HILBERT C*-MODULES AND *-ISOMORPHISMS

MOHAMMAD B. ASADI

Communicated by William B. Arveson

ABSTRACT. In this study, it is shown that if E_1 and E_2 are Hilbert C^* -modules over a C^* -algebra of (not necessarily all) compact operators and Φ is a *isomorphism between C^* -algebras $\mathcal{L}(E_1)$ and $\mathcal{L}(E_2)$, then Φ is in the form AdU, for some unitary operator $U : E_1 \to E_2$, and so E_1 and E_2 are isomorphic as Hilbert C^* -modules. This implies that if C^* -algebras \mathcal{A} and K(H) are strongly Morita equivalent then the Picard group of \mathcal{A} is trivial.

KEYWORDS: Hilbert C*-modules.

MSC (2000): 46L99.

Let *H* and *H'* be Hilbert spaces and $u : H \to H'$ a unitary operator. Then the map

$$\operatorname{Ad} u: B(H) \to B(H'), \quad v \mapsto uvu^*$$

is a *-isomorphism. In fact, all *-isomorphisms between B(H) and B(H') are obtained in this way. Therefore, whenever B(H) and B(H') are *-isomorphic, then the Hilbert spaces H and H' are isomorphic.

Generally, this is not valid for Hilbert C^* -modules. For instance, if \mathcal{A} is the hyperfinite type II₁ W*-factor, then Hilbert C^* -modules $E_1 = \mathcal{A}$ and $E_2 = \mathcal{A}^2$, with the usual \mathcal{A} -valued inner products, are not isomorphic as Hilbert C^* -modules, but the C^* -algebras $\mathcal{K}(E_1)$ and $\mathcal{K}(E_2)$ (and so $\mathcal{L}(E_1)$ and $\mathcal{L}(E_2)$) are *-isomorphic to \mathcal{A} [5].

Now we are going to show that this is true for Hilbert C^* -modules over C^* -algebras of compact operators on some Hilbert space.

Let us denote by $\mathcal{L}(E)$ the set of adjointable operators on Hilbert C*-module *E*, and denote by $\mathcal{K}(E)$ the set of compact operators in $\mathcal{L}(E)$.

As a result derived from the main theorem, if *E*, *F* are *K*(*H*)-imprimitivity bimodules, then we have $\mathcal{K}(E) \cong \mathcal{K}(H) \cong \mathcal{K}(F)$, and so $E \cong F$ by Corollary 1. Therefore, one can conclude the previously known fact that the Picard group of any *C**-algebra of compact operators has to be trivial [4].

Moreover, one can conclude that if C^* -algebras \mathcal{A} and K(H) are strongly Morita equivalent, then all \mathcal{A} -K(H)-imprimitivity bimodules are isomorphic to each other. Also, every automorphism of \mathcal{A} is a generalized inner automorphism, i.e., for every *-isomorphism $\varphi : \mathcal{A} \to \mathcal{A}$ there exists a unitary $u \in M(\mathcal{A})$ such that $\varphi = \operatorname{Ad} u$, since if E is an \mathcal{A} -K(H)-imprimitivity bimodule then $\mathcal{A} \cong \mathcal{K}_{K(H)}(E)$ [3]. Consequently, it follows from Theorem 3.9 in [4] that the Picard group of \mathcal{A} is trivial.

Bakić and Guljaš in [2] discussed a concept of an orthonormal basis for Hilbert *C**-modules and proved that each Hilbert *C**-module $(E, \langle \cdot, \cdot \rangle)$ over a *C**algebra \mathcal{A} of (not necessarily all) compact operators on a Hilbert space H possesses an orthonormal basis, and consequently the *C**-algebra $\mathcal{L}(E)$ is naturally represented on a Hilbert space contained in E. In fact, let $e_0 \in K(H)$ be a minimal projection and let $E_{e_0} = Ee_0 = \{xe_0 : x \in E\}$.

Observe that E_{e_0} is an invariant subspace for all K(H)-linear operators on E, and E_{e_0} is a Hilbert space with the inner product $(xe_0, ye_0) = \text{tr}(\langle xe_0, ye_0 \rangle)$ for all $x, y \in E$. Also, there exists an orthonormal basis (v_λ) for E such that $\langle v_\lambda, v_\lambda \rangle = e_0$, for all λ , and therefore E_{e_0} contains an orthonormal basis for E. This implies that E_{e_0} generates a dense submodule in E. The main results of [2] are as follows (Theorems 5 and 6 in [2]):

Let *E* be a Hilbert K(H)-module and e_0 be a minimal projection in K(H). Then the map $\Psi : \mathcal{L}(E) \to B(E_{e_0}), \Psi(A) = A|_{E_{e_0}}$ is a *-isomorphism of *C**-algebras. Also, $A \in \mathcal{K}(E)$ if and only if $\Psi(A) = A|_{E_{e_0}}$ is a compact operator on Hilbert space E_{e_0} . Therefore $\Psi : \mathcal{K}(E) \to K(E_{e_0}), \Psi(A) = A|_{E_{e_0}}$ is a *-isomorphism, too.

MAIN THEOREM. Let $(E_1, \langle \cdot, \cdot \rangle_1)$ and $(E_2, \langle \cdot, \cdot \rangle_2)$ be Hilbert K(H)-modules and $\Phi : \mathcal{L}(E_1) \to \mathcal{L}(E_2)$ be a *-isomorphism. Then there is a unitary $U : E_1 \to E_2$ such that $\Phi = \operatorname{AdU}$, and so E_1 and E_2 are isomorphic as Hilbert C*-modules.

Proof. Let e_0 be a nonzero minimal projection in K(H). As mentioned in the above statements there exist Hilbert spaces $(E_{1e_0}, (\cdot, \cdot)_1)$ and $(E_{2e_0}, (\cdot, \cdot)_2)$ and ***-isomorphisms

$$\Psi_i : \mathcal{L}(E_i) \to B(E_{ie_0}), \ \Psi_i(A) = A|_{E_{ie_0}}, \quad \text{for } i = 1, 2.$$

We consider the linear operator $\Phi' : B(E_{1e_0}) \to B(E_{2e_0})$ given by $\Phi' = \Psi_2 \Phi \Psi_1^{-1}$. Clearly, Φ' is a *-isomorphism. Therefore, there exists a unitary $u : E_{1e_0} \to E_{2e_0}$ such that $\Phi' = \operatorname{Ad} u$. Since each Hilbert K(H)-module possesses an orthonormal basis, we can choose an orthonormal basis $(v_\lambda)_{\lambda \in I}$ for E_1 such that $\langle v_\lambda, v_\lambda \rangle_1 = e_0$. Then $v_\lambda \in E_{1e_0}$, because $v_\lambda = v_\lambda \langle v_\lambda, v_\lambda \rangle_1 = v_\lambda e_0$. Then $(v_\lambda)_{\lambda \in I}$ is an orthonormal basis for Hilbert space E_{1e_0} . Let $w_\lambda = u(v_\lambda)$, for all $\lambda \in I$, then $(w_\lambda)_{\lambda \in I}$ is an orthonormal basis for Hilbert space E_{2e_0} such that $\langle w_\lambda, w_\lambda \rangle_2 = e_0$, since u is unitary. Now we can define a linear map $U : E_1 \to E_2$ by letting

$$U(x) = \sum_{\lambda} w_{\lambda} \langle v_{\lambda}, x \rangle_1 \quad \text{for all } x \in E_1.$$

Obviously *U* is a K(H)-linear map. Also, we have

$$\langle U(x), z \rangle_2 = \left\langle \sum_{\lambda} w_{\lambda} \langle v_{\lambda}, x \rangle_1, z \right\rangle_2 = \sum_{\lambda} \langle x, v_{\lambda} \rangle_1 \langle w_{\lambda}, z \rangle_2 = \left\langle x, \sum_{\lambda} v_{\lambda} \langle w_{\lambda}, z \rangle_2 \right\rangle_1$$

for all $x \in E_1$ and $z \in E_2$. Therefore *U* is adjointable and $U^* : E_2 \to E_1$ will be given by

$$U^*(z) = \sum_{\lambda} v_{\lambda} \langle w_{\lambda}, z \rangle_1$$

for all $z \in E_2$. Also we have

$$\begin{split} \langle U(x), U(y) \rangle_2 &= \left\langle \sum_{\lambda} w_{\lambda} \langle v_{\lambda}, x \rangle_1, \sum_{\lambda} w_{\lambda} \langle v_{\lambda}, y \rangle_1 \right\rangle_2 = \sum_{\lambda} \langle x, v_{\lambda} \rangle_1 \langle w_{\lambda}, w_{\lambda} \rangle_2 \langle v_{\lambda}, y \rangle_1 \\ &= \sum_{\lambda} \langle x, v_{\lambda} \rangle_1 \langle v_{\lambda}, y \rangle_1 = \langle x, y \rangle_1 \end{split}$$

where in the third equality, the fact was used that $v_{\lambda} = v_{\lambda} \langle v_{\lambda}, v_{\lambda} \rangle = v_{\lambda} \langle w_{\lambda}, w_{\lambda} \rangle$ for all $\lambda \in I$ and the last equality holds by Theorem 1 of [2]. Then U is an isometry. In a similar way, it can be shown that U^* is an isometry, too. Therefore U is a unitary operator between E_1 and E_2 . Also, we can show that $U(xe_0) = u(xe_0)$ for all $x \in E_1$. It can be shown that $U^*(ze_0) = u^*(ze_0)$, for all $z \in E_2$, too. Therefore $(UAU^*)|_{E_{2e_0}}(ze_0) = uA|_{E_{1e_0}}u^*(ze_0)$, for all $A \in \mathcal{L}(E_1)$ and $z \in E_2$.

Finally, assume that $A \in \mathcal{L}(E_1)$ and $z \in E_2$. Then

$$\begin{split} \Psi_2 \Phi(A)(ze_0) &= \Phi' \Psi_1(A)(ze_0) = \Phi'(A|_{E_{1e_0}})(ze_0) \\ &= u(A|_{E_{1e_0}})u^*(ze_0) = UAU^*|_{E_{2e_0}}(ze_0) = \Psi_2(UAU^*)(ze_0). \end{split}$$

Hence $\Phi(A)(ze_0) = (UAU^*)(ze_0)$ and this implies that $\Phi(A) = UAU^*$, since E_{2e_0} generates a dense submodule in E_2 , and $\Phi(A)$ and UAU^* are bounded module maps.

Assume that \mathcal{A} is a C^* -algebra of (not necessarily all) compact operators. It is well known that \mathcal{A} must be in the form $\mathcal{A} = \bigoplus_{j \in J} K(H_j)$ for a family $\{H_j\}_{j \in J}$ of

Hilbert spaces.

Also, it is well known that every *-isomorphism between $K(H_1)$ and $K(H_2)$ is in the form of Ad*u*, for some unitary operator $u : H_1 \to H_2$.

Now, by Theorems 8 and 9 in [2], the following result can be obtained:

COROLLARY 1. Let $(E_1, \langle \cdot, \cdot \rangle_1)$ and $(E_2, \langle \cdot, \cdot \rangle_2)$ be Hilbert C*-modules over a C*-algebra \mathcal{A} of (not necessarily all) compact operators. Then for every *-isomorphism $\Phi : \mathcal{L}(E_1) \to \mathcal{L}(E_2)$ there is a unitary $U : E_1 \to E_2$ such that $\Phi = \operatorname{AdU}$. Also, if $\Psi : \mathcal{K}(E_1) \to \mathcal{K}(E_2)$ is a *-isomorphism, then Ψ is in the form AdU, for some unitary operator $U : E_1 \to E_2$, and so E_1 and E_2 are isomorphic as Hilbert C*-modules.

The following interesting result can be concluded from Theorem 3.9 in [4] and Lemma 8.1.15 in [3].

COROLLARY 2. If C*-algebra A is strongly Morita equivalent to C*-algebra of compact operators, then every automorphism of A is a generalized inner automorphism. Consequently, the Picard group of A is trivial.

Acknowledgements. The author is thankful to the referee for valuable suggestions for improving the presentation of this paper.

REFERENCES

- [1] W. ARVESON, An Invitation to C*-Algebras, Springer-Verlag, New York 1976.
- [2] D. BAKIĆ, B. GULJAŠ, Hilbert C*-modules over C*-algebras of compact operators, Acta Sci. Math. (Szeged) 68(2002), 249–269.
- [3] D.B. BLECHER, Operator Algebras and their Modules An Operator Space Approach, Oxford Univ. Press, Oxford 2004.
- [4] L.G. BROWN, P. GREEN, M. RIEFFEL, Stable isomorphism and strong Morita equivalence of C*-algebras, *Pacific J. Math.* 71(2)(1977), 349–363.
- [5] M. FRANK, Isomorphisms of Hilbert C*-modules and *-isomorphisms of related operator C*-algebras, *Math. Scand.* 80(1997), 313–319.
- [6] E.C. LANCE, Hilbert C*-Modules A Toolkit for Operator Algebraists, Cambridge Univ. Press, Cambridge 1995.

MOHAMMAD B. ASADI, DEPARTMENT OF MATHEMATICAL SCIENCES, SHAHED UNIVERSITY, TEHRAN, IRAN

E-mail address: mb.asadi@gmail.com

Received January 10, 2006; revised February 28, 2006.