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ABSTRACT. We consider the question for which square integrable analytic
functions f and g on the unit disk the densely defined products Tf Tg are
bounded on the Bergman space. We prove results analogous to those we
obtained in the setting of the unweighted Bergman space [17]. We will fur-
thermore completely describe when the Toeplitz product Tf Tg is invertible
or Fredholm and prove results generalizing those we obtained for the un-
weighted Bergman space in [18].
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1. INTRODUCTION

The Bergman space A2
α is the space of analytic functions on D which are

square-integrable with respect to the measure dAα(z) = (α + 1)(1− |z|2)αdA(z),
where dA denotes normalized Lebesgue area measure on D. The reproducing
kernel in A2

α is given by

K(α)
w (z) =

1
(1− wz)2+α

,

for z, w ∈ D. If 〈·, ·〉α denotes the inner product in L2(D, dAα), then 〈h, K(α)
w 〉α =

h(w), for every h ∈ A2
α and w ∈ D. The orthogonal projection Pα of L2(D, dAα)

onto A2
α is given by

(Pαg)(w) = 〈g, K(α)
w 〉α =

∫
D

g(z)
1

(1− zw)2+α
dAα(z),
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for g ∈ L2(D, dAα) and w ∈ D. Given f ∈ L∞(D), the Toeplitz operator Tf is
defined on A2

α by Tf h = Pα( f h). We have

(Tf h)(w) =
∫
D

f (z)h(z)
(1− zw)2+α

dAα(z),

for h ∈ A2
α and w ∈ D. Note that the above formula makes sense, and defines a

function analytic on D, also if f ∈ L2(D, dAα). So, if g ∈ A2
α we define Tg by the

formula

(Tgh)(w) =
∫
D

g(z)h(z)
(1− zw)2+α

dAα(z),

for h ∈ A2
α and w ∈ D. If also f ∈ A2

α, then Tf Tgh is the analytic function f Tgh.

1.1. PROBLEM OF BOUNDEDNESS OF TOEPLITZ PRODUCTS ON A2
α . For which f

and g in A2
α is the operator Tf Tg bounded on A2

α?

We will first give a necessary condition for boundedness of the Toeplitz
product Tf Tg, and then show that this condition is very close to being sufficient.

To formulate a necessary condition, we need to define the (weighted) Bere-
zin transform: for a function u ∈ L1(D, dAα), the Berezin transform Bα[u] is the
function on D defined by

Bα[u](w) =
∫
D

u(z)
(1− |w|2)2+α

|1− wz|4+2α
dAα(z).

The following result gives a necessary condition for the Toeplitz product to be
bounded.

THEOREM 1.1. Let −1 < α < ∞, and let f and g be in A2
α. If Tf Tg is bounded

on A2
α, then

sup
w∈D

Bα[| f |2](w)Bα[|g|2](w) < ∞.

The following result gives a sufficient condition for the Toeplitz product to
be bounded close to the above necessary condition.

THEOREM 1.2. Let ε > 0, −1 < α < ∞, and let f and g be in A2
α. If

sup
w∈D

Bα[| f |2+ε](w)Bα[|g|2+ε](w) < ∞,

then the Toeplitz product Tf Tg is bounded on A2
α.

Note that in the limiting case α ↓ −1 these transforms correspond to

2π∫
0

u(eiθ)
1− |w|2

|1− weiθ |2
dθ

2π
= û(w),
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the Poisson extension of u on D, as the Hardy space H2 can be regarded as the
limiting case of the weighted Bergman spaces A2

α (see [22]). It is well-known that
a Toeplitz operator on H2 is bounded if and only if its symbol is bounded on the
unit circle ∂D. Sarason [10], [11] found examples of f and g in H2 such that the
product Tf Tg is actually a bounded operator on H2, though neither Tf nor Tg is
bounded. Sarason [12] also conjectured that a necessary and sufficient condition
for this product to be bounded is

sup
w∈D

|̂ f |2(w)|̂g|2(w) < ∞.

Treil proved that the above condition is indeed necessary (see [12]). The second
author [20] showed that the stronger condition

sup
w∈D

|̂ f |2+ε(w)|̂g|2+ε(w) < ∞,

for ε > 0, is sufficient for the Toeplitz product Tf Tg to be bounded on H2.
The above results were proved by the authors for the unweighted case (α =

0) in [17]. The proof in [17] does not carry over to the weighted setting without
some major adjustments. The proof of the unweighted case of Theorem 2.1 made
use of the fact that the reciprocal of the Bergman kernel’s norm is a polynomial.
This is, however, not the case in the weighted spaces A2

α. We will show that
the reciprocal of the Bergman kernel’s norm is the sum of a polynomial and a
power series absolutely convergent on the closure of the unit disk. The proof
of the unweighted case of Theorem 2.2 made use of an inner product formula
that involved derivatives. This inner product formula is not enough to prove
Theorem 2.1, for which we will need inner product formulas involving higher
order derivatives.

Cruz-Uribe [3] showed that if f and g are outer functions, a necessary and
sufficient condition for Tf Tg to be bounded and invertible on H2 is that ( f g)−1

is bounded and sup{|̂ f |2(w)|̂g|2(w) : w ∈ D} < ∞. A similar, though different,
characterization of bounded invertible Toeplitz products on H2 with outer sym-
bols was obtained by the second author [20]. Cruz-Uribe’s [3] proof relied on
a characterization of invertible Toeplitz operators due to Devinatz and Widom,
which in turn is closely related to the Helson-Szegö theorem, that character-
izes the weights ω such that the conjugation operator (or Hilbert transform) is
bounded on L2(∂D, ωdm). See Sarason’s book [9] for more on these results. On
the other hand, the proof in [20] is based on a distribution function inequality.

Following our proof of Theorems 2.1 and 2.2 we will consider the special
case that g = 1

f , in which case it will be possible to remove the ε > 0 in the
condition of Theorem 3.1, so that the necessary condition is also sufficient; we
will prove the following result.
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THEOREM 1.3. If f ∈ A2
α satisfies the condition

sup
w∈D

Bα[| f |2](w)Bα[| f |−2](w) < ∞,

then the Toeplitz product Tf T1/ f is bounded on A2
α.

We will give applications of this result to describe invertible and Fredholm
products Tf Tg, for f , g ∈ A2

α. The results extend those we obtained for the un-
weighted case in [18]. As in [18], we extend the basic techniques of the real-
variable theory of weighted norm inequalities [2], [4], [5], [8] and [13] to the
weighted Bergman spaces. We make use of dyadic rectangles on the unit disk
and dyadic maximal operators. We will show that every dyadic rectangle that has
positive distance to the unit circle is always contained in the pseudohyperbolic
disk with the same center as the dyadic rectangle and a fixed radius independent
of the dyadic rectangle. This observation simplifies the arguments even for the
unweighted case.

2. NECESSARY CONDITION FOR BOUNDEDNESS

Suppose f and g are in L2(D, dAα). Consider the operator f ⊗ g on A2
α

defined by
( f ⊗ g)h = 〈h, g〉α f ,

for h ∈ A2
α. It is easily proved that f ⊗ g is bounded on A2

α with norm equal to

‖ f ⊗ g‖ = ‖ f ‖α‖g‖α, where ‖h‖α denotes the norm
( ∫

D
|h|2dAα

)1/2
in A2

α.

We will obtain an expression for the operator f ⊗ g in terms of the opera-
tors involving the Toeplitz product Tf Tg, where f , g ∈ A2

α. This is most easily
accomplished by using the Berezin transform, which has been useful in the study
of operators on the Bergman space [1] and the Hardy space [15]: writing k(α)

w for
the normalized reproducing kernels in A2

α, we define the Berezin transform of a
bounded linear operator S on A2

α to be the function Bα[S] defined on D by

Bα[S](w) = 〈Sk(α)
w , k(α)

w 〉α,

for w ∈ D. The boundedness of operator S implies that the function Bα[S] is
bounded on D. The Berezin transform is injective, for Bα[S](w) = 0, for all w ∈ D,
implies that S = 0, the zero operator on A2

α (see [14] for a proof). Using the
reproducing property of K(α)

w we have

‖K(α)
w ‖2

α = 〈K(α)
w , K(α)

w 〉α = K(α)
w (w) =

1
(1− |w|2)2+α

,

thus

(2.1) k(α)
w (z) =

(1− |w|2)(2+α)/2

(1− wz)2+α
,
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for z, w ∈ D. It follows from (2.1) that

Bα[S](w) = (1− |w|2)2+α〈SK(α)
w , K(α)

w 〉α,

for w ∈ D. It is easily seen that TgK(α)
w = g(w)K(α)

w . Thus 〈Tf TgK(α)
w , K(α)

w 〉α =

〈TgK(α)
w , Tf K(α)

w 〉α = 〈g(w)K(α)
w , f (w)K(α)

w 〉α = f (w)g(w)〈K(α)
w , K(α)

w 〉α, and we see
that

Bα[Tf Tg](w) = f (w)g(w).

We also have

Bα[ f⊗g](w)=(1−|w|2)2+α〈( f ⊗ g)K(α)
w , K(α)

w 〉α =(1−|w|2)2+α〈〈K(α)
w , g〉α f , K(α)

w 〉α

=(1− |w|2)2+α〈K(α)
w , g〉α〈 f , K(α)

w 〉α =(1− |w|2)2+α f (w)g(w).

We will use the last formulas to obtain an expression for operator f ⊗ g in terms
of the operators involving the Toeplitz product Tf Tg, where f , g ∈ A2

α. We need
the following lemma, which may be of independent interest. For a real number
β, let [β] denote the integer part of β and {β} = β− [β] > 0.

LEMMA 2.1. Suppose that α is a real number in (−1, ∞). The function (1− t)2+α

has the power series expansion

(1−t)2+α=
2+[α]

∑
j=0

(−1)j Γ(3 + α)
j!Γ(3+α− j)

tj+(−1)1+[α] Γ(3+α) sin(π{α})
π

∞

∑
n=0

Γ(n+1−{α})
(3+n+[α])!

t3+n+[α].

Proof. We will show that

(1−t)−β+k =
k−1

∑
j=0

(−1)j Γ(−β+k+1)
Γ(−β+k+1− j)

tj

j!
+(−1)k Γ(−β+k+1)

Γ(β)Γ(−β+1)

∞

∑
n=0

Γ(n+β)
(n+k)!

tn+k,

for 0 < β < 1 and every positive integer k. Interpreting the first sum as 0 when
k = 0, this formula is the usual binomial expansion for (1− t)−β. Assuming the
above formula to hold, integration with respect to t yields

1− (1− t)−β+k+1

−β + k + 1

=
k−1

∑
j=0

(−1)j Γ(−β + k + 1)
Γ(−β + k + 1− j)

tj+1

(j+1)!
+(−1)k Γ(−β + k + 1)

Γ(β)Γ(−β + 1)

∞

∑
n=0

Γ(n + β)
(n + k + 1)!

tn+k+1

=−
k

∑
j=1

(−1)j Γ(−β + k + 1)
Γ(−β + k + 2− j)

tj

j!
+(−1)k Γ(−β + k + 1)

Γ(β)Γ(−β + 1)

∞

∑
n=0

Γ(n + β)
(n + k + 1)!

tn+k+1
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which implies

1− (1− t)−β+k+1

=−
k

∑
j=1

(−1)j (−β + k + 1)Γ(−β + k + 1)
Γ(−β + k + 2− j)

tj

j!

+ (−1)k (−β + k + 1)Γ(−β + k + 1)
Γ(β)Γ(−β + 1)

∞

∑
n=0

Γ(n + β)
(n + k + 1)!

tn+k+1

=−
k

∑
j=1

(−1)j Γ(−β + k + 2)
Γ(−β + k + 2− j)

tj

j!
+(−1)k Γ(−β + k + 2)

Γ(β)Γ(−β + 1)

∞

∑
n=0

Γ(n + β)
(n + k + 1)!

tn+k+1,

and thus

(1− t)−β+k+1 = 1 +
k

∑
j=1

(−1)j Γ(−β + k + 2)
Γ(−β + k + 2− j)

tj

j!

+ (−1)k+1 Γ(−β + k + 2)
Γ(β)Γ(−β + 1)

∞

∑
n=0

Γ(n + β)
(n + k + 1)!

tn+k+1.

This proves the induction step. Assuming α to be a non-integer, the lemma fol-
lows by taking β = 1 − {α} and k = [α] + 3. Then 0 < β < 1 and −β + k =
2 + {α}+ [α] = 2 + α. Using the next relation the stated identity follows:

Γ(β)Γ(−β + 1) = Γ(1− {α})Γ({α}) =
π

sin(π{α})
.

Applying the above lemma to t = |w|2 = ww we have

(1−|w|2)2+α =
2+[α]

∑
j=0

(−1)j Γ(3 + α)
j!Γ(3 + α− j)

wjwj

+ (−1)1+[α] Γ(3 + α) sin(π{α})
π

∞

∑
n=0

Γ(n + 1− {α})
(3 + n + [α])!

w3+n+[α]w3+n+[α].

Multiply by f (w)g(w) to obtain

Bα[ f ⊗ g](w) =
2+[α]

∑
j=0

(−1)j Γ(3 + α)
j!Γ(3 + α− j)

wj f (w)wjg(w)

+ (−1)1+[α] Γ(3 + α) sin(π{α})
π

∞

∑
n=0

Γ(n + 1− {α})
(3 + n + [α])!

w3+n+[α] f (w)w3+n+[α]g(w).

Using that for analytic functions h and k the Toeplitz product ThTk has Berezin
transform Bα[ThTk](w) = h(w)k(w), the above formula and the unicity of the
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Berezin transform imply the following operator identity

f ⊗ g =
2+[α]

∑
j=0

(−1)j Γ(3 + α)
j!Γ(3 + α− j)

Tzj f T
zjg

+ (−1)1+[α] Γ(3 + α) sin(π{α})
π

∞

∑
n=0

Γ(n + 1− {α})
(3 + n + [α])!

Tz3+n+[α] f T
z3+n+[α]g

=
2+[α]

∑
j=0

(−1)j Γ(3 + α)
j!Γ(3 + α− j)

T j
zTf TgT j

z

+ (−1)1+[α] Γ(3 + α) sin(π{α})
π

∞

∑
n=0

Γ(n + 1− {α})
(3 + n + [α])!

T3+n+[α]
z Tf TgT3+n+[α]

z .

This operator identity in turn implies

‖ f⊗g‖6
2+[α]

∑
j=0

Γ(3 + α)
j!Γ(3+α− j)

‖Tf Tg‖+
Γ(3+α) sin(π{α})

π

∞

∑
n=0

Γ(n+1−{α})
(3 + n + [α])!

‖Tf Tg‖.

Using Stirling’s formula it is easy to verify that Γ(n+1−{α})
(3+n+[α])! ∼ 1

n3+α , so the positive
series

∞

∑
n=0

Γ(n + 1− {α})
(3 + n + [α])!

converges. Hence there exists a finite positive number Cα such that

‖ f ‖α‖g‖α = ‖ f ⊗ g‖ 6 Cα‖Tf Tg‖.

For w ∈ D the function ϕw has real Jacobian equal to

|ϕ′w(z)|2 =
(1− |w|2)2

|1− wz|4
.

Using the identity

(2.2) 1− |ϕw(z)|2 =
(1− |w|2)(1− |z|2)

|1− wz|2

it is readily verified that

(1− |z|2)α|k(α)
w (z)|2 = |ϕ′w(z)|2(1− |ϕw(z)|2)α,

which implies the change-of-variable formula

(2.3)
∫
D

h(ϕw(z))|k(α)
w (z)|2dAα(z) =

∫
D

h(u)dAα(u),

for every h ∈ L1(D). It follows from (2.3) that the mapping U(α)
w h = (h ◦ ϕw)k(α)

w
is an isometry on A2

α:

‖U(α)
w h‖2

α =
∫
D

|h(ϕw(z))|2|k(α)
w (z)|2dAα(z) =

∫
D

|h(u)|2dAα(u) = ‖h‖2
α,
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for all h ∈ A2
α. Using the identity

1− ϕw(z)w =
1− |w|2

1− zw
,

we have

k(α)
w (ϕw(z)) =

(1− |w|2)(2+α)/2

(1− ϕw(z)w)2+α
=

(1− zw)2+α

(1− |w|2)(2+α)/2 =
1

k(α)
w (z)

.

Since ϕw ◦ ϕw = id, we see that

(U(α)
w (U(α)

w h))(z) = (U(α)
w h)(ϕw(z))k(α)

w (z) = h(z)k(α)
w (ϕw(z))k(α)

w (z) = h(z),

for all z ∈ D and h ∈ A2
α. Thus (U(α)

w )−1 = U(α)
w , and hence U(α)

w is unitary on A2
α.

Furthermore,

(2.4) Tf ◦ϕw U(α)
w = U(α)

w Tf .

For h ∈ H∞ and g ∈ A2
α the following equations establish (2.4):

〈U(α)
w Tf h, U(α)

w g〉α = 〈Tf h, g〉α = 〈 f h, g〉α =
∫
D

f (u)h(u)g(u)dAα(z)

=
∫
D

f (ϕw(z))h(ϕw(z))g(ϕw(z))|k(α)
w (z)|2dAα(z)

=
∫
D

f (ϕw(z))h(ϕw(z))k(α)
w (z)g(ϕw(z))k(α)

w (z)dAα(z)

= 〈 f U(α)
w h, U(α)

w g〉α = 〈Tf ◦ϕw U(α)
w h, U(α)

w g〉α.

It follows from (2.4), applied to f and g, that Tf ◦ϕw Tg◦ϕw = (Tf ◦ϕw U(α)
w )U(α)

w ·
(Tg◦ϕw U(α)

w )U(α)
w = (U(α)

w Tf )U(α)
w (U(α)

w Tg)U(α)
w = U(α)

w (Tf Tg)U(α)
w , thus

‖ f ◦ ϕw‖α‖g ◦ ϕw‖α 6 Cα‖Tf ◦ϕw Tg◦ϕw‖ = Cα‖Tf Tg‖,

hence

Bα[| f |2](w)Bα[|g|2](w) 6 C2
α‖Tf Tg‖2,

for all w ∈ D. So, for f , g ∈ A2
α, a necessary condition for the Toeplitz product

Tf Tg to be bounded on A2
α is

(2.5) sup
w∈D

Bα[| f |2](w)Bα[|g|2](w) < ∞.

This completes the proof of Theorem 1.1.
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3. SUFFICIENT CONDITION FOR BOUNDEDNESS

Theorem 1.2 states that a condition slightly stronger than the necessary con-
dition (2.5) is sufficient, namely the condition that for f , g ∈ A2

α and for ε > 0

(3.1) sup
w∈D

Bα[| f |2+ε](w)Bα[|g|2+ε](w) < ∞.

3.1. ESTIMATES. We establish some estimates for the n-th order derivatives of
images of Toeplitz operators.

LEMMA 3.1. Let −1 < α < ∞ and let n be a non-negative integer. For f ∈ A2
α

and h ∈ H∞(D) we have, for all w ∈ D,

|(T∗f h)(n)(w)| 6 2n Γ(α + 2 + n)
Γ(α + 2)

1
(1− |w|2)n+1+α/2 Bα[| f |2](w)1/2‖h‖α.

Proof. Differentiating the formula

(T∗f h)(w) = (α + 1)
∫
D

f (z)h(z)
(1− wz)2+α

(1− |z|2)αdA(z)

n times yields

(3.2) (T∗f h)(n)(w) =
Γ(α + 2 + n)

Γ(α + 1)

∫
D

zn f (z)h(z)
(1− wz)2+n+α

(1− |z|2)αdA(z).

The following inequalities give the desired estimate:

|(T∗f h)(n)(w)|

6
Γ(α + 2 + n)

Γ(α + 1)

∫
D

| f (z)||h(z)|
|1− wz|2+n+α

(1− |z|2)αdA(z)

6
Γ(α+2+n)

Γ(α + 1)

(∫
D

| f (z)|2

|1−wz|4+2n+2α
(1−|z|2)αdA(z)

)1/2
×
(∫

D

|h(z)|2(1−|z|2)αdA(z)
)

1/2

6
Γ(α+2+n)
Γ(α + 1)

1
(1−|w|)n

(∫
D

| f (z)|2

|1−wz|4+2α
(1−|z|2)αdA(z)

)
1/2

(∫
D

|h(z)|2(1−|z|2)αdA(z)
)

1/2

=
Γ(α + 2 + n)

Γ(α + 2)
1

(1− |w|)n

( Bα[| f |2](w)
(1− |w|2)2+α

)1/2
‖h‖α

=
Γ(α + 2 + n)

Γ(α + 2)
2n

(1− |w|2)n+1+α/2 Bα[| f |2](w)1/2‖h‖α.

LEMMA 3.2. Let −1 < α < ∞, let ε > 0, and let n be an integer at least as large
as 2+α

2+ε . There exists a constant C, only depending on α and n, such that for f ∈ A2
α and
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h ∈ H∞(D) we have, for all w ∈ D, where δ = 2+ε
1+ε ,

|(T∗f h)(n)(w)| 6 C
(1− |w|2)n Bα[| f |2+ε](w)1/(2+ε)

( |h(z)|δ

|1− zw|2+α
dAα(z)

)1/δ
.

Proof. Using formula (3.2) and Hölder’s inequality we have

|(T∗f h)(n)(w)|

6
Γ(α + 2 + n)

Γ(α + 1)

∫
D

| f (z)||h(z)|
|1− wz|2+n+α

(1− |z|2)αdA(z)

6
Γ(α + 2 + n)

Γ(α + 1)

( ∫
D

| f (z)|2+ε

|1− wz|2+α+n(2+ε) (1− |z|2)αdA(z)
)1/(2+ε)

×
( ∫

D

|h(z)|δ

|1− wz|2+α
(1− |z|2)αdA(z)

)1/δ

=
Γ(α + 2 + n)

Γ(α + 1)

( ∫
D

| f (z)|2+ε

|1− wz|4+2α+n(2+ε)−(2+α) (1− |z|2)αdA(z)
)1/(2+ε)

×
( ∫

D

|h(z)|δ

|1− wz|2+α
(1− |z|2)αdA(z)

)1/δ

6
Γ(α + 2 + n)

Γ(α + 1)

( ∫
D

| f (z)|2+ε

|1− wz|4+2α(1− |w|)n(2+ε)−(2+α) (1− |z|2)αdA(z)
)1/(2+ε)

×
( ∫

D

|h(z)|δ

|1− wz|2+α
(1− |z|2)αdA(z)

)1/δ

6
Γ(α + 2 + n)

Γ(α + 1)
1

(1− |w|)n−(2+α)/(2+ε)

( 1
α + 1

Bα[| f |2+ε](w)
(1− |w|2)2+α

)1/(2+ε)

×
( 1

α + 1

∫
D

|h(z)|δ

|1− wz|2+α
dAα(z)

)1/δ

=
Γ(α + 2 + n)

Γ(α + 2)
(1 + |w|)n−(2+α)/(2+ε)

(1− |w|2)n

(
Bα[| f |2+ε](w)

)1/(2+ε)

×
( ∫

D

|h(z)|δ

|1− wz|2+α
dAα(z)

)1/δ

6
Γ(α + 2 + n)

Γ(α + 2)
2n−(2+α)/(2+ε)

(1− |w|2)n Bα[| f |2+ε](w)1/(2+ε)
( ∫

D

|h(z)|δ

|1− wz|2+α
dAα(z)

)1/δ
,

which gives the desired estimate.
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3.2. INNER PRODUCT FORMULA IN A2
α . In this subsection we will establish a for-

mula for the inner product in A2
α needed to prove our sufficiency condition for

boundedness of Toeplitz products.
If f and g satisfy the sufficiency condition (3.1), and h and k are polynomials,

Lemma 3.1 shows that the analytic functions F = T∗f h and G = T∗g k satisfy

(1− |z|2)2k+2+α|u(k)(z)v(k)(z)| 6 Cα,k‖h‖α‖k‖α,

while Lemma 3.2, combined by the Lp-boundedness of the Bergman projection
on A2

α will be used to show that∫
D

(1− |z|2)2n+α|u(n)(z)v(n)(z)|dA(z) 6 Cα,k‖h‖α‖k‖α,

provided n > 2+α
2+ε (details will follow). So we need to rewrite the inner product

in such a way that the above estimates can be used. Write

〈 f , g〉α =
∫
D

f gdAα = (α + 1)
∫
D

f (z)g(z)(1− |z|2)αdA(z).

Note that

〈zn, zn〉α =
n!Γ(α + 2)

Γ(n + α + 2)
.

A calculation shows for all f , g ∈ A2
α that

(3.3) 〈 f , g〉α = 〈 f , g〉α+2 +
〈 f ′, g′〉α+2

(α + 2)(α + 3)
+

〈 f ′, g′〉α+3

(α + 3)(α + 4)
.

We iterate formula (3.3) to obtain an inner product formula useful in esta-
bilishing the sufficiency condition (3.1) for boundedness of Toeplitz products on
the weighted Bergman space A2

α.

LEMMA 3.3. Let −1 < α < ∞. There exist constants bn,1, . . . , bn,2n+1 such that,
for all f , g ∈ A2

α,

〈 f , g〉α = 〈 f , g〉α+2 +
2

∑
j=1

n−1

∑
k=1

bn,2k+j−2〈 f (k), g(k)〉α+2k+j+1

+
3

∑
j=1

bn,2n+j−2〈 f (n), g(n)〉α+2n+j−1.(3.4)

Proof. The inductive step is to use (3.3) on

〈 f (n), g(n)〉α+2n+j−1 = 〈 f (n), g(n)〉α+2n+j+1 +
〈 f (n+1), g(n+1)〉α+2n+j+1

(α + 2n + j + 1)(α + 2n + j + 2)

+
〈 f (n+1), g(n+1)〉α+2n+j+2

(α + 2n + j + 2)(α + 2n + j + 3)
,
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for j = 1, 2. The following definitions establish the induction step, and can be
used to determine these inner product formulas recursively:

bn+1,2n+3 =
bn,2n

(α + 2n + 4)(α + 2n + 5)
; bn+1,2n+2 =

bn,2n + bn,2n−1

(α + 2n + 3)(α + 2n + 4)
;

bn+1,2n+1 =
bn,2n−1

(α + 2n + 2)(α + 2n + 3)
; bn+1,k = bn,k, for 1 6 k 6 2n.

This proves the result.

3.3. PROOF OF THE SUFFICIENCY CONDITION. The inner product formula (3.4)
and the estimates discussed will establish that for analytic functions f and g sat-
isfying condition (3.1) the Toeplitz operator Tf Tg is bounded on A2

α.
Let f and g be analytic functions satisfying the condition (3.1), and let h and

k be polynomials. Put F = T∗f h and G = T∗g k, and choose a positive integer n such

that n > 2+α
2+ε . By Lemma 3.1, there are finite constants Cα,k (depending on the

constant in condition (3.1)) such that

(1− |z|2)2k+2+α|F(k)(z)G(k)(z)| 6 Cα,k‖h‖α‖k‖α,

for all z ∈ D. This implies for k = 1, . . . , n− 1 and j = 1, 2 that

|〈F(k), G(k)〉α+2k+j+1| 6 Cα,k‖h‖α‖k‖α.

Using Lemma 3.2,

(1− |w|2)2n|(T∗f h)(n)(w)||(T∗g k)(n)(w)|

6 CBα[| f |2+ε](w)1/(2+ε)Bα[|g|2+ε](w)1/(2+ε)

×
( ∫

D

|h(z)|δ

|1− zw|2+α
dAα(z)

)1/δ( ∫
D

|k(z)|δ

|1− zw|2+α
dAα(z)

)1/δ

6 CM(Qα|h|δ(w))1/δ(Qα|k|δ(w))1/δ,

where Qα denotes the integral operator defined by

Qαu(w) =
∫
D

|u(z)|
|1− zw|2+α

dAα(z).

Using the inequality of Cauchy-Schwarz,∫
D

(1− |w|2)2n|(T∗f h)(n)(w)||(T∗g k)(n)(w)|dAα(w)

6 CM
( ∫

D

(Qα|h|δ(w))2/δdAα(w)
)1/2( ∫

D

(Qα|k|δ(w))2/δdAα(w)
)1/2

.
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Since p = 2
δ > 1, the Lp-boundedness of operator Qα on A2

α (which can be proved
similarly to Theorem 4.2.3 and Remark 4.2.5 in [21] considering the test function
(1− |z|2)−(α+1)/(pq)), shows that∫

D

(Qα|v|δ(w))2/δdAα(w) 6 C′
∫
D

(|v|δ(w))2/δdAα(w) = ‖v‖2
α,

thus ∫
D

(1− |z|2)2n+α|u(n)(z)v(n)(z)|dA(z) 6 Cα,n‖h‖α‖k‖α.

This implies |〈F(k), G(k)〉α+2n+j−1| 6 Cα,n‖h‖α‖k‖α, for j = 1, 2, 3. Also, by Lem-
ma 3.1, |〈F, G〉α+2| 6 Cα,0‖h‖α‖k‖α. With the help of the inner product formula
(3.4) it follows that

|〈F, G〉α| 6
( 2n+1

∑
j=1

|bn,j| max
06k6n

Cα,k

)
‖h‖α‖k‖α,

proving that the Toeplitz product Tf Tg is bounded on A2
α.

4. A REVERSED HÖLDER INEQUALITY

In this section we will prove a reverse Hölder inequality for f in A2
α satisfy-

ing the following invariant weight condition:

(M2) sup
w∈D

Bα[| f |2](w)Bα[| f |−2](w) < ∞.

We will prove that the above condition implies that

(M2+ε) sup
w∈D

Bα[| f |2+ε](w)Bα[| f |−(2+ε)](w) < ∞

for sufficiently small ε > 0. By Hölder’s inequality,( ∫
D

| f |2dAα

)1/2
6

( ∫
D

| f |2+εdAα

)1/(2+ε)
.

Applying this to the function f ◦ ϕw it follows that

Bα[| f |2](w) 6 Bα[| f |2+ε](w)2/(2+ε),

and thus

Bα[| f |2](w)Bα[| f |−2](w) 6 (Bα[| f |2+ε](w)Bα[| f |−(2+ε)](w))2/(2+ε),

so condition (M2+ε) implies (M2). Thus, the above implication will follow once
we prove a reversed Hölder inequality:
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THEOREM 4.1. Suppose that f ∈ A2
α satisfies condition (M2) with constant

M = sup
w∈D

Bα[| f |2](w)Bα[| f |−2](w) < ∞.

There exist constants εM > 0 and CM > 0 such that for every w ∈ D and 0 < ε < εM
we have

Bα[| f |2+ε](w) 6 CM(Bα[| f |2](w))(2+ε)/2.

As in [18], our proof will make use of dyadic rectangles and the dyadic max-
imal function. We first discuss the dyadic rectangles and prove some elementary
properties related to these rectangles.

DYADIC RECTANGLES. Any set of the form

Qn,m,k = {reiθ : (m− 1)2−n 6 r < m2−n and (k− 1)2−n+1π 6 θ < k2−n+1π},

where n, m and k are positive integers such that m 6 2n and k 6 2n is called a
dyadic rectangle. The center of the above dyadic rectangle Q = Qn,m,k is the point
zQ = (m − 1

2 )2−neiϑ, with ϑ = (k − 1
2 )21−nπ. If d(Q) denotes the distance be-

tween Q and ∂D, and `(Q) denotes the length of the square in the radial direction
(`(Qn,m,k) = 2−n), then

(4.1) 1− |zQ| = d(Q) + 1
2 `(Q).

The following figure shows these quantities for a dyadic rectangle not adjacent to
the unit circle ∂D.

Q

zQ

d(Q)

�(Q)

Figure 1: Dyadic rectangle Q with center zQ
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A simple calculation shows that

(4.2) |Q| = 8|zQ|(1− |zQ| − d(Q))2.

Write Aα(E) to denote the measure of a measurable set E ⊂ D with respect
to dAα(z) = (α + 1)(1− |z|2)αdA(z). If Q is a dyadic rectangle, then its weighted
area is

Aα(Q)=`(Q){(d(Q)+`(Q))1+α(1+|zQ|− 1
2 `(Q))1+α−d(Q)1+α(1+|zQ|+ 1

2 `(Q))1+α}.

The above formula for Aα(Q) can be used to obtain estimates for use in our
proofs. However, many different cases need to be considered. As it turns out,
dyadic rectangles not in contact with the unit circle can be treated easily without
knowing their weighted area. The following formula give the weighted area of a
dyadic rectangle that lies adjacent to the unit circle. If Q is a dyadic rectangle in
the unit disk other than D for which d(Q) = 0, then

(4.3) Aα(Q) = 23+2α|zQ|1+α(1− |zQ|)2+α.

4.1. INVARIANT WEIGHT CONDITION. For w ∈ D let k(α)
w denote the normalized

reproducing kernel in the weighted Bergman space A2
α.

LEMMA 4.2. Let −1 < α < ∞. There exists a positive number cα such that for
every dyadic rectagle Q in D and every z ∈ Q

|k(α)
zQ (z)|2 >

cα

(1− |zQ|)2+α
.

Proof. If z = reiθ ∈ Q and Q = Qn,m,k, then zQ = 2−n(m − 1
2 )eiϑ, where

ϑ = 21−n(k− 1
2 )π, thus

|θ − ϑ| 6 2π

2n+1 6 2π(1− |zQ|).

Since r > |zQ| − 1
2n+1 > |zQ| − (1− |zQ|), we have r|zQ| > |zQ|2 − |zQ|(1− |zQ|),

thus

1− r|zQ| 6 1− |zQ|2 + |zQ|(1− |zQ|) = (1 + 2|zQ|)(1− |zQ|) 6 3(1− |zQ|).

Hence

|1−zQz|2=1 + r2|zQ|2 − 2r|zQ| cos(θ − ϑ) = (1− r|zQ|)2 + 4r|zQ| sin2( θ−ϑ
2 )

6(1−r|zQ|)2+r|zQ|(θ−ϑ)269(1−|zQ|)2+4π2r|zQ|(1−|zQ|)2650(1−|zQ|)2,

and we obtain

|k(α)
zQ (z)|2 =

(1− |zQ|2)2+α

|1− zQz|4+2α
>

1
502+α(1− |zQ|)2+α

.

This proves the inequality with cα = 1
502+α .
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For w ∈ D and 0 < s < 1 let D(w, s) denote the pseudohyperbolic disk with
center w and radius 0 < s < 1, i.e,

D(w, s) = {z ∈ C : |ϕw(z)| < s}.

LEMMA 4.3. Suppose that f ∈ A2
α satisfies the invariant weight condition (M2)

and let 0 < s < 1. There is a constant cs > 0 such that the following inequalities hold
for every z ∈ D(w, s):

1
cs

6
| f (z)|
| f (w)|

6 cs.

Proof. Fix w ∈ D. Let u be in D(0, s). Since f is in A2
α we have f (u) =

〈 f , K(α)
u 〉α. Applying the Cauchy-Schwarz inequality we obtain

| f (u)| 6 ‖ f ‖α‖K(α)
u ‖α =

‖ f ‖α

(1− |u|2)(2+α)/2 6
‖ f ‖α

(1− s2)(2+α)/2 ,

for each u in D(0, s). Now if z ∈ D(w, s) then z = ϕw(u), for some u ∈ D(0, s).
Replacing f by f ◦ ϕw in the above inequality gives

| f (z)| = |( f ◦ ϕw)(u)| 6 ‖ f ◦ ϕw‖α

(1− s2)(2+α)/2 =
1

(1− s2)(2+α)/2 Bα[| f |2](w)1/2.

By the Cauchy-Schwarz inequality

1
| f (w)|

= |( f−1 ◦ ϕw)(0)| 6 ‖ f−1 ◦ ϕw‖α = Bα[| f−1|2](w)1/2.

Combining these inequalities we have

| f (z)|
| f (w)|

6
1

(1− s2)(2+α)/2 Bα[| f |2](w)1/2Bα[| f |−2](w)1/2 6
M1/2

(1− s2)(2+α)/2 ,

for all z ∈ D(w, s). Replacing f by its reciprocal f−1 gives the other inequality.

PROPOSITION 4.4. There exists a 0 < R < 1 such that

Q ⊂ D(zQ, R),

for every dyadic rectangle in D that has positive distance to ∂D.

The following figure illustrates the above proposition.
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Figure 2: Dyadic rectangle Q included in D(zQ, R).

Proof. It suffices to consider dyadic rectangles closest to ∂D. Let Q be such
a dyadic rectangle with positive distance to ∂D. For 0 < r < 1 the pseudohyper-
bolic disk D(zQ, r) is a euclidean disk in D whose euclidean center is closer to the

origin than zQ is (the euclidean center of D(zQ, r) is (1−r2)zQ
1−r2|zQ |2

and the euclidean

radius is (1−|zQ |2)r
1−r2|zQ |2

; see [6], page 3). Recall that the center zQ of Q has argument

ϑ = (2k−1)π
2n . We need to show that Q’s outer corners (1 − 2−n)ei(ϑ±π/2n) be-

long to D(zQ, r) for sufficiently large 0 < r < 1. Using rotation-invariance, it
will be enough to estimate the pseudohyperbolic distance dn between the points
zn = 1− 3

2 2−n and λn = (1− 2−n)eiϑn , where ϑn = π
2n . A calculation shows that

|zn − λn|2 = 2−2n−2 + 4(1− 3
2 2−n)(1− 2−n) sin2( 1

2 ϑn),

and

|1− znλn|2 = 25× 2−2n−2(1− 3
5 2−n)2 + 4(1− 3

2 2−n)(1− 2−n) sin2( 1
2 ϑn).

It follows that

d2
n =

1 + 4(1− 3
2 2−n)(1− 2−n)π2(sin( 1

2 ϑn)/( 1
2 ϑn))2

25(1− 3
5 2−n)2 + 4(1− 3

2 2−n)(1− 2−n)π2(sin( 1
2 ϑn)/( 1

2 ϑn))2
→ 1 + 4π2

25 + 4π2 ,

as n → ∞. Consequently, there exists a 0 < R < 1 such that dn < R, for all
positive integers n. Then Q ⊂ D(zQ, R), for every dyadic rectangle for which
d(Q) > 0.
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LEMMA 4.5. If f ∈ A2
α satisfies the invariant weight condition (M2), then there is

a constant C > 0 such that for every dyadic rectangle Q( 1
Aα(Q)

∫
Q

| f |2dAα

)( 1
Aα(Q)

∫
Q

| f |−2dAα

)
6 C.

The following proof of this more general result is actually more elementary
than the proof of the corresponding lemma given in [18].

Proof. Suppose f ∈ A2
α satisfies the invariant weight condition

Bα[| f |2](w)Bα[| f |−2](w) 6 M < ∞,

for all w ∈ D. Let Q be a dyadic square in the unit disk other than D (if Q = D
the estimate holds, since

∫
D
| f |2dAα = Bα[| f |2](0) and

∫
D
| f |−2dAα = Bα[| f |−2](0)).

First assume that d(Q) > 0. By Proposition 4.4, Q ⊂ D(zQ, R). By Lemma 4.3,
there exists a positive constant C such that

1
C
| f (zQ)| 6 | f (z)| 6 C| f (zQ)|,

for all z ∈ Q. Therefore( 1
Aα(Q)

∫
Q

| f |2dAα

)( 1
Aα(Q)

∫
Q

| f |−2dAα

)
6 (C2| f (zQ)|2)(C2| f (zQ)|−2)=C4.

Next assume that d(Q) = 0. Using Lemma 4.2 we have

Bα[| f |2](zQ) =
∫
D

| f |2|k(α)
zQ |

2dAα >
∫
Q

| f |2|k(α)
zQ |

2dAα >
cα

(1− |zQ|)2+α

∫
Q

| f |2dAα.

Since Q 6= D and d(Q) = 0 we have |zQ| > 1
2 , and it follows from (4.3) that

Aα(Q) > 22+α(1− |zQ|)2+α.

Combining the above two inequalities yields

Bα[| f |2](zQ) >
22+αcα

Aα(Q)

∫
Q

| f |2dAα.

A similar inequality holds for f−1. Thus we have as desired( 1
Aα(Q)

∫
Q

| f |2dAα

)( 1
Aα(Q)

∫
Q

| f |−2dAα

)
6

(Bα[| f |2](zQ)
22+αcα

)(Bα[| f |−2](zQ)
22+αcα

)
6

M
42+αc2

α
.

LEMMA 4.6. Let −1 < α < ∞ and suppose that f ∈ A2
α satisfies the invariant

weight condition (M2). For every w ∈ D let dµ
(α)
w = | f ◦ ϕw|2dAα. If 0 < γ < 1, then

there exists a 0 < δ < 1 such that whenever E is a subset of Q with Aα(E) 6 γAα(Q)

µ
(α)
w (E) 6 δµ

(α)
w (Q).
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Proof. Suppose that Bα[| f |2](w)Bα[| f |−2](w) 6 M, for all w ∈ D. Let E be a
subset of Q with Aα(E) 6 γAα(Q). Applying the inequality of Cauchy-Schwarz
and Lemma 4.5 we have

Aα(Q \ E)2=
(∫
Q\E

| f ◦ ϕw|| f ◦ ϕw|−1dAα

)2
6

(∫
Q\E

| f ◦ ϕw|2dAα

)(∫
Q\E

| f ◦ ϕw|−2dAα

)

6
( ∫

Q\E

| f ◦ ϕw|2dAα

)( ∫
Q

| f ◦ ϕw|−2dAα

)

6
(∫
Q\E

| f ◦ ϕw|2dAα

)
CAα(Q)2

(∫
Q

| f ◦ ϕw|2dAα

)−1
=CAα(Q)2

{
1− µ

(α)
w (E)

µ
(α)
w (Q)

}
.

If we put γ = 1− (1−γ)2

C it follows that

µ
(α)
w (E)

µ
(α)
w (Q)

6 1− 1
C

(
1− Aα(E)

Aα(Q)

)2
6 δ.

THE DYADIC MAXIMAL FUNCTION. Define the dyadic maximal operator Mα by

(Mα f )(w) = sup
w∈Q

1
Aα(Q)

∫
Q

| f |dAα,

where the supremum is over all dyadic rectangles Q that contain w. The maximal
function is of weak-type (1, 1) and the maximal function is greater than the dyadic
maximal function, so the dyadic maximal function of any continuous integrable
function is finite on D. In particular, if f ∈ A2

α satisfies the invariant A2-condition,
then the dyadic maximal function Mα| f |2 is always finite. This can also be seen
directly as follows. Given a point w ∈ D, there is a number 0 < R < 1 such that
all but a finite number of dyadic rectangles containing the point w lie inside the
closed disk D(0, R) = {z ∈ C : |z| 6 R}. If f ∈ A2

α and Q is a dyadic rectangle
containing w inside the disk D(0, R), then

1
Aα(Q)

∫
Q

| f (z)|2dAα(z) 6 max{| f (z)|2 : |z| 6 R}.

If Q1, . . . , Qm are dyadic rectangles containing w not contained in disk D(0, R),
then

Mα| f |2(w) 6 max{| f (z)|2 : |z| 6 R}+ max
16j6m

1
|Qj|

∫
Qj

| f (z)|2dA(z) < ∞.

This proves that the dyadic function of | f |2 is finite on D.
The principal fact about the dyadic maximal function is the Calderon-Zyg-

mund decomposition formulated in the next theorem. We will need the notion
of “doubling” of dyadic rectangles in its proof. Suppose that n > 1 and m, k are
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positive integers such that m, k 6 2n. The double of Q = Qn,m,k, denoted by 2Q,
is defined by

2Q = Qn−1,[(m+1)/2],[(k+1)/2],

where [`] denotes the greatest integer less than or equal to `.

4.2. DOUBLING PROPERTY. The following figures show a dyadic rectangle Q and
its double 2Q.

Q

zQ
d(Q)

�(Q)

Figure 3: Dyadic rectangle
and its double

Q

zQ
d(Q)

�(Q)

Figure 4: Dyadic rectangle
and its double

Using (4.2) as well as d(2Q) = d(Q) − 1
2 `(Q) and `(2Q) = 2`(Q), an ele-

mentary calculation shows that

(4.4)
|2Q|
|Q|

6 8,

for every proper dyadic rectangle Q in the unit disk. We will show that this
doubling property extends to the weighted measures Aα. We first prove two
elementary lemmas.

LEMMA 4.7. For every dyadic rectangle in the unit disk other than D the following
inequalities hold:

1
2 (1− |zQ|) < 1− |z2Q| < 3

2 (1− |zQ|).

Proof. If 2Q is closer to the unit circle, as in Figure 3, then

1− |zQ| = 1− |z2Q|+ 1
2 `(Q).

Clearly 1− |z2Q| < 1− |zQ|. Since `(Q) < 1− |zQ| we also have

1− |z2Q| = 1− |zQ| − 1
2 `(Q) > 1− |zQ| − 1

2 (1− |zQ|) = 1
2 (1− |zQ|).
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Thus
1
2 (1− |zQ|) < 1− |z2Q| < 1− |zQ|.

If d(2Q) = d(Q), as in Figure 4, then

1− |z2Q| = 1− |zQ|+ 1
2 `(Q).

Clearly 1− |z2Q| > 1− |zQ|. Since `(Q) < 1− |zQ| we also have

1− |z2Q| = 1− |zQ|+ 1
2 `(Q) < 1− |zQ|+ 1

2 (1− |zQ|) = 3
2 (1− |zQ|).

Thus, we have the following that completes the proof:

(1− |zQ|) < 1− |z2Q| < 3
2 (1− |zQ|).

That the functions (1− |z|2)α are approximately constant on pseudohyper-
bolic disks is well know. The following lemma gives concrete bounds.

LEMMA 4.8. Let w ∈ D, 0 < r < 1, and let α be a real number. Then, for all
z∈D(w, r),(1− r

1 + r

)|α|
(1− |w|2)α 6 (1− |z|2)α 6

(1 + r
1− r

)|α|
(1− |w|2)α.

This lemma is easily proved using (2.2) and standard estimates.
The following proposition shows that the doubling property (4.4) extends

to the weighted cases.

PROPOSITION 4.9. If −1<α<∞, then there exists a constant Nα <∞ such that

Aα(2Q)
Aα(Q)

6 Nα

for every dyadic rectangle Q in the unit disk which is not equal to D.

Proof. Let Q be a dyadic rectangle other than D = Q0,1,1, and let 2Q denote
its double. There are three cases to consider.

Case 1. d(2Q) > 0. By Proposition 4.4 we have 2Q ⊂ D(z2Q, R). Using
Lemma 4.8 we get

Aα(2Q)=(α+1)
∫

2Q

(1−|z|2)αdA(z)6 (α+1)
(1+R

1−R

)|α|
(1−|z2Q|2)α

∫
2Q

dA(z)

= (α + 1)
(1 + R

1− R

)|α|
(1− |z2Q|2)α|2Q|.

Since also d(Q) > 0 we also have Aα(Q) > (α + 1)
( 1−R

1+R
)|α|(1− |zQ|2)α|Q|. Thus

Aα(2Q)
Aα(Q)

6
(1 + R

1− R

)2|α| (1− |z2Q|2)α

(1− |zQ|2)α

|2Q|
|Q|

,

and that this is bounded above follows from (4.4) as well as Lemma 4.7.
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Case 2. d(2Q) = 0 and d(Q) > 0. By the Proposition 4.4, Q ⊂ D(zQ, R). Then

Aα(Q) > (α + 1)
( 1−R

1+R
)|α|(1− |zQ|2)α|Q|. Since Q is near the boundary, |zQ| > 1

4 ,
and it follows from formula (4.2) that |Q| > (1− |zQ|2)2, thus

Aα(Q) > (α + 1)
(1− R

1 + R

)|α|
(1− |zQ|2)α+2.

By (4.3)

Aα(2Q) = 41+α|z2Q|1+α(1− |z2Q|)α+2 6 41+α(1− |z2Q|)α+2.

Combining the last inequalities we have the next which is bounded by Lemma 4.7:

Aα(2Q)
Aα(Q)

6
4α+1

α + 1

(1 + R
1− R

)|α|(1− |z2Q|
1− |zQ|

)2+α
.

Case 3. d(2Q) = 0 and d(Q) = 0. In this case, by (4.3)

Aα(Q) = 41+α|zQ|1+α(1− |zQ|)2+α > (1− |zQ|)2+α

(since |zQ| > 1
2 ). Hence

Aα(2Q)
Aα(Q)

6 41+α
(1− |z2Q|

1− |zQ|

)2+α
,

which is bounded by Lemma 4.7. This proves the doubling property.

The following theorem should be compared with Lemma 1 in Section IV.3
(p. 150) of Stein’s book [13].

THEOREM 4.10 (Calderon-Zygmund Decomposition Theorem). Let −1 <

α < ∞ and let f be locally integrable on D, let t > 0, and suppose that Ω = {z ∈ D :
Mα f (z) > t} is not equal to D. Then Ω may be written as the disjoint union of dyadic
rectangles {Qj} with

t <
1

Aα(Qj)

∫
Qj

| f |dAα < Nαt,

where Nα is as in Proposition 4.9.

Proof. Suppose that w ∈ Ω, that is, Mα f (w) > t. Then there exists a dyadic
rectangle Q containing w such that

1
Aα(Q)

∫
Q

| f |dAα > t.

Now, if z ∈ Q, then

Mα f (z) >
1

Aα(Q)

∫
Q

| f |dAα > t,
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and it follows z ∈ Ω. This proves that Q ⊂ Ω. It follows that Ω =
⋃
j

Qj. We may

assume that the Qj are maximal dyadic rectangles. Since Q = Qj is not equal to D,
by maximality its double 2Q is not contained in Ω. This means that 2Q contains
a point z which is not in Ω. Since Mα f (z) 6 t, we obtain 1

Aα(2Q)

∫
2Q
| f |dAα 6

Mα f (z) 6 t, and hence∫
Q

| f |dAα 6
∫

2Q

| f |dAα 6 tAα(2Q).

It follows that:
1

Aα(Q)

∫
Q

| f |dAα 6 t
Aα(2Q)
Aα(Q)

6 Nαt.

Before we prove the reversed Hölder inequality (Theorem 4.1), we need one
more preliminary result for the dyadic maximal function:

PROPOSITION 4.11. If f ∈ A2
α, then:

(i) | f |2 6 Mα| f |2 on D, and
(ii) ‖ f ‖2

α 6 Mα| f |2(0) 6 ( 4
3 )2+α‖ f ‖2

α.

Proof. (i) In fact, we will prove that if g is continuous on D, then |g(w)| 6
Mαg(w) for every w ∈ D. Fix w ∈ D. Let Q0 be any dyadic rectangle containing
w such that Q0 ⊂ D. Since the function g is uniformly continuous on Q0, given
ε > 0, there is a δ > 0 such that |g(z) − g(w)| < ε whenever z, w ∈ Q0 are such
that |z − w| < δ. If necessary, subdividing Q0 a number of times, there exists
a dyadic rectangle Q containing w with diameter less than δ. Then |g(w)| 6
|g(z)|+ |g(w)− g(z)| 6 |g(z)|+ ε for all z ∈ Q. This implies that

|g(w)| 6 1
Aα(Q)

∫
Q

|g(z)|dAα(z) + ε 6 Mαg(w) + ε.

This implies the desired inequality

|g(w)| 6 Mαg(w).

(ii) Since D is a dyadic rectangle and Aα is a probability measure, we have

Mα| f |2(0) >
1

Aα(D)

∫
D

| f |2dAα = ‖ f ‖2
α.

Suppose f ∈ A2
α. If Q is a dyadic rectangle other than D containing 0, then

Q ⊂ D(0, 1/2). Then for each z in the unit disk, f (z) = 〈 f , K(α)
z 〉α and the inequal-

ity of Cauchy-Schwarz imply

| f (z)|2 6 ‖ f ‖2
α‖K(α)

z ‖2
α =

1
(1− |z|2)2+α

‖ f ‖2
α 6 ( 4

3 )2+α‖ f ‖2
α,
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for all z ∈ D(0, 1/2). Since Q ⊂ D(0, 1/2) it follows that

1
Aα(Q)

∫
Q

| f |2dAα 6 ( 4
3 )2+α‖ f ‖2

α.

We conclude that
‖ f ‖2

α 6 Mα| f |2(0) 6 ( 4
3 )2+α‖ f ‖2

α.

We are now ready to prove the reversed Hölder inequality in Theorem 4.1.

Proof of Theorem 4.1. First we prove that for some constant CM > 0,∫
D

| f |2+εdAα 6 CM

( ∫
D

| f |2dAα

)(2+ε)/2
.

Let m be a positive integer such that the constant Nα of Proposition 4.9 satisfies
Nα 6 2m−1. For each integer k > 0, set

Ek = {z ∈ D : Mα| f |2(z) > 2mk+α‖ f ‖2
α}.

By Proposition 4.11 (ii) we have Mα| f |2(0) 6 ( 4
3 )2+α‖ f ‖2

α 6 2mk+α‖ f ‖2
α, for every

positive integer k, so the set Ek does not contain 0. Fix k > 1. By the Calderon-
Zygmund Decomposition Theorem, Ek =

⋃
j

Qj, where Qj are disjoint dyadic

rectangles in Ek that satisfy

2mk+α‖ f ‖2
α <

1
Aα(Qj)

∫
Qj

| f |dAα < 2mk+αNα‖ f ‖2
α,

thus

Aα(Qj) 6 2−mk−α‖ f ‖−2
α

∫
Qj

| f |dAα and
∫
Qj

| f |dAα < 2mk+αNα‖ f ‖2
α Aα(Qj).

Let Q be a maximal dyadic rectangle in Ek−1. Summing over all such Qj ⊂ Q
gives that

Aα(Ek ∩ Q) = ∑
j:Qj⊂Q

Aα(Qj) 6 2−mk−α‖ f ‖−2
α

∫
Q

| f |2dAα,

since the Qj are disjoint and their union is Ek. On the other hand, by maximal-
ity the double 2Q is not contained in Ek−1, and as in the proof of the Calderon-
Zygmund Decomposition Theorem it follows that∫
Q

| f |2dAα62m(k−1)+αNα‖ f ‖2
α Aα(Q)62m(k−1)+α2m−1‖ f ‖2

α Aα(Q)=2mk+α−1‖ f ‖2
α Aα(Q).

Hence
Aα(Ek ∩ Q) 6 1

2 Aα(Q).
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Now by Lemma 4.6 there exists a 0 < δ < 1 such that

µα(Ek ∩ Q) 6 δµα(Q),

where dµα = | f |2dAα. Taking the union over all maximal dyadic rectangles Q in
Ek−1 gives µα(Ek) 6 δµα(Ek−1), and therefore

µα(Ek) 6 δkµα(E0) 6 δk‖ f ‖2
α.

Now, using Proposition 4.11, we have∫
D

| f |2+εdAα

6
∫
D

(Mα| f |2)ε/2| f |2dAα=
∫

{Mα | f |262α‖ f ‖2
α}

(Mα| f |2)ε/2| f |2dAα+
∞

∑
k=0

∫
Ek\Ek+1

(Mα| f |2)ε/2| f |2dAα

62α‖ f ‖ε
α‖ f ‖2

α+
∞

∑
k=0

2(m(k+1)+α)ε/2‖ f ‖ε
αµα(Ek)62α‖ f ‖2+ε

α +
∞

∑
k=0

2(mk+m+α)ε/2δk‖ f ‖2+ε
α

6 2α‖ f ‖2+ε
α + 2(m+α)ε/2‖ f ‖2+ε

α

∞

∑
k=0

(2mε/2δ)k =
(

2α +
2(m+α)ε/2

1− 2mε/2δ

)
‖ f ‖2+ε

α ,

if 2mε/2δ < 1. Put εM = 2 ln(1/(1+δ))
m ln 2 . If 0 < ε < εM, then 2mε/2 < 1

1+δ , thus
2mε/2

1−2mε/2δ
< 1. So, if CM = 2α + 2αεM/2, then for 0 < ε < εM we have shown that∫

D

| f |2+εdAα 6 CM

( ∫
D

| f |2dAα

)(2+ε)/2
.

For a fixed w ∈ D, by Möbius-invariance of the Berezin transform we also have

Mα = sup
z∈D

Bα[| f ◦ ϕw|2](z)Bα[| f ◦ ϕw|−2](z).

Applying the above argument to the function | f ◦ ϕw|2 we obtain∫
D

| f ◦ ϕw|2+εdAα 6 CM

( ∫
D

| f ◦ ϕw|2dAα

)(2+ε)/2
,

that is,
Bα[| f |2+ε](w) 6 CM(Bα[| f |2](w))(2+ε)/2.

Note that Theorem 4.1 combined with Theorem 1.2 give a proof of Theo-
rem 1.3.

Proof of Theorem 1.3. If f ∈ A2
α satisfies the condition

sup
w∈D

Bα[| f |2](w)Bα[| f |−2](w) < ∞,

then by the reversed Hölder inequality of Theorem 4.1, for some ε > 0,

sup
w∈D

Bα[| f |2+ε](w)Bα[| f |−(2+ε)](w) < ∞,
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for all w ∈ D. By Theorem 1.2, Tf T1/ f is bounded on A2
α.

5. INVERTIBLE TOEPLITZ PRODUCTS

In this section we will completely characterize the bounded Fredholm Toe-
plitz products Tf Tg on the weighted Bergman space A2

α. We have the following
result:

THEOREM 5.1. Let −1 < α < ∞ and let f , g ∈ A2
α. Then: Tf Tg is bounded

and invertible on A2
α if and only if sup{Bα[| f |2](w)Bα[|g|2](w) : w ∈ D} < ∞ and

inf{| f (w)||g(w)| : w ∈ D} > 0.

Proof. “=⇒” Suppose that Tf Tg is bounded and invertible on A2
α. By Theo-

rem 1.1 there exists a constant M such that

(5.1) Bα[| f |2](w)Bα[|g|2](w) 6 M,

for all w ∈ D. Note that Tf Tgkw = g(w) f k(α)
w . Thus

‖Tf Tgk(α)
w ‖2

2 = |g(w)|2‖ f k(α)
w ‖2

2 = |g(w)|2Bα[| f |2](w),

so the invertibility of Tf Tg yields

(5.2) |g(w)|2Bα[| f |2](w) > δ1 > 0

for some constant δ1 and for all w ∈ D. Since also TgTf = (Tf Tg)∗ is bounded and
invertible, there also is a constant δ2 such that

(5.3) | f (w)|2Bα[|g|2](w) > δ2 > 0

for all w ∈ D. Putting δ = δ1δ2, it follows from (5.1), (5.2) and (5.3) that for all
w ∈ D

δ 6 | f (w)|2|g(w)|2Bα[| f |2](w)Bα[|g|2](w) 6 M| f (w)|2|g(w)|2,

and thus

| f (w)||g(w)| > δ1/2

M1/2 .

“⇐=” Suppose that

M=sup{Bα[| f |2](w)Bα[|g|2](w) : w∈D}<∞ and η = inf{| f (w)||g(w)| : w∈D}>0.

By the inequality of Cauchy-Schwarz,

| f (w)|2 6 Bα[| f |2](w),

thus | f (w)||g(w)| 6 M1/2, for all w ∈ D. So, f g is a bounded function on D. Note
that f and g cannot have zeros in D. Since |g(z)|2 > η2| f (z)|−2, for all z ∈ D, we
have Bα[|g|2](w) > η2Bα[| f |−2](w), for all w ∈ D. Consequently

M > Bα[| f |2](w)Bα[|g|2](w) > η2Bα[| f |2](w)Bα[| f |−2](w),
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so that

Bα[| f |2](w)Bα[| f |−2](w) 6
M
η2 ,

for all w∈D. This means that f satisfies the (M2) condition. By Theorem 1.3 the
Toeplitz product TfT1/ f is bounded on A2

α. Since f g is bounded on D, the operator

Tf g is bounded on A2
α. It follows that Tf Tg=Tf T1/ f Tf g is bounded on A2

α.

The function ψ = 1
f g is bounded on D, so the operator Tψ is bounded on A2

α.
Using that

Tf TgTψ = I = TψTf Tg,

we conclude that Tf Tg is invertible on A2
α.

6. FREDHOLM TOEPLITZ PRODUCTS

In this section we will completely characterize the bounded invertible Toe-
plitz products Tf Tg on A2

α. We have the following result:

THEOREM 6.1. Let −1 < α < ∞ and let f and g be in A2
α. Then: Tf Tg is a

bounded Fredholm operator on A2
α if and only if Bα[| f |2]Bα[|g|2] is bounded on D and

the function | f ||g| is bounded away from zero near ∂D.

The latter condition simply means that there exists a number r with 0 < r <

1 such that inf{| f (z)||g(z)| : r < |z| < 1} > 0.
In the proof of the above theorem we will need the following lemma.

LEMMA 6.2. Let −1 < α < ∞. Suppose that f ∈ A2
α has a finite number of

zeros. Let b denote the Blaschke product of the zeros of f and F = f
b . Then there exists a

constant Cα, only depending on α, such that for all w in D

Bα[|F|2](w) 6 CαBα[| f |2](w).

Proof. Choose 0 < R < 1 so that |b(z)| > 1√
2
, for all R < |z| < 1. Suppose

w ∈ D. Then

Bα[| f |2](w) =
∫
D

| f (ϕw(z))|2dAα(z) =
∫
D

|b(ϕw(z))|2|F(ϕw(z))|2dAα(z)

>
1
2

∫
R<|ϕw(z)|<1

|F(ϕw(z))|2dAα(z).

By a change of variable,∫
R<|ϕw(z)|<1

|F(ϕw(z))|2dAα(z) =
∫

R<|z|<1

|F(z)|2 (1− |w|2)2+α

|1− wz|4+2α
dAα(z).
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Now, if h is analytic on D, then

(6.1)
∫
D

|h(z)|2dAα(z) 6
α + 1

(1− R2)α+1

∫
R<|z|<1

|h(z)|2dAα(z).

It is enough to prove inequality (6.1) for monomials h(z) = zn. Integration by
parts shows that

∫
R<|z|<1

|z|2ndAα(z)=

1∫
R2

xn(1− x)αdx =
R2n(1−R2)α+1

α + 1
+

n
α+1

1∫
R2

xn−1(1−x)α+1dx

>
R2n(1− R2)α+1

α + 1
.

On the other hand,∫
|z|6R

|z|2ndAα(z) 6R2n
{

1− (1− R2)α+1

α + 1

}
=

R2n(1− R2)α+1

α + 1

{ α + 1
(1− R2)α+1 − 1

}

6
{ α + 1

(1− R2)α+1 − 1
} ∫

R<|z|<1

|z|2ndAα(z).

Thus, we have the following, proving inequality (6.1):∫
D

|z|2ndAα(z)=
∫

|z|6R

|z|2ndAα(z)+
∫

R<|z|<1

|z|2ndAα(z)6
α + 1

(1−R2)α+1

∫
R<|z|<1

|z|2ndAα(z).

Applying the above estimate to the function

h(z) = F(z)
(1− |w|2)1+α/2

(1− wz)2+α
,

we see that∫
R<|z|<1

|F(z)|2 (1− |w|2)2+α

|1− wz|4+α
dAα(z)

>
(1− R2)α+1

α + 1

∫
D

|F(z)|2 (1− |w|2)2+α

|1− wz|4+α
dAα(z) >

(1− R2)α+1

α + 1
Bα[|F|2](w).

Thus Bα[| f |2](w) > 1
2

(1−R2)α+1

α+1 Bα[|F|2](w), so that

Bα[|F|2](w) 6 CαBα[| f |2](w),

with Cα = 2(α+1)
(1−R2)α+1 , for all w ∈ D.
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Proof of Theorem 6.1. “=⇒” If Tf Tg is bounded on A2
α, then there is an M

such that Bα[| f |2]Bα[|g|2] 6 M on D. If Tf Tg is Fredholm, then Tf Tg +K is invert-
ible in the Calkin algebra. Thus there exist a bounded operator V and a compact
operator S such that

VTf Tg = I + S.

Using that Tf Tgk(α)
w = g(w) f k(α)

w we have

‖V‖|g(w)|Bα[| f |2](w)1/2 = ‖V‖‖Tf Tgk(α)
w ‖α > ‖VTf Tgk(α)

w ‖α

> ‖k(α)
w ‖α − ‖Sk(α)

w ‖α = 1− ‖Sk(α)
w ‖α.

Since S is compact on A2
α and k(α)

w → 0 weakly on A2
α, we have ‖Sk(α)

w ‖α → 0 as
|w| → 1−, so there exists an 0 < r1 < 1 such that ‖Sk(α)

w ‖α < 1
2 , for all r1 < |w| < 1.

The above inequality shows that

|g(w)|2Bα[| f |2](w) > M1(= 1
2‖V‖−1),

for all r1 < |w| < 1. Since also TgTf = (Tf Tg)∗ is Fredholm, there is a positive
constant M2 and a number r2 with 0 < r2 < 1 such that

| f (w)|2Bα[|g|2](w) > M2,

for all r2 < |w| < 1. Thus M1M2 6 | f (z)|2|g(z)|2Bα[| f |2](z)Bα[|g|2](z)6 M| f (z)|2·
|g(z)|2, and hence for all max{r1, r2} < |z| < 1

| f (z)|2|g(z)|2 >
M1M2

M
.

“⇐=” Suppose that

(∗) | f (z)||g(z)| > δ > 0,

for all 0 < r < |z| < 1. Inequality (∗) implies that f and g have no zeros in the
annulus {z : r < |z| < 1}. Let b1 and b2 denote the (finite) Blaschke products of
the zeros of f and g respectively. Then F = f

b1
and G = g

b2
are zero free, and by

(∗) we have
|F(z)||G(z)| > δ|b1(z)||b2(z)|,

for all r < |z| < 1. The function on the right is positive and continuous on annulus
{z : 1

2 (1 + r) 6 |z| 6 1}, thus has a positive minimum. So putting ρ = 1
2 (1 + r),

we have |F(z)||G(z)| > η′, for all ρ < |z| < 1. Then |G(z)| > η′|F(z)|−1, for
all ρ < |z| < 1. Note that η′′ = inf{|F(z)||G(z)| : |z| 6 ρ} > 0. If we take
η = min{η′, η′′}, then |G(z)| > η|F(z)|−1, for all z ∈ D. By Lemma 6.2 we have
for all z ∈ D

Bα[|F|2](z) 6 CαBα[| f |2](z) and Bα[|G|2](z) 6 CαBα[|g|2](z).

Thus Bα[|F|2](z)Bα[|G|2](z) 6 M′, for all z ∈ D. As before we conclude that

Bα[|F|2](z)Bα[|F|−2](z) 6
M′

η2 ,
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for all z ∈ D, so F satisfies condition (M2). By Theorem 1.3 the Toeplitz prod-
uct TFT1/F is bounded. As in the proof of Theorem 5.1 it follows that TFTG is
bounded. This implies that the following operator is bounded:

Tf Tg = Tb1
TFTGTb2

.

Since 1
FG

is bounded, the Toeplitz operator T1/FG is bounded, and it follows
that TFTG is invertible. Since Tb2

is Fredholm, there is a bounded operator V2 on
A2

α and a compact operator S2 on A2
α such that Tb2

V2 = I + S2. It follows that
Tf TgV2 = Tb1

TFTG + Tb1
TFTGS2, thus

Tf TgV2(TFTG)−1 = Tb1
+ Tb1

TFTGS2(TFTG)−1.

Using that also Tb1
is Fredholm, there is a bounded operator V1 on A2

α and a
compact operator S1 on A2

α such that Tb1
V1 = I + S1. Then

Tf TgV2(TFTG)−1S1 = I + S1 + Tb1
TFTGS2(TFTG)−1.

Hence Tf Tg + K is right-invertible in the Calkin algebra. Similarly Tf Tg + K is
left-invertible in the Calkin algebra, so that Tf Tg is Fredholm.
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ADDED IN PROOFS. After we submitted our paper, we were made aware of the
following article which contains results similar to Theorems 1.1 and 1.2:
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S. POTT, E. SROUSE, Product of Toeplitz operators on the Bergman spaces A2
α [Russian],

Algebra i Analiz 18(2006), 144–161; English St. Petersburg Math. J. 18(2007), 105–118.


