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ABSTRACT. In recent work of the second author, a technical result was proved
establishing a bijective correspondence between certain open projections in
a C∗-algebra containing an operator algebra A, and certain one-sided ideals
of A. Here we give several remarkable consequences of this result. These
include a generalization of the basic theory of hereditary subalgebras of a C∗-
algebra, and the solution of a ten year old problem concerning the Morita
equivalence of operator algebras. In particular, the latter gives a very clean
generalization of the notion of Hilbert C∗-modules to nonselfadjoint algebras.
We show that an "ideal" of a general operator space X is the intersection of X
with an "ideal" in any containing C∗-algebra or C∗-module. Finally, we discuss
the noncommutative variant of the classical theory of "peak sets".
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1. INTRODUCTION

In [26], [27], a technical result was proved establishing a bijective correspon-
dence between certain open projections in a C∗-algebra containing an operator al-
gebra A, and certain one-sided ideals of A. Here we give several remarkable con-
sequences of this result. These include a generalization of the theory of hereditary
subalgebras of a C∗-algebra, and the solution of a ten year old problem concern-
ing the Morita equivalence of operator algebras. In particular, the latter yields
the conceptually cleanest generalization of the notion of Hilbert C∗-modules to
nonselfadjoint algebras. We show that an "ideal" of a general operator space X is
the intersection of X with an "ideal" in any containing C∗-algebra or C∗-module.
Finally, we discuss the noncommutative variant of the classical theory of "peak
sets". If A is a function algebra on a compact space X, then a p-set may be charac-
terized as a closed subset E of X such that for any open set U containing E there
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is a function in Ball(A) which is 1 on E, and < ε in modulus outside of U. We
prove a noncommutative version of this result.

An operator algebra is a closed algebra of operators on a Hilbert space; or
equivalently a closed subalgebra of a C∗-algebra. We refer the reader to [11] for
the basic theory of operator algebras which we shall need. We say that an opera-
tor algebra A is unital if it has an identity of norm 1, and approximately unital if it
has a contractive approximate identity (cai). A unital-subalgebra of a C∗-algebra B
is a closed subalgebra containing 1B. In this paper we will often work with closed
right ideals J of an operator algebra A possessing a contractive left approximate
identity (or left cai) for J. For brevity we will call these r-ideals. The matching
class of left ideals with right cai will be called l-ideals, but these will not need
to be mentioned much for reasons of symmetry. In fact r-ideals are exactly the
right M-ideals of A if A is approximately unital [10]. For C∗-algebras r-ideals are
precisely the closed right ideals, and there is an obvious bijective correspondence
between r-ideals and l-ideals, namely J 7→ J∗. For nonselfadjoint operator alge-
bras it is not at all clear that there is a bijective correspondence between r-ideals
and l-ideals. In fact there is, but this seems at present to be a deep result, as we
shall see. It is easy to see that there is a bijective correspondence between r-ideals
J and certain projections p in the second dual A∗∗ (we recall that A∗∗ is also an
operator algebra ([11], Section 2.5)). This bijection takes J to its left support pro-
jection, namely the weak* limit of a left cai for J; and conversely takes p to the
right ideal pA∗∗ ∩ A. The main theorem from [27], which for brevity we will refer
to as Hay’s theorem, states that if A is a unital-subalgebra of a C∗-algebra B then
the projections p here may be characterized as the projections in A⊥⊥ which are
open in B∗∗ in the sense of e.g. [1], [33]. Although this result sounds innocuous,
its proof is presently quite technical and lengthy, and uses the noncommutative
Urysohn lemma [2] and various nonselfadjoint analogues of it. One advantage
of this condition is that it has a left/right symmetry, and thus it leads naturally
into a theory of hereditary subalgebras (HSA’s for short) of general operator al-
gebras. For commutative C∗-algebras of course HSA’s are precisely the closed
two-sided ideals. For noncommutative C∗-algebras the hereditary subalgebras
are the intersections of a right ideal with its canonically associated left ideal [19],
[33]. They are also the selfadjoint "inner ideals". (In this paper, we say that a sub-
space J of an algebra A is an inner ideal if JAJ ⊂ J. Inner ideals in this sense are
sometimes called "hereditary subalgebras" in the literature, but we will reserve
the latter term for something more specific.) The fact that HSA’s of C∗-algebras
are the selfadjoint inner ideals follows quickly from Proposition 2.2 below and its
proof, or it can be deduced from [17]. HSA’s play some of the role that two-sided
ideals play in the commutative theory. Also, their usefulness stems in large part
because many important properties of the algebra pass to hereditary subalgebras
(for example, primeness or primitivity).

We now summarize the content of our paper. In Section 2, we use Hay’s the-
orem to generalize some of the C∗-algebraic theory of HSA’s. Also in Section 2 we
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use our results to give a solution to a problem raised in [9]. An earlier incomplete
attempt to solve this problem was made in [30]. In [9] an operator algebra A was
said to have property (L) if it has a left cai (et) such that eset → es with t for each
s. It was asked if every operator algebra with a left cai has property (L)? As an
application of this, in Section 3 we settle a problem going back to the early days
of the theory of strong Morita equivalence of nonselfadjoint operator algebras.
This gives a very clean generalization of the notion of Hilbert C∗-module to such
algebras. In Section 4, we generalize to nonselfadjoint algebras the connections
between HSA’s, weak* closed faces of the state space, and lowersemicontinuity.
We remark that facial structure in the algebra itself has been looked at in the
nonselfadjoint literature, for example in [31] and references therein. In Section 5
we show that every right M-ideal in any operator space X is an intersection of
X with a canonical right submodule of any C∗-module (or "TRO") containing X.
Similar results hold for two-sided, or "quasi-", M-ideals. This generalizes to ar-
bitrary operator spaces the theme from e.g. Theorem 2.9 below, and from [27],
that r-ideals (respectively HSA’s) are very tightly related to matching right ideals
(respectively HSA’s) in a containing C∗-algebra. In the final Section 6 we discuss
connections with the peak and p-projections introduced in [26], [27]. The moti-
vation for looking at these objects is to attempt to generalize the tools of peak
sets and "peak interpolation" from the classical theory of function algebras (due
to Bishop, Glicksberg, Gamelin, and others). In particular, we reduce the main
open question posed in [27], namely whether the p-projections coincide with the
support projections of r-ideals, to a simple sounding question about approximate
identities: If A is an approximately unital operator algebra then does A have an
approximate identity of form (1− xt) with xt ∈ Ball(A1)? Here 1 is the identity of
the unitization A1 of A. We imagine that the answer to this is in the negative. We
also show that p-projections are exactly the closed projections satisfying the "non-
selfadjoint Urysohn lemma" or "peaking" property discussed at the beginning of
this introduction. Thus even if the question above turns out in the negative, these
projections should play an important role in future "nonselfadjoint interpolation
theory".

Hereditary subalgebras of not necessarily selfadjoint unital operator alge-
bras have previously been considered in the papers [32], [35] on inner ideals. We
thank Lunchuan Zhang for sending us a copy of these papers. Another work that
has a point of contact with our paper is the unpublished note [29]. Here quasi-
M-ideals, an interesting variant of the one-sided M-ideals of Blecher, Effros, and
Zarikian [10] were defined. Kaneda showed that the product RL of an r-ideal
and an l-ideal in an approximately unital operator algebra A is an inner ideal (in-
ner ideals are called "quasi-ideals" there), and is a quasi-M-ideal. It is also noted
there that in a C∗-algebra A, the following three are the same: quasi-M-ideals in
A, products RL of an r-ideal and an l-ideal, and inner ideals (see also [17], partic-
ularly Corollary 2.6 there). Hereditary subalgebras in the sense of our paper were
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not considered in [29]. We thank Kaneda for permission to describe his work here
and in Section 5.

Some notations: In this paper, all projections are orthogonal projections. If
X and Y are sets (in an operator algebra say) then we write XY for the norm
closure of the span of terms of the form xy, for x ∈ X, y ∈ Y. The second dual
A∗∗ of an operator algebra A is again an operator algebra, and the first dual A∗

is a bimodule over A∗∗ via the actions described, for example, on the bottom of
p. 78 of [11]. A projection p in the second dual of a C∗-algebra B is called open if
it is the sup of an increasing net of positive elements of B. Such projections p are
in a bijective correspondence with the right ideals J of B, or with the HSA’s (see
[33]). It is well known, and easy to see, that p is open if and only if there is a net
(xt) in B with xt → p weak*, and pxt = xt. We recall that TRO’s are essentially
the same thing as Hilbert C∗-modules, and may be viewed as closed subspaces
Z of C∗-algebras with the property that ZZ∗Z ⊂ Z. See e.g. Section 8.3 of [11].
Every operator space X has a "noncommutative Shilov boundary" or "ternary
envelope" (Z, j) consisting of a TRO Z and a complete isometry j : X → Z whose
range "generates" Z. This ternary envelope has a universal property which may
be found in [24], [11]: For any complete isometry i : X → Y into a TRO Y, whose
range "generates" Y, there exists a (necessarily unique and surjective) "ternary
morphism" θ : Y → Z such that θ ◦ i = j. If A is an approximately unital operator
algebra then the noncommutative Shilov boundary is written as C∗

e (A) (see e.g.
Section 4.3 of [11]), and was first introduced by Arveson [5].

2. HEREDITARY SUBALGEBRAS

Throughout this section A is an operator algebra (possibly not approxi-
mately unital). Then A∗∗ is an operator algebra. We shall say that a projection
p in A∗∗ is open in A∗∗ if p ∈ (pA∗∗p ∩ A)⊥⊥. In this case we also say that p⊥ is
closed in A∗∗, or is an approximate p-projection (this notation was used in [27] since
these projections have properties analogous to the p-sets in the theory of uniform
algebras; see e.g. Theorem 5.12 of [27]). Clearly these notions are independent of
any particular C∗-algebra containing A. If A is a C∗-algebra then these concepts
coincide with the usual notion of open and closed projections (see e.g. [1], [33]).

EXAMPLE 2.1. Any projection p in the multiplier algebra M(A) ⊂ A∗∗ is
open in A∗∗, if A is approximately unital. Indeed pA∗∗p ∩ A = pAp, and if (et) is
a cai for A, then pet p → p weak*.

If p is open in A∗∗ then clearly D = pA∗∗p ∩ A is a closed subalgebra of A,
and it has a cai by Proposition 2.5.8 of [11]. We call such a subalgebra a hereditary
subalgebra of A (or for brevity, a HSA). Perhaps more properly (in view of the next
result) we should call these "approximately unital HSA’s", but for convenience
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we use the shorter term. We say that p is the support projection of the HSA D; and
it follows by routine arguments that p is the weak* limit of any cai from D.

PROPOSITION 2.2 ([32], [35]). A subspace of an operator algebra A is a HSA if
and only if it is an approximately unital inner ideal.

Proof. We have already said that HSA’s are approximately unital, and clearly
they are inner ideals.

If J is an approximately unital inner ideal then by Proposition 2.5.8 of [11]
we have that J⊥⊥ is an algebra with identity e say. Clearly J⊥⊥ ⊂ eA∗∗e. Con-
versely, by a routine weak* density argument J⊥⊥ is an inner ideal, and so J⊥⊥ =
eA∗∗e. Thus J = eA∗∗e ∩ A, and e is open.

We can often assume that the containing algebra A above is unital, simply
by adjoining a unit to A (see Section 2.1 of [11]). Indeed it follows from the last
proposition that a subalgebra D of A will be hereditary in the unitization A1 if
and only if it is hereditary in A.

The following is a second (of many) characterization of HSA’s. We leave the
proof to the reader.

COROLLARY 2.3. Let A be an operator algebra and suppose that (et) is a net in
Ball(A) such that etes → es and eset → es with t. Then

{x ∈ A : xet → x, etx → x}

is a HSA of A. Conversely, every HSA of A arises in this way.

Note that this implies that any approximately unital subalgebra D of A is
contained in a HSA.

We next refine Hay’s theorem from [27].

THEOREM 2.4. Suppose that A is an operator algebra (possibly not approximately
unital), and that p is a projection in A∗∗. The following are equivalent:

(i) p is open in A∗∗.
(ii) p is open as a projection in B∗∗, if B is a C∗-algebra containing A as a subalgebra.

(iii) p is the left support projection of an r-ideal of A (or, equivalently, p is contained
in (pA∗∗ ∩ A)⊥⊥).

(iv) p is the right support projection of an l-ideal of A.
(v) p is the support projection of a hereditary subalgebra of A.

Proof. That (v) is equivalent to (i) is just the definition of being open in A∗∗.
Also (i) implies (ii) by facts about open projections mentioned in the introduction.
Supposing (ii), consider A1 as a unital-subalgebra of B1. Then p is open as a
projection in (B1)∗∗. Since p ∈ A⊥⊥ it follows from Hay’s theorem that J =
p(A1)∗∗ ∩ A1 is an r-ideal of A1 with left support projection p. If x ∈ J then

x = px ∈ (A⊥⊥A1) ∩ A1 ⊂ A⊥⊥ ∩ A1 = A.
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Thus J = pA∗∗ ∩ A, and we have proved (iii). Thus to complete the proof it
suffices to show that (iii) implies (i) (the equivalence with (iv) following by sym-
metry).

(iii) ⇒ (i) First assume that A is unital, in which case (iii) is equivalent to
(ii) by Hay’s theorem. We work in A∗. As stated in the Introduction, A∗ is a
right A∗∗-module via the action (ψη)(a) = 〈ηa, ψ〉 for ψ ∈ A∗, η ∈ A∗∗, a ∈ A.
Similarly it is a left A∗∗ module. Let q = p⊥, a closed projection in B∗∗ for any
C∗-algebra B generated by A. We first claim that A∗q = J⊥, where J is the right
ideal of A corresponding to p, and so A∗q is weak* closed. To see that A∗q = J⊥,
note that clearly A∗q ⊂ J⊥, since J = pA∗∗ ∩ A. Thus if ψ ∈ J⊥, then ψq ∈ J⊥,
and so ψp ∈ J⊥ since ψ = ψp + ψq. However, if ψp ∈ J⊥ = (pA∗∗)⊥, then
ψp ∈ (A∗∗)⊥ = {0}. Thus ψ = ψq ∈ A∗q.

Similarly, using the equivalence with (ii) here, we have that qA∗ is weak*
closed. Now qA∗ + A∗q is the kernel of the projection ψ → pψp on A∗, and
hence it is norm closed. By Lemma I.1.14 of [25], qA∗ + A∗q is weak* closed.
Claim: (qA∗ + A∗q)⊥ = pA∗∗p. Assuming this claim, note that (qA∗ + A∗q)⊥ ⊂
pA∗∗p ∩ A; and pA∗∗p ∩ A ⊂ (qA∗ + A∗q)⊥, so that pA∗∗p ∩ A = (qA∗ + A∗q)⊥.
Thus (pA∗∗p ∩ A)⊥⊥ = pA∗∗p, and the proof is complete.

In order to prove the claim, first note that it is clear that pA∗∗p ⊂ (qA∗ +
A∗q)⊥. On the other hand, if η ∈ (qA∗ + A∗q)⊥ then write η = pηp + pηq + qηp +
qηq. Thus pηq + qηp + qηq ∈ (qA∗ + A∗q)⊥. In particular, applying this element
to a functional qψ ∈ qA∗ gives

0 = 〈pηq + qηq, qψ〉 = 〈pηq + qηq, ψ〉, ψ ∈ A∗.

Thus pηq + qηq = 0, and left multiplying by p shows that pηq = qηq = 0. Simi-
larly qηp = 0. Thus η ∈ pA∗∗p.

Now assume that A is nonunital. If J is the r-ideal, then J is an r-ideal in A1.
Thus by the earlier part, p ∈ (p(A1)∗∗p ∩ A1)⊥⊥. If (et) is the cai for p(A1)∗∗p ∩
A1, then et → p weak*. Since p(A1)∗∗ ∩ A1 = J we have p(A1)∗∗p ∩ A1 ⊂ J ⊂ A.
Thus et ∈ pA∗∗p ∩ A, and so p ∈ (pA∗∗p ∩ A)⊥⊥. Note too that the above shows
that p(A1)∗∗p ∩ A1 = pA∗∗p ∩ A.

REMARK 2.5. (i) It is clear from the above that a sup of open projections in
A∗∗ is open in A∗∗. From this remark, it is easy to give an alternative proof of a
result from [13] which states that the closure of the span of a family of r-ideals,
again is an r-ideal.

(ii) If A is approximately unital then one can add to the characterization of
open projections in the theorem, the condition that A∗p⊥ is weak* closed in A∗.
The second paragraph of the proof above shows one direction of this. Conversely,
if A∗p⊥ is weak* closed, then A∗p⊥ = J⊥ for a subspace J of A such that J⊥⊥ =
(A∗p⊥)⊥ = pA∗∗. Thus p is the support projection of the r-ideal A ∩ pA∗∗ = J.

(iii) A modification of part of the proof of the theorem shows that if A is approx-
imately unital and if p, r are open projections in A∗∗ then (pA∗∗r∩ A)⊥⊥ = pA∗∗r.
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Note that pA∗∗r ∩ A is an inner ideal of A. Such subspaces are precisely the in-
tersection of an r-ideal and an l-ideal.

COROLLARY 2.6. Every operator algebra with a left cai has property (L).

Proof. Let C be an operator algebra with a left cai, and let A be its uniti-
zation. Then C is an r-ideal in A, and the left support projection p of C in A∗∗

is a weak* limit of the left cai. Also, C = pA∗∗ ∩ A. By Theorem 2.4, we have
p ∈ (pA∗∗p ∩ A)⊥⊥, and pA∗∗p ∩ A is a closed subalgebra of C containing a cai
(xt) with xt → p weak*. If J = {a ∈ A : xta → a} then J is a right ideal of A with
support projection p, so that J = C. Hence C has property (L).

Some implications of this result are mentioned in [9], however our main
application appears in the next section.

In the following, we use some notation introduced in [9]. Namely, if J is
an operator algebra with a left cai (et) such that eset → es with t, then we set
L(J) = {a ∈ J : aet → a}. This latter space does not depend on the particular (et),
as is shown in [9].

COROLLARY 2.7. A subalgebra of an operator algebra A is hereditary if and only if
it equals L(J) for an r-ideal J of A. Moreover the correspondence J 7→ L(J) is a bijection
from the set of r-ideals of A onto the set of HSA’s of A. The inverse of this bijection is the
map D 7→ DA. Similar results hold for the l-ideals of A.

Proof. If D is a HSA of A then by Corollary 2.3 we have D = {x ∈ A : xet →
x, etx → x}, and (et) is the cai for D. Set J = {x ∈ A : etx → x}, an r-ideal with
D = L(J).

Conversely, if J is an r-ideal then by Corollary 2.6, we can choose a left cai
(et) of J with the property that eset → es with t. Then D = {x ∈ A : xet →
x, etx → x} is an HSA by Corollary 2.3, and D = L(J). Note that L(J)A ⊂ J, and
conversely if x ∈ J then x = lim

t
etx ∈ L(J)A. Thus J = L(J)A. This shows that

J 7→ L(J) is one-to-one. The last paragraph shows that it is onto.

COROLLARY 2.8. If D is a hereditary subalgebra of an operator algebra A, and if
J = DA and K = AD, then JK = J ∩ K = D.

Proof. Clearly JK ⊂ J ∩ K. Conversely, if x ∈ J ∩ K and (et) is the cai for
D then x = lim

t
xet ∈ JK. So JK = J ∩ K (see also e.g. Proposition 6.2 of [3]

and Lemma 1.4.1 of [28]). Clearly JK ⊂ D since D is an inner ideal. Conversely,
D = D4 ⊂ JK.

THEOREM 2.9. If A is a closed subalgebra of a C∗-algebra B then there is a bijective
correspondence between r-ideals of A and right ideals of B with left support in A⊥⊥.
Similarly, there is a bijective correspondence between HSA’s of A and HSA’s of B with
support in A⊥⊥. The correspondence takes an r-ideal (respectively HSA) J of A to JB
(respectively JBJ∗). The inverse bijection is simply intersecting with A.
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Proof. We leave the proof of this to the reader, using the ideas above (and, in
particular, Hay’s theorem). At some point an appeal to Lemma 2.1.6 of [11] might
be necessary.

In the C∗-algebra case the correspondence between r-ideals and l-ideals has
a simple formula: J 7→ J∗. For nonselfadjoint algebras A, one formula setting up
the same correspondence is J 7→ AL(J). It is easy to see from the last theorem that,
for subalgebras A of a C∗-algebra B, this correspondence becomes J 7→ BJ∗ ∩ A.
Here J is an r-ideal; and notice that BJ∗ ∩ A also equals BD∗ ∩ A, where D is the
associated HSA of A (we remark that by Lemma 2.1.6 of [11] it is easy to see that
BD∗ = BD). This allows us to give another description of L(J) as J ∩ BJ∗.

THEOREM 2.10. Suppose D is a hereditary subalgebra of an approximately uni-
tal operator algebra A. Then every f ∈ D∗ has a unique Hahn-Banach extension to a
functional in A∗ (of the same norm).

Proof. Let g and h be two such extensions. Since D = pA∗∗p ∩ A for an
open projection p, it is easy to see that pgp = php. Since ‖g‖ = ‖pgp‖ = ‖php‖ =
‖h‖, we need only show that g = pgp and similarly h = php. Consider A∗∗

as a unital-subalgebra of a W*-algebra B. Since the canonical projection from B
onto pBp + (1 − p)B(1 − p) is contractive, and since ‖pbp + (1 − p)b(1 − p)‖ =
max{‖pbp‖, ‖(1− p)b(1− p)‖} for b ∈ B, it is easy to argue that

‖g‖ > ‖pgp + (1− p)g(1− p)‖ = ‖pgp‖+ ‖(1− p)g(1− p)‖ > ‖g‖.

Hence, (1− p)g(1− p) = 0. Since g = pgp + pg(1− p) + pg(1− p) + (1− p)g(1−
p), it suffices to show that pg(1− p) + pg(1− p) = 0. To this end, we follow the
proof in Proposition 1 of [22], which proves the analogous result for JB*-triples.
For the readers convenience, we will reproduce this pretty argument in our set-
ting, adding a few more details. Of course B is a JB*-triple. We will use the nota-
tion pBp = B2(p), pB(1− p) + (1− p)Bp = B1(p), and (1− p)B(1− p) = B0(p).
For this proof only, we will write x2n+1 for x(x∗x)n (this unusual notation is
used in the JB*-triple literature). In Lemma 1.4 of [22], it is proved that, for
x ∈ B2(p) ∪ B0(p), y ∈ B1(p), and t > 0,

(2.1) (x + ty)3n
= x3n

+ t2nD(x3n−1
, x3n−1

) · · ·D(x3, x3)D(x, x)y + O(t2).

where, in our setting, D(w, w) is the operator D(w, w)z = (ww∗z + zw∗w)/2 on B.
Here, O(t2) denotes a polynomial in x, y, and t, with all terms at least quadratic
in t. This polynomial has a certain number of terms that depends only on n, and
the coefficients of the monomials in x, y and t also depend only on n.

Choose y ∈ B1(p) ∩ A∗∗. We may assume that ‖g‖ = 1, g(y) > 0, and
‖y‖ 6 1. Given ε > 0, we choose x ∈ D with ‖x‖ = 1 and g(x) > 1− ε. Then, for
t > 0, we have

‖x + ty‖ > g(x + ty) = g(x) + tg(y) > 1− ε + tg(y).
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Thus, by (2.1) above, and the fact that ‖x‖ 6 1,

(1− ε + tg(y))3n
6 ‖x + ty‖3n

= ‖(x + ty)3n
‖

6 ‖x3n
‖+ t2n‖y‖+ ‖O(t2)‖ 6 1 + t2n‖y‖+ p(t),

where p(t) is a polynomial in t with all terms at least degree 2, and coefficients
which depend only on n and ‖y‖. Letting ε → 0 we have (1 + tg(y))3n

6 1 +
t2n‖y‖+ p(t), and so

1 + 3ntg(y) 6 1 + t2n‖y‖+ r(t),

where r(t) is a polynomial with the same properties as p, and in particular has all
terms at least degree 2. Dividing by 3nt, we obtain

g(y) 6
(2

3

)n
‖y‖+

r(t)
t3n .

Letting t → 0 and then n → ∞, we see that g(y) = 0. Hence pg(1 − p) + (1 −
p)gp = 0 as desired.

One might hope to improve the previous theorem to address extensions of
completely bounded maps from D into B(H). Unfortunately, simple examples
such as the one-dimensional HSA D in `∞

2 which is supported in the first entry,
with f : D → M2 taking (1, 0) to E11, shows that one needs to impose strong
restrictions on the extensions. This two dimensional example contradicts sev-
eral theorems on unique completely contractive extensions in the literature. We
found the following positive result after reading [35]. Although some part of it is
somewhat tautological, it may be the best that one could hope for. To explain the
notation in (iii), if A is an approximately unital operator algebra and B is a unital
weak* closed operator algebra, then we say that a bounded map T : A → B is
weakly nondegenerate if the canonical weak* continuous extension T̃ : A∗∗ → B
is unital. By 1.4.8 in [11] for example, this is equivalent to: T(et) → 1B weak*
for some contractive approximate identity (et) of A; and is also equivalent to the
same statement with "some" replaced by "every".

PROPOSITION 2.11. Let D be an approximately unital subalgebra of an approxi-
mately unital operator algebra A. The following are equivalent:

(i) D is a hereditary subalgebra of A.
(ii) Every completely contractive unital map from D∗∗ into a unital operator algebra

B, has a unique completely contractive unital extension from A∗∗ into B.
(iii) Every completely contractive weakly nondegenerate map from D into a unital

weak* closed operator algebra B has a unique completely contractive weakly nondegener-
ate extension from A into B.

Proof. We are identifying D∗∗ with D⊥⊥ ⊂ A∗∗. Let e be the identity of D∗∗.
(ii) ⇒ (i) If (ii) holds, then the identity map on D∗∗ extends to a unital

complete contraction S : A∗∗ → D∗∗ ⊂ eA∗∗e. The map x 7→ exe on A∗∗ is also
a completely contractive unital extension of the inclusion map D∗∗ → eA∗∗e. It
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follows from the hypothesis that these maps coincide, and so eA∗∗e = D∗∗, which
implies that D is a HSA.

(i) ⇒ (ii) If D is a HSA, then extensions of the desired kind exist by virtue of
the canonical projection from A∗∗ onto D⊥⊥. For the uniqueness, suppose that Φ

is such an extension of a completely contractive unital map T : D⊥⊥ → B. Since e
is an orthogonal projection in A∗∗, it follows from the last remark in 2.6.16 of [11]
that

T(exe) = Φ(exe) = Φ(e)Φ(x)Φ(e) = Φ(x), x ∈ A∗∗.

Hence (ii) holds.
Inspecting the proof above shows that (i) is equivalent to the variant of (ii)

where B is weak* closed and all maps are also weak* continuous. Then the equiv-
alence with (iii) is easy to see using the facts immediately above the proposi-
tion statement, and also the bijective correspondence between complete contrac-
tions A → B and weak* continuous complete contractions A∗∗ → B (see 1.4.8 in
[11]).

3. APPLICATION: A GENERALIZATION OF C∗-MODULES

In the early 1990’s, the first author together with Muhly and Paulsen gen-
eralized Rieffel’s strong Morita equivalence to nonselfadjoint operator algebras
[12]. This study was extended to include a generalization of Hilbert C∗-modules
to nonselfadjoint algebras, which were called rigged modules in [6], and (P)-modules
in [12]. See Section 11 of [7] for a survey. There are very many equivalent def-
initions of these objects in these papers. The main purpose of this section is to
settle a problem going back to the early days of this theory. This results in the
conceptually clearest definition of rigged modules; and also tidies up one of the
characterizations of strong Morita equivalence. The key tool we will use is the
Corollary 2.6 to our main theorem from Section 2.

Throughout this section, A is an approximately unital operator algebra. For
a positive integer n we write Cn(A) for the n× 1 matrices with entries in A, which
may be thought of as the first column of the operator algebra Mn(A). In our ear-
lier work mentioned above Cn(A) plays the role of the prototypical right A-rigged
module, out of which all others may be built via "asymptotic factorizations" sim-
ilar to the kind considered next.

DEFINITION 3.1. An operator space Y which is also a right A-module is A-
Hilbertian if there exists a net of positive integers nα, and completely contractive
A-module maps ϕα : Y → Cnα (A) and ψα : Cnα (A) → Y, such that ψα ϕα → IY
strongly on Y.

The name "A-Hilbertian" is due to Paulsen around 1992, who suggested that
these modules should play an important role in the Morita theory. A few years
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later the question became whether they coincide with the rigged modules/(P)-
modules from [6], [12]. This question appears explicitly in Section 11 of [7] for
example, and was discussed also several times in Chapter 4 of [12] in terms of
the necessity of adding further conditions to what we called the "approximate
identity property". Assuming for simplicity that A is unital, one of the many
equivalent definitions of rigged modules is that they are the modules satisfying
Definition 3.1, but that in addition ϕβψα ϕα → ϕβ in norm for each fixed β in
the directed set. We were not able to get the theory going without this extra
condition. Thus the open question referred to above may be restated as follows:
can one always replace the given nets in Definition 3.1 with ones which satisfy
this additional condition? The first author proved this if A is a C∗-algebra in [8];
indeed A-Hilbertian modules coincide with C∗-modules if A is a C∗-algebra. A
simpler proof of this result due to Kirchberg is included in Theorem 4.24 of [12]
(there is a typo there, in Lemma 4.25, x has norm 1).

Although the "asymptotic factorization" in the definition above is clean, it
can sometimes be clumsy to work with, as is somewhat illustrated by the proof
of the next result.

PROPOSITION 3.2. Let Y be an operator space and right A-module, such that there
exists a net of positive integers nα, A-Hilbertian modules Yα, and completely contractive
A-module maps ϕα : Y → Yα and ψα : Yα → Y, such that ψα ϕα → IY strongly. Then
Y is A-Hilbertian.

Proof. We use a net reindexing argument based on Lemma 2.1 of [6]. Sup-
pose that σα

β : Yα → Zα
β and τα

β : Zα
β → Yα, are the "asymptotic factorization"

nets corresponding to Yα. We define a new directed set Γ consisting of 4-tuples
γ = (α, β, V, ε), where V is a finite subset of Y, ε > 0, and such that

‖ψατα
β σα

β ϕα(y)− ψα ϕα(y)‖ < ε, y ∈ V.

This is a directed set with ordering (α, β, V, ε) 6 (α′, β′, V ′, ε′) if and only if α 6
α′, V ⊂ V ′ and ε′ 6 ε. (We recall that directed sets for nets make no essential use
of the "antisymmetry" condition for the ordering, and we follow many authors in
not requiring this.) Define ϕγ = σα

β ϕα and ψγ = ψατα
β , if γ = (α, β, V, ε). Given

y ∈ Y and ε > 0, choose α0 such that ‖ψα ϕα(y) − y‖ < ε whenever α > α0.
Choose β0 such that γ0 = (α0, β0, {y}, ε) ∈ Γ. If γ > γ0 in Γ then

‖ψγ ϕγ(y)− y‖ 6 ‖ψατα
β σα

β ϕα(y)− ψα ϕα(y)‖+ ‖ψα ϕα(y)− y‖ < ε′ + ε 6 2ε.

Thus ψγ ϕγ(y) → y, and so Y is A-Hilbertian.

REMARK 3.3. If desired, the appearance of the integers nα in Definition
3.1 may be avoided by the following trick. Let C∞(A) be the space of columns
[xk]k∈N, with xk ∈ A, such that ∑

k
x∗k xk converges in A. It is easy to see that

C∞(A) is A-Hilbertian, and for any m ∈ N there is an obvious factorization of the
identity map on Cm(A) through C∞(A). It follows from this, and from the last
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proposition, that Definition 3.1 will be unchanged if all occurrences of nα there
are replaced by ∞.

THEOREM 3.4. An operator space Y which is also a right A-module is a rigged
A-module if and only if it is A-Hilbertian. This is also equivalent to Y having the "ap-
proximate identity property" of Definition 4.6 in [12].

Proof. Suppose that Y is an operator space and a right A-module which is
A-Hilbertian. It is easy to see that Y is an operator A-module, since the Cnα (A)
are, and since

‖[yij]‖ = sup
α
‖[ϕα(yij)]‖ = lim

α
‖[ϕα(yij)]‖, [yij] ∈ Mn(Y).

If (et) is a cai for A then the triangle inequality easily yields that for any α,

‖y − yet‖ = ‖y − ψα ϕα(y) + ψα(ϕα(y)− ϕα(y)et) + (ψα ϕα(y)− y)et‖
6 2‖y − ψα ϕα(y)‖+ ‖ϕα(y)− ϕα(y)et‖,

from which the nondegeneracy is easily seen. Next, we reduce to the unital case.
Let B = A1, the unitization of A. Note that A is B-Hilbertian: the maps A → B
and B → A being respectively the inclusion, and left multiplication by elements
in the cai (et). Tensoring these maps with the identity map on Cnα , we see that
Cnα (A) is B-Hilbertian. By Proposition 3.2, Y is B-Hilbertian. By Proposition 2.5
of [6] it is easy to see that Y satisfies (the right module variant of) Definition 4.6 (ii)
of [12]. By the results following that definition we have that C = Y⊗hB CBB(Y, B)
is a closed right ideal in CBB(Y) which has a left cai. By Theorem 2.7 of [6] or
Theorem 4.9 of [12] we know that CBB(Y) is a unital operator algebra.

By Corollary 2.6, C possesses a left cai (vβ) such that vγvβ → vγ with β for
each γ. Let D = {a ∈ C : avβ → a}, which is an operator algebra with cai. Since
the uncompleted algebraic tensor product J of Y with CBB(Y, B) is a dense ideal
in C, and since Jvγ ⊂ D for each γ, it is easy to see by the triangle inequality
that J ∩ D is a dense ideal in D. Thus we can rechoose a cai (uν) for D from this
ideal, if necessary by using Lemma 2.1 of [6]. This cai will be a left cai for C (e.g.
see proof of Corollary 2.6). This implies that Y satisfies (a), and hence also (b), of
Definition 4.12 in [12]. That is, Y is a (P)-module, or equivalently a rigged module,
over B. It is known that this implies that Y is A-rigged. One way to see this is
to observe that by an application of Cohen’s factorization theorem as in Lemma
8.5.2 of [11], we have BB(Y, B) = BA(Y, A). It follows that Y satisfies Definition
4.12 of [12] as an A-module, and hence Y is an A-rigged module. That every
rigged module is A-Hilbertian follows from Definition 3.1 of [6]. The equivalence
with the "approximate identity property" is essentially contained in the above
argument.

This theorem impacts only a small portion of [6]. Namely, that paper may
now be improved by replacing Definition 3.1 there by the modules in Defini-
tion 3.1 above; and by tidying up some of the surrounding exposition. One may
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also now give alternative constructions of, for example, the interior tensor prod-
uct of rigged modules, by following the idea in Theorem 8.2.11 of [11].

Similarly, one may now tidy up one of the characterizations of strong Morita
equivalence. By the above, what was called the "approximate identity property"
in Chapter 4 of [12] implies that the module is a (P)-module, and so in Theo-
rems 4.21 and 4.23 in [12] one may replace conditions from Definition 4.12 with
those in 4.6. That is, we have the following improved characterization of the
strong Morita equivalence of [12]. (The reader needing further details is referred
to that source.)

THEOREM 3.5. If Y is a right A-Hilbertian module with the "dual approximate
identity property" of Definition 4.18 in [12], then Y implements a strong Morita equiv-
alence between A and the algebra KA(Y) of so-called "compact" operators on Y. Con-
versely, every strong Morita equivalence arises in such a way.

REMARK 3.6. The "dual approximate identity property" mentioned in the
theorem may also be phrased in terms of "asymptotic factorization" of IA through
spaces of the form Cm(Y) — this is mentioned in p. 416 of [6] with a mistake that
is discussed in Remark 4.20 of [12].

We refer the reader to [6] for the theory of rigged modules. It is easy to see
using Corollary 2.8 or Theorem 3.4, that any hereditary subalgebra D of an ap-
proximately unital operator algebra A gives rise to a rigged module. Indeed, if
J = DA, then J is a right rigged A-module, the canonical dual rigged module J̃
is just the matching l-ideal AD, and the operator algebra KA(J) of "compact op-
erators" on J is just D completely isometrically isomorphically. From the theory
of rigged modules [6] we know for example that any completely contractive rep-
resentation of A induces a completely contractive representation of D, and vice
versa. More generally, any left operator A-module will give rise to a left operator
D-module by left tensoring with J, and vice versa by left tensoring with J̃. Since
J ⊗hA J̃ = D it follows that there is an "injective" (but not in general "surjective")
functor from D-modules to A-modules.

If A and B are approximately unital operator algebras which are strongly
Morita equivalent in the sense of [12], then A and B will clearly be hereditary
subalgebras of the "linking operator algebra" associated with the Morita equiv-
alence [12]. Unfortunately, unlike the C∗-algebra case, not every HSA D of an
operator algebra A need be strongly Morita equivalent to ADA. One would also
need a condition similar to that of Definition 5.10 in [12]. Assuming the presence
of such an extra condition, it follows that the representation theory for the algebra
A is "the same" as the representation theory of D; as is always the case if one has
a Morita equivalence.

EXAMPLE 3.7. If a ∈ Ball(A), for an operator algebra A, let D be the closure
of (1− a)A(1− a). Then it follows from the later Lemma 6.8 that D is a hereditary
subalgebra of A. The associated r-ideal is J, the closure of (1 − a)A. The dual
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rigged module J̃ is equal to the closure of A(1 − a), and KA(J) ∼= D. It is easy
to check that even for examples of this kind, the C∗-algebra C∗(D) generated by
D need not be a hereditary C∗-subalgebra of C∗(A) or C∗

e (A). For example, take
A to be the subalgebra of M2(B(H)) consisting of all matrices whose 1-1 and 2-2
entries are scalar multiples of IH , and whose 2-1 entry is 0. Let a = 0H ⊕ IH . In
this case D = (1 − a)A(1 − a) is one dimensional, and it is not a HSA of C∗(A).
Also D is not strongly Morita equivalent to ADA.

4. CLOSED FACES AND LOWERSEMICONTINUITY

Suppose that A is an approximately unital operator algebra. The state space
S(A) is the set of functionals ϕ ∈ A∗ such that ‖ϕ‖ = lim

t
ϕ(et) = 1, if (et) is a cai

for A. These are all restrictions to A of states on any C∗-algebra generated by A.
If p is a projection in A∗∗, then any ϕ ∈ S(A) may be thought of as a state on A∗∗,
and hence p(ϕ) > 0. Thus p gives a nonnegative scalar function on S(A), or on
the quasistate space (that is, {αϕ : 0 6 α 6 1, ϕ ∈ S(A)}). We shall see that this
function is lowersemicontinuous if and only if p is open in A∗∗.

In the following generalization of a well known result from the C∗-algebra
theory [33], we assume for simplicity that A is unital. If A is only approximately
unital then a similar result holds with a similar proof, but one must use the qua-
sistate space in place of S(A); this is weak* compact.

THEOREM 4.1. Suppose that A is a unital-subalgebra of a C∗-algebra B. If p is a
nontrivial projection in A⊥⊥ ∼= A∗∗, then the following are equivalent:

(i) p is open as a projection in B∗∗ (or, equivalently, in A∗∗).
(ii) The set Fp = {ϕ ∈ S(A) : ϕ(p) = 0} is a weak* closed face in S(A).

(iii) p is lowersemicontinuous on S(A).

Proof. (i) ⇒ (ii) For any nontrivial projection p ∈ A⊥⊥, the set Fp is a face
in S(A). For if ψi ∈ S(A), t ∈ (0, 1), and tψ1 + (1− t)ψ2 ∈ Fp then tψ1(p) + (1−
t)ψ2(p) = 0 which forces ψ1(p) = ψ2(p) = 0, and ψi ∈ Fp. If p is open then
Gp = {ϕ ∈ S(B) : ϕ(p) = 0} is a weak* compact face in S(B) by 3.11.9 in [33].
The restriction map r : ϕ ∈ S(B) 7→ ϕ|A ∈ S(A) is weak* continuous, and maps
Gp into Fp. On the other hand, if ϕ ∈ Fp and ϕ̂ is a Hahn-Banach extension of ϕ to
B then one can show that 〈p, ϕ〉 = 〈p, ϕ̂〉, and so the map r above maps Gp onto
Fp. Hence Fp is weak* closed.

(ii) ⇒ (i) We use the notation of the last paragraph. If Fp is weak* closed,
then the inverse image of Fp under r is weak* closed. But this inverse image is
Gp, since if ϕ ∈ S(B) then 〈p, ϕ〉 = 〈p, r(ϕ)〉 by a fact in the last paragraph. Thus
by 3.11.9 in [33] we have (i).

(i) ⇒ (iii) If p is open, then p is a lowersemicontinuous function on S(B).
Thus {ϕ ∈ S(B) : 〈p, ϕ〉 6 t} is weak* compact for any t > 0. Hence its image
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under the map r above, is weak* closed in S(A). However, as in the above, this
image is {ϕ ∈ S(A) : 〈p, ϕ〉 6 t}. Thus p is lowersemicontinuous on S(A).

(iii) ⇒ (i) If p gives a lowersemicontinuous function on S(A), then the com-
position of this function with r : S(B) → S(A) is lowersemicontinuous on S(B).
By facts in p. 77 of [33], we have that p is open.

REMARK 4.2. Not all weak* closed faces of S(A) are of the form in (ii) above.
For example, let A be the algebra of 2× 2 upper triangular matrices with constant
diagonal entries. In this case S(A) may be parametrized by complex numbers
z in a closed disk of a certain radius centered at the origin. Indeed states are
determined precisely by the assignment e12 7→ z. The faces of S(A) thus include
the faces corresponding to singleton sets of points on the boundary circle; and
none of these faces equal Fp for a projection p ∈ A = A⊥⊥.

In view of the classical situation, it is natural to ask about the relation be-
tween minimal closed projections in B∗∗ which lie in A⊥⊥ and the noncommuta-
tive Shilov boundary mentioned in the introduction. By the universal property of
the latter object, if B is generated as a C∗-algebra by its subalgebra A, then there is
a canonical ∗-epimorphism θ from B onto the noncommutative Shilov boundary
of A, which in this case is a C∗-algebra. The kernel of θ is called (Arveson’s) Shilov
boundary ideal for A. See e.g. [5] and the third remark in 4.3.2 of [11].

PROPOSITION 4.3. If B is generated as a C∗-algebra by a closed unital-subalgebra
A, let p be the open central projection in B∗∗ corresponding to the Shilov ideal for A.
Then p⊥ dominates all minimal projections in B∗∗ which lie in A⊥⊥.

Proof. Suppose that q is a minimal projection in B∗∗ which lies in A⊥⊥. Then
either qp = 0 or qp = q. Suppose that qp = q. If θ is as above, then since θ
annihilates the Shilov ideal we have

θ∗∗(q) = θ∗∗(qp) = θ∗∗(q)θ∗∗(p) = 0.

On the other hand, θ is a complete isometry from the copy of A in B to the copy
of A in θ(B), and so θ∗∗ restricts to a complete isometry on A⊥⊥. Thus qp = 0, so
that q = qp⊥ and q 6 p⊥.

EXAMPLE 4.4. The sup of closed projections in A∗∗ which are also minimal
projections in B∗∗ need not give the "noncommutative Shilov boundary". Indeed
if A is the 2 × 2 upper triangular matrices with constant main diagonal entries,
then there are no nonzero minimal projections in M2 which lie in A.

5. HEREDITARY M-IDEALS

A left M-projection of an operator space X is a projection in the C∗-algebra
of (left) adjointable maps on X; and the latter may be viewed as the restrictions
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of adjointable right module maps on a C∗-module containing X (see e.g. Theo-
rem 4.5.15 and Section 8.4 in [11]). This C∗-module can be taken to be the ternary
envelope of X. The range of a left M-projection is a right M-summand of X. A
right M-ideal of an operator space X is a subspace J such that J⊥⊥ is a right M-
summand of X∗∗. The following result from [10] has been sharpened in the sum-
mand case:

PROPOSITION 5.1. If A is an approximately unital operator algebra, then the left
M-projections on A are precisely "left multiplications" by projections in the multiplier
algebra M(A). Such projections are all open in A∗∗. The right M-summands of A are
thus the spaces pA for a projection p ∈ M(A). The right M-ideals of A coincide with
the r-ideals of A.

Proof. We claim that if p is a projection (or more generally, any hermitian)
in the left multiplier algebra LM(A), then p ∈ M(A). Suppose that B is a C∗-
algebra generated by A, and view LM(A) ⊂ A⊥⊥ ⊂ B∗∗. If a ∈ A and if (et) is
a cai for A, then by Lemma 2.1.6 of [11] we have pa∗ = lim

t
peta∗ ∈ B. Thus p

is a selfadjoint element of LM(B), and so p ∈ M(B). Thus Ap ⊂ B ∩ A⊥⊥ = A,
and so p ∈ M(A). Hence p is open as remarked early in Section 2. The remaining
assertions follow from Proposition 6.4 of [10].

The M-ideals of a unital operator algebra are the approximately unital two-
sided ideals [20]. In this case these coincide with the complete M-ideals of [21],
which are shown in [10] to be just the right M-ideals which are also left M-ideals.
See e.g. Section 7 of [13] for more information on these. The HSA’s of C∗-algebras
are just the selfadjoint inner ideals as remarked in the introduction; or equiva-
lently as we shall see below, they are the selfadjoint "quasi-M-ideals". With the
above facts in mind, it is tempting to try to extend some of our results for ideals
and hereditary algebras to general M-ideals, be they one-sided, two-sided, or
"quasi". A first step along these lines is motivated by the fact, which we have
explored in Theorem 2.9 and in [27], that r-ideals in an operator algebra A are
closely tied to a matching right ideal in a C∗-algebra B containing A. We will
show that a general (one-sided, two-sided, or "quasi") M-ideal in an arbitrary op-
erator space X is the intersection of X with the same variety of M-ideal in any
C∗-algebra or TRO containing X. This generalizes a well known fact about M-
ideals in subspaces of C(K) spaces (see Proposition I.1.18 of [25]).

For an operator space X, Kaneda proposed in [29] a quasi-M-ideal of X to
be a subspace J ⊂ X such that J⊥⊥ = pX∗∗q for respectively left and right M-
projections p and q of X∗∗. Right (respectively two-sided, "quasi") M-ideals of a
TRO or C∗-module are exactly the right submodules (respectively subbimodules,
inner ideals). See e.g. p. 339 of [11] and [15], [16]. Here, by an inner ideal of
a TRO Z we mean a subspace J with JZ∗ J ⊂ J. The assertion here that they
coincide with the quasi M-ideals of Z follows immediately from Edwards and
Rüttimann’s characterization of weak* closed inner ideals. Indeed if J is an inner
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ideal of Z, then so is J⊥⊥; hence [16] gives that J⊥⊥ is of the desired form pZ∗∗q.
The other direction follows by reversing this argument (it also may be seen as a
trivial case of Theorem 5.4 below). In fact Kaneda has considered the quasi-M-
ideals of an approximately unital operator algebra A in this unpublished work
[29]. What we will need from this is the following argument: If J ⊂ A is a quasi-
M-ideal, then by Proposition 5.1 it is clear that there exist projections p, q ∈ A∗∗

such that J⊥⊥ = pA∗∗q. Thus J is the algebra pA∗∗q ∩ A.

PROPOSITION 5.2. The hereditary subalgebras of an approximately unital opera-
tor algebra A are precisely the approximately unital quasi-M-ideals.

Proof. If J ⊂ A is a quasi-M-ideal, then as we stated above, there exist pro-
jections p, q ∈ A∗∗ such that J⊥⊥ = pA∗∗q, and J = pA∗∗q ∩ A. If this is ap-
proximately unital then by Proposition 2.5.8 of [11] pA∗∗q contains a projection
e which is the identity of pA∗∗q. Since e = peq we have e 6 p and e 6 q. So
pA∗∗q = epA∗∗qe = eA∗∗e. Thus J = eA∗∗e ∩ A, which is a HSA. Conversely, if D
is a HSA then J⊥⊥ = pA∗∗p, and so J is a quasi-M-ideal.

If S is a subset of a TRO we write 〈S〉 for the subTRO generated by S . We
write ̂ for the canonical map from a space into its second dual.

LEMMA 5.3. If X is an operator space, and if (T (X∗∗), j) is a ternary envelope of
X∗∗, then 〈j(X̂)〉 is a ternary envelope of X.

Proof. This follows from a diagram chase. Suppose that i : X → W is a
complete isometry into a TRO, such that 〈i(X)〉 = W. Then i∗∗ : X∗∗ → W∗∗ is
a complete isometry. By the universal property of the ternary envelope, there is
a ternary morphism θ : 〈i∗∗(X∗∗)〉 → T (X∗∗) such that θ ◦ i∗∗ = j. Now W may
also be regarded as the subTRO of W∗∗ generated by i(X), and the restriction π
of θ to W = 〈i(X)〉 is a ternary morphism into T (X∗∗) which has the property
that π(i(x)) = j(x̂). Thus 〈j(X̂)〉 has the universal property of the ternary enve-
lope.

THEOREM 5.4. Suppose that X is a subspace of a TRO Z and that J is a right
M-ideal (respectively quasi M-ideal, complete M-ideal) of X. In the "complete M-ideal"
case we also assume that 〈X〉 = Z. Then J is the intersection of X with the right M-ideal
(respectively quasi M-ideal, complete M-ideal) JZ∗Z (respectively JZ∗ J, ZJ∗Z) of Z.

Proof. There are three steps. We will also use the fact that in a TRO Z, for
any z ∈ Z we have that z lies in the closure of z〈z〉∗z. This follows by considering
the polar decomposition z = u|z|, which implies that zz∗z = u|z|3, for example.
Then use the functional calculus for |z|, and the fact that one may approximate the
monomial t by polynomials in t with only odd powers and degree > 3. Similarly,
z lies in the closure of 〈z〉z∗〈z〉.

First, suppose that Z is the ternary envelope T (X) of X. Suppose that J is a
right M-ideal (respectively quasi-M-ideal, complete M-ideal) in X. If (T (X∗∗), j)
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is a ternary envelope of X∗∗, then j(J⊥⊥) = pj(X∗∗) for a left adjointable pro-
jection p (respectively j(J⊥⊥) = pj(X∗∗)q for left/right adjointable projections
p, q) on T (X∗∗). In the complete M-ideal case we have pw = wq for all w ∈
T (X∗∗); this follows from e.g. Theorem 7.4 (vi) of [13] and its proof. We view
T (X) ⊂ T (X∗∗) as above. Let J̃ be the set of z ∈ T (X) such that pz = z (re-
spectively z = pzq). Then J̃ ∩ j(X̂) = j( Ĵ), since J = J⊥⊥ ∩ X. Next, define
J = j( Ĵ)T (X)∗T (X) (respectively = j( Ĵ)T (X)∗ j( Ĵ), = T (X)j( Ĵ)∗T (X)). This is a
right M-ideal (respectively inner ideal, M-ideal) in T (X), and it is clear, using the
fact in the first paragraph of the proof, that

j( Ĵ) ⊂ J ∩ j(X̂) ⊂ J̃ ∩ j(X̂) = j( Ĵ).

Thus J = J ∩ X.
In the rest of the proof we consider only the quasi M-ideal case, the others

are similar.
Second, suppose that X generates Z as a TRO. Let j : X → T (X) be the

Shilov embedding. If x ∈ (JZ∗ J) ∩ X then applying the universal property of
T (X) there exists a ternary morphism θ : Z → T (X) with

j(x) = θ(x) ∈ j(X) ∩ θ(J)θ(Z)∗θ(J) ⊂ j(X) ∩ j(J)T (X)∗ j(J) = j(X) ∩ J = j(J),

by the last paragraph. Hence x ∈ J.
Third, suppose that X ⊂ Z, and that the subTRO W generated by X in Z is

not Z. We claim that X ∩ (JZ∗ J) = X ∩ (JW∗ J). To see this, we set J′ = JW∗ J.
This is an inner ideal in W. Moreover, J ⊂ J′ by the fact at the start of the proof.
We claim that for any inner ideal K in W, we have (KZ∗K) ∩W = K. Indeed if e
and f are the support projections for K, then

(KZ∗K) ∩W ⊂ (eZ f ) ∩W ⊂ (eW f ) ∩W = K.

This implies

X ∩ (JZ∗ J) ⊂ X ∩ (J′Z∗ J′) ⊂ X ∩ J′ = X ∩ (JW∗ J) = J,

as required.

6. REMARKS ON PEAK AND p-PROJECTIONS

Let A be a unital-subalgebra of a C∗-algebra B. We recall from [27] that a peak
projection q for A is a closed projection in B∗∗, such that there exists an a ∈ Ball(A)
with qa = q and satisfying any one of a long list of equivalent conditions; for
example ‖ar‖ < 1 for every closed projection r 6 q⊥. We say that a peaks at q.
A p-projection is an infimum of peak projections; and this is equivalent to it being
a weak* limit of a decreasing net of peak projections by Proposition 5.6 of [27].
Every p-projection is an approximate p-projection, where the latter term means a
closed projection in A∗∗. The most glaring problem concerning these projections
is that it is currently unknown whether the converse of this is true, as is the case in
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the classical setting of function algebras [23]. Motivated partly by this question,
in this section we offer several results concerning these projections. Our next
result implies that this question is equivalent to the following simple-sounding
question:

Question: Does every approximately unital operator algebra A have an ap-
proximate identity of form (1 − xt) with xt ∈ Ball(A1)? Here 1 is the identity of
the unitization A1 of A.

Equivalently, does every operator algebra A with a left cai have a left cai of
the form (1− xt) for xt ∈ Ball(A1)?

By a routine argument, these are also equivalent to: If A is an approximately
unital operator algebra and a1, . . . , an ∈ A and ε > 0, does there exist x ∈ Ball(A1)
with 1− x ∈ A and ‖xak‖ < ε for all k = 1, . . . , n?

Note that if these were true, and if A does not have an identity, then neces-
sarily ‖xt‖ = 1. For if ‖xt‖ < 1 then 1− xt is invertible in A1, so that 1 ∈ A.

THEOREM 6.1. If J is a closed subspace of a unital operator algebra A, then the
following are equivalent:

(i) J is a right ideal with a left approximate identity (respectively a HSA with approx-
imate identity) of the form (1− xt) for xt ∈ Ball(A).

(ii) J is an r-ideal (respectively HSA) for whose support projection p we have that p⊥

is a p-projection for A.

Proof. Suppose that J = {a ∈ A : q⊥a = a} for a p-projection q for A in B∗∗.
We may suppose that q is a decreasing weak* limit of a net of peak projections
(qt) for A. If a ∈ A peaks at qt, then by a result in [27] we have that an → qt
weak*. Next let C = {1− x : x ∈ Ball(A)} ∩ J, a convex subset of J containing the
elements 1 − an above. Thus q⊥t ∈ Cw∗ and therefore q⊥ ∈ Cw∗. Let et ∈ C with
et → q⊥ w*. Then etx → q⊥x = x weak* for all x ∈ J. Thus etx → x weakly. Next,
for fixed x1, . . . , xm ∈ J consider the convex set F = {(x1 − ux1, x2 − ux2, . . . , xm −
uxm) : u ∈ C}. (In the HSA case one also has to include coordinates xk − xku
here.) Since (0, 0, . . . , 0) is in the weak closure of F it is in the norm closure. Given
ε > 0, there exists u ∈ C such that ‖xk − uxk‖ < ε for all k = 1, . . . , m. From this
it is clear (see the end of the proof of Proposition 2.5.8 in [11]) that there is a left
approximate identity for J in C, which shows (i).

Suppose that J is a right ideal with a left approximate identity (et) of the
stated form et = 1 − xt. If (xtµ ) is any w*-convergent subnet of (xt), with limit
r, then ‖r‖ 6 1. Also 1 − xtµ → 1 − r. On the other hand, (1 − xtµ )x → x
for any x ∈ J, so that (1 − r)x = x. Hence (1 − r)η = η for any η ∈ J⊥⊥, so
that 1 − r is the (unique) left identity p for J⊥⊥. Hence 1 − r is idempotent, so
that r is idempotent. Hence r is an orthogonal projection, and therefore so also
is p = 1 − r. Also, et → p w*, by a fact in topology about nets with unique
accumulation points. We have J = pA∗∗ ∩ A = {a ∈ A : pa = a}. Since p has
norm 1, J has a left cai. Since pet = et, p is an open projection in B∗∗, so that
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q = 1− p is closed. If a = et then we have that l(a)⊥(1− a) = l(a)⊥, where l(a) is
the left support projection for a. Thus by a result in [27] there is a peak projection
qa which is a peak for a0 = 1 − a/2 ∈ A such that l(a)⊥ 6 qa. Since an

0 → qa
weak*, and since (1 − p)an

0 = 1 − p, we have (1 − p)qa = 1 − p. That is, q 6 qa.
Let Ja = {x ∈ A : q⊥a x = x}. By the last paragraph, Ja is an r-ideal, and since
q 6 qa we have that Ja ⊂ J. The closed span of all the Ja for a = et equals J, since
et ∈ Jet and any x ∈ J is a limit of etx ∈ Jet . By the proof of Theorem 4.8.6 in [11]
we deduce that the supremum of the q⊥a equals q⊥. Thus q is a p-projection. The
HSA case follows easily from this and Corollary 2.8.

COROLLARY 6.2. Let A be a unital-subalgebra of a C∗-algebra B. A projection
q ∈ B∗∗ is a p-projection for A in B∗∗, if and only if there exists a net (xt) in Ball(A)
with qxt = q, and xt → q weak*.

Proof. Supposing that q is a p-projection, we have by the last result that
J = {a ∈ A : q⊥a = a} has a left approximate identity (1− xt) with xt ∈ Ball(A),
and by the proof of that result q⊥ is the support projection, so that 1 − xt → q⊥

weak*.
Conversely, supposing the existence of such a net, let J = {a ∈ A : q⊥a = a}.

This is a right ideal. Moreover J⊥⊥ ⊂ q⊥A∗∗. If a ∈ A then q⊥a = lim
t

(1− xt)a ∈

J⊥⊥. By a similar argument, q⊥η ∈ J⊥⊥ for any η ∈ A∗∗. Thus J⊥⊥ = q⊥A∗∗,
and so q⊥ is the support projection for J, and J has a left cai. By a slight variation
of the argument at the end of the first paragraph of the proof of the last result, J
satisfies (i) of that result, and hence by that result q is a p-projection.

The following known result (see e.g. [4], [14]) is quite interesting in light of
the question just above Theorem 6.1.

PROPOSITION 6.3. If J is an nonunital operator algebra with a cai (respectively
left cai), then J has an (respectively a left) approximate identity of the form (1 − xt),
where xt ∈ J1 and lim

t
‖xt‖ = 1 and lim

t
‖1− xt‖=1. Here J1 is the unitization of J.

Proof. We just sketch the proof in the left cai case, following the proof of
Theorem 3.1 in [4]. Let A = J1. Thus J is an r-ideal in the unital operator algebra
A. Suppose that the support projection is p = q⊥ ∈ A∗∗, and that (ut) is the left
cai in J. If B is a C∗-algebra generated by A, then there is an increasing net in
Ball(B) with weak* limit p. We can assume that the increasing net is indexed by
the same directed set. Call it (et). Since et − ut → 0 weakly, new nets of convex
combinations (ẽs) and (ũs) will satisfy ‖ẽs − ũs‖ → 0. We can assume that (ũs) is
a left cai for J. We have

‖1− ũs‖ 6 ‖1− ẽs‖+ ‖ẽs − ũs‖ 6 1 + ‖ẽs − ũs‖ → 1.

The result follows easily from this.
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We are also able to give another characterization of p-projections, which is
of "nonselfadjoint Urysohn lemma" or "peaking" flavor, and therefore should be
useful in future applications of "nonselfadjoint peak interpolation". This result
should be compared with Theorem 5.12 of [27].

THEOREM 6.4. Let A be a unital-subalgebra of C∗-algebra B and let q ∈ B∗∗ be
a closed projection. Then q is a p-projection for A if and only if for any open projection
u > q, and any ε > 0, there exists an a ∈ Ball(A) with aq = q and ‖a(1− u)‖ < ε and
‖(1− u)a‖ < ε.

Proof. (⇐) This follows by an easier variant of the proof of Theorem 4.1 in
[27]. Suppose that for each open u > q, and positive integer n, there exists an
an ∈ Ball(A) with anq = q and ‖an(1 − u)‖ < 1/n. By taking a weak* limit we
find a ∈ A⊥⊥ with aq = q and a(1 − u) = 0. We continue as in Theorem 4.1 of
[27]. Later in the proof where qn is defined, we appeal to Lemma 3.5 in place of
Lemma 3.6, so that qn is a peak projection. Now the proof is quickly finished: Let
Q =

∧
n

qn, a p-projection. As in the other proof we have that q 6 Q 6 r 6 u, and

that this forces q = Q. Thus q is a p-projection.
(⇒) Suppose that q is a p-projection, and u > q with u open. By "compact-

ness" of q (see the remark just above Proposition 2.2 of [27]), there is a peak pro-
jection q1 with q 6 q1 6 u. Note that if aq1 = q1 then aq = aq1q = q1q = q. Thus
we may assume that q is a peak projection. By the noncommutative Urysohn
lemma [2], there is an x ∈ B with q 6 x 6 u. Suppose that a ∈ Ball(A) peaks
at q, and an → q weak* (see e.g. Lemma 3.4 of [27] or the results below). Then
an(1− x) → q(1− x) = 0 weak*, and hence weakly in B. Similarly, (1− x)an → 0
weakly. By a routine convexity argument in B ⊕ B, given ε > 0 there is a convex
combination b of the an such that ‖b(1 − x)‖ < ε and ‖(1 − x)b‖ < ε. Therefore
‖b(1− u)‖ = ‖b(1− x)(1− u)‖ < ε. Similarly ‖(1− u)b‖ < ε.

We would guess that being a p-projection is also equivalent to the special
case where a = 1 and x 6 1 of the following definition.

If A is a unital-subalgebra of C∗-algebra B and if q ∈ B∗∗ is closed then we
say that q is a strict p-projection if given a ∈ A and a strictly positive x ∈ B with
a∗qa 6 x, then there exists b ∈ A such that qb = qa and b∗b 6 x. In Proposition 3.2
of [27] it is shown that if q is a closed projection in A⊥⊥ then the conditions in the
last line hold except that b∗b 6 x + ε. So being a strict p-projection is the case
ε = 0 of that interpolation result.

COROLLARY 6.5. Let A be a unital-subalgebra of C∗-algebra B and let q ∈ B∗∗

be a strict p-projection for A. Then q is a p-projection.

Proof. Using the noncommutative Urysohn lemma as in the first few lines
of the proof of Theorem 4.1 in [27], it is easy to see that q satisfies the condition in
Theorem 6.4.
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The above is related to the question of whether every r-ideal J in a (unital
say) operator algebra is "proximinal" (that is, whether every x ∈ A has a closest
point in J).

PROPOSITION 6.6. If q is a strict p-projection for a unital operator algebra A,
then the corresponding r-ideal J = q⊥A∗∗ ∩ A is proximinal in A.

Proof. Let a ∈ A. By Proposition 3.1 in [27], ‖a + J‖ = ‖qa‖. Also, a∗qa 6
‖qa‖2, so by hypothesis there exists b ∈ A such that qb = qa and b∗b 6 ‖qa‖2.
Thus ‖b‖2 = ‖b∗b‖ 6 ‖qa‖2. Then ‖a + J‖ = ‖qa‖ > ‖b‖ = ‖a + (b − a)‖.
However, b − a ∈ J since q(b − a) = 0. So J is proximinal.

Some of the results below stated for right ideals also have HSA variants
which we leave to the reader.

PROPOSITION 6.7. A p-projection q for a unital operator algebra A is a peak pro-
jection if and only if the associated right ideal is of the form (1− a)A for some a ∈
Ball(A). In this case, q is the peak for (a + 1)/2.

Proof. Let J = {a ∈ A : q⊥a = a}, for a p-projection q.
(⇒) If q is a peak for a then q⊥(1 − a) = (1 − a), so that (1 − a)A ⊂ J. If

ϕ ∈ ((1− a)A)⊥ then ϕ((1− an+1)A) = ϕ((1− a)(1 + a + · · ·+ an)A) = 0. In the
limit we see that ϕ ∈ (q⊥A)⊥, so that ϕ ∈ J⊥. Hence J = (1− a)A.

(⇐) Suppose that J = (1− a)A for some a ∈ Ball(A). Then qa = q, and by a
result in [27] there exists a peak projection r > q which is a peak for b = (a + 1)/2.
Since 1− b = (1− a)/2, it is clear that J = (1− b)A. If (et) is the left cai for J then
r⊥et = et. In the limit, r⊥q⊥ = q⊥, so that r 6 q. Thus r = q.

This class of "singly generated" right ideals has played an important role in
some work of G.A. Willis (see e.g. [34]).

LEMMA 6.8. If A is an unital operator algebra, and if a ∈ Ball(A) then (1− a)A
is an r-ideal of A with a sequential left approximate identity of the form (1 − xn) for
xn ∈ Ball(A). Similarly, (1− a)A(1− a) is a HSA of A.

Proof. Let J = (1− a)A, and let en = 1 − 1
n

n
∑

k=1
ak, which is easy to see is in

(1− a)A. Moreover,

en(1− a) = 1− 1
n

n

∑
k=1

ak − a +
1
n

n+1

∑
k=2

ak = 1− a − 1
n

(a − an+1) → 1− a.

Note that J is an r-ideal by Theorem 6.1. We leave the rest to the reader.

COROLLARY 6.9. If a is a contraction in a unital C∗-algebra B then:
(i) The Cesaro averages of an converge weak* to a peak projection q with qa = q.

(ii) If an → q weak* then q is a peak projection. Conversely, if q is a peak projection
then there exists an a ∈ Ball(B) with an → q weak*.
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Also q is the peak for (a + 1)/2.

Proof. (i) By Theorem 6.1 and Lemma 6.8 (and its proof), J = (1− a)A =

{a ∈ A : q⊥a = a} for a p-projection q which is a weak* limit of en = 1− 1
n

n
∑

k=1
ak.

Thus 1
n

n
∑

k=1
ak → q weak*, and clearly qa = q. By 6.7 and its proof, q is a peak

projection which is a peak for (a + 1)/2.

(ii) If an → q weak* then it is easy to check that 1
n

n
∑

k=1
ak → q weak*. Thus

one direction of (ii) follows from (i), and the other direction is in [27].

REMARK 6.10. (i) In fact it is not hard to show that the Cesaro averages in
(i) above converge strongly, if B is in its universal representation.

(ii) We make some remarks on support projections. We recall from [27] that if q
is a projection in B∗∗ and if q is a peak for a contraction b ∈ B then q⊥ is the right
support projection r(1 − b). Conversely, if b ∈ Ball(B) then the complement of
the right support projection r(1 − b) is a peak projection for (1 + b)/2. Thus the
peak projections are precisely the complements of the right support projections
r(1− b) for contractions b ∈ B.

It follows that q is a p-projection for a unital-subspace A of a C∗-algebra B if
and only if q =

∧
x∈S

r(1− x)⊥ for a nonempty subset S ⊂ Ball(A).

Also, if J is a right ideal of a unital operator algebra A, and if J has a left
approximate identity of the form (1− xt) with xt ∈ Ball(A), then it is easy to see
that the support projection of J is

∨
t

l(1− xt).
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ADDED IN PROOFS. We noticed in 2006 that there is a “partial isometry” variant
of the notions of p- and peak projections, to which one may extend many of the results of
[27] and the present paper. Every element x in an operator space of norm 1 has a peak u
in this sense, and u can be shown to coincide with the tripotent u(x) studied in papers of
Edwards and Ruttiman. We have u(x∗x) = u(x)∗u(x) is a peak for x∗x. We also noticed
that Proposition 6.6 above can be improved to give a much tighter link between the open
question studied in Section 6, and perhaps the most important remaining open question
in the theory of one-sided M-ideals [10], [13] (namely, whether they are proximinal).


