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1. INTRODUCTION

One of the most basic and elegant results of the theory of C∗-algebras is
the commutative Gelfand-Naimark theorem. Among the earliest studies that en-
deavoured to generalize it is the seminal paper of Fell [8] where the C∗-algebras
are represented as algebras of operator fields. This method was especially suc-
cessful in representing the n-homogeneous C∗-algebras as algebras of continuous
cross-sections of vector bundles whose fiber is Mn, the algebra of all complex
n × n matrices, and whose group is the group of all the automorphisms of Mn,
a result that was obtained independently in [12]. The program was continued in
[5], [11] and [7] and many other papers. A different approach was taken in [10].

Here we present a generalization of the result on n-homogeneous C∗-
algebras mentioned above to C∗-algebras that have a Hausdorff spectrum and
only finite dimensional irreducible representations. To this end we define and
investigate in Section 2 a kind of Banach bundle whose fiber is a variable normed
linear space of finite dimension. Section 3 contains the main representation re-
sult. The fibers are specialized to full algebras of complex matrices and the base
spaces are required to be locally compact Hausdorff spaces. It is shown that for
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the kind of Banach bundles we discuss in this section, the algebras of all con-
tinuous cross-sections that vanish at infinity have only finite dimensional irre-
ducible representations that are given by evaluations at the points of the base
space. Moreover, every C∗-algebra that has only finite dimensional irreducible
representations and a Hausdorff spectrum is isomorphic to such an algebra of
continuous cross-sections. The section ends with a condition for the isomorphism
of the algebras of continuous cross-sections considered in this paper. In Section 4
we produce a formula for the upper and lower multiplicities of an irreducible rep-
resentation that were defined in [2] and [4]. One of the reasons that makes these
invariants interesting is that they measure the extent to which Fell’s condition can
fail, see Theorem 4.6 of [2]. As shown in Proposition 10.5.8 of [6], for C∗-algebras
with Hausdorff spectrum the presence of Fell’s condition is necessary and suffi-
cient for having continuous trace. Another result in the same section is a repre-
sentation for the multiplier algebra of an algebra of continuous cross-sections of
the kind studied here.

2. TOPOLOGICAL PRELIMINARIES

As mentioned in the introduction, in this section we are going to discuss
a certain class of Banach bundles. By a bundle we mean a triple ξ := (E, p, B)
where E and B are Hausdorff topological spaces and p is a continuous open map
of E onto B. Following J.M.G. Fell [9] (see also [7]), a Banach bundle is a bundle
ξ := (E, p, B) such that each fiber p−1(t) (t ∈ B) has a Banach space structure
over the field K of real (R) or complex (C) numbers, compatible with the relative
topology, and satisfying the following conditions:

(1) the norm is continuous as a map from E to R;
(2) the addition is continuous as a map from {(x1, x2) ∈ E× E : p(x1) = p(x2)}

to E;
(3) the scalar multiplication is continuous as a map from K× E to E;
(4) if a net {xi} in E satisfies lim

i
‖xi‖ = 0 and the net {p(xi)} converges to

some t ∈ B then lim
i

xi = 0t, where 0t is the null element of the Banach space

p−1(t).
Let now B be a Hausdorff topological space with {Bk : 0 6 k} a finite or

infinite non-decreasing sequence of closed subsets of B such that B =
⋃

k=1
Bk.

Put B0 := ∅, and let {Xk : 1 6 k} be a sequence of normed linear spaces of
increasing finite dimensions. Denote kB := Bk \ Bk−1, 1 6 k. We proceed now to
construct a bundle whose base space is B. We begin with a set E and a surjective
map p : E → B. It is assumed that B has an open cover V := {Vι} such that
each nonvoid subset kB is covered by a subfamily Vk of V consisting of subsets
of B \ Bk−1 and V =

⋃
k
Vk. Moreover, we assume that whenever Vι ∈ Vk then
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kB∩Vι 6= ∅ and there is an injective mapping φι : Vι × Xk → E with the following
properties:

(i) each fiber {t} × Xk, t ∈ Vι, is mapped by φι into p−1(t) and φι({t} × Xk) =
p−1(t) if t ∈ kB ∩ Vι;

(ii) for Vι ∈ Vk and t ∈ Vι ∩ l B ∩ Vι′ with Vι′ ∈ Vl , the map

φ−1
ι′ (φι(t, ·)) : Xk → {t} × Xl

is a linear isometry, {t} × Xl being endowed with the linear and norm structure
given to it by Xl ; this allows us to define unambigously in each fiber p−1(t), t ∈ B,
a structure of normed linear space such that for every Vι ∈ Vk and every t ∈ Vι,
φι(t, ·) is a linear isometry of Xk into p−1(t);

(iii) for Vι ∈ Vk, t ∈ Vι ∩ l B ∩ Vι′ with Vι′ ∈ Vl , x0 ∈ Xl and x ∈ Xk, the function
ψx0x defined on Vι ∩ Vι′ by

ψx0x(s) := ‖φι′ (s, x0)− φι(s, x)‖,

is continuous at t.

LEMMA 2.1. With the above notations, if C is a bounded subset of Xk then the
family of functions {ψx0x : x ∈ C} is equicontinuous at t.

Proof. Let ε > 0 and choose an ε-net {xj : 1 6 j 6 m} in C. There is a
neighbourhood U ⊂ Vι ∩Vι′ of t such that for s ∈ U we have |ψx0xj (t)−ψx0xj (s)| <

ε, 1 6 j 6 m. Let now x ∈ C and choose xj such that ‖x− xj‖ < ε. Then, for s ∈ U,
we get

|[ψx0x(t)− ψx0x(s)]− [ψx0xj (t)− ψx0xj (s)]|
6 |‖φι′ (t, x0)− φι(t, x)‖ − ‖φι′ (t, x0)− φι(t, xj)‖|

+ |‖φι′ (s, x0)− φι(s, xj)‖ − ‖φι′ (s, x0)− φι(s, x)‖|
6 ‖φι(t, xj)− φι(t, x)‖+ ‖φι(s, x)− φι(s, xj)‖ = 2‖xj − x‖ < 2ε.

Thus, if s ∈ U, we have |ψx0x(t)− ψx0x(s)| < 3ε.

REMARK 2.2. One can similarly prove that the family {ψx0x} obtained by
letting both x0 and x run through bounded subsets is equicontinuous at t but we
will not need this stronger statement here.

We are going to define a topology on E such that ξ := (E, p, B) will be a
Banach bundle. We specify a local base of open neighbourhoods of y ∈ p−1(t)
with t ∈ kB. Let ε be a positive number and U an open neighbourhood of t
contained in some Vι ∈ Vk. Putting (t, x) = φ−1

ι (y), this local base will consist of
all the sets of the form

W(y, U, ι, ε) := {y′ ∈ E : p(y′) ∈ U, ‖φι(p(y′), x)− y′‖ < ε}.

THEOREM 2.3. The family of sets W(y, U, ι, ε) is the basis of a Hausdorff topology
on E such that for this topology ξ is a Banach bundle, each fiber being endowed with the
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normed structure mentioned above. If Vι ∈ Vk then φι is a homeomorphism of Vι × Xk
onto its image. The restriction of ξ to kB is a vector bundle.

Proof. Let tj belong to kj
B, let Uj be an open neighbourhood of tj contained

in Vιj ∈ Vkj
, yj ∈ p−1(tj), and ε j > 0, j = 1, 2. Suppose y ∈ W(y1, U1, ι1, ε1) ∩

W(y2, U2, ι2, ε2) and t := p(y) ∈ kB, say. Let Vι ∈ Vk be such that t ∈ Vι. We have
to show that there exist an open neighbourhood U of t contained in Vι and ε > 0
such that W(y, U, ι, ε) ⊂ W(yj, Uj, ιj, ε j), j = 1, 2. By condition (i) above, we know
that there are xj ∈ Xkj

and x ∈ Xk such that yj = φιj (tj, xj), y = φι(t, x). Then y
satisfies ‖y − φιj (t, xj)‖ < ε j, j = 1,2. Choose δ so that

(2.1) 0 < δ < min{ε j − ‖y − φιj (t, xj)‖ : j = 1, 2}.

From condition (iii) we infer that there is an open neighbourhood U of t such that
U ⊂ U1 ∩ U2 ∩ Vι and

(2.2) |‖φι(t, x)− φιj (t, xj)‖ − ‖φι(s, x)− φιj (s, xj)‖| <
δ

2
, j = 1, 2,

for every s ∈ U. By (2.1) and (2.2) we get for z ∈ W(y, U, ι, δ/2):

‖z − φιj (p(z), xj)‖ 6 ‖z − φι(p(z), x)‖+ ‖φι(p(z), x)− φιj (p(z), xj)‖

6
δ

2
+ ‖φι(t, x)− φιj (t, xj)‖+

δ

2
< ε j, j = 1, 2,

hence W(y, U, ι, δ/2) ⊂ W(y1, U1, ι1, ε1) ∩W(y2, U2, ι2, ε2).
Thus we have shown that the family of sets described above is the basis

of a topology on E. Clearly this topology is Hausdorff and the projection p is
continuous and open. It is also easily seen that the relative topology of each fiber
p−1(t) coincides with the topology given to it by the Banach space structure.

Now we want to show that ξ is a Banach bundle. If y′ ∈ W(y, U, ι, ε) then
|‖y‖ − ‖y′‖| < ε and we infer that the norm is continuous on E. Suppose y1, y2 ∈
p−1(t) with t ∈ kB, U is an open neighbourhood of t contained in some Vι ∈ Vk
and ε > 0. If zj ∈ W(yj, U, ι, ε), j = 1, 2, then z1 + z2 ∈ W(y1 + y2, U, ι, 2ε)
and from this follows the continuity of the addition on the subset of E on which
it is defined. One checks in a similar manner that the scalar multiplication is
continuous. Suppose now that the net {xi} in E satisfies lim

i
‖xi‖ = 0 and the

net {p(xi)} converges to t ∈ kB. Given Vι ∈ Vk to which t belongs, U an open
neighbourhood of t contained in Vι and ε > 0, we have eventually ‖xi‖ < ε and
p(xi) ∈ U. But then xi ∈ W(0t, U, ι, ε) and the last condition in the definition of a
Banach bundle is verified.

Let now Vι ∈ Vk and (t0, x0) ∈ (Vι ∩ l B) × Xk. We are going to show that φι

is continuous at (t0, x0). Denote y0 := φι(t0, x0) and let Vι′ ∈ Vl contain t0. Put
(t0, x1) := φ−1

ι′ (y0). Let U be a neighbourhood of t0 contained in Vι′ and ε > 0.
For x in the open ball C of Xk around x0 with radius ε/2 we have

‖φι′ (t0, x1)− φι(t0, x)‖ = ‖φι(t0, x0)− φι(t0, x)‖ = ‖x0 − x‖ < ε/2.
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By Lemma 2.1 there exists a neighbourhood U0 of t0 included in U ∩ Vι such that
|‖φι′ (s, x1) − φι(s, x)‖ − ‖φι′ (t0, x1) − φι(t0, x)‖| < ε

2 for every s ∈ U0 and x ∈ C.
Thus, if (s, x) ∈ U0 × C then ‖φι′ (s, x1)− φι(s, x)‖ < ε. From this it follows that φι

maps the neighbourhood U0 × C of (t0, x0) into

W(yo, U, ι′, ε) = {y ∈ E : p(y) ∈ U, ‖φι′ (p(y), x1)− y‖ < ε}

and the proof of the continuity of φι at (t0, x0) is complete.
Let now Vι ∈ Vk. Our next step is to show that φι : Vι × Xk → φι(Vι × Xk)

is open. Suppose U ⊂ Vι is open and let D ⊂ Xk be the open ball of radius r > 0
and center x. Pick y ∈ φι(U × D), y = φι(t1, x1) where t1 ∈ U, x1 ∈ D. Then

‖y − φι(t1, x)‖ = ‖φι(t1, x1)− φι(t1, x)‖ = ‖x1 − x‖ < r.

Put ε := (1/2)(r − ‖x1 − x‖) > 0. We have t1 ∈ l B ∩ Vι1 for some l and some
Vι1 ∈ Vl . There is x′1 ∈ Xl such that y = φι1(t1, x′1). Let U1 ⊂ Vι1 ∩ U be an open
neighbourhood of t1 with

‖φι1(s, x′1)− φι(s, x)‖ < ‖φι1(t1, x′1)− φι(t1, x)‖+ ε(2.3)

= ‖y − φι(t1, x)‖+ ε = ‖x1 − x‖+ ε

for every s ∈ U1. We assert that

W(y, U1, ι1, ε) ∩ φι(Vι × Xk) ⊂ φι(U × D) =

{z ∈ E : p(z) ∈ U, ‖z − φι(p(z), x)‖ < r} ∩ φι(Vι × Xk)

and this will substantiate our claim about φι being open on its image. Let z ∈
W(y, U1, ι1, ε) ∩ φι(Vι × Xk). Then p(z) ∈ U1 and ‖z − φι1(p(z), x′1)‖ < ε which
with (2.3) yields

‖z−φι(p(z), x)‖6‖z−φι1(p(z), x′1)‖+‖φι1(p(z), x′1)−φι(p(z), x)‖<ε+‖x1−x‖+ε=r

and this means that z ∈ φι(U × D).
From the above we gather that whenever Vι ∈ Vk, φι maps (kB ∩ Vι) × Xk

homeomorphically onto p−1(kB ∩ Vι). Thus the restriction of ξ to kB is a vector
bundle whose fiber is Xk.

REMARK 2.4. Clearly, a point t ∈ kB can belong to more than one Vι ∈ Vk.
However, it is a consequence of the first part of the preceeding proof that in order
to get a local base of neighbourhoods for an element y ∈ p−1(t) it is enough to
restrict oneself to sets W(y, U, ι, ε) defined by using a fixed Vι ∈ Vk that contains t.

A Banach bundle ξ = (E, p, B) constructed as above will be called a scaled
Banach bundle. We shall call the sequence {Bk} of closed subsets of B its grada-
tion and the sequence {Xk} of finite dimensional Banach spaces will be its scale.
The elements of Vk are the coordinate neighbourhoods for the points of kB and the
maps φι will be called coordinate functions of the bundle. Of course, for a triple
(E, p, B), with a given gradation and a given scale one may consider various fam-
ilies of coordinate neighbourhoods and their associate coordinate functions. One
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may define a natural equivalence relation between such structures. We shall dis-
cuss at the end of this section a somewhat more general equivalence relation.

The last statement of Theorem 2.3 has a converse. Namely, in a suitable
environment, every vector bundle is a scaled Banach bundle.

PROPOSITION 2.5. Let ξ := (E, p, B) be a vector bundle whose fiber X is a normed
finite dimensional space and whose coordinate transformations are isometries. Then ξ is
a scaled Banach bundle.

Proof. Let {Vι} be a family of coordinate neighbourhoods for ξ that covers
B and let φι : Vι × X :→ p−1(Vι) be the coordinate functions. Then one can infer
immediately from the definition of a vector bundle that for every two indices
ι and ι′ and every x0, x ∈ X the map s → φι′ (s, x0) − φι(s, x) from Vι ∩ Vι′ to
p−1(Vι ∩ Vι′ ) is continuous.

Let now ξ = (E, p, B), ξ ′ = (E′, p′, B′) be scaled Banach bundles with the
same scale {Xk}, gradations {Bk}, {B′

k}, coordinate neighbourhoods {Vι}, {V ′
κ}

and coordinate functions {φι}, {φ′
κ}, respectively. If θ is a fiberwise map from

E to E′ then θ̂ will denote the unique map from B to B′ such that p′θ = θ̂p. We
shall say that ξ and ξ ′ are isomorphic if there is a fiberwise homeomorphism θ :
E → E′ such that the restriction of θ to p−1(t) is a linear isometry onto p′−1(θ̂(t))
for each t ∈ B. In this case θ̂ is a homeomorphism onto B′ since p and p′ are
continuous and open and it respects the gradations. By abuse of language, we
shall sometimes say that θ is an isomorphism from ξ to ξ ′. Obviously, this is an
equivalence relation between scaled Banach bundles with a given scale.

PROPOSITION 2.6. Let θ : E → E′ be a fiberwise bijective map that is a linear
isometry on each fiber. Moreover, suppose that θ̂ is a homeomorphism. Then θ is an
isomorphism from ξ to ξ ′ if and only if for every t ∈ kB, Vι ∈ Vk, V ′

κ ∈ V ′
k with

t ∈ Uικ := Vι ∩ θ̂−1(V ′
κ) and x, x′ ∈ Xk, the map s → ‖φι(s, x) − θ−1(φ′

κ(θ̂(s), x′))‖
defined on Uικ is continuous at t.

Proof. If θ is an isomorphism then, by Theorem 2.3, the maps s → φι(s, x)
and s → θ−1(φ′

κ(θ̂(s), x′)) from Uικ to E are continuous and the conclusion fol-
lows.

Conversely, let θ and θ̂ be as in the statement of the proposition. Then
θ̂(kB) = kB′ for every k. Besides, suppose that whenever t ∈ kB ∩ Uικ where
Vι ∈ Vk, V ′

κ ∈ V ′
k, and x, x′ ∈ Xk we have

lim
s→t

‖φι(s, x)− θ−1(φ′
κ(θ̂(s), x′))‖ = ‖φι(t, x)− θ−1(φ′

κ(θ̂(t), x′))‖.

Let ε > 0, y′ := φ′
κ(θ̂(t), x′) ∈ E′ and

W ′ = W ′(y′, U′, κ, ε) := {z′ ∈ E′ : p′(z′) ∈ U′, ‖φ′
κ(p′(z′), x′)− z′‖ < ε},

U′ being a neighbourhood of θ̂(t) contained in V ′
κ . We shall show that θ−1(W ′)

contains a neighbourhood of y := θ−1(y′) and this will establish the continuity of
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θ. Let x ∈ Xk be such that y = φι(t, x). There is an open neighbourhood U of t
contained in Vι ∩ θ̂−1(U′) such that for s ∈ U we have

‖φ′
κ(θ̂(s), x′)− θ(φι(s, x))‖ = ‖θ−1(φ′

κ(θ̂(s), x′))− φι(s, x)‖

< ‖θ−1(φ′
κ(θ̂(t), x′))− φι(t, x)‖+

ε

2
=

ε

2
.

Then, if z0 ∈ W(y, U, ι, ε/2) := {z ∈ E : p(z) ∈ U, ‖φι(p(z), x) − z‖ < ε/2}, we
have θ̂(p(z0)) ∈ U′ and

‖φ′
κ(θ̂(p(z0)), x′)− θ(z0)‖

6 ‖φ′
κ(θ̂(p(z0)), x′)− θ(φι(p(z0), x))‖+ ‖θ(φι(p(z0), x))− θ(z0)‖ < ε.

Thus θ(z0) ∈ W ′ and we have proved that W(y, U, ι, ε/2) ⊂ θ−1(W ′). Clearly,
the continuity of θ−1 can be established by a similar argument and the proof is
complete.

3. LIMINAL C∗-ALGEBRAS

Let now ξ = (E, p, B) be a scaled Banach bundle whose base space B is
locally compact Hausdorff and whose scale is {Mk}, where Mk is the C∗-algebra
of all k × k complex matrices (identified with the algebra of linear operators on
Ck), and for which the condition (ii) for coordinate functions is strengthened to:
if Vι ∈ Vk and t ∈ Vι ∩ l B ∩ Vι

′ with Vι
′ ∈ Vl then x → φ−1

ι′ (φι(t, x)) is an injective
homomorphism of Mk into {t} × Ml , the algebra structure of {t} × Ml being that
given to it by Ml . Each fiber p−1(t) of such a scaled Banach bundle becomes in
a natural manner a C∗-algebra. Such a bundle will be called a scaled C∗-bundle,
cf. p. 9 of [7]. Of course, these are the bundles relevant for the description of the
C∗-algebras we intend to discuss.

If ξ = (E, p, B) is a scaled C∗-bundle then a continuous section of ξ is a
continuous function f : B → E such that p( f (t)) = t for each t ∈ B. The set
C0(ξ) of all the continuous cross-sections of ξ that vanish at infinity on B is a C∗-
algebra with pointwisely defined operations and the supremum norm. Moreover,
t → p−1(t) paired with C(ξ), the ∗-algebra of all the continuous cross-sections of
ξ, is a continuous field of elementary C∗-algebras. Indeed, if y ∈ p−1(t) where
t ∈ kB, we can find Vι ∈ Vk that contains t; choose an open neighbourhood U
of t with compact closure U ⊂ Vι and a continuous function f : B → [0, 1] that
vanishes off U and assumes the value 1 at t. With φι(t, x) = y, x ∈ Mk, we define
ϕ : B → E by ϕ(s) = f (s)φι(s, x) for s ∈ U and ϕ(s) = 0s if s /∈ U, to get a
continuous cross-section of ξ such that ϕ(t) = y. It is easily seen that C0(ξ) is the
C∗-algebra defined by this continuous field of C∗-algebras as in 10.4.1 of [6].

We now proceed to construct scaled C∗-bundles related to a class of limi-
nal C∗-algebras. Let A be a liminal C∗-algebra whose spectrum is Hausdorff and
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which has only finite dimensional irreducible representations. For 1 6 k we de-
note

Âk := {π ∈ Â : dim(π) 6 k}, Â0 := ∅; k Â := Âk \ Âk−1.

The closed two-sided ideal of A whose spectrum is (canonically homeomorphic
to) Â \ Âk is denoted by Ik. As it is well known, Âk, k Â can be canonically iden-
tified with the spectra of A/Ik, Ik−1/Ik, respectively. It follows from Theorem 3.1
of [8] that for each π ∈ k Â there exist an open neighbourhood Vπ of π in Â,
Vπ ⊂ Â \ Âk−1, and elements {aπ

ij : 1 6 i, j 6 k} in A such that for each ρ ∈ Vπ ,
{ρ(aπ

ij ) : 1 6 i, j 6 k} are matrix units in ρ(A) and the linear subspace of ρ(A)
spanned by them is a subalgebra isomorphic to Mk.

Let now E :=
⋃
{(π, π(A)) : π ∈ Â} and let p : E → Â be the natural

projection. Given π ∈ k Â, Vπ , and {aπ
ij} as above, one can define the map

φπ : Vπ × Mk → E by φπ

(
ρ, ∑ αijek

ij

)
:=

(
ρ, ∑ αijρ(aπ

ij )
)

, {ek
ij : 1 6 i, j 6 k}

being the standard matrix units of Mk. The restriction of φπ to any fiber {ρ} ×Mk
is an injective homomorphism into p−1(ρ) = {ρ} × ρ(A); in particular, the image
of {ρ} × Mk is p−1(ρ) whenever ρ ∈ k Â.

THEOREM 3.1. Preserving the above notations, ξ := (E, p, Â) is a scaled C∗-
bundle with the gradation {Âk}, the coordinate neighbourhoods {Vπ : π ∈ Â} and the
coordinate functions {φπ : π ∈ Â}. A is naturally isomorphic to C0(ξ).

Conversely, if ξ = (E, p, B) is a scaled C∗-bundle then the spectrum of C0(ξ) is
homeomorphic to B and all its irreducible representations are given by point evaluations
at the points of B.

Proof. For the first assertion of the theorem we need only to check condition
(iii) of the previous section. Thus let π ∈ k Â, π

′ ∈ Vπ ∩ l Â, α = ∑ αijel
ij ∈ Ml and

β = ∑ βmqek
mq ∈ Mk. It is well known that the function

ρ → ψαβ(ρ) := ‖φπ
′ (ρ, α)− φπ(ρ, β)‖ =

∥∥∥ ∑ αijρ(aπ
′

ij )−∑ βmqρ(aπ
mq)

∥∥∥
is continuous on the Hausdorff spectrum Â, cf. Corollary 3.3.9 of [6].

Now, for each a ∈ A, define ã : Â → E by

ã(π) := (π, π(a)), π ∈ Â.

Then, for a ∈ A and π ∈ k Â we have π(a) = ∑ αijπ(aπ
ij ) for some scalars {αij}.

It follows from Corollary 3.3.9 of [6] that given ε > 0 there is an open neighbour-
hood U ⊂ Vπ of π such that, for ρ ∈ U,

‖φπ(ρ, ∑ αijek
ij)− ã(ρ)‖ =

∥∥∥ ∑ αijρ(aπ
ij )− ρ(a)

∥∥∥ < ε

and this together with Proposition 3.3.7 of [6] implies that ã ∈ C0(ξ). Thus a →
ã is an injective homomorphism of A into C0(ξ). If π1, π2 ∈ Â, b1 ∈ π1(A),
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b2 ∈ π2(A) (with b1 = b2 if π1 = π2), then by Proposition 4.2.5 of [6] there is
a ∈ A such that π1(a) = b1, π2(a) = b2. We infer from Lemma 10.5.3 of [6] that
{ã : a ∈ A} = C0(ξ).

The last assertion in the statement of the theorem is an immediate
consequence of the discussion at the beginning of this section and Corollary 10.4.4
of [6].

REMARK 3.2. Suppose that A is a C∗-algebra that has only finite dimen-
sional irreducible representations and whose spectrum is Hausdorff.

We use the notations introduced in the paragraph preceding Theorem 3.1.
Let (π, b) = (π, ∑ αrsπ(aπ

rs)) ∈ p−1(k Â) and suppose {(πι, bι)} is a net in p−1(Vπ ∩
k Â) with bι = ∑ αι

rsπι(aπ
rs). By the definition of the topology of E we have (π, b) =

lim
ι

(πι, bι) if and only if π = lim
ι

πι in Â and the net of matrices {(αι
rs)16r,s6k}ι

converges to the matrix (αrs)16r,s6k in Mk. Thus the relative topology of p−1(k Â)
coincides with that defined in the proof of Theorem 3.2 of [8] when the algebra
under the consideration is the homogeneous C∗-algebra Ik−1/Ik.

Moreover, the restriction of ξ to k Â is a vector bundle with fiber Mk whose
group is the group of all the automorphisms of Mk.

In particular, Theorem 3.1 generalizes the well known characterization of
homogeneous C∗-algebras from [8] and [12].

COROLLARY 3.3. With the same notations as in Theorem 3.1, if A is a C∗-algebra
with continuous trace that has only finite dimensional irreducible representations then
the coordinate neighbourhoods Vπ and the coordinate functions can be chosen such that
for each k and each π ∈ k Â, the restriction of φπ to each fiber {ρ} × Mk, ρ ∈ Vπ is trace
preserving.

Conversely, if the scaled C∗-bundle ξ has the property that for each k, each t ∈ kB
and each Vι ∈ Vk to which t belongs, the restriction of φι to each fiber {s} × Mk is trace
preserving then C0(ξ) is a C∗-algebra with continuous trace.

Proof. Both assertions result immediately from the well known connection
between Fell’s condition and C∗-algebras with continuous trace, see Proposi-
tion 10.5.8 of [6].

We shall say that two scaled C∗-bundles ξ = (E, p, B) and ξ ′ = (E′, p′, B′)
are isomorphic if there is a homeomorphism θ of E onto E′ that respects the fibers
and whose restriction to each fiber of ξ is an isomorphism of C∗-algebras onto a
fiber of ξ ′.

PROPOSITION 3.4. The scaled C∗-bundles ξ = (E, p, B), ξ ′ = (E′, p′, B′) are
isomorphic if and only if the C∗-algebras C0(ξ) and C0(ξ ′) are isomorphic.

Proof. It is obvious that if two scaled C∗-bundles are isomorphic then the
C∗-algebras defined by them are isomorphic so we turn now to the converse.
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We shall let {Bk}, {B′
k} be the gradations of ξ and ξ ′, {Vι}, {V ′

κ} be their
coordinate neighbourhoods and {φι}, {φ′

κ} be their coordinate functions, respec-
tively. Let ϕ be an isomorphism from C0(ξ) onto C0(ξ ′). It induces a homeo-
morphism ϕ̃ from B′ which is the spectrum of C0(ξ ′), onto B, the spectrum of
C0(ξ): f (ϕ̃(t′)) = ϕ( f )(t′) for f ∈ C0(ξ) and t′ ∈ B′. We shall define now a
map θ : E → E′ as follows: let b ∈ p−1(t) with t = ϕ̃(t′) and choose f ∈ C0(ξ)
such that f (t) = b; we define θ(b) := ϕ( f )(t′). Since the primitive ideal of C0(ξ)
determined by t is mapped injectively by ϕ onto the primitive ideal of C0(ξ ′) de-
termined by t′, θ is a well defined fiberwise injective map of E onto E′. Also, it is
easily seen that its restriction to each fiber is an isomorphism of C∗-algebras.

We want to show now that θ is continuous. Let b, t, t′ and f be as in the
previous paragraph, that is b = f (t), t = ϕ̃(t′), and ε > 0. Thus b′ := θ(b) =
ϕ( f )(t′). We shall suppose that t ∈ kB ∩ Vι for some Vι ∈ Vk hence t′ ∈ kB′ ∩ V ′

κ
for some V ′

κ ∈ V ′
k. Then b = φι(t, x) and b′ = φ′

κ(t′, x′) for some x, x′ ∈ Mk. Let
U′ ⊂ V ′

κ be a neighbourhood of t′; the continuity of ϕ( f ) allows us to suppose,
without any loss of generality, that ‖ϕ( f )(s′)− φ′

κ(s′, x′)‖ < ε/3 if s′ ∈ U′. Let

W ′ := W ′(b′, U′, κ, ε) = {c′ ∈ E′ : p′(c′) ∈ U′, ‖φ′
κ(p′(c′), x′)− c′‖ < ε}.

By the continuity of f there is an open neighbourhood U of t contained in Vι ∩
ϕ̃(U′) such that ‖ f (s)− φι(s, x)‖ < ε/3 if s ∈ U. Then, if

c0 ∈ W(b, U, ι, ε/3) =
{

c ∈ E : p(c) ∈ U, ‖φι(p(c), x)− c‖ <
ε

3

}
and c′0 := θ(c0), we have p′(c′0) ∈ U′ and ‖ϕ( f )(p′(c′0)) − c′0‖ = ‖θ( f (p(c0))) −
θ(c0)‖ = ‖ f (p(c0)) − c0‖ since θ is an isomorphism of C∗-algebras on each fiber.
Thus ‖ϕ( f )(p′(c′0))− c′0‖ 6 ‖ f (p(c0))− φι(p(c0), x)‖+ ‖φι(p(c0), x)− c0‖ < 2ε/3
hence

‖φ′
κ(p′(c′0), x′)− c′0‖ 6 ‖φ′

κ(p′(c′0), x′)− ϕ( f )(p′(c′0))‖+ ‖ϕ( f )(p′(c′0))− c′0‖ < ε

which shows that θ(c0) ∈ W ′. The continuity of θ−1 can be established in the
same way and the proof is complete.

4. APPLICATIONS

Throughout this section ξ = (E, p, B) will be a scaled C∗-bundle, {Bk} its
gradation, {Vι} its coordinate neighbourhoods and {φι} its coordinate functions.
Each fiber of E will be identified with the algebra of all the operators on a suitable
finite dimensional Hilbert space.

As a first application of the discussion in the previous section we shall estab-
lish some formulas for the multiplicities of irreducible representations of C0(ξ).
Given an irreducible representation π of a C∗-algebra A, the upper and lower
multiplicities MU(π, Ω) and ML(π, Ω) relative to a net Ω in Â were defined in
[4]. The definitions of these quantities are unfortunately rather complicated and
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we shall not detail them here. Instead, we shall reproduce below a lemma from
[3] that allows us to compute them rather easily. Let us mention only that both
are non-negative integers or ∞ and always ML(π, Ω) 6 MU(π, Ω).

LEMMA 4.1 (Lemma 5.2 of [3]). Let A be a C∗-algebra and Ω a net in Â. Let ω

be a pure state associated with π ∈ Â. For a natural number n the following hold:
(i) n 6 MU(π, Ω) if and only if there is a subnet {πα} of Ω and an orthonormal set

{ηα
1 , . . . , ηα

n} in the space of πα, for each α, such that

ω(a) = lim〈πα(a)ηα
j , ηα

j 〉, 1 6 j 6 n, a ∈ A;

(ii) n 6 ML(π, Ω) if and only if each subnet Ω′ of Ω has a subnet {πα} and there is
an orthonormal set {ηα

1 , . . . , ηα
n} in the space of πα, for each α, such that

ω(a) = lim〈πα(a)ηα
j , ηα

j 〉, 1 6 j 6 n, a ∈ A.

It follows from this lemma and also directly from the definitions that
MU(π, Ω) > 0 if and only if π is a cluster point of the net Ω and ML(π, Ω) > 0
if and only if the net Ω converges to π. Moreover, if π is a cluster point of the
net Ω then there is a subnet Ω′ of Ω that converges to π and which satisfies
MU(π, Ω) = MU(π, Ω′). Indeed, by Proposition 2.3 of [4], the net Ω has a subnet
Ω1 such that

ML(π, Ω1) = MU(π, Ω1) = MU(π, Ω) > 0.

Since π is a cluster point of Ω1 too, there is a subnet Ω′ of Ω1 that converges to
π. By p. 206 of [4] we have

ML(π, Ω1) = ML(π, Ω′) = MU(π, Ω′) = MU(π, Ω1) = MU(π, Ω).

Before we state the result that shows how to compute the multiplicities for
C0(ξ) we shall need a simple lemma.

LEMMA 4.2. Let t ∈ kB∩Vι with Vι ∈ Vk and let e be a one dimensional projection
in Mk. Choose a unit vector ηs in the image of the projection φι(s, e) for each s ∈ Vι. Then
lim
s→t

〈 f (s)ηs, ηs〉 = 〈 f (t)ηt, ηt〉 for every f ∈ C0(ξ).

Proof. For f ∈ C0(ξ) let x f ∈ Mk be such that φι(t, x f ) = f (t). Then ex f e =
λe for some scalar λ and so:

〈φι(s, ex f e)ηs, ηs〉 = λ = 〈 f (t)ηt, ηt〉, s ∈ Vι;

|〈 f (s)ηs, ηs〉−〈 f (t)ηt, ηt〉|= |〈 f (s)ηs, ηs〉 − 〈φι(s, ex f e)ηs, ηs〉|
6‖φι(s, e) f (s)φι(s, e)−φι(s, ex f e)‖6‖ f (s)−φι(s, x f )‖.

Now lim
s→t

‖ f (s) − φι(s, x f )‖ = 0 by the continuity of f and the conclusion fol-

lows.

In the next result the algebra for which we compute the multiplicities is
C0(ξ) for a scaled C∗-bundle as mentioned at the beginning of the present section.
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THEOREM 4.3. Suppose t ∈ kB ∩ Vι with Vι ∈ Vk and e is a one dimensional
projection in Mk. Let Ω = {tα} be a net in B that converges to t. Then MU(t, Ω) =
lim sup

α
Tr(φι(tα, e)) and ML(t, Ω) = lim inf

α
Tr(φι(tα, e)).

Proof. There are a neighbourhood U of t whose closure is compact and in-
cluded in Vι and a section f ∈ C0(ξ) of ξ such that f (s) = φι(s, e) for every s ∈ U.
Choose a unit vector ηt in the image of the projection f (t). Of course, there is no
harm in assuming that the net Ω is included in the neighbourhood U of t.

Let n be a natural number such that

lim sup
α

Tr( f (tα)) = lim sup
α

Tr(φι(tα, e)) > n.

Then there is a subnet {tα′} of Ω such that Tr( f (tα′ )) > n for each α′. Thus we
can choose orthonormal vectors {ηα′ ,j : 1 6 j 6 n} in the image of f (tα′ ) for each
α′. By Lemma 4.2 we have lim

α′
〈 f (tα′ )ηα′ ,j, ηα′ ,j〉 = 〈 f (t)ηt, ηt〉, 1 6 j 6 n. But then

Lemma 4.1 implies that MU(t, Ω) > n. Thus we have proved that MU(t, Ω) >
lim sup

α
Tr(φι(tα, e)).

Suppose now MU(t, Ω) > n. Then, by Lemma 4.1, Ω has a subnet {tα′}
such that there is an orthonormal set {ηα′ ,j : 1 6 j 6 n} for each α′ that satisfies
〈g(t)ηt, ηt〉 = lim

α′
〈g(tα′ )ηα′ ,j, ηα′ ,j〉, 1 6 j 6 n for every g ∈ C0(ξ). Then

lim sup
α′

Tr( f (tα′ )) > lim sup
α′

n

∑
j=1

〈 f (tα′ )ηα′ ,j, ηα′ ,j〉 =
n

∑
j=1

lim
α′
〈 f (tα′ )ηα′ ,j, ηα′ ,j〉

=
n

∑
j=1

〈 f (t)ηt, ηt〉 = n.

So
lim sup

α
Tr(φι(tα, e)) = lim sup

α
Tr( f (tα)) > n.

We have proved lim sup
α

Tr(φι(tα, e)) > MU(t, Ω) and this concludes the proof of

the first assertion from the statement of the theorem.
The proof of the second assertion is quite similar so we shall omit it.

The definitions of the upper and lower multiplicities MU(π) and ML(π) of
an irreducible representation π of a C∗-algebra A were first given by R.J. Arch-
bold in [2]. As stated in [4], they satisfy ML(π, Ω) 6 MU(π, Ω) 6 MU(π)
for every net Ω in Â and if π is not isolated in Â and Ω converges to π then
also ML(π) 6 ML(π, Ω) excluding some exceptional situations (see Proposition
2.1 of [4]). Moreover, by Proposition 2.2 of [4], if {π} is not open in Â then
there is a net Ω in Â \ {π} converging to π such that MU(π) = MU(π, Ω) and
ML(π) = ML(π, Ω). If {π} is open in Â then ML(π) is undefined and if in ad-
dition A is liminal then Proposition 4.11 of [2] specifies that MU(π) = 1. From
these facts and Theorem 4.3 the following corollary follows immediately.
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COROLLARY 4.4. We keep the notations of Theorem 4.3. If t is not isolated in B
then

MU(t) = lim sup
s→t,s 6=t

Tr(φι(s, e)), ML(t) = lim inf
s→t,s 6=t

Tr(φι(s, e)).

As in Corollary 3.5 of [1] and Lemma 2 of [11], we use the description of the
class of liminal C∗-algebras we investigated to get some information about their
multiplier algebras.

THEOREM 4.5. The multiplier algebra M(C0(ξ)) of C0(ξ) is isomorphic (by an
isomorphism that reduces to the identity on C0(ξ)) with the C∗-algebra of all the bounded
sections h of ξ that have the following property: for every t ∈ kB there is Vι ∈ Vk that
contains t such that s → h(s)φι(s, 1k) and s → φι(s, 1k)h(s) are continuous at t.

Proof. Every (irreducible) representation of C0(ξ) defined by some t ∈ B
has a unique extension to a representation of M(C0(ξ)) whose image is also the
algebra p−1(t). If all these representations vanish on some element of M(C0(ξ))
then that element is orthogonal on C0(ξ) hence is the null element. Thus we get
naturally an isomorphism of M(C0(ξ)) onto some C∗-algebra of bounded sections
of ξ and we shall use this isomorphism to identify these two C∗-algebras.

It is easily seen that a multiplier of C0(ξ) must have the continuity property
described in the statement of the theorem. Let us now suppose that h is a bounded
section of ξ which satisfies the above condition. Given f ∈ C0(ξ) we want to show
that h f is a continuous section. Let t ∈ kB and take Vι as above. Let ε > 0. We
have

φι(t, x1) = h(t), φι(t, x2) = f (t)

for some x1, x2 ∈ Mk and φι(t, x1x2) = h(t) f (t). There is a neighbourhood U of t
such that for s ∈ U we have

‖φι(s, x1)− h(s)φι(s, 1k)‖ < ε, ‖φι(s, x2)− f (s)‖ < ε.

Thus, for s ∈ U we get

‖φι(s, x1x2)− h(s) f (s)‖
6 ‖φι(s, x1)φι(s, x2)− h(s)φι(s, 1k)φι(s, x2)‖+ ‖h(s)φι(s, 1k)φι(s, x2)− h(s) f (s)‖
6 ‖φι(s, x1)i−h(s)φι(s, 1k)‖(‖ f ‖+ε)+‖h‖‖φι(s, x2)− f (s)‖ 6 (‖ f ‖+‖h‖+ε)ε

and the continuity of h f at t is established. The continuity of f h can be proved in
the same way.

COROLLARY 4.6. Suppose that for each k and each t ∈ kB there is Vι ∈ Vk
that contains it and a neighbourhood U of t included in Vι such that φι(s, ·) is a unital
homomorphism for s ∈ U. Then M(C0(ξ)) is isomorphic with the C∗-algebra Cb(ξ)
of all the bounded continuous cross-sections of ξ. Conversely, if ξ does not have this
property then Cb(ξ) is a proper C∗-subalgebra of M(C0(ξ).
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Proof. Indeed, if there is t0 ∈ B that does not satisfies the above condition
then the cross-section of ξ whose value at every t ∈ B is the unit of p−1(t) is a
multiplier but does not belong to Cb(ξ).
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