BOUNDED TOEPLITZ PRODUCTS ON WEIGHTED BERGMAN SPACES

KAREL STROETHOFF and DECHAO ZHENG

Communicated by Kenneth R. Davidson

Abstract

We consider the question for which square integrable analytic functions f and g on the unit disk the densely defined products $T_{f} T_{\bar{g}}$ are bounded on the Bergman space. We prove results analogous to those we obtained in the setting of the unweighted Bergman space [17]. We will furthermore completely describe when the Toeplitz product $T_{f} T_{\bar{g}}$ is invertible or Fredholm and prove results generalizing those we obtained for the unweighted Bergman space in [18].

Keywords: Toeplitz operator, weighted Bergman spaces, unit disk, Berezin transform, bounded, invertible, and Fredholm operators.

MSC (2000): Primary 47B35, 47B47.

1. INTRODUCTION

The Bergman space A_{α}^{2} is the space of analytic functions on \mathbb{D} which are square-integrable with respect to the measure $\mathrm{d} A_{\alpha}(z)=(\alpha+1)\left(1-|z|^{2}\right)^{\alpha} \mathrm{d} A(z)$, where $\mathrm{d} A$ denotes normalized Lebesgue area measure on \mathbb{D}. The reproducing kernel in A_{α}^{2} is given by

$$
K_{w}^{(\alpha)}(z)=\frac{1}{(1-\bar{w} z)^{2+\alpha}},
$$

for $z, w \in \mathbb{D}$. If $\langle\cdot, \cdot\rangle_{\alpha}$ denotes the inner product in $L^{2}\left(\mathbb{D}, \mathrm{~d} A_{\alpha}\right)$, then $\left\langle h, K_{w}^{(\alpha)}\right\rangle_{\alpha}=$ $h(w)$, for every $h \in A_{\alpha}^{2}$ and $w \in \mathbb{D}$. The orthogonal projection P_{α} of $L^{2}\left(\mathbb{D}, \mathrm{~d} A_{\alpha}\right)$ onto A_{α}^{2} is given by

$$
\left(P_{\alpha} g\right)(w)=\left\langle g, K_{w}^{(\alpha)}\right\rangle_{\alpha}=\int_{\mathbb{D}} g(z) \frac{1}{(1-\bar{z} w)^{2+\alpha}} \mathrm{d} A_{\alpha}(z),
$$

for $g \in L^{2}\left(\mathbb{D}, \mathrm{~d} A_{\alpha}\right)$ and $w \in \mathbb{D}$. Given $f \in L^{\infty}(\mathbb{D})$, the Toeplitz operator T_{f} is defined on A_{α}^{2} by $T_{f} h=P_{\alpha}(f h)$. We have

$$
\left(T_{f} h\right)(w)=\int_{\mathbb{D}} \frac{f(z) h(z)}{(1-\bar{z} w)^{2+\alpha}} \mathrm{d} A_{\alpha}(z)
$$

for $h \in A_{\alpha}^{2}$ and $w \in \mathbb{D}$. Note that the above formula makes sense, and defines a function analytic on \mathbb{D}, also if $f \in L^{2}\left(\mathbb{D}, \mathrm{~d} A_{\alpha}\right)$. So, if $g \in A_{\alpha}^{2}$ we define $T_{\bar{g}}$ by the formula

$$
\left(T_{\bar{g}} h\right)(w)=\int_{\mathbb{D}} \frac{\overline{g(z)} h(z)}{(1-\bar{z} w)^{2+\alpha}} \mathrm{d} A_{\alpha}(z)
$$

for $h \in A_{\alpha}^{2}$ and $w \in \mathbb{D}$. If also $f \in A_{\alpha}^{2}$, then $T_{f} T_{\bar{g}} h$ is the analytic function $f T_{\bar{g}} h$.
1.1. Problem of boundedness of Toeplitz products on A_{α}^{2}. For which f and g in A_{α}^{2} is the operator $T_{f} T_{\bar{g}}$ bounded on A_{α}^{2} ?

We will first give a necessary condition for boundedness of the Toeplitz product $T_{f} T_{\bar{g}}$, and then show that this condition is very close to being sufficient.

To formulate a necessary condition, we need to define the (weighted) Berezin transform: for a function $u \in L^{1}\left(\mathbb{D}, \mathrm{~d} A_{\alpha}\right)$, the Berezin transform $B_{\alpha}[u]$ is the function on \mathbb{D} defined by

$$
B_{\alpha}[u](w)=\int_{\mathbb{D}} u(z) \frac{\left(1-|w|^{2}\right)^{2+\alpha}}{|1-\bar{w} z|^{4+2 \alpha}} \mathrm{~d} A_{\alpha}(z) .
$$

The following result gives a necessary condition for the Toeplitz product to be bounded.

THEOREM 1.1. Let $-1<\alpha<\infty$, and let f and g be in A_{α}^{2}. If $T_{f} T_{\bar{g}}$ is bounded on A_{α}^{2}, then

$$
\sup _{w \in \mathbb{D}} B_{\alpha}\left[|f|^{2}\right](w) B_{\alpha}\left[|g|^{2}\right](w)<\infty .
$$

The following result gives a sufficient condition for the Toeplitz product to be bounded close to the above necessary condition.

THEOREM 1.2. Let $\varepsilon>0,-1<\alpha<\infty$, and let f and g be in A_{α}^{2}. If

$$
\sup _{w \in \mathbb{D}} B_{\alpha}\left[|f|^{2+\varepsilon}\right](w) B_{\alpha}\left[|g|^{2+\varepsilon}\right](w)<\infty,
$$

then the Toeplitz product $T_{f} T_{\bar{g}}$ is bounded on A_{α}^{2}.
Note that in the limiting case $\alpha \downarrow-1$ these transforms correspond to

$$
\int_{0}^{2 \pi} u\left(\mathrm{e}^{\mathrm{i} \theta}\right) \frac{1-|w|^{2}}{\left|1-\bar{w} \mathrm{e}^{\mathrm{i} \theta}\right|^{2}} \frac{\mathrm{~d} \theta}{2 \pi}=\widehat{u}(w)
$$

the Poisson extension of u on \mathbb{D}, as the Hardy space H^{2} can be regarded as the limiting case of the weighted Bergman spaces A_{α}^{2} (see [22]). It is well-known that a Toeplitz operator on H^{2} is bounded if and only if its symbol is bounded on the unit circle $\partial \mathbb{D}$. Sarason [10], [11] found examples of f and g in H^{2} such that the product $T_{f} T_{\bar{g}}$ is actually a bounded operator on H^{2}, though neither T_{f} nor T_{g} is bounded. Sarason [12] also conjectured that a necessary and sufficient condition for this product to be bounded is

$$
\sup _{w \in \mathbb{D}} \widehat{|f|^{2}}(w) \widehat{|g|^{2}}(w)<\infty
$$

Treil proved that the above condition is indeed necessary (see [12]). The second author [20] showed that the stronger condition

$$
\sup _{w \in \mathbb{D}} \widehat{|f|^{2+\varepsilon}}(w) \widehat{|g|^{2+\varepsilon}}(w)<\infty
$$

for $\varepsilon>0$, is sufficient for the Toeplitz product $T_{f} T_{\bar{g}}$ to be bounded on H^{2}.
The above results were proved by the authors for the unweighted case ($\alpha=$ 0) in [17]. The proof in [17] does not carry over to the weighted setting without some major adjustments. The proof of the unweighted case of Theorem 2.1 made use of the fact that the reciprocal of the Bergman kernel's norm is a polynomial. This is, however, not the case in the weighted spaces A_{α}^{2}. We will show that the reciprocal of the Bergman kernel's norm is the sum of a polynomial and a power series absolutely convergent on the closure of the unit disk. The proof of the unweighted case of Theorem 2.2 made use of an inner product formula that involved derivatives. This inner product formula is not enough to prove Theorem 2.1, for which we will need inner product formulas involving higher order derivatives.

Cruz-Uribe [3] showed that if f and g are outer functions, a necessary and sufficient condition for $T_{f} T_{\bar{g}}$ to be bounded and invertible on H^{2} is that $(f g)^{-1}$ is bounded and $\sup \left\{\widehat{|f|^{2}}(w) \widehat{|g|^{2}}(w): w \in \mathbb{D}\right\}<\infty$. A similar, though different, characterization of bounded invertible Toeplitz products on H^{2} with outer symbols was obtained by the second author [20]. Cruz-Uribe's [3] proof relied on a characterization of invertible Toeplitz operators due to Devinatz and Widom, which in turn is closely related to the Helson-Szegö theorem, that characterizes the weights ω such that the conjugation operator (or Hilbert transform) is bounded on $L^{2}(\partial \mathbb{D}, \omega \mathrm{~d} m)$. See Sarason's book [9] for more on these results. On the other hand, the proof in [20] is based on a distribution function inequality.

Following our proof of Theorems 2.1 and 2.2 we will consider the special case that $g=\frac{1}{f}$, in which case it will be possible to remove the $\varepsilon>0$ in the condition of Theorem 3.1, so that the necessary condition is also sufficient; we will prove the following result.

THEOREM 1.3. If $f \in A_{\alpha}^{2}$ satisfies the condition

$$
\sup _{w \in \mathbb{D}} B_{\alpha}\left[|f|^{2}\right](w) B_{\alpha}\left[|f|^{-2}\right](w)<\infty,
$$

then the Toeplitz product $T_{f} T_{\overline{1 / f}}$ is bounded on A_{α}^{2}.
We will give applications of this result to describe invertible and Fredholm products $T_{f} T_{\bar{g}}$, for $f, g \in A_{\alpha}^{2}$. The results extend those we obtained for the unweighted case in [18]. As in [18], we extend the basic techniques of the realvariable theory of weighted norm inequalities [2], [4], [5], [8] and [13] to the weighted Bergman spaces. We make use of dyadic rectangles on the unit disk and dyadic maximal operators. We will show that every dyadic rectangle that has positive distance to the unit circle is always contained in the pseudohyperbolic disk with the same center as the dyadic rectangle and a fixed radius independent of the dyadic rectangle. This observation simplifies the arguments even for the unweighted case.

2. NECESSARY CONDITION FOR BOUNDEDNESS

Suppose f and g are in $L^{2}\left(\mathbb{D}, \mathrm{~d} A_{\alpha}\right)$. Consider the operator $f \otimes g$ on A_{α}^{2} defined by

$$
(f \otimes g) h=\langle h, g\rangle_{\alpha} f
$$

for $h \in A_{\alpha}^{2}$. It is easily proved that $f \otimes g$ is bounded on A_{α}^{2} with norm equal to $\|f \otimes g\|=\|f\|_{\alpha}\|g\|_{\alpha}$, where $\|h\|_{\alpha}$ denotes the norm $\left(\int_{\mathbb{D}}|h|^{2} \mathrm{~d} A_{\alpha}\right)^{1 / 2}$ in A_{α}^{2}.

We will obtain an expression for the operator $f \otimes g$ in terms of the operators involving the Toeplitz product $T_{f} T_{\bar{g}}$, where $f, g \in A_{\alpha}^{2}$. This is most easily accomplished by using the Berezin transform, which has been useful in the study of operators on the Bergman space [1] and the Hardy space [15]: writing $k_{w}^{(\alpha)}$ for the normalized reproducing kernels in A_{α}^{2}, we define the Berezin transform of a bounded linear operator S on A_{α}^{2} to be the function $B_{\alpha}[S]$ defined on \mathbb{D} by

$$
B_{\alpha}[S](w)=\left\langle S k_{w}^{(\alpha)}, k_{w}^{(\alpha)}\right\rangle_{\alpha}
$$

for $w \in \mathbb{D}$. The boundedness of operator S implies that the function $B_{\alpha}[S]$ is bounded on \mathbb{D}. The Berezin transform is injective, for $B_{\alpha}[S](w)=0$, for all $w \in \mathbb{D}$, implies that $S=0$, the zero operator on A_{α}^{2} (see [14] for a proof). Using the reproducing property of $K_{w}^{(\alpha)}$ we have

$$
\left\|K_{w}^{(\alpha)}\right\|_{\alpha}^{2}=\left\langle K_{w}^{(\alpha)}, K_{w}^{(\alpha)}\right\rangle_{\alpha}=K_{w}^{(\alpha)}(w)=\frac{1}{\left(1-|w|^{2}\right)^{2+\alpha}}
$$

thus

$$
\begin{equation*}
k_{w}^{(\alpha)}(z)=\frac{\left(1-|w|^{2}\right)^{(2+\alpha) / 2}}{(1-\bar{w} z)^{2+\alpha}} \tag{2.1}
\end{equation*}
$$

for $z, w \in \mathbb{D}$. It follows from (2.1) that

$$
B_{\alpha}[S](w)=\left(1-|w|^{2}\right)^{2+\alpha}\left\langle S K_{w}^{(\alpha)}, K_{w}^{(\alpha)}\right\rangle_{\alpha \prime}
$$

for $w \in \mathbb{D}$. It is easily seen that $T_{\bar{g}} K_{w}^{(\alpha)}=\overline{g(w)} K_{w}^{(\alpha)}$. Thus $\left\langle T_{f} T_{\bar{g}} K_{w}^{(\alpha)}, K_{w}^{(\alpha)}\right\rangle_{\alpha}=$ $\left\langle T_{\bar{g}} K_{w}^{(\alpha)}, T_{\bar{f}} K_{w}^{(\alpha)}\right\rangle_{\alpha}=\left\langle\overline{g(w)} K_{w}^{(\alpha)}, \overline{f(w)} K_{w}^{(\alpha)}\right\rangle_{\alpha}=f(w) \overline{g(w)}\left\langle K_{w}^{(\alpha)}, K_{w}^{(\alpha)}\right\rangle_{\alpha}$, and we see that

$$
B_{\alpha}\left[T_{f} T_{\bar{g}}\right](w)=f(w) \overline{g(w)}
$$

We also have

$$
\begin{aligned}
B_{\alpha}[f \otimes g](w) & =\left(1-|w|^{2}\right)^{2+\alpha}\left\langle(f \otimes g) K_{w}^{(\alpha)}, K_{w}^{(\alpha)}\right\rangle_{\alpha}=\left(1-|w|^{2}\right)^{2+\alpha}\left\langle\left\langle K_{w}^{(\alpha)}, g\right\rangle_{\alpha} f, K_{w}^{(\alpha)}\right\rangle_{\alpha} \\
& =\left(1-|w|^{2}\right)^{2+\alpha}\left\langle K_{w}^{(\alpha)}, g\right\rangle_{\alpha}\left\langle f, K_{w}^{(\alpha)}\right\rangle_{\alpha}=\left(1-|w|^{2}\right)^{2+\alpha} f(w) \overline{g(w)} .
\end{aligned}
$$

We will use the last formulas to obtain an expression for operator $f \otimes g$ in terms of the operators involving the Toeplitz product $T_{f} T_{\bar{g}}$, where $f, g \in A_{\alpha}^{2}$. We need the following lemma, which may be of independent interest. For a real number β, let $[\beta]$ denote the integer part of β and $\{\beta\}=\beta-[\beta] \geqslant 0$.

LEMMA 2.1. Suppose that α is a real number in $(-1, \infty)$. The function $(1-t)^{2+\alpha}$ has the power series expansion

$$
(1-t)^{2+\alpha} \stackrel{2+[\alpha]}{=} \sum_{j=0}^{(-1)^{j}} \frac{\Gamma(3+\alpha)}{j!\Gamma(3+\alpha-j)} t^{j}+(-1)^{1+[\alpha]} \frac{\Gamma(3+\alpha) \sin (\pi\{\alpha\})}{\pi} \sum_{n=0}^{\infty} \frac{\Gamma(n+1-\{\alpha\})}{(3+n+[\alpha])!} t^{3+n+[\alpha]} .
$$

Proof. We will show that

$$
(1-t)^{-\beta+k}=\sum_{j=0}^{k-1}(-1)^{j} \frac{\Gamma(-\beta+k+1)}{\Gamma(-\beta+k+1-j)} \frac{t^{j}}{j!}+(-1)^{k} \frac{\Gamma(-\beta+k+1)}{\Gamma(\beta) \Gamma(-\beta+1)} \sum_{n=0}^{\infty} \frac{\Gamma(n+\beta)}{(n+k)!} t^{n+k}
$$

for $0<\beta<1$ and every positive integer k. Interpreting the first sum as 0 when $k=0$, this formula is the usual binomial expansion for $(1-t)^{-\beta}$. Assuming the above formula to hold, integration with respect to t yields

$$
\begin{aligned}
& \frac{1-(1-t)^{-\beta+k+1}}{-\beta+k+1} \\
& =\sum_{j=0}^{k-1}(-1)^{j} \frac{\Gamma(-\beta+k+1)}{\Gamma(-\beta+k+1-j)} \frac{t^{j+1}}{(j+1)!}+(-1)^{k} \frac{\Gamma(-\beta+k+1)}{\Gamma(\beta) \Gamma(-\beta+1)} \sum_{n=0}^{\infty} \frac{\Gamma(n+\beta)}{(n+k+1)!} t^{n+k+1} \\
& =-\sum_{j=1}^{k}(-1)^{j} \frac{\Gamma(-\beta+k+1)}{\Gamma(-\beta+k+2-j)} \frac{t^{j}}{j!}+(-1)^{k} \frac{\Gamma(-\beta+k+1)}{\Gamma(\beta) \Gamma(-\beta+1)} \sum_{n=0}^{\infty} \frac{\Gamma(n+\beta)}{(n+k+1)!} t^{n+k+1}
\end{aligned}
$$

which implies

$$
\begin{aligned}
1- & (1-t)^{-\beta+k+1} \\
= & -\sum_{j=1}^{k}(-1)^{j} \frac{(-\beta+k+1) \Gamma(-\beta+k+1)}{\Gamma(-\beta+k+2-j)} \frac{t^{j}}{j!} \\
& +(-1)^{k} \frac{(-\beta+k+1) \Gamma(-\beta+k+1)}{\Gamma(\beta) \Gamma(-\beta+1)} \sum_{n=0}^{\infty} \frac{\Gamma(n+\beta)}{(n+k+1)!} t^{n+k+1} \\
= & -\sum_{j=1}^{k}(-1)^{j} \frac{\Gamma(-\beta+k+2)}{\Gamma(-\beta+k+2-j)} \frac{t^{j}}{j!}+(-1)^{k} \frac{\Gamma(-\beta+k+2)}{\Gamma(\beta) \Gamma(-\beta+1)} \sum_{n=0}^{\infty} \frac{\Gamma(n+\beta)}{(n+k+1)!} t^{n+k+1},
\end{aligned}
$$

and thus

$$
\begin{aligned}
(1-t)^{-\beta+k+1}=1 & +\sum_{j=1}^{k}(-1)^{j} \frac{\Gamma(-\beta+k+2)}{\Gamma(-\beta+k+2-j)} \frac{t^{j}}{j!} \\
& +(-1)^{k+1} \frac{\Gamma(-\beta+k+2)}{\Gamma(\beta) \Gamma(-\beta+1)} \sum_{n=0}^{\infty} \frac{\Gamma(n+\beta)}{(n+k+1)!} t^{n+k+1}
\end{aligned}
$$

This proves the induction step. Assuming α to be a non-integer, the lemma follows by taking $\beta=1-\{\alpha\}$ and $k=[\alpha]+3$. Then $0<\beta<1$ and $-\beta+k=$ $2+\{\alpha\}+[\alpha]=2+\alpha$. Using the next relation the stated identity follows:

$$
\Gamma(\beta) \Gamma(-\beta+1)=\Gamma(1-\{\alpha\}) \Gamma(\{\alpha\})=\frac{\pi}{\sin (\pi\{\alpha\})}
$$

Applying the above lemma to $t=|w|^{2}=w \bar{w}$ we have

$$
\begin{aligned}
& \left(1-|w|^{2}\right)^{2+\alpha}=\sum_{j=0}^{2+[\alpha]}(-1)^{j} \frac{\Gamma(3+\alpha)}{j!\Gamma(3+\alpha-j)} w^{j} \bar{w}^{j} \\
& \quad+(-1)^{1+[\alpha]} \frac{\Gamma(3+\alpha) \sin (\pi\{\alpha\})}{\pi} \sum_{n=0}^{\infty} \frac{\Gamma(n+1-\{\alpha\})}{(3+n+[\alpha])!} w^{3+n+[\alpha]} \bar{w}^{3+n+[\alpha]} .
\end{aligned}
$$

Multiply by $f(w) \overline{g(w)}$ to obtain

$$
\begin{aligned}
& B_{\alpha}[f \otimes g](w)=\sum_{j=0}^{2+[\alpha]}(-1)^{j} \frac{\Gamma(3+\alpha)}{j!\Gamma(3+\alpha-j)} w^{j} f(w) \overline{w^{j} g(w)} \\
& +(-1)^{1+[\alpha]} \frac{\Gamma(3+\alpha) \sin (\pi\{\alpha\})}{\pi} \sum_{n=0}^{\infty} \frac{\Gamma(n+1-\{\alpha\})}{(3+n+[\alpha])!} w^{3+n+[\alpha]} f(w) \overline{w^{3+n+[\alpha] g(w)}}
\end{aligned}
$$

Using that for analytic functions h and k the Toeplitz product $T_{h} T_{\bar{k}}$ has Berezin transform $B_{\alpha}\left[T_{h} T_{\bar{k}}\right](w)=h(w) \overline{k(w)}$, the above formula and the unicity of the

Berezin transform imply the following operator identity

$$
\begin{aligned}
f \otimes g & =\sum_{j=0}^{2+[\alpha]}(-1)^{j} \frac{\Gamma(3+\alpha)}{j!\Gamma(3+\alpha-j)} T_{z j} T_{\overline{z^{j} g}} \\
& +(-1)^{1+[\alpha]} \frac{\Gamma(3+\alpha) \sin (\pi\{\alpha\})}{\pi} \sum_{n=0}^{\infty} \frac{\Gamma(n+1-\{\alpha\})}{(3+n+[\alpha])!} T_{z^{3+n+[\alpha]} f} T_{\overline{z^{3+n+[\alpha]} g}} \\
& =\sum_{j=0}^{2+[\alpha]}(-1)^{j} \frac{\Gamma(3+\alpha)}{j!\Gamma(3+\alpha-j)} T_{z}^{j} T_{f} T_{\bar{g}} T_{\bar{z}}^{j} \\
& +(-1)^{1+[\alpha]} \frac{\Gamma(3+\alpha) \sin (\pi\{\alpha\})}{\pi} \sum_{n=0}^{\infty} \frac{\Gamma(n+1-\{\alpha\})}{(3+n+[\alpha])!} T_{z}^{3+n+[\alpha]} T_{f} T_{\bar{g}} T_{\bar{z}}^{3+n+[\alpha]}
\end{aligned}
$$

This operator identity in turn implies

$$
\|f \otimes g\| \leqslant \sum_{j=0}^{2+[\alpha]} \frac{\Gamma(3+\alpha)}{j!\Gamma(3+\alpha-j)}\left\|T_{f} T_{\bar{g}}\right\|+\frac{\Gamma(3+\alpha) \sin (\pi\{\alpha\})}{\pi} \sum_{n=0}^{\infty} \frac{\Gamma(n+1-\{\alpha\})}{(3+n+[\alpha])!}\left\|T_{f} T_{\bar{g}}\right\| .
$$

Using Stirling's formula it is easy to verify that $\frac{\Gamma(n+1-\{\alpha\})}{(3+n+[\alpha])!} \sim \frac{1}{n^{3+\alpha}}$, so the positive series

$$
\sum_{n=0}^{\infty} \frac{\Gamma(n+1-\{\alpha\})}{(3+n+[\alpha])!}
$$

converges. Hence there exists a finite positive number C_{α} such that

$$
\|f\|_{\alpha}\|g\|_{\alpha}=\|f \otimes g\| \leqslant C_{\alpha}\left\|T_{f} T_{\bar{g}}\right\|
$$

For $w \in \mathbb{D}$ the function φ_{w} has real Jacobian equal to

$$
\left|\varphi_{w}^{\prime}(z)\right|^{2}=\frac{\left(1-|w|^{2}\right)^{2}}{|1-\bar{w} z|^{4}}
$$

Using the identity

$$
\begin{equation*}
1-\left|\varphi_{w}(z)\right|^{2}=\frac{\left(1-|w|^{2}\right)\left(1-|z|^{2}\right)}{|1-\bar{w} z|^{2}} \tag{2.2}
\end{equation*}
$$

it is readily verified that

$$
\left(1-|z|^{2}\right)^{\alpha}\left|k_{w}^{(\alpha)}(z)\right|^{2}=\left|\varphi_{w}^{\prime}(z)\right|^{2}\left(1-\left|\varphi_{w}(z)\right|^{2}\right)^{\alpha}
$$

which implies the change-of-variable formula

$$
\begin{equation*}
\int_{\mathbb{D}} h\left(\varphi_{w}(z)\right)\left|k_{w}^{(\alpha)}(z)\right|^{2} \mathrm{~d} A_{\alpha}(z)=\int_{\mathbb{D}} h(u) \mathrm{d} A_{\alpha}(u) \tag{2.3}
\end{equation*}
$$

for every $h \in L^{1}(\mathbb{D})$. It follows from (2.3) that the mapping $U_{w}^{(\alpha)} h=\left(h \circ \varphi_{w}\right) k_{w}^{(\alpha)}$ is an isometry on A_{α}^{2} :

$$
\left\|U_{w}^{(\alpha)} h\right\|_{\alpha}^{2}=\int_{\mathbb{D}}\left|h\left(\varphi_{w}(z)\right)\right|^{2}\left|k_{w}^{(\alpha)}(z)\right|^{2} \mathrm{~d} A_{\alpha}(z)=\int_{\mathbb{D}}|h(u)|^{2} \mathrm{~d} A_{\alpha}(u)=\|h\|_{\alpha}^{2}
$$

for all $h \in A_{\alpha}^{2}$. Using the identity

$$
1-\overline{\varphi_{w}(z)} w=\frac{1-|w|^{2}}{1-\bar{z} w}
$$

we have

$$
k_{w}^{(\alpha)}\left(\varphi_{w}(z)\right)=\frac{\left(1-|w|^{2}\right)^{(2+\alpha) / 2}}{\left(1-\overline{\varphi_{w}(z)} w\right)^{2+\alpha}}=\frac{(1-\bar{z} w)^{2+\alpha}}{\left(1-|w|^{2}\right)^{(2+\alpha) / 2}}=\frac{1}{k_{w}^{(\alpha)}(z)} .
$$

Since $\varphi_{w} \circ \varphi_{w}=\mathrm{id}$, we see that

$$
\left(U_{w}^{(\alpha)}\left(U_{w}^{(\alpha)} h\right)\right)(z)=\left(U_{w}^{(\alpha)} h\right)\left(\varphi_{w}(z)\right) k_{w}^{(\alpha)}(z)=h(z) k_{w}^{(\alpha)}\left(\varphi_{w}(z)\right) k_{w}^{(\alpha)}(z)=h(z)
$$

for all $z \in \mathbb{D}$ and $h \in A_{\alpha}^{2}$. Thus $\left(U_{w}^{(\alpha)}\right)^{-1}=U_{w}^{(\alpha)}$, and hence $U_{w}^{(\alpha)}$ is unitary on A_{α}^{2}. Furthermore,

$$
\begin{equation*}
T_{f \circ \varphi_{w}} U_{w}^{(\alpha)}=U_{w}^{(\alpha)} T_{f} . \tag{2.4}
\end{equation*}
$$

For $h \in H^{\infty}$ and $g \in A_{\alpha}^{2}$ the following equations establish (2.4):

$$
\begin{aligned}
\left\langle U_{w}^{(\alpha)} T_{f} h, U_{w}^{(\alpha)} g\right\rangle_{\alpha} & =\left\langle T_{f} h, g\right\rangle_{\alpha}=\langle f h, g\rangle_{\alpha}=\int_{\mathbb{D}} f(u) h(u) \overline{g(u)} \mathrm{d} A_{\alpha}(z) \\
& =\int_{\mathbb{D}} f\left(\varphi_{w}(z)\right) h\left(\varphi_{w}(z)\right) \overline{g\left(\varphi_{w}(z)\right)}\left|k_{w}^{(\alpha)}(z)\right|^{2} \mathrm{~d} A_{\alpha}(z) \\
& =\int_{\mathbb{D}} f\left(\varphi_{w}(z)\right) h\left(\varphi_{w}(z)\right) k_{w}^{(\alpha)}(z) \overline{g\left(\varphi_{w}(z)\right) k_{w}^{(\alpha)}(z)} \mathrm{d} A_{\alpha}(z) \\
& =\left\langle f U_{w}^{(\alpha)} h, U_{w}^{(\alpha)} g\right\rangle_{\alpha}=\left\langle T_{f \circ \varphi_{w}} U_{w}^{(\alpha)} h, U_{w}^{(\alpha)} g\right\rangle_{\alpha}
\end{aligned}
$$

It follows from (2.4), applied to f and \bar{g}, that $T_{f \circ \varphi_{w}} T_{\bar{g} \circ \varphi_{w}}=\left(T_{f \circ \varphi_{w}} U_{w}^{(\alpha)}\right) U_{w}^{(\alpha)}$. $\left(T_{\bar{g} \circ \varphi_{w}} U_{w}^{(\alpha)}\right) U_{w}^{(\alpha)}=\left(U_{w}^{(\alpha)} T_{f}\right) U_{w}^{(\alpha)}\left(U_{w}^{(\alpha)} T_{\bar{g}}\right) U_{w}^{(\alpha)}=U_{w}^{(\alpha)}\left(T_{f} T_{\bar{g}}\right) U_{w}^{(\alpha)}$, thus

$$
\left\|f \circ \varphi_{w}\right\|_{\alpha}\left\|g \circ \varphi_{w}\right\|_{\alpha} \leqslant C_{\alpha}\left\|T_{f \circ \varphi_{w}} T_{\bar{g} \circ \varphi_{w}}\right\|=C_{\alpha}\left\|T_{f} T_{\bar{g}}\right\|
$$

hence

$$
B_{\alpha}\left[|f|^{2}\right](w) B_{\alpha}\left[|g|^{2}\right](w) \leqslant C_{\alpha}^{2}\left\|T_{f} T_{\bar{g}}\right\|^{2}
$$

for all $w \in \mathbb{D}$. So, for $f, g \in A_{\alpha}^{2}$, a necessary condition for the Toeplitz product $T_{f} T_{\bar{g}}$ to be bounded on A_{α}^{2} is

$$
\begin{equation*}
\sup _{w \in \mathbb{D}} B_{\alpha}\left[|f|^{2}\right](w) B_{\alpha}\left[|g|^{2}\right](w)<\infty \tag{2.5}
\end{equation*}
$$

This completes the proof of Theorem 1.1.

3. SUFFICIENT CONDITION FOR BOUNDEDNESS

Theorem 1.2 states that a condition slightly stronger than the necessary condition (2.5) is sufficient, namely the condition that for $f, g \in A_{\alpha}^{2}$ and for $\varepsilon>0$

$$
\begin{equation*}
\sup _{w \in \mathbb{D}} B_{\alpha}\left[|f|^{2+\varepsilon}\right](w) B_{\alpha}\left[|g|^{2+\varepsilon}\right](w)<\infty . \tag{3.1}
\end{equation*}
$$

3.1. Estimates. We establish some estimates for the n-th order derivatives of images of Toeplitz operators.

Lemma 3.1. Let $-1<\alpha<\infty$ and let n be a non-negative integer. For $f \in A_{\alpha}^{2}$ and $h \in H^{\infty}(\mathbb{D})$ we have, for all $w \in \mathbb{D}$,

$$
\left|\left(T_{f}^{*} h\right)^{(n)}(w)\right| \leqslant 2^{n} \frac{\Gamma(\alpha+2+n)}{\Gamma(\alpha+2)} \frac{1}{\left(1-|w|^{2}\right)^{n+1+\alpha / 2}} B_{\alpha}\left[|f|^{2}\right](w)^{1 / 2}\|h\|_{\alpha}
$$

Proof. Differentiating the formula

$$
\left(T_{f}^{*} h\right)(w)=(\alpha+1) \int_{\mathbb{D}} \frac{\overline{f(z)} h(z)}{(1-w \bar{z})^{2+\alpha}}\left(1-|z|^{2}\right)^{\alpha} \mathrm{d} A(z)
$$

n times yields

$$
\begin{equation*}
\left(T_{f}^{*} h\right)^{(n)}(w)=\frac{\Gamma(\alpha+2+n)}{\Gamma(\alpha+1)} \int_{\mathbb{D}} \frac{\overline{z^{n} f(z)} h(z)}{(1-w \bar{z})^{2+n+\alpha}}\left(1-|z|^{2}\right)^{\alpha} \mathrm{d} A(z) \tag{3.2}
\end{equation*}
$$

The following inequalities give the desired estimate:

$$
\begin{aligned}
& \left|\left(T_{f}^{*} h\right)^{(n)}(w)\right| \\
& \leqslant \frac{\Gamma(\alpha+2+n)}{\Gamma(\alpha+1)} \int_{\mathbb{D}} \frac{|f(z)||h(z)|}{|1-w \bar{z}|^{2+n+\alpha}}\left(1-|z|^{2}\right)^{\alpha} \mathrm{d} A(z) \\
& \leqslant \frac{\Gamma(\alpha+2+n)}{\Gamma(\alpha+1)}\left(\int_{\mathbb{D}} \frac{|f(z)|^{2}}{|1-w \bar{z}|^{4+2 n+2 \alpha}}\left(1-|z|^{2}\right)^{\alpha} \mathrm{d} A(z)\right)^{1 / 2} \times\left(\int_{\mathbb{D}}|h(z)|^{2}\left(1-|z|^{2}\right)^{\alpha} \mathrm{d} A(z)\right)^{1 / 2} \\
& \leqslant \frac{\Gamma(\alpha+2+n)}{\Gamma(\alpha+1)} \frac{1}{(1-|w|)^{n}}\left(\int_{\mathbb{D}} \frac{|f(z)|^{2}}{|1-w \bar{z}|^{4+2 \alpha}}\left(1-|z|^{2}\right)^{\alpha} \mathrm{d} A(z)\right)^{1 / 2}\left(\int_{\mathbb{D}}|h(z)|^{2}\left(1-|z|^{2}\right)^{\alpha} \mathrm{d} A(z)\right)^{1 / 2} \\
& =\frac{\Gamma(\alpha+2+n)}{\Gamma(\alpha+2)} \frac{1}{(1-|w|)^{n}}\left(\frac{B_{\alpha}\left[|f|^{2}\right](w)}{\left(1-|w|^{2}\right)^{2+\alpha}}\right)^{1 / 2}\|h\|_{\alpha} \\
& =\frac{\Gamma(\alpha+2+n)}{\Gamma(\alpha+2)} \frac{2^{n}}{\left(1-|w|^{2}\right)^{n+1+\alpha / 2}} B_{\alpha}\left[|f|^{2}\right](w)^{1 / 2}\|h\|_{\alpha} .
\end{aligned}
$$

Lemma 3.2. Let $-1<\alpha<\infty$, let $\varepsilon>0$, and let n be an integer at least as large as $\frac{2+\alpha}{2+\varepsilon}$. There exists a constant C, only depending on α and n, such that for $f \in A_{\alpha}^{2}$ and
$h \in H^{\infty}(\mathbb{D})$ we have, for all $w \in \mathbb{D}$, where $\delta=\frac{2+\varepsilon}{1+\varepsilon}$,

$$
\left|\left(T_{f}^{*} h\right)^{(n)}(w)\right| \leqslant \frac{C}{\left(1-|w|^{2}\right)^{n}} B_{\alpha}\left[|f|^{2+\varepsilon}\right](w)^{1 /(2+\varepsilon)}\left(\frac{|h(z)|^{\delta}}{|1-\bar{z} w|^{2+\alpha}} \mathrm{d} A_{\alpha}(z)\right)^{1 / \delta}
$$

Proof. Using formula (3.2) and Hölder's inequality we have

$$
\begin{aligned}
& \left|\left(T_{f}^{*} h\right)^{(n)}(w)\right| \\
& \leqslant \frac{\Gamma(\alpha+2+n)}{\Gamma(\alpha+1)} \int_{\mathbb{D}} \frac{|f(z)||h(z)|}{|1-w \bar{z}|^{2+n+\alpha}}\left(1-|z|^{2}\right)^{\alpha} \mathrm{d} A(z) \\
& \leqslant \frac{\Gamma(\alpha+2+n)}{\Gamma(\alpha+1)}\left(\int_{\mathbb{D}} \frac{|f(z)|^{2+\varepsilon}}{|1-w \bar{z}|^{2+\alpha+n(2+\varepsilon)}}\left(1-|z|^{2}\right)^{\alpha} \mathrm{d} A(z)\right)^{1 /(2+\varepsilon)} \\
& \quad \times\left(\int_{\mathbb{D}} \frac{|h(z)|^{\delta}}{|1-w \bar{z}|^{2+\alpha}}\left(1-|z|^{2}\right)^{\alpha} \mathrm{d} A(z)\right)^{1 / \delta} \\
& =\frac{\Gamma(\alpha+2+n)}{\Gamma(\alpha+1)}\left(\int_{\mathbb{D}} \frac{|f(z)|^{2+\varepsilon}}{|1-w \bar{z}|^{4+2 \alpha+n(2+\varepsilon)-(2+\alpha)}}\left(1-|z|^{2}\right)^{\alpha} \mathrm{d} A(z)\right)^{1 /(2+\varepsilon)} \\
& \quad \times\left(\int_{\mathbb{D}} \frac{|h(z)|^{\delta}}{|1-w \bar{z}|^{2+\alpha}}\left(1-|z|^{2}\right)^{\alpha} \mathrm{d} A(z)\right)^{1 / \delta}
\end{aligned}
$$

$$
\leqslant \frac{\Gamma(\alpha+2+n)}{\Gamma(\alpha+1)}\left(\int_{\mathbb{D}} \frac{|f(z)|^{2+\varepsilon}}{|1-w \bar{z}|^{4+2 \alpha}(1-|w|)^{n(2+\varepsilon)-(2+\alpha)}}\left(1-|z|^{2}\right)^{\alpha} \mathrm{d} A(z)\right)^{1 /(2+\varepsilon)}
$$

$$
\times\left(\int_{\mathbb{D}} \frac{|h(z)|^{\delta}}{|1-w \bar{z}|^{2+\alpha}}\left(1-|z|^{2}\right)^{\alpha} \mathrm{d} A(z)\right)^{1 / \delta}
$$

$$
\leqslant \frac{\Gamma(\alpha+2+n)}{\Gamma(\alpha+1)} \frac{1}{(1-|w|)^{n-(2+\alpha) /(2+\varepsilon)}}\left(\frac{1}{\alpha+1} \frac{B_{\alpha}\left[|f|^{2+\varepsilon}\right](w)}{\left(1-|w|^{2}\right)^{2+\alpha}}\right)^{1 /(2+\varepsilon)}
$$

$$
\times\left(\frac{1}{\alpha+1} \int_{\mathbb{D}} \frac{|h(z)|^{\delta}}{|1-w \bar{z}|^{2+\alpha}} \mathrm{d} A_{\alpha}(z)\right)^{1 / \delta}
$$

$$
=\frac{\Gamma(\alpha+2+n)}{\Gamma(\alpha+2)} \frac{(1+|w|)^{n-(2+\alpha) /(2+\varepsilon)}}{\left(1-|w|^{2}\right)^{n}}\left(B_{\alpha}\left[|f|^{2+\varepsilon}\right](w)\right)^{1 /(2+\varepsilon)}
$$

$$
\times\left(\int_{\mathbb{D}} \frac{|h(z)|^{\delta}}{|1-w \bar{z}|^{2+\alpha}} \mathrm{d} A_{\alpha}(z)\right)^{1 / \delta}
$$

$$
\leqslant \frac{\Gamma(\alpha+2+n)}{\Gamma(\alpha+2)} \frac{2^{n-(2+\alpha) /(2+\varepsilon)}}{\left(1-|w|^{2}\right)^{n}} B_{\alpha}\left[|f|^{2+\varepsilon}\right](w)^{1 /(2+\varepsilon)}\left(\int_{\mathbb{D}} \frac{|h(z)|^{\delta}}{|1-w \bar{z}|^{2+\alpha}} \mathrm{d} A_{\alpha}(z)\right)^{1 / \delta}
$$

which gives the desired estimate.
3.2. INNER PRODUCT FORMULA IN A_{α}^{2}. In this subsection we will establish a formula for the inner product in A_{α}^{2} needed to prove our sufficiency condition for boundedness of Toeplitz products.

If f and g satisfy the sufficiency condition (3.1), and h and k are polynomials, Lemma 3.1 shows that the analytic functions $F=T_{f}^{*} h$ and $G=T_{g}^{*} k$ satisfy

$$
\left(1-|z|^{2}\right)^{2 k+2+\alpha}\left|u^{(k)}(z) \overline{v^{(k)}(z)}\right| \leqslant C_{\alpha, k}\|h\|_{\alpha}\|k\|_{\alpha}
$$

while Lemma 3.2, combined by the L^{p}-boundedness of the Bergman projection on A_{α}^{2} will be used to show that

$$
\int_{\mathbb{D}}\left(1-|z|^{2}\right)^{2 n+\alpha}\left|u^{(n)}(z) \overline{v^{(n)}(z)}\right| \mathrm{d} A(z) \leqslant C_{\alpha, k}\|h\|_{\alpha}\|k\|_{\alpha}
$$

provided $n \geqslant \frac{2+\alpha}{2+\varepsilon}$ (details will follow). So we need to rewrite the inner product in such a way that the above estimates can be used. Write

$$
\langle f, g\rangle_{\alpha}=\int_{\mathbb{D}} f \bar{g} \mathrm{~d} A_{\alpha}=(\alpha+1) \int_{\mathbb{D}} f(z) \overline{g(z)}\left(1-|z|^{2}\right)^{\alpha} \mathrm{d} A(z)
$$

Note that

$$
\left\langle z^{n}, z^{n}\right\rangle_{\alpha}=\frac{n!\Gamma(\alpha+2)}{\Gamma(n+\alpha+2)}
$$

A calculation shows for all $f, g \in A_{\alpha}^{2}$ that

$$
\begin{equation*}
\langle f, g\rangle_{\alpha}=\langle f, g\rangle_{\alpha+2}+\frac{\left\langle f^{\prime}, g^{\prime}\right\rangle_{\alpha+2}}{(\alpha+2)(\alpha+3)}+\frac{\left\langle f^{\prime}, g^{\prime}\right\rangle_{\alpha+3}}{(\alpha+3)(\alpha+4)} \tag{3.3}
\end{equation*}
$$

We iterate formula (3.3) to obtain an inner product formula useful in estabilishing the sufficiency condition (3.1) for boundedness of Toeplitz products on the weighted Bergman space A_{α}^{2}.

Lemma 3.3. Let $-1<\alpha<\infty$. There exist constants $b_{n, 1}, \ldots, b_{n, 2 n+1}$ such that, for all $f, g \in A_{\alpha}^{2}$,

$$
\begin{align*}
\langle f, g\rangle_{\alpha}=\langle f, g\rangle_{\alpha+2} & +\sum_{j=1}^{2} \sum_{k=1}^{n-1} b_{n, 2 k+j-2}\left\langle f^{(k)}, g^{(k)}\right\rangle_{\alpha+2 k+j+1} \\
& +\sum_{j=1}^{3} b_{n, 2 n+j-2}\left\langle f^{(n)}, g^{(n)}\right\rangle_{\alpha+2 n+j-1} \tag{3.4}
\end{align*}
$$

Proof. The inductive step is to use (3.3) on

$$
\begin{aligned}
\left\langle f^{(n)}, g^{(n)}\right\rangle_{\alpha+2 n+j-1}=\left\langle f^{(n)}, g^{(n)}\right\rangle_{\alpha+2 n+j+1} & +\frac{\left\langle f^{(n+1)}, g^{(n+1)}\right\rangle_{\alpha+2 n+j+1}}{(\alpha+2 n+j+1)(\alpha+2 n+j+2)} \\
& +\frac{\left\langle f^{(n+1)}, g^{(n+1)}\right\rangle_{\alpha+2 n+j+2}}{(\alpha+2 n+j+2)(\alpha+2 n+j+3)}
\end{aligned}
$$

for $j=1,2$. The following definitions establish the induction step, and can be used to determine these inner product formulas recursively:

$$
\begin{array}{ll}
b_{n+1,2 n+3}=\frac{b_{n, 2 n}}{(\alpha+2 n+4)(\alpha+2 n+5)} ; \quad b_{n+1,2 n+2}=\frac{b_{n, 2 n}+b_{n, 2 n-1}}{(\alpha+2 n+3)(\alpha+2 n+4)} ; \\
b_{n+1,2 n+1}=\frac{b_{n, 2 n-1}}{(\alpha+2 n+2)(\alpha+2 n+3)} ; \quad b_{n+1, k}=b_{n, k}, \text { for } 1 \leqslant k \leqslant 2 n
\end{array}
$$

This proves the result.
3.3. Proof of the sufficiency condition. The inner product formula (3.4) and the estimates discussed will establish that for analytic functions f and g satisfying condition (3.1) the Toeplitz operator $T_{f} T_{\bar{g}}$ is bounded on A_{α}^{2}.

Let f and g be analytic functions satisfying the condition (3.1), and let h and k be polynomials. Put $F=T_{f}^{*} h$ and $G=T_{g}^{*} k$, and choose a positive integer n such that $n \geqslant \frac{2+\alpha}{2+\varepsilon}$. By Lemma 3.1, there are finite constants $C_{\alpha, k}$ (depending on the constant in condition (3.1)) such that

$$
\left(1-|z|^{2}\right)^{2 k+2+\alpha}\left|F^{(k)}(z) \overline{G^{(k)}(z)}\right| \leqslant C_{\alpha, k}\|h\|_{\alpha}\|k\|_{\alpha}
$$

for all $z \in \mathbb{D}$. This implies for $k=1, \ldots, n-1$ and $j=1,2$ that

$$
\left|\left\langle F^{(k)}, G^{(k)}\right\rangle_{\alpha+2 k+j+1}\right| \leqslant C_{\alpha, k}\|h\|_{\alpha}\|k\|_{\alpha} .
$$

Using Lemma 3.2,

$$
\begin{aligned}
& \left(1-|w|^{2}\right)^{2 n}\left|\left(T_{f}^{*} h\right)^{(n)}(w)\right|\left|\left(T_{g}^{*} k\right)^{(n)}(w)\right| \\
& \leqslant C B_{\alpha}\left[|f|^{2+\varepsilon}\right](w)^{1 /(2+\varepsilon)} B_{\alpha}\left[|g|^{2+\varepsilon}\right](w)^{1 /(2+\varepsilon)} \\
& \quad \times\left(\int_{\mathbb{D}} \frac{|h(z)|^{\delta}}{|1-\bar{z} w|^{2+\alpha}} \mathrm{d} A_{\alpha}(z)\right)^{1 / \delta}\left(\int_{\mathbb{D}} \frac{|k(z)|^{\delta}}{|1-\bar{z} w|^{2+\alpha}} \mathrm{d} A_{\alpha}(z)\right)^{1 / \delta} \\
& \quad \leqslant C M\left(Q_{\alpha}|h|^{\delta}(w)\right)^{1 / \delta}\left(Q_{\alpha}|k|^{\delta}(w)\right)^{1 / \delta},
\end{aligned}
$$

where Q_{α} denotes the integral operator defined by

$$
Q_{\alpha} u(w)=\int_{\mathbb{D}} \frac{|u(z)|}{|1-\bar{z} w|^{2+\alpha}} \mathrm{d} A_{\alpha}(z)
$$

Using the inequality of Cauchy-Schwarz,

$$
\begin{aligned}
\int_{\mathbb{D}}(1 & \left.-|w|^{2}\right)^{2 n}\left|\left(T_{f}^{*} h\right)^{(n)}(w)\right|\left|\left(T_{g}^{*} k\right)^{(n)}(w)\right| \mathrm{d} A_{\alpha}(w) \\
& \leqslant C M\left(\int_{\mathbb{D}}\left(Q_{\alpha}|h|^{\delta}(w)\right)^{2 / \delta} \mathrm{d} A_{\alpha}(w)\right)^{1 / 2}\left(\int_{\mathbb{D}}\left(Q_{\alpha}|k|^{\delta}(w)\right)^{2 / \delta} \mathrm{d} A_{\alpha}(w)\right)^{1 / 2}
\end{aligned}
$$

Since $p=\frac{2}{\delta}>1$, the L^{p}-boundedness of operator Q_{α} on A_{α}^{2} (which can be proved similarly to Theorem 4.2.3 and Remark 4.2.5 in [21] considering the test function $\left.\left(1-|z|^{2}\right)^{-(\alpha+1) /(p q)}\right)$, shows that

$$
\int_{\mathbb{D}}\left(Q_{\alpha}|v|^{\delta}(w)\right)^{2 / \delta} \mathrm{d} A_{\alpha}(w) \leqslant C^{\prime} \int_{\mathbb{D}}\left(|v|^{\delta}(w)\right)^{2 / \delta} \mathrm{d} A_{\alpha}(w)=\|v\|_{\alpha}^{2}
$$

thus

$$
\int_{\mathbb{D}}\left(1-|z|^{2}\right)^{2 n+\alpha}\left|u^{(n)}(z) \overline{v^{(n)}(z)}\right| \mathrm{d} A(z) \leqslant C_{\alpha, n}\|h\|_{\alpha}\|k\|_{\alpha} .
$$

This implies $\left|\left\langle F^{(k)}, G^{(k)}\right\rangle_{\alpha+2 n+j-1}\right| \leqslant C_{\alpha, n}\|h\|_{\alpha}\|k\|_{\alpha}$, for $j=1,2,3$. Also, by Lemma 3.1, $\left|\langle F, G\rangle_{\alpha+2}\right| \leqslant C_{\alpha, 0}\|h\|_{\alpha}\|k\|_{\alpha}$. With the help of the inner product formula (3.4) it follows that

$$
\left|\langle F, G\rangle_{\alpha}\right| \leqslant\left(\sum_{j=1}^{2 n+1}\left|b_{n, j}\right| \max _{0 \leqslant k \leqslant n} C_{\alpha, k}\right)\|h\|_{\alpha}\|k\|_{\alpha}
$$

proving that the Toeplitz product $T_{f} T_{\bar{g}}$ is bounded on A_{α}^{2}.

4. A REVERSED HÖLDER INEQUALITY

In this section we will prove a reverse Hölder inequality for f in A_{α}^{2} satisfying the following invariant weight condition:

$$
\begin{equation*}
\sup _{w \in \mathbb{D}} B_{\alpha}\left[|f|^{2}\right](w) B_{\alpha}\left[|f|^{-2}\right](w)<\infty \tag{2}
\end{equation*}
$$

We will prove that the above condition implies that
$\left(\mathrm{M}_{2+\varepsilon}\right)$

$$
\sup _{w \in \mathbb{D}} B_{\alpha}\left[|f|^{2+\varepsilon}\right](w) B_{\alpha}\left[|f|^{-(2+\varepsilon)}\right](w)<\infty
$$

for sufficiently small $\varepsilon>0$. By Hölder's inequality,

$$
\left(\int_{\mathbb{D}}|f|^{2} \mathrm{~d} A_{\alpha}\right)^{1 / 2} \leqslant\left(\int_{\mathbb{D}}|f|^{2+\varepsilon} \mathrm{d} A_{\alpha}\right)^{1 /(2+\varepsilon)}
$$

Applying this to the function $f \circ \varphi_{w}$ it follows that

$$
B_{\alpha}\left[|f|^{2}\right](w) \leqslant B_{\alpha}\left[|f|^{2+\varepsilon}\right](w)^{2 /(2+\varepsilon)}
$$

and thus

$$
B_{\alpha}\left[|f|^{2}\right](w) B_{\alpha}\left[|f|^{-2}\right](w) \leqslant\left(B_{\alpha}\left[|f|^{2+\varepsilon}\right](w) B_{\alpha}\left[|f|^{-(2+\varepsilon)}\right](w)\right)^{2 /(2+\varepsilon)}
$$

so condition $\left(\mathrm{M}_{2+\varepsilon}\right)$ implies $\left(\mathrm{M}_{2}\right)$. Thus, the above implication will follow once we prove a reversed Hölder inequality:

THEOREM 4.1. Suppose that $f \in A_{\alpha}^{2}$ satisfies condition $\left(\mathrm{M}_{2}\right)$ with constant

$$
M=\sup _{w \in \mathbb{D}} B_{\alpha}\left[|f|^{2}\right](w) B_{\alpha}\left[|f|^{-2}\right](w)<\infty
$$

There exist constants $\varepsilon_{M}>0$ and $C_{M}>0$ such that for every $w \in \mathbb{D}$ and $0<\varepsilon<\varepsilon_{M}$ we have

$$
B_{\alpha}\left[|f|^{2+\varepsilon}\right](w) \leqslant C_{M}\left(B_{\alpha}\left[|f|^{2}\right](w)\right)^{(2+\varepsilon) / 2}
$$

As in [18], our proof will make use of dyadic rectangles and the dyadic maximal function. We first discuss the dyadic rectangles and prove some elementary properties related to these rectangles.

Dyadic rectangles. Any set of the form

$$
Q_{n, m, k}=\left\{r \mathrm{e}^{\mathrm{i} \theta}:(m-1) 2^{-n} \leqslant r<m 2^{-n} \text { and }(k-1) 2^{-n+1} \pi \leqslant \theta<k 2^{-n+1} \pi\right\}
$$

where n, m and k are positive integers such that $m \leqslant 2^{n}$ and $k \leqslant 2^{n}$ is called a dyadic rectangle. The center of the above dyadic rectangle $Q=Q_{n, m, k}$ is the point $z_{Q}=\left(m-\frac{1}{2}\right) 2^{-n} \mathrm{e}^{\mathrm{i} \vartheta}$, with $\vartheta=\left(k-\frac{1}{2}\right) 2^{1-n} \pi$. If $d(Q)$ denotes the distance between Q and $\partial \mathbb{D}$, and $\ell(Q)$ denotes the length of the square in the radial direction $\left(\ell\left(Q_{n, m, k}\right)=2^{-n}\right)$, then

$$
\begin{equation*}
1-\left|z_{Q}\right|=d(Q)+\frac{1}{2} \ell(Q) \tag{4.1}
\end{equation*}
$$

The following figure shows these quantities for a dyadic rectangle not adjacent to the unit circle $\partial \mathbb{D}$.

Figure 1: Dyadic rectangle Q with center z_{Q}

A simple calculation shows that

$$
\begin{equation*}
|Q|=8\left|z_{Q}\right|\left(1-\left|z_{Q}\right|-d(Q)\right)^{2} \tag{4.2}
\end{equation*}
$$

Write $A_{\alpha}(E)$ to denote the measure of a measurable set $E \subset \mathbb{D}$ with respect to $\mathrm{d} A_{\alpha}(z)=(\alpha+1)\left(1-|z|^{2}\right)^{\alpha} \mathrm{d} A(z)$. If Q is a dyadic rectangle, then its weighted area is

$$
A_{\alpha}(Q)=\ell(Q)\left\{(d(Q)+\ell(Q))^{1+\alpha}\left(1+\left|z_{Q}\right|-\frac{1}{2} \ell(Q)\right)^{1+\alpha}-d(Q)^{1+\alpha}\left(1+\left|z_{Q}\right|+\frac{1}{2} \ell(Q)\right)^{1+\alpha}\right\}
$$

The above formula for $A_{\alpha}(Q)$ can be used to obtain estimates for use in our proofs. However, many different cases need to be considered. As it turns out, dyadic rectangles not in contact with the unit circle can be treated easily without knowing their weighted area. The following formula give the weighted area of a dyadic rectangle that lies adjacent to the unit circle. If Q is a dyadic rectangle in the unit disk other than \mathbb{D} for which $d(Q)=0$, then

$$
\begin{equation*}
A_{\alpha}(Q)=2^{3+2 \alpha}\left|z_{Q}\right|^{1+\alpha}\left(1-\left|z_{Q}\right|\right)^{2+\alpha} \tag{4.3}
\end{equation*}
$$

4.1. INVARIANT WEIGHT CONDITION. For $w \in \mathbb{D}$ let $k_{w}^{(\alpha)}$ denote the normalized reproducing kernel in the weighted Bergman space A_{α}^{2}.

Lemma 4.2. Let $-1<\alpha<\infty$. There exists a positive number c_{α} such that for every dyadic rectagle Q in \mathbb{D} and every $z \in Q$

$$
\left|k_{z_{Q}}^{(\alpha)}(z)\right|^{2} \geqslant \frac{c_{\alpha}}{\left(1-\left|z_{Q}\right|\right)^{2+\alpha}}
$$

Proof. If $z=r \mathrm{e}^{\mathrm{i} \theta} \in Q$ and $Q=Q_{n, m, k}$, then $z_{Q}=2^{-n}\left(m-\frac{1}{2}\right) \mathrm{e}^{\mathrm{i} \theta}$, where $\vartheta=2^{1-n}\left(k-\frac{1}{2}\right) \pi$, thus

$$
|\theta-\vartheta| \leqslant \frac{2 \pi}{2^{n+1}} \leqslant 2 \pi\left(1-\left|z_{Q}\right|\right)
$$

Since $r \geqslant\left|z_{Q}\right|-\frac{1}{2^{n+1}} \geqslant\left|z_{Q}\right|-\left(1-\left|z_{Q}\right|\right)$, we have $r\left|z_{Q}\right| \geqslant\left|z_{Q}\right|^{2}-\left|z_{Q}\right|\left(1-\left|z_{Q}\right|\right)$, thus

$$
1-r\left|z_{Q}\right| \leqslant 1-\left|z_{Q}\right|^{2}+\left|z_{Q}\right|\left(1-\left|z_{Q}\right|\right)=\left(1+2\left|z_{Q}\right|\right)\left(1-\left|z_{Q}\right|\right) \leqslant 3\left(1-\left|z_{Q}\right|\right)
$$

Hence

$$
\begin{aligned}
\left|1-\bar{z}_{Q} z\right|^{2} & =1+r^{2}\left|z_{Q}\right|^{2}-2 r\left|z_{Q}\right| \cos (\theta-\vartheta)=\left(1-r\left|z_{Q}\right|\right)^{2}+4 r\left|z_{Q}\right| \sin ^{2}\left(\frac{\theta-\vartheta}{2}\right) \\
& \leqslant\left(1-r\left|z_{Q}\right|\right)^{2}+r\left|z_{Q}\right|(\theta-\vartheta)^{2} \leqslant 9\left(1-\left|z_{Q}\right|\right)^{2}+4 \pi^{2} r\left|z_{Q}\right|\left(1-\left|z_{Q}\right|\right)^{2} \leqslant 50\left(1-\left|z_{Q}\right|\right)^{2},
\end{aligned}
$$

and we obtain

$$
\left|k_{z_{Q}}^{(\alpha)}(z)\right|^{2}=\frac{\left(1-\left|z_{Q}\right|^{2}\right)^{2+\alpha}}{\left|1-\bar{z}_{Q} z\right|^{4+2 \alpha}} \geqslant \frac{1}{50^{2+\alpha}\left(1-\left|z_{Q}\right|\right)^{2+\alpha}}
$$

This proves the inequality with $c_{\alpha}=\frac{1}{50^{2+\alpha}}$.

For $w \in \mathbb{D}$ and $0<s<1$ let $D(w, s)$ denote the pseudohyperbolic disk with center w and radius $0<s<1$, i.e,

$$
D(w, s)=\left\{z \in \mathbb{C}:\left|\varphi_{w}(z)\right|<s\right\} .
$$

Lemma 4.3. Suppose that $f \in A_{\alpha}^{2}$ satisfies the invariant weight condition $\left(\mathrm{M}_{2}\right)$ and let $0<s<1$. There is a constant $c_{s}>0$ such that the following inequalities hold for every $z \in D(w, s)$:

$$
\frac{1}{c_{s}} \leqslant \frac{|f(z)|}{|f(w)|} \leqslant c_{s}
$$

Proof. Fix $w \in \mathbb{D}$. Let u be in $D(0, s)$. Since f is in A_{α}^{2} we have $f(u)=$ $\left\langle f, K_{u}^{(\alpha)}\right\rangle_{\alpha}$. Applying the Cauchy-Schwarz inequality we obtain

$$
|f(u)| \leqslant\|f\|_{\alpha}\left\|K_{u}^{(\alpha)}\right\|_{\alpha}=\frac{\|f\|_{\alpha}}{\left(1-|u|^{2}\right)^{(2+\alpha) / 2}} \leqslant \frac{\|f\|_{\alpha}}{\left(1-s^{2}\right)^{(2+\alpha) / 2}}
$$

for each u in $D(0, s)$. Now if $z \in D(w, s)$ then $z=\varphi_{w}(u)$, for some $u \in D(0, s)$. Replacing f by $f \circ \varphi_{w}$ in the above inequality gives

$$
|f(z)|=\left|\left(f \circ \varphi_{w}\right)(u)\right| \leqslant \frac{\left\|f \circ \varphi_{w}\right\|_{\alpha}}{\left(1-s^{2}\right)^{(2+\alpha) / 2}}=\frac{1}{\left(1-s^{2}\right)^{(2+\alpha) / 2}} B_{\alpha}\left[|f|^{2}\right](w)^{1 / 2}
$$

By the Cauchy-Schwarz inequality

$$
\frac{1}{|f(w)|}=\left|\left(f^{-1} \circ \varphi_{w}\right)(0)\right| \leqslant\left\|f^{-1} \circ \varphi_{w}\right\|_{\alpha}=B_{\alpha}\left[\left|f^{-1}\right|^{2}\right](w)^{1 / 2}
$$

Combining these inequalities we have

$$
\frac{|f(z)|}{|f(w)|} \leqslant \frac{1}{\left(1-s^{2}\right)^{(2+\alpha) / 2}} B_{\alpha}\left[|f|^{2}\right](w)^{1 / 2} B_{\alpha}\left[|f|^{-2}\right](w)^{1 / 2} \leqslant \frac{M^{1 / 2}}{\left(1-s^{2}\right)^{(2+\alpha) / 2}}
$$

for all $z \in D(w, s)$. Replacing f by its reciprocal f^{-1} gives the other inequality.
Proposition 4.4. There exists a $0<R<1$ such that

$$
Q \subset D\left(z_{Q}, R\right)
$$

for every dyadic rectangle in \mathbb{D} that has positive distance to $\partial \mathbb{D}$.
The following figure illustrates the above proposition.

Figure 2: Dyadic rectangle Q included in $D\left(z_{Q}, R\right)$.
Proof. It suffices to consider dyadic rectangles closest to $\partial \mathbb{D}$. Let Q be such a dyadic rectangle with positive distance to $\partial \mathbb{D}$. For $0<r<1$ the pseudohyperbolic disk $D\left(z_{Q}, r\right)$ is a euclidean disk in \mathbb{D} whose euclidean center is closer to the origin than z_{Q} is (the euclidean center of $D\left(z_{Q}, r\right)$ is $\frac{\left(1-r^{2}\right) z_{Q}}{1-r^{2}\left|z_{Q}\right|^{2}}$ and the euclidean radius is $\frac{\left(1-\left|z_{Q}\right|^{2}\right) r}{1-r^{2}\left|z_{Q}\right|^{2}}$; see [6], page 3). Recall that the center z_{Q} of Q has argument $\vartheta=\frac{(2 k-1) \pi}{2^{n}}$. We need to show that Q^{\prime} s outer corners $\left(1-2^{-n}\right) \mathrm{e}^{\mathrm{i}\left(\vartheta \pm \pi / 2^{n}\right)}$ belong to $D\left(z_{Q}, r\right)$ for sufficiently large $0<r<1$. Using rotation-invariance, it will be enough to estimate the pseudohyperbolic distance d_{n} between the points $z_{n}=1-\frac{3}{2} 2^{-n}$ and $\lambda_{n}=\left(1-2^{-n}\right) \mathrm{e}^{\mathrm{i} \vartheta_{n}}$, where $\vartheta_{n}=\frac{\pi}{2^{n}}$. A calculation shows that

$$
\left|z_{n}-\lambda_{n}\right|^{2}=2^{-2 n-2}+4\left(1-\frac{3}{2} 2^{-n}\right)\left(1-2^{-n}\right) \sin ^{2}\left(\frac{1}{2} \vartheta_{n}\right),
$$

and

$$
\left|1-\bar{z}_{n} \lambda_{n}\right|^{2}=25 \times 2^{-2 n-2}\left(1-\frac{3}{5} 2^{-n}\right)^{2}+4\left(1-\frac{3}{2} 2^{-n}\right)\left(1-2^{-n}\right) \sin ^{2}\left(\frac{1}{2} \vartheta_{n}\right)
$$

It follows that

$$
d_{n}^{2}=\frac{1+4\left(1-\frac{3}{2} 2^{-n}\right)\left(1-2^{-n}\right) \pi^{2}\left(\sin \left(\frac{1}{2} \vartheta_{n}\right) /\left(\frac{1}{2} \vartheta_{n}\right)\right)^{2}}{25\left(1-\frac{3}{5} 2^{-n}\right)^{2}+4\left(1-\frac{3}{2} 2^{-n}\right)\left(1-2^{-n}\right) \pi^{2}\left(\sin \left(\frac{1}{2} \vartheta_{n}\right) /\left(\frac{1}{2} \vartheta_{n}\right)\right)^{2}} \rightarrow \frac{1+4 \pi^{2}}{25+4 \pi^{2}}
$$

as $n \rightarrow \infty$. Consequently, there exists a $0<R<1$ such that $d_{n}<R$, for all positive integers n. Then $Q \subset D\left(z_{Q}, R\right)$, for every dyadic rectangle for which $d(Q)>0$.

Lemma 4.5. If $f \in A_{\alpha}^{2}$ satisfies the invariant weight condition $\left(\mathrm{M}_{2}\right)$, then there is a constant $C>0$ such that for every dyadic rectangle Q

$$
\left(\frac{1}{A_{\alpha}(Q)} \int_{Q}|f|^{2} \mathrm{~d} A_{\alpha}\right)\left(\frac{1}{A_{\alpha}(Q)} \int_{Q}|f|^{-2} \mathrm{~d} A_{\alpha}\right) \leqslant C
$$

The following proof of this more general result is actually more elementary than the proof of the corresponding lemma given in [18].

Proof. Suppose $f \in A_{\alpha}^{2}$ satisfies the invariant weight condition

$$
B_{\alpha}\left[|f|^{2}\right](w) B_{\alpha}\left[|f|^{-2}\right](w) \leqslant M<\infty,
$$

for all $w \in \mathbb{D}$. Let Q be a dyadic square in the unit disk other than \mathbb{D} (if $Q=\mathbb{D}$ the estimate holds, since $\int_{\mathbb{D}}|f|^{2} \mathrm{~d} A_{\alpha}=B_{\alpha}\left[|f|^{2}\right](0)$ and $\left.\int_{\mathbb{D}}|f|^{-2} \mathrm{~d} A_{\alpha}=B_{\alpha}\left[|f|^{-2}\right](0)\right)$. First assume that $d(Q)>0$. By Proposition 4.4, $Q \subset D\left(z_{Q}, R\right)$. By Lemma 4.3, there exists a positive constant C such that

$$
\frac{1}{C}\left|f\left(z_{Q}\right)\right| \leqslant|f(z)| \leqslant C\left|f\left(z_{Q}\right)\right|
$$

for all $z \in Q$. Therefore

$$
\left(\frac{1}{A_{\alpha}(Q)} \int_{Q}|f|^{2} \mathrm{~d} A_{\alpha}\right)\left(\frac{1}{A_{\alpha}(Q)} \int_{Q}|f|^{-2} \mathrm{~d} A_{\alpha}\right) \leqslant\left(C^{2}\left|f\left(z_{Q}\right)\right|^{2}\right)\left(C^{2}\left|f\left(z_{Q}\right)\right|^{-2}\right)=C^{4}
$$

Next assume that $d(Q)=0$. Using Lemma 4.2 we have

$$
B_{\alpha}\left[|f|^{2}\right]\left(z_{Q}\right)=\int_{\mathbb{D}}|f|^{2}\left|k_{z_{Q}}^{(\alpha)}\right|^{2} \mathrm{~d} A_{\alpha} \geqslant \int_{Q}|f|^{2}\left|k_{z_{Q}}^{(\alpha)}\right|^{2} \mathrm{~d} A_{\alpha} \geqslant \frac{c_{\alpha}}{\left(1-\left|z_{Q}\right|\right)^{2+\alpha}} \int_{Q}|f|^{2} \mathrm{~d} A_{\alpha}
$$

Since $Q \neq \mathbb{D}$ and $d(Q)=0$ we have $\left|z_{Q}\right| \geqslant \frac{1}{2}$, and it follows from (4.3) that

$$
A_{\alpha}(Q) \geqslant 2^{2+\alpha}\left(1-\left|z_{Q}\right|\right)^{2+\alpha}
$$

Combining the above two inequalities yields

$$
B_{\alpha}\left[|f|^{2}\right]\left(z_{Q}\right) \geqslant \frac{2^{2+\alpha} c_{\alpha}}{A_{\alpha}(Q)} \int_{Q}|f|^{2} \mathrm{~d} A_{\alpha}
$$

A similar inequality holds for f^{-1}. Thus we have as desired

$$
\left(\frac{1}{A_{\alpha}(Q)} \int_{Q}|f|^{2} \mathrm{~d} A_{\alpha}\right)\left(\frac{1}{A_{\alpha}(Q)} \int_{Q}|f|^{-2} \mathrm{~d} A_{\alpha}\right) \leqslant\left(\frac{B_{\alpha}\left[|f|^{2}\right]\left(z_{Q}\right)}{2^{2+\alpha} c_{\alpha}}\right)\left(\frac{B_{\alpha}\left[|f|^{-2}\right]\left(z_{Q}\right)}{2^{2+\alpha} c_{\alpha}}\right) \leqslant \frac{M}{4^{2+\alpha} c_{\alpha}^{2}}
$$

LEMMA 4.6. Let $-1<\alpha<\infty$ and suppose that $f \in A_{\alpha}^{2}$ satisfies the invariant weight condition $\left(\mathrm{M}_{2}\right)$. For every $w \in \mathbb{D}$ let $d \mu_{w}^{(\alpha)}=\left|f \circ \varphi_{w}\right|^{2} \mathrm{~d} A_{\alpha}$. If $0<\gamma<1$, then there exists a $0<\delta<1$ such that whenever E is a subset of Q with $A_{\alpha}(E) \leqslant \gamma A_{\alpha}(Q)$

$$
\mu_{w}^{(\alpha)}(E) \leqslant \delta \mu_{w}^{(\alpha)}(Q)
$$

Proof. Suppose that $B_{\alpha}\left[|f|^{2}\right](w) B_{\alpha}\left[|f|^{-2}\right](w) \leqslant M$, for all $w \in \mathbb{D}$. Let E be a subset of Q with $A_{\alpha}(E) \leqslant \gamma A_{\alpha}(Q)$. Applying the inequality of Cauchy-Schwarz and Lemma 4.5 we have

$$
\begin{aligned}
A_{\alpha}(Q \backslash E)^{2}= & \left(\int_{Q \backslash E}\left|f \circ \varphi_{w}\right|\left|f \circ \varphi_{w}\right|^{-1} \mathrm{~d} A_{\alpha}\right)^{2} \leqslant\left(\int_{Q \backslash E}\left|f \circ \varphi_{w}\right|^{2} \mathrm{~d} A_{\alpha}\right)\left(\int_{Q \backslash E}\left|f \circ \varphi_{w}\right|^{-2} \mathrm{~d} A_{\alpha}\right) \\
\leqslant & \left(\int_{Q \backslash E}\left|f \circ \varphi_{w}\right|^{2} \mathrm{~d} A_{\alpha}\right)\left(\int_{Q}\left|f \circ \varphi_{w}\right|^{-2} \mathrm{~d} A_{\alpha}\right) \\
\leqslant & \left(\int_{Q \backslash E}\left|f \circ \varphi_{w}\right|^{2} \mathrm{~d} A_{\alpha}\right) C A_{\alpha}(Q)^{2}\left(\int_{Q}\left|f \circ \varphi_{w}\right|^{2} \mathrm{~d} A_{\alpha}\right)^{-1}=C A_{\alpha}(Q)^{2}\left\{1-\frac{\mu_{w}^{(\alpha)}(E)}{\mu_{w}^{(\alpha)}(Q)}\right\} .
\end{aligned}
$$

If we put $\gamma=1-\frac{(1-\gamma)^{2}}{C}$ it follows that

$$
\frac{\mu_{w}^{(\alpha)}(E)}{\mu_{w}^{(\alpha)}(Q)} \leqslant 1-\frac{1}{C}\left(1-\frac{A_{\alpha}(E)}{A_{\alpha}(Q)}\right)^{2} \leqslant \delta
$$

THE DYADIC MAXIMAL FUNCTION. Define the dyadic maximal operator \mathcal{M}_{α} by

$$
\left(\mathcal{M}_{\alpha} f\right)(w)=\sup _{w \in Q} \frac{1}{A_{\alpha}(Q)} \int_{Q}|f| \mathrm{d} A_{\alpha}
$$

where the supremum is over all dyadic rectangles Q that contain w. The maximal function is of weak-type $(1,1)$ and the maximal function is greater than the dyadic maximal function, so the dyadic maximal function of any continuous integrable function is finite on \mathbb{D}. In particular, if $f \in A_{\alpha}^{2}$ satisfies the invariant A_{2}-condition, then the dyadic maximal function $\mathcal{M}_{\alpha}|f|^{2}$ is always finite. This can also be seen directly as follows. Given a point $w \in \mathbb{D}$, there is a number $0<R<1$ such that all but a finite number of dyadic rectangles containing the point w lie inside the closed disk $\bar{D}(0, R)=\{z \in \mathbb{C}:|z| \leqslant R\}$. If $f \in A_{\alpha}^{2}$ and Q is a dyadic rectangle containing w inside the disk $\bar{D}(0, R)$, then

$$
\frac{1}{A_{\alpha}(Q)} \int_{Q}|f(z)|^{2} \mathrm{~d} A_{\alpha}(z) \leqslant \max \left\{|f(z)|^{2}:|z| \leqslant R\right\}
$$

If Q_{1}, \ldots, Q_{m} are dyadic rectangles containing w not contained in disk $\bar{D}(0, R)$, then

$$
\mathcal{M}_{\alpha}|f|^{2}(w) \leqslant \max \left\{|f(z)|^{2}:|z| \leqslant R\right\}+\max _{1 \leqslant j \leqslant m} \frac{1}{\left|Q_{j}\right|} \int_{Q_{j}}|f(z)|^{2} \mathrm{~d} A(z)<\infty
$$

This proves that the dyadic function of $|f|^{2}$ is finite on \mathbb{D}.
The principal fact about the dyadic maximal function is the Calderon-Zygmund decomposition formulated in the next theorem. We will need the notion of "doubling" of dyadic rectangles in its proof. Suppose that $n \geqslant 1$ and m, k are
positive integers such that $m, k \leqslant 2^{n}$. The double of $Q=Q_{n, m, k}$, denoted by $2 Q$, is defined by

$$
2 Q=Q_{n-1,[(m+1) / 2],[(k+1) / 2]},
$$

where $[\ell]$ denotes the greatest integer less than or equal to ℓ.
4.2. DOUbLING PROPERTY. The following figures show a dyadic rectangle Q and its double $2 Q$.

Figure 3: Dyadic rectangle and its double

Figure 4: Dyadic rectangle and its double

Using (4.2) as well as $d(2 Q)=d(Q)-\frac{1}{2} \ell(Q)$ and $\ell(2 Q)=2 \ell(Q)$, an elementary calculation shows that

$$
\begin{equation*}
\frac{|2 Q|}{|Q|} \leqslant 8, \tag{4.4}
\end{equation*}
$$

for every proper dyadic rectangle Q in the unit disk. We will show that this doubling property extends to the weighted measures A_{α}. We first prove two elementary lemmas.

LEMMA 4.7. For every dyadic rectangle in the unit disk other than \mathbb{D} the following inequalities hold:

$$
\frac{1}{2}\left(1-\left|z_{Q}\right|\right)<1-\left|z_{2 Q}\right|<\frac{3}{2}\left(1-\left|z_{Q}\right|\right) .
$$

Proof. If $2 Q$ is closer to the unit circle, as in Figure 3, then

$$
1-\left|z_{Q}\right|=1-\left|z_{2 Q}\right|+\frac{1}{2} \ell(Q)
$$

Clearly $1-\left|z_{2 Q}\right|<1-\left|z_{Q}\right|$. Since $\ell(Q)<1-\left|z_{Q}\right|$ we also have

$$
1-\left|z_{2 Q}\right|=1-\left|z_{Q}\right|-\frac{1}{2} \ell(Q)>1-\left|z_{Q}\right|-\frac{1}{2}\left(1-\left|z_{Q}\right|\right)=\frac{1}{2}\left(1-\left|z_{Q}\right|\right) .
$$

Thus

$$
\frac{1}{2}\left(1-\left|z_{Q}\right|\right)<1-\left|z_{2 Q}\right|<1-\left|z_{Q}\right| .
$$

If $d(2 Q)=d(Q)$, as in Figure 4, then

$$
1-\left|z_{2 Q}\right|=1-\left|z_{Q}\right|+\frac{1}{2} \ell(Q)
$$

Clearly $1-\left|z_{2 Q}\right|>1-\left|z_{Q}\right|$. Since $\ell(Q)<1-\left|z_{Q}\right|$ we also have

$$
1-\left|z_{2 Q}\right|=1-\left|z_{Q}\right|+\frac{1}{2} \ell(Q)<1-\left|z_{Q}\right|+\frac{1}{2}\left(1-\left|z_{Q}\right|\right)=\frac{3}{2}\left(1-\left|z_{Q}\right|\right)
$$

Thus, we have the following that completes the proof:

$$
\left(1-\left|z_{Q}\right|\right)<1-\left|z_{2 Q}\right|<\frac{3}{2}\left(1-\left|z_{Q}\right|\right)
$$

That the functions $\left(1-|z|^{2}\right)^{\alpha}$ are approximately constant on pseudohyperbolic disks is well know. The following lemma gives concrete bounds.

Lemma 4.8. Let $w \in \mathbb{D}, 0<r<1$, and let α be a real number. Then, for all $z \in D(w, r)$,

$$
\left(\frac{1-r}{1+r}\right)^{|\alpha|}\left(1-|w|^{2}\right)^{\alpha} \leqslant\left(1-|z|^{2}\right)^{\alpha} \leqslant\left(\frac{1+r}{1-r}\right)^{|\alpha|}\left(1-|w|^{2}\right)^{\alpha} .
$$

This lemma is easily proved using (2.2) and standard estimates.
The following proposition shows that the doubling property (4.4) extends to the weighted cases.

PROPOSITION 4.9. If $-1<\alpha<\infty$, then there exists a constant $N_{\alpha}<\infty$ such that

$$
\frac{A_{\alpha}(2 Q)}{A_{\alpha}(Q)} \leqslant N_{\alpha}
$$

for every dyadic rectangle Q in the unit disk which is not equal to \mathbb{D}.
Proof. Let Q be a dyadic rectangle other than $\mathbb{D}=Q_{0,1,1}$, and let $2 Q$ denote its double. There are three cases to consider.

Case 1. $d(2 Q)>0$. By Proposition 4.4 we have $2 Q \subset D\left(z_{2 Q}, R\right)$. Using Lemma 4.8 we get

$$
\begin{aligned}
A_{\alpha}(2 Q) & =(\alpha+1) \int_{2 Q}\left(1-|z|^{2}\right)^{\alpha} \mathrm{d} A(z) \leqslant(\alpha+1)\left(\frac{1+R}{1-R}\right)^{|\alpha|}\left(1-\left|z_{2 Q}\right|^{2}\right)^{\alpha} \int_{2 Q} \mathrm{~d} A(z) \\
& =(\alpha+1)\left(\frac{1+R}{1-R}\right)^{|\alpha|}\left(1-\left|z_{2 Q}\right|^{2}\right)^{\alpha}|2 Q|
\end{aligned}
$$

Since also $d(Q)>0$ we also have $A_{\alpha}(Q) \geqslant(\alpha+1)\left(\frac{1-R}{1+R}\right)^{|\alpha|}\left(1-\left|z_{Q}\right|^{2}\right)^{\alpha}|Q|$. Thus

$$
\frac{A_{\alpha}(2 Q)}{A_{\alpha}(Q)} \leqslant\left(\frac{1+R}{1-R}\right)^{2|\alpha|} \frac{\left(1-\left|z_{2 Q}\right|^{2}\right)^{\alpha}}{\left(1-\left|z_{Q}\right|^{2}\right)^{\alpha}} \frac{|2 Q|}{|Q|}
$$

and that this is bounded above follows from (4.4) as well as Lemma 4.7.

Case 2. $d(2 Q)=0$ and $d(Q)>0$. By the Proposition 4.4, $Q \subset D\left(z_{Q}, R\right)$. Then $A_{\alpha}(Q) \geqslant(\alpha+1)\left(\frac{1-R}{1+R}\right)^{|\alpha|}\left(1-\left|z_{Q}\right|^{2}\right)^{\alpha}|Q|$. Since Q is near the boundary, $\left|z_{Q}\right| \geqslant \frac{1}{4}$, and it follows from formula (4.2) that $|Q| \geqslant\left(1-\left|z_{Q}\right|^{2}\right)^{2}$, thus

$$
A_{\alpha}(Q) \geqslant(\alpha+1)\left(\frac{1-R}{1+R}\right)^{|\alpha|}\left(1-\left|z_{Q}\right|^{2}\right)^{\alpha+2} .
$$

By (4.3)

$$
A_{\alpha}(2 Q)=4^{1+\alpha}\left|z_{2 Q}\right|^{1+\alpha}\left(1-\left|z_{2 Q}\right|\right)^{\alpha+2} \leqslant 4^{1+\alpha}\left(1-\left|z_{2 Q}\right|\right)^{\alpha+2}
$$

Combining the last inequalities we have the next which is bounded by Lemma 4.7:

$$
\frac{A_{\alpha}(2 Q)}{A_{\alpha}(Q)} \leqslant \frac{4^{\alpha+1}}{\alpha+1}\left(\frac{1+R}{1-R}\right)^{|\alpha|}\left(\frac{1-\left|z_{2 Q}\right|}{1-\left|z_{Q}\right|}\right)^{2+\alpha}
$$

Case 3. $d(2 Q)=0$ and $d(Q)=0$. In this case, by (4.3)

$$
A_{\alpha}(Q)=4^{1+\alpha}\left|z_{Q}\right|^{1+\alpha}\left(1-\left|z_{Q}\right|\right)^{2+\alpha} \geqslant\left(1-\left|z_{Q}\right|\right)^{2+\alpha}
$$

(since $\left|z_{Q}\right| \geqslant \frac{1}{2}$). Hence

$$
\frac{A_{\alpha}(2 Q)}{A_{\alpha}(Q)} \leqslant 4^{1+\alpha}\left(\frac{1-\left|z_{2 Q}\right|}{1-\left|z_{Q}\right|}\right)^{2+\alpha}
$$

which is bounded by Lemma 4.7. This proves the doubling property.
The following theorem should be compared with Lemma 1 in Section IV. 3 (p. 150) of Stein's book [13].

THEOREM 4.10 (Calderon-Zygmund Decomposition Theorem). Let $-1<$ $\alpha<\infty$ and let f be locally integrable on \mathbb{D}, let $t>0$, and suppose that $\Omega=\{z \in \mathbb{D}$: $\left.\mathcal{M}_{\alpha} f(z)>t\right\}$ is not equal to \mathbb{D}. Then Ω may be written as the disjoint union of dyadic rectangles $\left\{Q_{j}\right\}$ with

$$
t<\frac{1}{A_{\alpha}\left(Q_{j}\right)} \int_{Q_{j}}|f| \mathrm{d} A_{\alpha}<N_{\alpha} t
$$

where N_{α} is as in Proposition 4.9.
Proof. Suppose that $w \in \Omega$, that is, $\mathcal{M}_{\alpha} f(w)>t$. Then there exists a dyadic rectangle Q containing w such that

$$
\frac{1}{A_{\alpha}(Q)} \int_{Q}|f| \mathrm{d} A_{\alpha}>t
$$

Now, if $z \in Q$, then

$$
\mathcal{M}_{\alpha} f(z) \geqslant \frac{1}{A_{\alpha}(Q)} \int_{Q}|f| \mathrm{d} A_{\alpha}>t
$$

and it follows $z \in \Omega$. This proves that $Q \subset \Omega$. It follows that $\Omega=\bigcup_{j} Q_{j}$. We may assume that the Q_{j} are maximal dyadic rectangles. Since $Q=Q_{j}$ is not equal to \mathbb{D}, by maximality its double $2 Q$ is not contained in Ω. This means that $2 Q$ contains a point z which is not in Ω. Since $\mathcal{M}_{\alpha} f(z) \leqslant t$, we obtain $\frac{1}{A_{\alpha}(2 Q)} \int_{2 Q}|f| \mathrm{d} A_{\alpha} \leqslant$ $\mathcal{M}_{\alpha} f(z) \leqslant t$, and hence

$$
\int_{Q}|f| \mathrm{d} A_{\alpha} \leqslant \int_{2 Q}|f| \mathrm{d} A_{\alpha} \leqslant t A_{\alpha}(2 Q)
$$

It follows that:

$$
\frac{1}{A_{\alpha}(Q)} \int_{Q}|f| \mathrm{d} A_{\alpha} \leqslant t \frac{A_{\alpha}(2 Q)}{A_{\alpha}(Q)} \leqslant N_{\alpha} t
$$

Before we prove the reversed Hölder inequality (Theorem 4.1), we need one more preliminary result for the dyadic maximal function:

Proposition 4.11. If $f \in A_{\alpha}^{2}$, then:
(i) $|f|^{2} \leqslant \mathcal{M}_{\alpha}|f|^{2}$ on \mathbb{D}, and
(ii) $\|f\|_{\alpha}^{2} \leqslant \mathcal{M}_{\alpha}|f|^{2}(0) \leqslant\left(\frac{4}{3}\right)^{2+\alpha}\|f\|_{\alpha}^{2}$.

Proof. (i) In fact, we will prove that if g is continuous on \mathbb{D}, then $|g(w)| \leqslant$ $\mathcal{M}_{\alpha} g(w)$ for every $w \in \mathbb{D}$. Fix $w \in \mathbb{D}$. Let Q_{0} be any dyadic rectangle containing w such that $\bar{Q}_{0} \subset \mathbb{D}$. Since the function g is uniformly continuous on Q_{0}, given $\varepsilon>0$, there is a $\delta>0$ such that $|g(z)-g(w)|<\varepsilon$ whenever $z, w \in Q_{0}$ are such that $|z-w|<\delta$. If necessary, subdividing Q_{0} a number of times, there exists a dyadic rectangle Q containing w with diameter less than δ. Then $|g(w)| \leqslant$ $|g(z)|+|g(w)-g(z)| \leqslant|g(z)|+\varepsilon$ for all $z \in Q$. This implies that

$$
|g(w)| \leqslant \frac{1}{A_{\alpha}(Q)} \int_{Q}|g(z)| \mathrm{d} A_{\alpha}(z)+\varepsilon \leqslant \mathcal{M}_{\alpha} g(w)+\varepsilon
$$

This implies the desired inequality

$$
|g(w)| \leqslant \mathcal{M}_{\alpha} g(w)
$$

(ii) Since \mathbb{D} is a dyadic rectangle and A_{α} is a probability measure, we have

$$
\mathcal{M}_{\alpha}|f|^{2}(0) \geqslant \frac{1}{A_{\alpha}(\mathbb{D})} \int_{\mathbb{D}}|f|^{2} \mathrm{~d} A_{\alpha}=\|f\|_{\alpha}^{2}
$$

Suppose $f \in A_{\alpha}^{2}$. If Q is a dyadic rectangle other than \mathbb{D} containing 0 , then $Q \subset D(0,1 / 2)$. Then for each z in the unit disk, $f(z)=\left\langle f, K_{z}^{(\alpha)}\right\rangle_{\alpha}$ and the inequality of Cauchy-Schwarz imply

$$
|f(z)|^{2} \leqslant\|f\|_{\alpha}^{2}\left\|K_{z}^{(\alpha)}\right\|_{\alpha}^{2}=\frac{1}{\left(1-|z|^{2}\right)^{2+\alpha}}\|f\|_{\alpha}^{2} \leqslant\left(\frac{4}{3}\right)^{2+\alpha}\|f\|_{\alpha}^{2}
$$

for all $z \in D(0,1 / 2)$. Since $Q \subset D(0,1 / 2)$ it follows that

$$
\frac{1}{A_{\alpha}(Q)} \int_{Q}|f|^{2} \mathrm{~d} A_{\alpha} \leqslant\left(\frac{4}{3}\right)^{2+\alpha}\|f\|_{\alpha}^{2}
$$

We conclude that

$$
\|f\|_{\alpha}^{2} \leqslant \mathcal{M}_{\alpha}|f|^{2}(0) \leqslant\left(\frac{4}{3}\right)^{2+\alpha}\|f\|_{\alpha}^{2}
$$

We are now ready to prove the reversed Hölder inequality in Theorem 4.1.
Proof of Theorem 4.1. First we prove that for some constant $C_{M}>0$,

$$
\int_{\mathbb{D}}|f|^{2+\varepsilon} \mathrm{d} A_{\alpha} \leqslant C_{M}\left(\int_{\mathbb{D}}|f|^{2} \mathrm{~d} A_{\alpha}\right)^{(2+\varepsilon) / 2}
$$

Let m be a positive integer such that the constant N_{α} of Proposition 4.9 satisfies $N_{\alpha} \leqslant 2^{m-1}$. For each integer $k \geqslant 0$, set

$$
E_{k}=\left\{z \in \mathbb{D}: \mathcal{M}_{\alpha}|f|^{2}(z)>2^{m k+\alpha}\|f\|_{\alpha}^{2}\right\} .
$$

By Proposition 4.11 (ii) we have $\mathcal{M}_{\alpha}|f|^{2}(0) \leqslant\left(\frac{4}{3}\right)^{2+\alpha}\|f\|_{\alpha}^{2} \leqslant 2^{m k+\alpha}\|f\|_{\alpha}^{2}$, for every positive integer k, so the set E_{k} does not contain 0 . Fix $k \geqslant 1$. By the CalderonZygmund Decomposition Theorem, $E_{k}=\bigcup_{j} Q_{j}$, where Q_{j} are disjoint dyadic rectangles in E_{k} that satisfy

$$
2^{m k+\alpha}\|f\|_{\alpha}^{2}<\frac{1}{A_{\alpha}\left(Q_{j}\right)} \int_{Q_{j}}|f| \mathrm{d} A_{\alpha}<2^{m k+\alpha} N_{\alpha}\|f\|_{\alpha}^{2}
$$

thus

$$
A_{\alpha}\left(Q_{j}\right) \leqslant 2^{-m k-\alpha}\|f\|_{\alpha}^{-2} \int_{Q_{j}}|f| \mathrm{d} A_{\alpha} \quad \text { and } \quad \int_{Q_{j}}|f| \mathrm{d} A_{\alpha}<2^{m k+\alpha} N_{\alpha}\|f\|_{\alpha}^{2} A_{\alpha}\left(Q_{j}\right)
$$

Let Q be a maximal dyadic rectangle in E_{k-1}. Summing over all such $Q_{j} \subset Q$ gives that

$$
A_{\alpha}\left(E_{k} \cap Q\right)=\sum_{j: Q_{j} \subset Q} A_{\alpha}\left(Q_{j}\right) \leqslant 2^{-m k-\alpha}\|f\|_{\alpha}^{-2} \int_{Q}|f|^{2} \mathrm{~d} A_{\alpha}
$$

since the Q_{j} are disjoint and their union is E_{k}. On the other hand, by maximality the double $2 Q$ is not contained in E_{k-1}, and as in the proof of the CalderonZygmund Decomposition Theorem it follows that

$$
\int_{Q}|f|^{2} \mathrm{~d} A_{\alpha} \leqslant 2^{m(k-1)+\alpha} N_{\alpha}\|f\|_{\alpha}^{2} A_{\alpha}(Q) \leqslant 2^{m(k-1)+\alpha} 2^{m-1}\|f\|_{\alpha}^{2} A_{\alpha}(Q)=2^{m k+\alpha-1}\|f\|_{\alpha}^{2} A_{\alpha}(Q) .
$$

Hence

$$
A_{\alpha}\left(E_{k} \cap Q\right) \leqslant \frac{1}{2} A_{\alpha}(Q)
$$

Now by Lemma 4.6 there exists a $0<\delta<1$ such that

$$
\mu_{\alpha}\left(E_{k} \cap Q\right) \leqslant \delta \mu_{\alpha}(Q)
$$

where $d \mu_{\alpha}=|f|^{2} \mathrm{~d} A_{\alpha}$. Taking the union over all maximal dyadic rectangles Q in E_{k-1} gives $\mu_{\alpha}\left(E_{k}\right) \leqslant \delta \mu_{\alpha}\left(E_{k-1}\right)$, and therefore

$$
\mu_{\alpha}\left(E_{k}\right) \leqslant \delta^{k} \mu_{\alpha}\left(E_{0}\right) \leqslant \delta^{k}\|f\|_{\alpha}^{2}
$$

Now, using Proposition 4.11, we have

$$
\begin{aligned}
& \int_{\mathbb{D}}|f|^{2+\varepsilon} \mathrm{d} A_{\alpha} \\
& \leqslant \int_{\mathbb{D}}\left(\mathcal{M}_{\alpha}|f|^{2}\right)^{\varepsilon / 2}|f|^{2} \mathrm{~d} A_{\alpha}=\int_{\left\{\mathcal{M}_{\alpha}|f|^{2} \leqslant 2^{\alpha}\|f\|_{\alpha}^{2}\right\}}\left(\mathcal{M}_{\alpha}|f|^{2}\right)^{\varepsilon / 2}|f|^{2} \mathrm{~d} A_{\alpha}+\sum_{k=0_{E_{k} \backslash E_{k+1}}^{\infty}} \int_{E^{\prime}}\left(\mathcal{M}_{\alpha}|f|^{2}\right)^{\varepsilon / 2}|f|^{2} \mathrm{~d} A_{\alpha} \\
& \leqslant 2^{\alpha}\|f\|_{\alpha}^{\varepsilon}\|f\|_{\alpha}^{2}+\sum_{k=0}^{\infty} 2^{(m(k+1)+\alpha) \varepsilon / 2}\|f\|_{\alpha}^{\varepsilon} \mu_{\alpha}\left(E_{k}\right) \leqslant 2^{\alpha}\|f\|_{\alpha}^{2+\varepsilon}+\sum_{k=0}^{\infty} 2^{(m k+m+\alpha) \varepsilon / 2} \delta^{k}\|f\|_{\alpha}^{2+\varepsilon} \\
& \leqslant 2^{\alpha}\|f\|_{\alpha}^{2+\varepsilon}+2^{(m+\alpha) \varepsilon / 2}\|f\|_{\alpha}^{2+\varepsilon} \sum_{k=0}^{\infty}\left(2^{m \varepsilon / 2} \delta\right)^{k}=\left(2^{\alpha}+\frac{2^{(m+\alpha) \varepsilon / 2}}{1-2^{m \varepsilon / 2} \delta}\right)\|f\|_{\alpha}^{2+\varepsilon},
\end{aligned}
$$

if $2^{m \varepsilon / 2} \delta<1$. Put $\varepsilon_{M}=\frac{2 \ln (1 /(1+\delta))}{m \ln 2}$. If $0<\varepsilon<\varepsilon_{M}$, then $2^{m \varepsilon / 2}<\frac{1}{1+\delta}$, thus $\frac{2^{m \varepsilon / 2}}{1-2^{m \varepsilon / 2}}<1$. So, if $C_{M}=2^{\alpha}+2^{\alpha \varepsilon_{M} / 2}$, then for $0<\varepsilon<\varepsilon_{M}$ we have shown that

$$
\int_{\mathbb{D}}|f|^{2+\varepsilon} \mathrm{d} A_{\alpha} \leqslant C_{M}\left(\int_{\mathbb{D}}|f|^{2} \mathrm{~d} A_{\alpha}\right)^{(2+\varepsilon) / 2} .
$$

For a fixed $w \in \mathbb{D}$, by Möbius-invariance of the Berezin transform we also have

$$
M_{\alpha}=\sup _{z \in \mathbb{D}} B_{\alpha}\left[\left|f \circ \varphi_{w}\right|^{2}\right](z) B_{\alpha}\left[\left|f \circ \varphi_{w}\right|^{-2}\right](z) .
$$

Applying the above argument to the function $\left|f \circ \varphi_{w}\right|^{2}$ we obtain

$$
\int_{\mathbb{D}}\left|f \circ \varphi_{w}\right|^{2+\varepsilon} \mathrm{d} A_{\alpha} \leqslant C_{M}\left(\int_{\mathbb{D}}\left|f \circ \varphi_{w}\right|^{2} \mathrm{~d} A_{\alpha}\right)^{(2+\varepsilon) / 2}
$$

that is,

$$
B_{\alpha}\left[|f|^{2+\varepsilon}\right](w) \leqslant C_{M}\left(B_{\alpha}\left[|f|^{2}\right](w)\right)^{(2+\varepsilon) / 2}
$$

Note that Theorem 4.1 combined with Theorem 1.2 give a proof of Theorem 1.3.

Proof of Theorem 1.3. If $f \in A_{\alpha}^{2}$ satisfies the condition

$$
\sup _{w \in \mathbb{D}} B_{\alpha}\left[|f|^{2}\right](w) B_{\alpha}\left[|f|^{-2}\right](w)<\infty,
$$

then by the reversed Hölder inequality of Theorem 4.1, for some $\varepsilon>0$,

$$
\sup _{w \in \mathbb{D}} B_{\alpha}\left[|f|^{2+\varepsilon}\right](w) B_{\alpha}\left[|f|^{-(2+\varepsilon)}\right](w)<\infty,
$$

for all $w \in \mathbb{D}$. By Theorem 1.2, $T_{f} T_{\overline{1 / f}}$ is bounded on A_{α}^{2}.

5. INVERTIBLE TOEPLITZ PRODUCTS

In this section we will completely characterize the bounded Fredholm Toeplitz products $T_{f} T_{\bar{g}}$ on the weighted Bergman space A_{α}^{2}. We have the following result:

THEOREM 5.1. Let $-1<\alpha<\infty$ and let $f, g \in A_{\alpha}^{2}$. Then: $T_{f} T_{\bar{g}}$ is bounded and invertible on A_{α}^{2} if and only if $\sup \left\{B_{\alpha}\left[|f|^{2}\right](w) B_{\alpha}\left[|g|^{2}\right](w): w \in \mathbb{D}\right\}<\infty$ and $\inf \{|f(w)||g(w)|: w \in \mathbb{D}\}>0$.

Proof. " \Longrightarrow " Suppose that $T_{f} T_{\bar{g}}$ is bounded and invertible on A_{α}^{2}. By Theorem 1.1 there exists a constant M such that

$$
\begin{equation*}
B_{\alpha}\left[|f|^{2}\right](w) B_{\alpha}\left[|g|^{2}\right](w) \leqslant M \tag{5.1}
\end{equation*}
$$

for all $w \in \mathbb{D}$. Note that $T_{f} T_{\bar{g}} k_{w}=\overline{g(w)} f k_{w}^{(\alpha)}$. Thus

$$
\left\|T_{f} T_{\bar{g}} k_{w}^{(\alpha)}\right\|_{2}^{2}=|g(w)|^{2}\left\|f k_{w}^{(\alpha)}\right\|_{2}^{2}=|g(w)|^{2} B_{\alpha}\left[|f|^{2}\right](w)
$$

so the invertibility of $T_{f} T_{\bar{g}}$ yields

$$
\begin{equation*}
|g(w)|^{2} B_{\alpha}\left[|f|^{2}\right](w) \geqslant \delta_{1}>0 \tag{5.2}
\end{equation*}
$$

for some constant δ_{1} and for all $w \in \mathbb{D}$. Since also $T_{g} T_{\bar{f}}=\left(T_{f} T_{\bar{g}}\right)^{*}$ is bounded and invertible, there also is a constant δ_{2} such that

$$
\begin{equation*}
|f(w)|^{2} B_{\alpha}\left[|g|^{2}\right](w) \geqslant \delta_{2}>0 \tag{5.3}
\end{equation*}
$$

for all $w \in \mathbb{D}$. Putting $\delta=\delta_{1} \delta_{2}$, it follows from (5.1), (5.2) and (5.3) that for all $w \in \mathbb{D}$

$$
\delta \leqslant|f(w)|^{2}|g(w)|^{2} B_{\alpha}\left[|f|^{2}\right](w) B_{\alpha}\left[|g|^{2}\right](w) \leqslant M|f(w)|^{2}|g(w)|^{2}
$$

and thus

$$
|f(w)||g(w)| \geqslant \frac{\delta^{1 / 2}}{M^{1 / 2}}
$$

$" \Longleftarrow "$ Suppose that

$$
M=\sup \left\{B_{\alpha}\left[|f|^{2}\right](w) B_{\alpha}\left[|g|^{2}\right](w): w \in \mathbb{D}\right\}<\infty \text { and } \eta=\inf \{|f(w)||g(w)|: w \in \mathbb{D}\}>0
$$

By the inequality of Cauchy-Schwarz,

$$
|f(w)|^{2} \leqslant B_{\alpha}\left[|f|^{2}\right](w)
$$

thus $|f(w)||g(w)| \leqslant M^{1 / 2}$, for all $w \in \mathbb{D}$. So, $f g$ is a bounded function on \mathbb{D}. Note that f and g cannot have zeros in \mathbb{D}. Since $|g(z)|^{2} \geqslant \eta^{2}|f(z)|^{-2}$, for all $z \in \mathbb{D}$, we have $B_{\alpha}\left[|g|^{2}\right](w) \geqslant \eta^{2} B_{\alpha}\left[|f|^{-2}\right](w)$, for all $w \in \mathbb{D}$. Consequently

$$
M \geqslant B_{\alpha}\left[|f|^{2}\right](w) B_{\alpha}\left[|g|^{2}\right](w) \geqslant \eta^{2} B_{\alpha}\left[|f|^{2}\right](w) B_{\alpha}\left[|f|^{-2}\right](w)
$$

so that

$$
B_{\alpha}\left[|f|^{2}\right](w) B_{\alpha}\left[|f|^{-2}\right](w) \leqslant \frac{M}{\eta^{2}}
$$

for all $w \in \mathbb{D}$. This means that f satisfies the $\left(\mathrm{M}_{2}\right)$ condition. By Theorem 1.3 the Toeplitz product $T_{f} T_{\overline{1 / f}}$ is bounded on A_{α}^{2}. Since $f g$ is bounded on \mathbb{D}, the operator $T_{\overline{f g}}$ is bounded on A_{α}^{2}. It follows that $T_{f} T_{\bar{g}}=T_{f} T_{\overline{1 / f}} T_{\overline{f g}}$ is bounded on A_{α}^{2}.

The function $\psi=\frac{1}{f \bar{g}}$ is bounded on \mathbb{D}, so the operator T_{ψ} is bounded on A_{α}^{2}. Using that

$$
T_{f} T_{\bar{g}} T_{\psi}=I=T_{\psi} T_{f} T_{\bar{g}}
$$

we conclude that $T_{f} T_{\bar{g}}$ is invertible on A_{α}^{2}.

6. FREDHOLM TOEPLITZ PRODUCTS

In this section we will completely characterize the bounded invertible Toeplitz products $T_{f} T_{\bar{g}}$ on A_{α}^{2}. We have the following result:

THEOREM 6.1. Let $-1<\alpha<\infty$ and let f and g be in A_{α}^{2}. Then: $T_{f} T_{\bar{g}}$ is a bounded Fredholm operator on A_{α}^{2} if and only if $B_{\alpha}\left[|f|^{2}\right] B_{\alpha}\left[|g|^{2}\right]$ is bounded on \mathbb{D} and the function $|f||g|$ is bounded away from zero near $\partial \mathbb{D}$.

The latter condition simply means that there exists a number r with $0<r<$ 1 such that $\inf \{|f(z)||g(z)|: r<|z|<1\}>0$.

In the proof of the above theorem we will need the following lemma.
Lemma 6.2. Let $-1<\alpha<\infty$. Suppose that $f \in A_{\alpha}^{2}$ has a finite number of zeros. Let b denote the Blaschke product of the zeros of f and $F=\frac{f}{b}$. Then there exists a constant C_{α}, only depending on α, such that for all w in \mathbb{D}

$$
B_{\alpha}\left[|F|^{2}\right](w) \leqslant C_{\alpha} B_{\alpha}\left[|f|^{2}\right](w)
$$

Proof. Choose $0<R<1$ so that $|b(z)|>\frac{1}{\sqrt{2}}$, for all $R<|z|<1$. Suppose $w \in \mathbb{D}$. Then

$$
\begin{aligned}
B_{\alpha}\left[|f|^{2}\right](w) & =\int_{\mathbb{D}}\left|f\left(\varphi_{w}(z)\right)\right|^{2} \mathrm{~d} A_{\alpha}(z)=\int_{\mathbb{D}}\left|b\left(\varphi_{w}(z)\right)\right|^{2}\left|F\left(\varphi_{w}(z)\right)\right|^{2} \mathrm{~d} A_{\alpha}(z) \\
& \geqslant \frac{1}{2} \int_{R<\left|\varphi_{w}(z)\right|<1}\left|F\left(\varphi_{w}(z)\right)\right|^{2} \mathrm{~d} A_{\alpha}(z)
\end{aligned}
$$

By a change of variable,

$$
\int_{R<\left|\varphi_{w}(z)\right|<1}\left|F\left(\varphi_{w}(z)\right)\right|^{2} \mathrm{~d} A_{\alpha}(z)=\int_{R<|z|<1}|F(z)|^{2} \frac{\left(1-|w|^{2}\right)^{2+\alpha}}{|1-\bar{w} z|^{4+2 \alpha}} \mathrm{~d} A_{\alpha}(z) .
$$

Now, if h is analytic on \mathbb{D}, then

$$
\begin{equation*}
\int_{\mathbb{D}}|h(z)|^{2} \mathrm{~d} A_{\alpha}(z) \leqslant \frac{\alpha+1}{\left(1-R^{2}\right)^{\alpha+1}} \int_{R<|z|<1}|h(z)|^{2} \mathrm{~d} A_{\alpha}(z) . \tag{6.1}
\end{equation*}
$$

It is enough to prove inequality (6.1) for monomials $h(z)=z^{n}$. Integration by parts shows that

$$
\begin{aligned}
\int_{R<|z|<1}|z|^{2 n} \mathrm{~d} A_{\alpha}(z) & =\int_{R^{2}}^{1} x^{n}(1-x)^{\alpha} \mathrm{d} x=\frac{R^{2 n}\left(1-R^{2}\right)^{\alpha+1}}{\alpha+1}+\frac{n}{\alpha+1} \int_{R^{2}}^{1} x^{n-1}(1-x)^{\alpha+1} \mathrm{~d} x \\
& \geqslant \frac{R^{2 n}\left(1-R^{2}\right)^{\alpha+1}}{\alpha+1}
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\int_{|z| \leqslant R}|z|^{2 n} \mathrm{~d} A_{\alpha}(z) & \leqslant R^{2 n}\left\{1-\frac{\left(1-R^{2}\right)^{\alpha+1}}{\alpha+1}\right\}=\frac{R^{2 n}\left(1-R^{2}\right)^{\alpha+1}}{\alpha+1}\left\{\frac{\alpha+1}{\left(1-R^{2}\right)^{\alpha+1}}-1\right\} \\
& \leqslant\left\{\frac{\alpha+1}{\left(1-R^{2}\right)^{\alpha+1}}-1\right\} \int_{R<|z|<1}|z|^{2 n} \mathrm{~d} A_{\alpha}(z)
\end{aligned}
$$

Thus, we have the following, proving inequality (6.1):

$$
\int_{\mathbb{D}}|z|^{2 n} \mathrm{~d} A_{\alpha}(z)=\int_{|z| \leqslant R}|z|^{2 n} \mathrm{~d} A_{\alpha}(z)+\int_{R<|z|<1}|z|^{2 n} \mathrm{~d} A_{\alpha}(z) \leqslant \frac{\alpha+1}{\left(1-R^{2}\right)^{\alpha+1}} \int_{R<|z|<1}|z|^{2 n} \mathrm{~d} A_{\alpha}(z) .
$$

Applying the above estimate to the function

$$
h(z)=F(z) \frac{\left(1-|w|^{2}\right)^{1+\alpha / 2}}{(1-\bar{w} z)^{2+\alpha}}
$$

we see that

$$
\begin{aligned}
& \int_{R<|z|<1}|F(z)|^{2} \frac{\left(1-|w|^{2}\right)^{2+\alpha}}{|1-\bar{w} z|^{4+\alpha}} \mathrm{d} A_{\alpha}(z) \\
& \quad \geqslant \frac{\left(1-R^{2}\right)^{\alpha+1}}{\alpha+1} \int_{\mathbb{D}}|F(z)|^{2} \frac{\left(1-|w|^{2}\right)^{2+\alpha}}{|1-\bar{w} z|^{4+\alpha}} \mathrm{d} A_{\alpha}(z) \geqslant \frac{\left(1-R^{2}\right)^{\alpha+1}}{\alpha+1} B_{\alpha}\left[|F|^{2}\right](w) .
\end{aligned}
$$

Thus $B_{\alpha}\left[|f|^{2}\right](w) \geqslant \frac{1}{2} \frac{\left(1-R^{2}\right)^{\alpha+1}}{\alpha+1} B_{\alpha}\left[|F|^{2}\right](w)$, so that

$$
B_{\alpha}\left[|F|^{2}\right](w) \leqslant C_{\alpha} B_{\alpha}\left[|f|^{2}\right](w)
$$

with $C_{\alpha}=\frac{2(\alpha+1)}{\left(1-R^{2}\right)^{\alpha+1}}$, for all $w \in \mathbb{D}$.

Proof of Theorem 6.1. " \Longrightarrow " If $T_{f} T_{\bar{g}}$ is bounded on A_{α}^{2}, then there is an M such that $B_{\alpha}\left[|f|^{2}\right] B_{\alpha}\left[|g|^{2}\right] \leqslant M$ on \mathbb{D}. If $T_{f} T_{\bar{g}}$ is Fredholm, then $T_{f} T_{\bar{g}}+\mathcal{K}$ is invertible in the Calkin algebra. Thus there exist a bounded operator V and a compact operator S such that

$$
V T_{f} T_{\bar{g}}=I+S .
$$

Using that $T_{f} T_{\bar{g}} k_{w}^{(\alpha)}=\overline{g(w)} f k_{w}^{(\alpha)}$ we have

$$
\begin{aligned}
\|V\||g(w)| B_{\alpha}\left[|f|^{2}\right](w)^{1 / 2} & =\|V\|\left\|T_{f} T_{\bar{g}} k_{w}^{(\alpha)}\right\|_{\alpha} \geqslant\left\|V T_{f} T_{\bar{g}} k_{w}^{(\alpha)}\right\|_{\alpha} \\
& \geqslant\left\|k_{w}^{(\alpha)}\right\|_{\alpha}-\left\|S k_{w}^{(\alpha)}\right\|_{\alpha}=1-\left\|S k_{w}^{(\alpha)}\right\|_{\alpha} .
\end{aligned}
$$

Since S is compact on A_{α}^{2} and $k_{w}^{(\alpha)} \rightarrow 0$ weakly on A_{α}^{2}, we have $\left\|S k_{w}^{(\alpha)}\right\|_{\alpha} \rightarrow 0$ as $|w| \rightarrow 1^{-}$, so there exists an $0<r_{1}<1$ such that $\left\|S S_{w}^{(\alpha)}\right\|_{\alpha}<\frac{1}{2}$, for all $r_{1}<|w|<1$. The above inequality shows that

$$
|g(w)|^{2} B_{\alpha}\left[|f|^{2}\right](w) \geqslant M_{1}\left(=\frac{1}{2}\|V\|^{-1}\right),
$$

for all $r_{1}<|w|<1$. Since also $T_{g} T_{\bar{f}}=\left(T_{f} T_{\bar{g}}\right)^{*}$ is Fredholm, there is a positive constant M_{2} and a number r_{2} with $0<r_{2}<1$ such that

$$
|f(w)|^{2} B_{\alpha}\left[|g|^{2}\right](w) \geqslant M_{2}
$$

for all $r_{2}<|w|<1$. Thus $M_{1} M_{2} \leqslant|f(z)|^{2}|g(z)|^{2} B_{\alpha}\left[|f|^{2}\right](z) B_{\alpha}\left[|g|^{2}\right](z) \leqslant M|f(z)|^{2}$. $|g(z)|^{2}$, and hence for all $\max \left\{r_{1}, r_{2}\right\}<|z|<1$

$$
|f(z)|^{2}|g(z)|^{2} \geqslant \frac{M_{1} M_{2}}{M} .
$$

$" \Longleftarrow "$ Suppose that
(*)

$$
|f(z)||g(z)| \geqslant \delta>0
$$

for all $0<r<|z|<1$. Inequality $(*)$ implies that f and g have no zeros in the annulus $\{z: r<|z|<1\}$. Let b_{1} and b_{2} denote the (finite) Blaschke products of the zeros of f and g respectively. Then $F=\frac{f}{b_{1}}$ and $G=\frac{g}{b_{2}}$ are zero free, and by (*) we have

$$
|F(z) \| G(z)| \geqslant \delta\left|b_{1}(z)\right|\left|b_{2}(z)\right|,
$$

for all $r<|z|<1$. The function on the right is positive and continuous on annulus $\left\{z: \frac{1}{2}(1+r) \leqslant|z| \leqslant 1\right\}$, thus has a positive minimum. So putting $\rho=\frac{1}{2}(1+r)$, we have $|F(z)||G(z)| \geqslant \eta^{\prime}$, for all $\rho<|z|<1$. Then $|G(z)| \geqslant \eta^{\prime}|F(z)|^{-1}$, for all $\rho<|z|<1$. Note that $\eta^{\prime \prime}=\inf \{|F(z)||G(z)|:|z| \leqslant \rho\}>0$. If we take $\eta=\min \left\{\eta^{\prime}, \eta^{\prime \prime}\right\}$, then $|G(z)| \geqslant \eta|F(z)|^{-1}$, for all $z \in \mathbb{D}$. By Lemma 6.2 we have for all $z \in \mathbb{D}$

$$
B_{\alpha}\left[|F|^{2}\right](z) \leqslant C_{\alpha} B_{\alpha}\left[|f|^{2}\right](z) \text { and } B_{\alpha}\left[|G|^{2}\right](z) \leqslant C_{\alpha} B_{\alpha}\left[|g|^{2}\right](z) \text {. }
$$

Thus $B_{\alpha}\left[|F|^{2}\right](z) B_{\alpha}\left[|G|^{2}\right](z) \leqslant M^{\prime}$, for all $z \in \mathbb{D}$. As before we conclude that

$$
B_{\alpha}\left[|F|^{2}\right](z) B_{\alpha}\left[|F|^{-2}\right](z) \leqslant \frac{M^{\prime}}{\eta^{2}},
$$

for all $z \in \mathbb{D}$, so F satisfies condition $\left(\mathrm{M}_{2}\right)$. By Theorem 1.3 the Toeplitz product $T_{F} T_{1 / \bar{F}}$ is bounded. As in the proof of Theorem 5.1 it follows that $T_{F} T_{\bar{G}}$ is bounded. This implies that the following operator is bounded:

$$
T_{f} T_{\bar{g}}=T_{b_{1}} T_{F} T_{\bar{G}} T_{\bar{b}_{2}}
$$

Since $\frac{1}{F \bar{G}}$ is bounded, the Toeplitz operator $T_{1 / F \bar{G}}$ is bounded, and it follows that $T_{F} T_{\bar{G}}$ is invertible. Since $T_{\bar{b}_{2}}$ is Fredholm, there is a bounded operator V_{2} on A_{α}^{2} and a compact operator S_{2} on A_{α}^{2} such that $T_{\bar{b}_{2}} V_{2}=I+S_{2}$. It follows that $T_{f} T_{\bar{g}} V_{2}=T_{b_{1}} T_{F} T_{\bar{G}}+T_{b_{1}} T_{F} T_{\bar{G}} S_{2}$, thus

$$
T_{f} T_{\bar{g}} V_{2}\left(T_{F} T_{\bar{G}}\right)^{-1}=T_{b_{1}}+T_{b_{1}} T_{F} T_{\bar{G}} S_{2}\left(T_{F} T_{\bar{G}}\right)^{-1}
$$

Using that also $T_{b_{1}}$ is Fredholm, there is a bounded operator V_{1} on A_{α}^{2} and a compact operator S_{1} on A_{α}^{2} such that $T_{b_{1}} V_{1}=I+S_{1}$. Then

$$
T_{f} T_{\bar{g}} V_{2}\left(T_{F} T_{\bar{G}}\right)^{-1} S_{1}=I+S_{1}+T_{b_{1}} T_{F} T_{\bar{G}} S_{2}\left(T_{F} T_{\bar{G}}\right)^{-1}
$$

Hence $T_{f} T_{\bar{g}}+\mathcal{K}$ is right-invertible in the Calkin algebra. Similarly $T_{f} T_{\bar{g}}+\mathcal{K}$ is left-invertible in the Calkin algebra, so that $T_{f} T_{\bar{g}}$ is Fredholm.

Acknowledgements. The second author was partially supported by the NSF.

REFERENCES

[1] S. AxLER, D. Zheng, Compact operators via the Berezin transform, Indiana Univ. Math. J. 47(1998), 387-400.
[2] R.R. Coifman, C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51(1974), 241-250.
[3] D. Cruz-Uribe, The invertibility of the product of unbounded Toeplitz operators, Integral Equations Operator Theory 20(1994), 231-237.
[4] J. Duoandikoetxea, Fourier Analysis, Grad. Stud. Math., vol. 29, Amer. Math. Soc., Providence, RI 2000.
[5] J. Garcia-Cuerva, J.L. Rubio de Franica, Weighted Norm Inequalities and Related Topics, North Holland Math. Stud., vol. 116, North Holland, Amsterdam 1985.
[6] J.B. Garnett, Bounded Analytic Functions, Pure Appl. Math., vol. 96, Academic Press, New York-London 1981.
[7] R. Hunt, B. Muckenhoupt, R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176(1973), 227-252.
[8] J.L. Journé, Calderón-Zygmund Operators, Pseudo-Differential Operators and the Cauchy Integral of Calderón, Lecture Notes in Math., vol. 994, Springer Verlag, New York 1983.
[9] D. Sarason, Function theory on the unit circle, Virginia Polytechnic Inst. and State Univ., Blacksburg 1978.
[10] D. Sarason, Exposed Points in H^{1}. I, Oper. Theory Adv. Appl., vol. 41, Birkhauser Verlag, Basel 1989, pp. 485-496.
[11] D. Sarason, Exposed Points in H^{1}. II, Oper. Theory Adv. Appl., vol. 48, Birkhauser Verlag, Basel 1990, pp. 333-347.
[12] D. Sarason, Products of Toeplitz operators, in Linear and Complex Analysis Problem. Book 3, Part I, Lecture Notes in Math., vol. 1573, Springer-Verlag, Berlin 1994, pp. 318-319.
[13] E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Math. Ser., vol. 43, Princeton Univ. Press, Princeton 1993.
[14] K. Stroethoff, The Berezin transform and operators on spaces of analytic functions, in Linear Operators, Banach Center Publ., vol. 38, Polish Acad. Sci., Warsaw 1997, pp. 361-380.
[15] K. Stroethoff, Algebraic properties of Toeplitz operators on the Hardy space via the Berezin transform, in Function Spaces (Edwardsville, IL, 1998), Contemp. Math., vol. 232, Amer. Math. Soc., Providence, RI 1999, pp. 313-319.
[16] K. Stroethoff, D. Zheng, Toeplitz and Hankel operators on Bergman spaces, Trans. Amer. Math. Soc. 329(1992), 773-794.
[17] K. Stroethoff, D. Zheng, Products of Hankel and Toeplitz operators on the Bergman space, J. Funct. Anal. 169(1999), 289-313.
[18] K. Stroethoff, D. Zheng, Invertible Toeplitz products, J. Funct. Anal. 195(2002), 48-70.
[19] K. Stroethoff, D. Zheng, Bounded Toeplitz products on the Bergman space of the polydisk, J. Math. Anal. Appl. 278(2003), 125-135.
[20] D. ZHENG, The distribution function inequality and products of Toeplitz operators and Hankel operators, J. Funct. Anal. 138(1996), 477-501.
[21] K.H. Zhu, Operator Theory in Function Spaces, Marcel Dekker, New York-Basel 1990.
[22] K.H. ZHU, Translating inequalities between Hardy and Bergman spaces, Amer. Math. Monthly 111(2004), 520-525.

Karel stroethoff, Department of Mathematical Sciences, University of Montana, Missoula, Montana 59812, U.S.A.
E-mail address: karel.stroethoff@umontana.edu
DECHAO ZHENG, Mathematics Department, Vanderbilt University, Nashville, Tennessee 37240, U.S.A.
E-mail address: dechao.zheng@vanderbilt.edu

Received December 15, 2005.

ADDED IN PROOFS. After we submitted our paper, we were made aware of the following article which contains results similar to Theorems 1.1 and 1.2:
S. Роtt, E. Srouse, Product of Toeplitz operators on the Bergman spaces A_{α}^{2} [Russian], Algebra i Analiz 18(2006), 144-161; English St. Petersburg Math. J. 18(2007), 105-118.

