if the exponent 1/2 in L(log L)1/2(Sn−1) is replaced by
any smaller number, then MΩ may fail to be bounded on L2(Rn).

It is natural to ask whether the operator MΩ,P has the same mapping prop-
erties as that of the classical operator MΩ. This problem is resolved by our next
result:

THEOREM 1.2. If Ω ∈ L(log L)1/2(Sn−1) and satisfies (1.1), then

(1.5) ‖MΩ,P ( f )‖p 6 Cp‖ f ‖p

for 2 6 p < ∞, where Cp is a constant that may depend on the degrees of the polynomials
P1, . . . , Pd but it is independent of their coefficients.

By observing that |TΩ,P ,h f (x)| 6 ‖h‖L2(R+,dr/r) MΩ,P ( f )(x) whenever h ∈
L2(R+, dr/r), we immediately obtain the following result on singular integrals:
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COROLLARY 1.3. Suppose that Ω ∈ L(log L)1/2(Sn−1) is a homogeneous func-
tion of degree zero on Rn satisfying (1.1) and h ∈ L2(R+, dr/r). Then the singular
integral operator TΩ,P ,h is bounded on Lp for 1 < p < ∞ with Lp bounds independent
of the coefficients of the polynomials P1, . . . , Pd.

The proof of Theorem 1.2, to be presented in Sections 2–3, can be adapted
to treat other classes of maximal functions. A sample of such maximal functions
will be presented in Section 4. Also, we shall present in Section 4 several results
on singular integrals, Marcinkiewicz integrals, and parametric Marcinkiewicz in-
tegrals that follow from the corresponding results on maximal functions.

Throughout this paper the letter C will stand for a constant that may vary
at each occurrence, but it is independent of the essential variables.

2. A GENERAL THEORY

For a family of measures σ={σr : r∈R+}, define the square function Sσ by

(2.1) Sσ ( f )(x) =
( ∞∫

0

|σr ∗ f (x)|2r−1dr
)1/2

.

Also for any a > 1, introduce the maximal function Mσ,a which is defined by

(2.2) Mσ,a( f )(x) = sup
k∈Z

2a(k+1)∫
2ak

|σr ∗ f (x)|dr
r

.

LEMMA 2.1. Let d, a ∈ N, and α, β > 0. Let L : Rd → Rm be a linear transfor-
mation. Suppose that σ = {σr : r ∈ R+} is a family of measures that satisfy:

(i) sup
r∈R

‖σr‖ 6 C.

(ii)
2a(k+1)∫

2ak
|σ̂r(ξ)|2 dr

r 6 aC|2akL(ξ)|−α/a for ξ ∈ Rd.

(iii)
2a(k+1)∫

2ak
|σ̂r(ξ)|2 dr

r 6 aC|2akL(ξ)|β/a for ξ ∈ Rd .

(iv) For 1 < p < ∞, there exists a constant Cp > 0 that is independent of the
parameter a and the linear transformation L such that the maximal function Mσ,a satisfies

‖Mσ,a( f )‖p 6 aCp‖ f ‖p.

Then the square function Sσ satisfies

(2.3) ‖Sσ ( f )‖p 6
√

aC‖ f ‖p

for all 2 6 p < ∞ with Lp bounds independent of the linear transformation L and the
parameter a.
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We should point out here that when d = n and L(ξ) = ξ, the inequality
(2.3) was proved in Theorem 2.1 in [3] under the conditions (i)–(iii) above, and
the following condition

(iv′) For 1 < p < ∞, there exists a constant Cp > 0 such that the maximal
function σ∗( f )(x) = sup

t∈R
|σr ∗ f (x)| satisfies ‖σ∗( f )‖p 6 C‖ f ‖p.

Clearly, condition (iv′) above is stronger than the corresponding condition
(iv) in Lemma 2.1. The distinction in Lemma 2.1 between the condition (iv) and
the condition (iv′) is supported by the fact that sometimes (as in this paper), the
former is available while the latter is not. Examples of families of measures for
which (iv) is satisfied while (iv′) is not can be found easily. For instance, if σr is
such that σ̂r(ξ) =

∫
Sn−1

e−i(ξ·y′)rdσ(y′), then (iv) is satisfied while (iv′) is not. This

can be easily seen by observing that Mσ,a( f )(x) 6 aHL( f )(x) where HL is the
Hardy-Littlewood maximal function which is bounded on Lp for all 1 < p < ∞,
while σ∗ is the spherical maximal function that is bounded only for p > n/(n− 1).

In order to prove Lemma 2.1, we first establish the following analogy of
Lemma 6.4 in [17]:

PROPOSITION 2.2. Let d, a ∈ N. Let σ = {σr : r ∈ R+} be a suitable family
of measures. For s 6 d, let G : Rd → Rd and H : Rs → Rs be nonsingular linear
transformations and let ϕ ∈ S(Rs). Define J and Xk,r by:

J( f )(x)= f (Gt(Ht⊗idRd−s )x), Xk,r( f )(x)= J−1((|Φa,k|⊗δRd−s ) ∗ J(σr ∗ f ))(x),

where x ∈ Rd, k ∈ Z, and Φa,k ∈ S(Rs) satisfies Φ̂a,k(ξ) = ϕ(2ak Hπd
s Gξ) with

πd
s is the usual projection. Then for 1 < p < ∞, there exists a positive constant Cp

independent of a and the linear transformations G and H such that the maximal function

MX,a( f )(x) = sup
k∈Z

2a(k+1)∫
2ak

|Xk,r( f )(x)|dr
r

satisfies

(2.4) ‖MX,a( f )‖p 6 Cp‖Mσ,a( f )‖p.

Proof. Let M(s) and IRd−s be the Hardy-Littlewood maximal function on Rs

and the identity operator on Rd−s respectively. Then, it is straightforward to see
that

(2.5)

2a(k+1)∫
2ak

|Xk,r( f )(x)|dr
r

6 J−1((|Φa,k| ⊗ δRd−s ) ∗ J(Mσ,a( f )))(x).

On the other hand, it is obvious that sup
k∈Z

((|Φa,k|⊗δRd−s )∗ J(Mσ,a( f )))(x)6C(M(s)

⊗IRd−s )(J(Mσ,a( f )))(x) with constant C independent of a. Thus by (2.5) and the
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previous, we obtain

(2.6) MX,a( f )(x) 6 C[J−1 ◦ (M(s) ⊗ IRd−s ) ◦ J](Mσ,a( f ))(x).

Hence (2.4) follows by (2.6) and the boundedness of M(s) and IRd−s on Lp for all
1 < p < ∞. This completes the proof.

Now, we are ready to prove Lemma 2.1. For reader’s convenience, we prove
the following theorem which is more general than Lemma 2.1:

THEOREM 2.3. Let M, d ∈ N, {ms : 1 6 s 6 M} ⊂ N, {ls : 1 6 s 6 M} ⊂
(0, ∞), and {εs,j : 1 6 s 6 M and 1 6 j 6 2} ⊂(0, ∞). Let Ls : Rd → Rms be linear
transformations for 1 6 s 6 M. Suppose that σs = {σr,s : r ∈ R+}, 0 6 s 6 M are
families of measures that satisfy:

(i) sup
r∈R

‖σr,s‖ 6 Cs for 1 6 s 6 M .

(ii) σ0 = {0}, i.e., σr,0 = 0 for all r ∈ R.

(iii)
2a(k+1)∫

2ak
|σ̂r,s(ξ)|2 dr

r 6 aCs|2alskLs(ξ)|−εs,1/a for ξ ∈ Rd and 1 6 s 6 M.

(iv)
2a(k+1)∫

2ak
|σ̂r,s(ξ)− σ̂r,s−1(ξ)|2 dr

r 6 aCs|2alskLs(ξ)|εs,2/a} for ξ ∈ Rd and 1 6 s 6

M.
(v) For 1 < p < ∞ and 1 6 s 6 M, there exists a constant Cp,s > 0 that is

independent of a and the linear transformation Ls such that the maximal function Mσs ,a
satisfies

‖Mσs ,a( f )‖p 6 aCp,s‖ f ‖p.

Then the square function SσM
satisfies

(2.7) ‖SσM
( f )‖p 6

√
aC‖ f ‖p

for all 2 6 p < ∞ with Lp bounds independent of the linear transformations {Ls : 1 6
s 6 M} and the parameter a.

Proof. We shall combine the method used in the proof of Lemma 5.2 in [16]
with ideas from [3], [5], [11] and Proposition 2.2. By a similar argument as in the
proof of Lemma 5.2 in [16], see also [17] and Proposition 2.2, there exist families
of measures λs = {λr,s : r ∈ R+}, 1 6 s 6 M such that for ξ ∈ Rd and 16s 6 M,
we have

sup
r∈R

‖λr,s‖ 6 Cs ,(2.8)

2a(k+1)∫
2ak

|λ̂r,s(ξ)|2 dr
r

6 aCs min{|2alskLs(ξ)|−εs,1/a, |2alskL(ξ)|εs,2/a},(2.9)

‖Mλs ,a( f )‖p 6 aCp,s‖ f ‖p for 1 < p < ∞ ,(2.10)
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σr,M =
M

∑
s=1

λr,s ,(2.11)

where Cs and Cp,s are positive constants independent of a and the linear transfor-
mations Ls.

By (2.11) and Minkowski’s inequality, we have SσM
( f )(x) 6

M
∑

s=1
S

λs
( f )(x).

Thus, to prove (2.7) it suffices to show that for any 1 6 s 6 M, the inequality

(2.12) ‖S
λs

( f )‖p 6
√

aCs‖ f ‖p

holds for all 2 6 p < ∞ where Cs is a constant independent of the linear transfor-
mation Ls and the parameter a.

Given 1 6 s 6 M by the same argument in [17], we may assume that
d 6 ms and L = πd

ms is the usual projection. Choose a collection of C∞ func-
tions {ωk,a}k∈Z on (0, ∞) such that supp(ω̂k,a) ⊆ [2−ak−a, 2−ak+a], 0 6 ω̂k,a 6

1, ∑
k∈Z

ω̂k,a(u) = 1, and
∣∣∣ dsω̂k,a

dus (u)
∣∣∣ 6 Clu−l , where Cl are constants independent of

a and k. For j ∈ Z, define the square function S(a)
λs ,j by

(2.13) S(a)
λs ,j

( f )(x) =
(

∑
k∈Z

2a(k+1)∫
2ak

|λs,r ∗ωk+j,a ∗ f (x)|2r−1dr
)1/2

.

Thus we have

(2.14) S
λs

( f )(x) 6 ∑
j∈Z

S(a)
λs ,j

( f )(x).

Now, by Plancherel’s theorem and Fubini’s theorem, we have the following for
Ik,a = {x ∈ Rd : 2−ak−a 6 |πd

ms (x)| < 2−ak+a}:

(2.15) ‖S(a)
λs ,j

( f )‖2
2 6 ∑

k∈Z

∫
Ik+j,a

| f̂ (ξ)|2
( 2a(k+1)∫

2ak

|λ̂s,r(ξ)|2 dr
r

)
dξ.

By (2.15), (2.9), and the properties of {ωk,a}k∈Z, we have ‖S(a)
λs ,j ( f )‖2

26aC2−α|j|

‖ f ‖2
2 for some α > 0. Thus

(2.16) ‖S(a)
λs ,j

( f )‖2 6
√

aC2−α|j|‖ f ‖2.

Next, for p > 2, there exists g ∈ L(p/2)′ with ‖g‖(p/2)′ = 1 such that

‖S(a)
λs ,j

( f )‖2
p =

∫
Rn

∑
k∈Z

2a(k+1)∫
2ak

|λs,r ∗ωk+j,a ∗ f (x)|2r−1dr|g(x)|dx(2.17)
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6
{

sup
t∈R

‖σt‖
} ∫

Rn

∑
k∈Z

|ωk+j,a ∗ f (x)|2
2a(k+1)∫
2ak

|λs,r| ∗ g(x)
drdx

r

6
∫
Rn

∑
k∈Z

|ωk+j,a ∗ f (z)|2Mλs ,a(g̃)(z)dz

6 C
∥∥∥(

∑
k∈Z

|ωk+j,a ∗ f |2
)1/2∥∥∥2

p
‖Mλs ,a(g̃)‖(p/2)′ 6 aC‖ f ‖2

p,

where g̃(z) = g(−z), the third inequality follows by Hölder’s inequality, and the
last inequality follows by (iii) and the Littlewood-Paley theory. The constant C
may depend on the underlying dimension n, the constants Cs, and p, but it is
independent of k and a (for details see [7]). Thus, we obtained for all 2 < p < ∞

(2.18) ‖S
λs ,j ( f )‖p 6

√
aC‖ f ‖p .

By interpolation between (2.16) and (2.18), we obtain

(2.19) ‖S
λs ,j ( f )‖p 6 C

√
a2−β|j|‖ f ‖p,

for all 2 < p < ∞. Hence (2.12) follows by (2.14), (2.16), (2.19), and Minkowski’s
inequality. This completes the proof.

We end this section by the following special case of Proposition 5.1 in [17].

LEMMA 2.4. Let l and n be positive integers. Let Vl(n) be the space of real-valued
homogenous polynomials of degree l on Rn. Let Ul(n) be a subspace of Vl(n) with |x|l /∈
Ul(n). Let Ω ∈ L2(Sn−1). Then there exists a positive constant A independent of Ω
such that

2k+1∫
2k

∣∣∣ ∫
Sn−1

eiF(ry′)Ω(y′)dσ(y′)
∣∣∣dr

r
6 A‖Ω‖L2(2kl‖Pl‖)−1/8l

for all k ∈ Z and functions F : Rn → R of the form

F(x) =
l

∑
j=0

Pj + W(|x|)

where Pj is a homogenous polynomial of degree j, 0 6 j 6 m, Pl ∈ Ul(n), and W is an
arbitrary function. The constant A may depend on the subspace Ul(n) if l is even, but it
is independent of Ul(n) if l is odd. Here, ‖Pl‖ = ∑

|α|=l
|aα | where Pl(y) = ∑

|α|=l
aα yα.
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3. PROOF OF THEOREM 1.2

Let deg(P) = M. Let σM = {σr,M : r ∈ R+} be the family of measures
defined by

(3.1) σ̂r,M(ξ) =
∫

Sn−1

e−iξ·P(ty′)Ω(y′)dσ(y′).

Then by duality it follows that

(3.2) MΩ,P ( f )(x) = SσM ( f )(x)

where SσM is given by (2.1) with the family σ replaced by the family σM. Now, we
write the function Ω (see [5] or [7]) as follows:

(3.3) Ω(y′) = ∑
m∈D∪{0}

θm Am(y′),

where D ⊂ N, {θm : m ∈ D∪ {0}} ⊂ (0, ∞), and {Am : m ∈ D∪ {0}} is a sequence
of homogeneous functions of degree zero on Rn satisfying:∫

Sn−1

Am (y′)dσ(y′) = 0,(3.4)

‖Am‖1 6 C, ‖Am‖2 6 C24(m+1),(3.5)

∑
m∈D∪{0}

√
mθm 6 C‖Ω‖L(log L)1/2(Sn−1) .(3.6)

Then, by (3.3), we have the following

(3.7) SσM ( f )(x) 6 ∑
m∈D∪{0}

θm SσM ,m( f )(x),

where SσM ,m has the same definition as SσM with Ω replaced by Am. Therefore, to
prove (1.5) and hence the theorem, it suffices by (3.2) and (3.6)–(3.7) to show that

(3.8) ‖SσM ,m( f )‖p 6
√

mCp‖ f ‖p

for all 2 6 p < ∞ with constant Cp independent of m and the coefficients of
the polynomials P1, . . . , Pd. However, (3.8) will follow by an application of Theo-
rem 2.3. To this end, we argue as follows:

First, we choose integers 0 < d1 < d2 < · · · < dl 6 M, and polynomials
Q(s)

j : Rn → R, Rj : R → R for 1 6 j 6 d and 1 6 s 6 l such that:

(i) For each 1 6 s 6 l, the polynomial mapping Q(s) = (Q(s)
1 , Q(s)

2 , . . . , Q(s)
d ) is

homogenous of degree ds.

(ii) Q(s)
j ∈ Uds (n) where Uds (n) is a suitable subspace of the space of real-

valued homogenous polynomials of degree ds on Rn with |x|ds /∈ Uds (n).
(iii) deg(Rj) 6 M for all 1 6 j 6 d.
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(iv) P(y) =
l

∑
s=1

Q(s)(y) + (R1(|y|), . . . , Rd(|y|)).

Next, for 1 6 j 6 d and 1 6 s 6 l, let Q(s)
j (y) = ∑

|β|=ds

a(j, β)yβ. For 1 6 s 6 l

let Ns be the number of multi-indices β = (β1, . . . , βn) ∈ (N ∪ {0})n with |β| =
β1 + · · ·+ βn = ds and define the linear transformation Ls : Rd → RNs by

Ls(ξ) = Ls(ξ1, . . . , ξd) =
( d

∑
j=1

ξ ja(j, β)
)
|β|=ds

.

For 0 6 s 6 l, let

Ps(y) =
s

∑
u=1

Q(u)(y) + (R1(|y|), . . . , Rd(|y|))

and let λ
(m)
s = {λ

(m)
r,s : r ∈ R+} be a family of measures that have the same

definition as the family σM with P is replaced by Ps and Ω replaced by Am. Also,
let σM,m = {σ

(m)
r,M : r ∈ R+} be the family of measures given by (3.1) with Ω

replaced by Am. Then by (iv) above, it is clear that

(3.9) λ
(m)
l = σM,m .

On the other hand, by (3.4) and the first inequality in (3.5), we have

λ
(m)
0 = 0,(3.10)

sup
r>0

‖λ
(m)
r,s ‖ 6 Cs ,(3.11)

where Cs is a constant independent of m and the coefficients of the polynomial
components of Ps. Next, by the second inequality in (3.5), (ii) above, and Lem-
ma 2.4, we have for ξ ∈ Rd and 1 6 s 6 l:

(3.12)

2(m+1)(k+1)∫
2(m+1)k

|λ̂(m)
r,s (ξ)|2 dr

r
6 24m(m + 1)Cs|2(m+1)dskLs(ξ)|−1/8ds .

On the other hand, it is easy to see that

(3.13)

2a(k+1)∫
2ak

|λ̂(m)
r,s (ξ)− λ̂

(m)
r,s−1(ξ)|2 dr

r
6 (m + 1)Cs|2(m+1)dskLs(ξ)|
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for ξ ∈ Rd and 1 6 s 6 l. Thus, by interpolation between (3.11) and (3.12), and
between (3.11) and (3.13), we obtain for ξ ∈ Rd and 1 6 s 6 l:

2(m+1)(k+1)∫
2(m+1)k

|λ̂(m)
r,s (ξ)|2 dr

r
6 (m + 1)Cs|2(m+1)dskLs(ξ)|−1/16ds(m+1)(3.14)

2a(k+1)∫
2ak

|λ̂(m)
r,s (ξ)− λ̂

(m)
r,s−1(ξ)|2 dr

r
6 (m + 1)Cs|2(m+1)dskLs(ξ)|1/2(m+1).(3.15)

Finally, it is clear that

(3.16) M
λ

(m)
s ,m+1

( f )(x) 6 (m + 1)Cs sup
k∈Z

2k+1∫
2k6|y|<2k+1

| f (x −Ps(y))| |Am (y′)| dy
|y|n

.

Thus by the first inequality in (3.5), (3.16), Hölder’s inequality, Proposition 1 from
[24] on page 477 (see also [15]), we get

(3.17) ‖M
λ

(m)
s ,m+1

( f )‖p 6 (m + 1)Cs,p‖ f ‖p

for all 1 < p < ∞. Hence (3.8) follows by (3.9)–(3.11), (3.14)–(3.15), (3.17), and
Theorem 2.2. This completes the proof.

4. ADDITIONAL RESULTS

This section is devoted to presenting some additional results that can be
obtained by adapting similar argument as those in Sections 2–3.

4.1. MAXIMAL FUNCTIONS AND SINGULAR INTEGRALS ALONG SURFACES. Let
Ω and h be as in Section 1. For a suitable function ϕ : R+ → R, we define the
singular integral TΩ,ϕ,h and the maximal function MΩ,ϕ by:

TΩ,ϕ,h( f )(x) = p.v.
∫
Rn

f (x − ϕ(|y|)y′)|y|−nh(|y|)Ω(y′)dy,(4.1)

MΩ,ϕ( f )(x) = sup
h∈U(L2(R+,dr/r))

|TΩ,ϕ,h( f )(x)|.(4.2)

We have the following result concerning the operators MΩ,ϕ and TΩ,ϕ,h:

THEOREM 4.1. If ϕ is a polynomial and Ω ∈ L(log L)1/2(Sn−1) which satisfies
(1.1), then:

(i) ‖MΩ,ϕ( f )‖p 6 Cp‖ f ‖p for 2 6 p < ∞.
(ii) ‖TΩ,ϕ,h( f )‖p 6 Cp‖ f ‖p for 1 < p < ∞ whenever h ∈ L2(R+, dr/r)).

Here Cp is a constant that may depend on the degree of the polynomial ϕ, but it is
independent of its coefficients.
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A proof of Theorem 4.1(i) can be constructed by following exactly the same
argument in the proof of Theorem 1.2. But, the argument here is very much sim-
plified since the linear transformations Ls in Theorem 2.3 are the identity ones,
i.e., Ls(ξ) = ξ. The proof of Theorem 4.1(ii) follows by exactly the same argu-
ment as that for Corollary 1.3.

Similar results for the operators MΩ,ϕ and TΩ,ϕ,h still hold even if ϕ is not a
polynomial. In particular, we have the following:

THEOREM 4.2. Suppose that Ω ∈ L(log L)1/2(Sn−1) and satisfies (1.1). If ϕ
satisfies the following estimates

|ϕ(t)| 6 C1td, |ϕ′′(t)| 6 C2td−2,(4.3)

C3td−1 6 |ϕ′(t)| 6 C4td−1,(4.4)

for some d 6= 0 and t ∈ (0, ∞), where C1, C2, C3, and C4 are positive constants indepen-
dent of t, then:

(i) ‖MΩ,ϕ( f )‖p 6 Cp‖ f ‖p for 2 6 p < ∞.
(ii) ‖TΩ,ϕ,h( f )‖p 6 Cp‖ f ‖p for 1 < p < ∞ whenever h ∈ L2(R+, dr/r)).

A proof of Theorem 4.2 (i) can be obtained by first repeating the steps (3.1)–
(3.8) in the proof of Theorem 1.2. Then applying Lemma 2.1 with L(ξ) = ξ.
The estimates required to apply Lemma 2.1 can be easily verified. In fact, the
corresponding estimates (ii) and (iii) in Lemma 2.1 follow by an integration by
parts and the assumptions (4.3)–(4.4) on ϕ (see [1]). Finally, the corresponding
estimate (iv) follows by the assumptions on ϕ and simple change of variables.

We remark here that the results above concerning the singular integrals
show that the classes of the operators TΩ,ϕ,h, h ∈ L2(R+, dr/r) behave quite
differently from the class of the classical Calderón-Zygmund singular integral
operators.

4.2. INTEGRAL OPERATORS OF MARCINKIEWICZ TYPE. Let Ω be as above. For a
suitable mapping Φ : Rd → Rd and ρ > 0, we define the operator µ

ρ
Ω,Φ by

(4.5) µ
ρ
Ω,Φ f (x) =

( ∞∫
−∞

∣∣∣2−ρt
∫

|y|62t

f (x −Φ(y))|y|−n+ρΩ(y)dy
∣∣∣2

dt
)1/2

.

If n = d and Φ(y) = (y1, y2, . . . , yd), we shall simply denote the operator µ
ρ
Ω,Φ by

µ
ρ
Ω.

The operator µ
ρ
Ω is the well known parametric Marcinkiewicz integral op-

erator introduced by Hörmander [19]. On the other hand, the operator µ1
Ω is the

Marcinkiewicz integral operator introduced by E.M. Stein [21]. For a background
information about Marcinkiewicz integral operators, we refer the reader to con-
sult [3], [4], [2], [10], [13], [19], [21], and the references therein.
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By simple change of variables and duality, it can be easily seen that

(4.6) µ
ρ
Ω,Φ f (x) 6 C(ρ)MΩ,Φ( f )(x).

Therefore, by Theorem 1.2 and the inequality (4.6), we immediately obtain the
following:

THEOREM 4.3. Suppose that ρ > 0 and that Ω ∈ L(log L)1/2(Sn−1) satisfying
(1.1). Let P be as in Theorem 1.2. Then ‖µ

ρ
Ω,P ( f )‖p 6 Cp‖ f ‖p for 2 6 p < ∞ with Lp

bounds independent of the coefficients of the polynomial components of P .

It should be pointed out here that in the case of the classical Marcinkiewicz
integral operator µ1

Ω, the result in Theorem 4.3 was obtained in [4]. On the other
hand, Ding–Lu–Yabuta established L2 boundedness of µ

ρ
Ω under the condition

that Ω ∈ L(log L)(Sn−1) [13]. Therefore, Theorem 4.3 is a proper extension of the
results in [4], [13] in the range 2 6 p < ∞.

Also, by the inequality (4.6) and Theorems 4.1–4.2, we have the following
improvement of the corresponding results in [4] and [13] in the range 2 < p < ∞:

THEOREM 4.4. Suppose that ρ > 0 and that Ω ∈ L(log L)1/2(Sn−1) satisfy-
ing (1.1). If Φ(y) = ϕ(|y|)y′ where ϕ is as in Theorem 4.1 or Theorem 4.2, then
‖µ

ρ
Ω,Φ( f )‖p 6 Cp‖ f ‖p for 2 6 p < ∞. Moreover, if ϕ is as in Theorem 4.1, then

the Lp bounds are independent of the coefficients of ϕ.
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