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ABSTRACT. Let (A, G, α) be a C∗-dynamical system and let X be an A-Hilbert
module with an α-compatible action η of G. Then it is shown that there exist a
coaction δA of G on the reduced crossed product A×α,r G and a coaction δX of
G on the reduced crossed product X×η,r G such that (X×η,r G)×δX

G ∼= X⊗
C(L2(G)), where C(L2(G)) denotes the C∗-algebra of all compact operators on
L2(G). Furthermore, when A has a nondegenerate coaction δA of G on A and
X is an A-Hilbert module with a nondegenerate δA-compatible coaction δX of
G, it is shown that there exists a dual action δ̂X of G on the crossed product
X×δX

G such that (X×δX
G)×

δ̂X ,r G ∼= X⊗ C(L2(G)).
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1. INTRODUCTION

C∗-crossed products are most important objects and tools in the theory of
C∗-algebras, in particular, in C∗-dynamical systems. When we deal with C∗-
crossed products, the most important theorem is the duality for C∗-crossed prod-
ucts.

On the other hand, in recent research of C∗-algebras, Hilbert C∗-modules
are getting to become a more important, standard tool in various research ar-
eas in C∗-algebras, for example, such as KK-theory, Morita equivalence and so
on (see [9] for KK-theory and [15] for Morita equivalence). A successful use of
Hilbert C∗-modules is in Morita equivalence for C∗-algebras, and then Hilbert
C∗-modules work as an imprimitivity bimodule. Let (A, G, α) and (B, G, β) be
C∗-dynamical systems and suppose that A and B are Morita equivalent. Then an
outstanding problem in which we are very much interested is whether the C∗-
crossed products A×α G and B×β G are also Morita equivalent. In fact, it was
shown in [3] and [4] that if there exists an A− B imprimitivity bimodule X with
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an (α, β)-compatible action η of G, A×α G and B×β G become Morita equivalent,
and then an imprimitivity bimodule for those C∗-crossed products is regarded
as a crossed product of X by η. In this paper, we will employ the construction
of crossed products of Hilbert C∗-modules given by [5], which would be most
understandable for us from viewpoint of analogy to C∗-crossed products of C∗-
algebras.

Let (A, G, α) be a C∗-dynamical system. In Section 3, we discuss duality for
crossed products of (right) Hilbert C∗-modules. First of all, we will define the
reduced crossed product X×η,r G of X by an α-compatible action η of G, and we
will show that there exists a dual coaction δA of G on the reduced crossed product
A ×α,r G and a dual coaction δX of G on the reduced crossed product X ×η,r G
such that the ((A×α,r G)×δA

G)-Hilbert module (X×η,r G)×δX
G is isomorphic

to the (A ⊗ C(L2(G)))-Hilbert module X ⊗ C(L2(G)). Applying this duality to
abelian group action case, we can obtain that (X ×η G) ×η̂ Ĝ is isomorphic to
X⊗C(L2(G)), where η̂ is the dual action of the dual group Ĝ of G on X×η G (see
[10] for duality for crossed products of imprimitivity bimodules by abelian group
actions).

In Section 4, we discuss duality of crossed products of Hilbert C∗-modules
by coactions of locally compact groups G. Let A be a C∗-algebra and let δA be a
nondegenerate coaction of G on A. Suppose that X is a Hilbert A-module with
a nondegenerate δA-compatible coaction δX of G on X. We then show that there
exists a dual action δ̂X of G on the crossed product X×δX

G such that the ((A×δA
G) ×

δ̂A ,r G)-Hilbert module (X ×δX G) ×
δ̂X ,r G is isomorphic (as a Hilbert C∗-

module) to the (A⊗ C(L2(G)))-Hilbert module X⊗ C(L2(G)).
Finally it would be significant to mention the common strategy to show

two kinds of duality theorems for crossed products of Hilbert C∗-modules. For
simplicity, consider the case of a C∗-dynamical system (A, G, α) with a locally
compact group G and a right A-Hilbert module X with an α-compatible action
η of G. Regarding X as a left K(X)- and right A-Hilbert module, we consider
the linking algebra L(X) for X which is a C∗-algebra and we obtain the canonical
C∗-dynamical system (L(X), G, θ) where θ is the canonical action of G associated
with α and η. Then by Imai-Takai’s duality, we see that

L((X×η,r G)×δX
G)=(L(X)×θ,r G)×δLG∼=L(X)⊗C(L2(G))=L(X⊗C(L2(G))).

Taking the right upper corners of those linking algebras, then it would be shown
that (X ×η,r G) ×δX

G is isomorphic to X ⊗ C(L2(G)). However, it is not nec-
essarily obvious that the duality isomorphism between (L(X)×θ,r G)×δL G and
L(X)⊗C(L2(G)) gives the isomorphism as a Hilbert C∗-module between (X×η,r

G)×δX
G and X⊗C(L2(G)). Hence what we have to do is to clarify this point. In

fact, for example, let C denote the field of all complex numbers and consider the
one-dimensional C-C-imprimitivity bimodule X. Then the linking algebra L(X)
for X is the 2× 2 matrix algebra M2(C), and the automorphism Adu on M2(C)
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defined by the unitary matrix u =
(

0 1
1 0

)
sends

(
0 a
0 0
)

to
(

0 0
a 0
)
. Thus we see that

an isomorphism between linking algebras does not necessarily give a bijective
correspondence between the right upper corners of those linking algebras.

Although we discuss duality for crossed products of right Hilbert C∗-modu-
les, by symmetry duality for crossed products of left Hilbert C∗-modules also can
be obtained.

2. NOTATION AND PRELIMINARIES

Recall the definition of a Hilbert C∗-module. Let A be a C∗-algebra. By a left
A-Hilbert module (or a left Hilbert A-module), we mean a left A-module X equipped
with an A-valued pairing 〈·, ·〉, called an A-valued inner product, satisfying the
following conditions:
(H1) 〈·, ·〉 is sesquilinear. (We make the convention that 〈·, ·〉 is linear in the first
variable and is conjugate-linear in the second variable.)
(H2) 〈x, y〉 = 〈y, x〉∗ for all x, y ∈ X.
(H3) 〈ax, y〉 = a〈x, y〉 for all x, y ∈ X and a ∈ A.
(H4) 〈x, x〉 > 0 for all x ∈ X, and 〈x, x〉 = 0 implies that x = 0.
(H5) X is a Banach space with respect to the norm ‖x‖ = ‖〈x, x〉‖1/2.

Let B be a C∗-algebra. Right B-Hilbert modules are defined similarly except
that we require that B should act on the right of X, that the B-valued inner product
〈·, ·〉 should be conjugate-linear in the first variable, and that 〈x, yb〉 = 〈x, y〉b
for all x, y ∈ X and b ∈ B. Here note that the action of a C∗-algebra on X is
automatically nondegenerate (Proposition 1.7 in [1]).

Let A and B be C∗-algebras. We denote by A〈·, ·〉 the A-valued inner product
on the left A-Hilbert module and by 〈·, ·〉B the B-valued inner product on the
right B-Hilbert module, respectively. By an A − B Hilbert bimodule, we mean a
left A-Hilbert module and a right B-Hilbert module X satisfying the following
condition:
(H6) A〈x, y〉·z = x·〈y, z〉B for all x, y, z ∈ X.

Note that an A − B Hilbert bimodule automatically satisfies the following
condition:
(H7) A〈xb, y〉 = A〈x, yb∗〉 and 〈ax, y〉B = 〈x, a∗y〉B for all x, y∈X, a∈A and b∈B.

Let X be an A − B Hilbert bimodule. Following [5], we say that a repre-
sentation of X as an A− B Hilbert bimodule is a triple (πA, πX, πB) consisting of
nondegenerate representations πA and πB of A and B on Hilbert spaces HA and
HB, respectively, together with a linear map πX : X → B(HB,HA) such that:
(R1) πX(ax) = πA(a)πX(x),
(R2) πX(xb) = πX(x)πB(b),
(R3) πA(A〈x, y〉) = πX(x)πX(y)∗, and
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(R4) πB(〈x, y〉B) = πX(x)∗πX(y)

for all a ∈ A, x, y ∈ X, and b ∈ B, where B(HB,HA) denotes the set of all bounded
linear operators fromHB intoHA.

Now we suppose that X is a right A-Hilbert module with the A-inner prod-
uct 〈·, ·〉. We define a linear operator Θx,y on X by

Θx,y(z) = x·〈y, z〉

for all x, y, z ∈ X. We denote by K(X) the C∗-algebra generated by the set {Θx,y :
x y ∈ X} (see Proposition 2.21 and Lemma 2.25 in [15]). Then X is a full left
K(X)-Hilbert module with respect to the natural left action defined by t · x =
t(x) for t ∈ K(X), x ∈ X, and the inner product K(X)〈x, y〉 ≡ Θx,y. Thus X is
a K(X) − A Hilbert bimodule. If a representation (πA,HA) of A is given, then
we can concretely construct πK(X) and πX (see Example 2.8 in [5]). For ease of
notation, we will usually write πK for πK(X) unless otherwise confused.

LEMMA 2.1. Let A be a C∗-algebra and let X be a right A-Hilbert module. Sup-
pose that (πK, πX, πA) is a representation of X as a K(X)− A Hilbert bimodule. If πA

is a faithful representation of A, then the representation πK of K(X) is also faithful.

Proof. This easily follows from (R1) and (R4).

Let A be a C∗-algebra and let X be aK(X)− A Hilbert bimodule. We denote
by X̃ the dual Hilbert module of X, which is the set X with the left A-action and
the right K(X)-action defined by

a · x̃ = (̃x · a∗), x̃ · t = (̃t∗ · x) for t ∈ K(X) and a ∈ A,

where we write x̃ if we view x ∈ X as an element of X̃. In addition, X̃ is an A−
K(X) Hilbert bimodule equipped with the A- and K(X)-valued inner products
given by

A〈x̃, ỹ〉 = 〈x, y〉A, 〈x̃, ỹ〉K(X) = K(X)〈x, y〉
for x, y ∈ X (see page 49 in [15] for the details of dual Hilbert C∗-modules). Put

L(X) =
{(

t x
ỹ a

)
: t ∈ K(X), a ∈ A, x, y ∈ X

}
.

For L =
(

t x
ỹ a

)
, the adjoint L∗ of L is defined by

L∗ =
(

t∗ y
x̃ a∗

)
.

Addition and scalar multiplication on L(X) are defined by the usual formulas for
matrices, and in addition, product in L(X) is given by(

t x
ỹ a

)(
t′ x′

ỹ′ a′

)
=
(

tt′ + K(X)〈x, y′〉 t · x′ + x · a′
ỹ · t′ + a · ỹ′ 〈y, x′〉A + aa′

)
.
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Then L(X) becomes a C∗-algebra (Proposition 2.3 in [1]). We call the C∗-algebra
L(X) the linking algebra for X. For ease of notation, we write

L(X) =
(
K(X) X

X̃ A

)
for the linking algebra for X (see page 50 in [15] for more details of linking alge-
bras).

LEMMA 2.2. Let A be a C∗-algebra and let X be a right A-Hilbert module. Sup-
pose that (πA,HA) is a faithful representation of A. Then there exist a representa-
tion (πK, πX, πA) of X and a representation (πA, π

X̃
, πK) of X̃ such that πX, π

X̃
and

(πK,HK ) are faithful. Define the representation (πL,H) of the linking algebra L(X) for
X by

πL

((
t x
ỹ a

))
=
(

πK(t) πX(x)
π

X̃
(ỹ) πA(a)

)
,

whereH = HK ⊕HA, πX(x) ∈ B(HA,HK ), π
X̃
(ỹ) ∈ B(HK,HA). Then (πL,H) is a

faithful representation of L(X).

Proof. The proof is straightforward (see Example 2.8 in [5] for the existence
of πK, πX and π

X̃
).

Let X be a right B-Hilbert module over a C∗-algebra B and let A be a C∗-
algebra. We denote by X⊗ A the external tensor product of X and A (see 1.2.4 in
[9] or 3.4 in [15] for the detail), where we regard A as a right A-Hilbert module
in a canonical way. We remark that X ⊗ A becomes a right (B ⊗min A)-Hilbert
module equipped with the (B⊗min A)-valued inner product by

〈〈x1 ⊗ a1, x2 ⊗ a2〉〉 = 〈x1, x2〉B ⊗ 〈a1, a2〉A = 〈x1, x2〉B ⊗ a∗1 a2

for xi ∈ X and ai ∈ A. From now on, throughout this paper any tensor product
of Hilbert C∗-modules always means the external tensor product.

The following result is essentially Remark 1.50 in [6] and will be repeatedly
used without comment.

LEMMA 2.3. Let A and B be C∗-algebras and let X be a right B-Hilbert mod-
ule. We regard the external tensor product X ⊗ A as a (K(X)⊗min A)− (B⊗min A)
Hilbert bimodule. We define a homomorphism Ψ from the injective C∗-tensor product
L(X)⊗min A into the linking algebra L(X⊗ A) for X⊗ A by

Ψ :
(

t x
ỹ b

)
⊗ a→

(
t⊗ a x⊗ a

(y⊗ a)̃ b⊗ a

)
where a ∈ A. Then Ψ is an isomorphism. Thus we can identify L(X) ⊗min A with
L(X⊗ A) as a C∗-algebra.

DEFINITION 2.4. Let A and B be C∗-algebras. For convenience of notation,
we assume that X is a right A-Hilbert module and that Y is a right B-Hilbert
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module. We say that a linear map ρ from X into Y is a homomorphism (as a Hilbert
C∗-module) if there exist a homomorphism π from A into B such that

(2.1) π(〈x, y〉A) = 〈ρ(x), ρ(y)〉B
for all x, y ∈ X.

We remark that it follows from (2.1) above that

(2.2) ρ(xa) = ρ(x)π(a)

for all x ∈ X, a ∈ A. In particular, in the above, we say that X is isomorphic (as a
Hilbert C∗-module) to Y if ρ from X into Y is surjective and π from A into B is
bijective. In this case, such a map ρ from X onto Y is automatically injective, hence
bijective. In fact, this follows easily from condition (2.1).

DEFINITION 2.5. Let A and B be C∗-algebras. Let X and Y be a K(X)− A
Hilbert bimodule and a K(Y)− B Hilbert bimodule, respectively. We say that a
homomorphism Ψ from L(X) into L(Y) is componentwise if there exist homomor-
phisms ρ1 : K(X) → K(Y), ρ2 : X → Y, ρ3 : X̃ → Ỹ and ρ4 : A → B such
that

Ψ

((
t x
ỹ a

))
=
(

ρ1(t) ρ2(x)
ρ3(ỹ) ρ4(a)

)
.

We call each homomorphism ρ1, ρ2, ρ3 and ρ4 a component of Ψ.

The following result plays an important role when we derive a Hilbert C∗-
module isomorphism from an isomorphism between linking algebras.

LEMMA 2.6. Let X be a K(X) − A Hilbert bimodule and let Y be a K(Y) − B
Hilbert bimodule. Suppose that a homomorphism Ψ from L(X)into L(Y) has a form of
Ψ =

(
γ ρ

ρ′ π

)
where ρ : X → Y and ρ′ : X̃ → Ỹ are linear mappings, π : A → B and

γ : K(X)→ K(Y) are homomorphisms. Then we have

π(〈x, y〉A) = 〈ρ(x), ρ(y)〉B
for all x, y in X, that is, ρ is a homomorphism from X into Y. Hence, if Ψ is an isomor-
phism, ρ is an isomorphism as a Hilbert C∗-module from X onto Y.

Proof. Take
(

0 x
0 0
)

,
(

0 y
0 0

)
∈ L(X). Then we have

Ψ

((
0 x
0 0

)∗ (0 y
0 0

))
= Ψ

((
0 0
x̃ 0

)(
0 y
0 0

))
= Ψ

((
0 0
0 〈x, y〉A

))
=
(

0 0
0 π(〈x, y〉A)

)
.

On the other hand, we have

Ψ

((
0 x
0 0

)∗)
Ψ

((
0 y
0 0

))
=

(
0 0

ρ̃(x) 0

)(
0 ρ(y)
0 0

)
=
(

0 0
0 〈ρ(x), ρ(y)〉B

)
.
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Thus we obtain that π(〈x, y〉A) = 〈ρ(x), ρ(y)〉B for all x, y in X.

Let (A, G, α) be a C∗-dynamical system. By a C∗-dynamical system, we mean
a triple (A, G, α) consisting of a C∗-algebra A, a locally compact group G with
left invariant Haar measure ds and a group homomorphism α from G into the
automorphism group of A such that G 3 t → αt(x) is continuous for each x in
A in the norm topology. Denote by K(A, G) the linear space of all continuous
functions from G into A with compact support and by L1(A, G) the completion
of K(A, G) by the L1-norm (see 7.6 in [13] for the Banach∗-algebra structure of
L1(A, G)). Then the C∗-crossed product A×α G of A by G is the enveloping C∗-
algebra of L1(A, G).

Recall that for any covariant representation (π, u,H), the representation
(π × u,H) of A×α G is defined by

(π × u)(x) =
∫
G

π(x(t))utdt, x ∈ L1(A, G).

Throughout this paper, for a given representation (π,H) of A, we always
denote by π̃ the representation of A on the Hilbert space L2(H, G) defined by

(π̃(a)ξ)(t) = π(αt−1(a))ξ(t)

for a ∈ A, ξ ∈ L2(H, G), where L2(H, G) is the Hilbert space of all square inte-
grable functions from G into H. Define a unitary representation λA on L2(H, G)
by

(λAsξ)(t) = ξ(s−1t).
Then (π̃, λA, L2(H, G)) is a covariant representation of A. If π is faithful, then
(π̃ × λA)(A ×α G) is called the reduced C∗-crossed product of A by G and we
denote it by A×α,r G.

Let (A, G, α) and (B, G, β) be C∗-dynamical systems and let X be an A− B
Hilbert bimodule. Suppose that there exists an α-compatible action (respectively a
β-compatible action) η of G on X, that is, a group homomorphism from G into the
group of invertible linear transformations on X such that
(E1) ηt(a · x) = αt(a)ηt(x) (respectively ηt(x · b) = ηt(x)βt(b)),
(E2) A〈ηt(x), ηt(y)〉 = αt(A〈x, y〉) (respectively 〈ηt(x), ηt(y)〉B = βt(〈x, y〉B)),
for each t ∈ G, a ∈ A, b ∈ B, x, y ∈ X; and such that t→ ηt(x) is continuous from
G into X for each x ∈ X in norm. The combination of these two compatibility
conditions will be simply called (α, β)-compatible. Then there exists an (A ×α

G) − (B ×β G) Hilbert bimodule X ×η G containing a dense subspace K(X, G)
such that

( f · x)(s) =
∫
G

f (t)ηt(x(t−1s))dt, (x · g)(s) =
∫
G

x(t)βt(g(t−1s))dt,

A×αG〈x, y〉(s)=
∫
G

A〈x(st−1), ηs(y(t−1))〉dt, 〈x, y〉B×βG (s)=
∫
G

βt−1(〈x(t), y(ts)〉B)dt,
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for f ∈ K(A, G), x, y ∈ K(X, G), and g ∈ K(B, G) (see Proposition 3.5 in [5]). We
call X×η G the (full) crossed product of X by G. Here K(X, G) (respectively K(A, G)
and K(B, G)) denotes the set of continuous functions from G into X (respectively
A and B) with compact support.

DEFINITION 2.7. Let (A, G, α) and (B, G, β) be C∗-dynamical systems. Let
X be an A− B Hilbert bimodule with an (α, β)-compatible action η of G. Suppose
that (πA, u,HA) and (πB, v,HB) are covariant representations of A and B, respec-
tively. Then we say that a representation (πA, πX, πB, u, v) of X into B(HB,HA) is
covariant if

πX(ηt(x)) = utπX(x)v∗t for all x ∈ X, t ∈ G.

Then we define the representation πX × v of X ×η G into B(HB,HA) by the fol-
lowing, for x ∈ K(X, G):

(πX × v)(x) =
∫
G

πX(x(s))vsds.

LEMMA 2.8. Let (πA, πX, πB, u, v) be as above. Then (πA × u, πX × v, πB × v)
is a representation of X×η G into B(HB,HA).

Proof. We have only to verify that, for x, y ∈ K(X, G), f ∈ K(A, G), g ∈
K(B, G),

(πX × v)( f xg) = (πA × u)( f )(πX × v)(x)(πB × v)(g);

(πA × u)(A×αG〈x, y〉) = (πX × v)(x)(πX × v)(y)∗;
(πB × v)(〈x, y〉B×βG) = (πX × v)(x)∗(πX × v)(y).

For g ∈ K(B, G) and x ∈ K(X, G), we have

(πX×v)(xg)=
∫
G

πX((xg)(s))vsds =
∫
G

∫
G

πX(x(t)βt(g(t−1s)))vsdsdt

=
∫
G

∫
G

πX(x(t))πB(βt(g(t−1s)))vsdsdt=
∫
G

∫
G

πX(x(t))vtπB(g(t−1s))v∗t vsdsdt

=
∫
G

πX(x(t))vt(πB × v)(g)dt = (πX × v)(x)(πB × v)(g).

For x, y ∈ K(X, G), we have

(πB×v)(〈x, y〉B×βG)=
∫
G

πB(〈x, y〉B×βG(s))vsds=
∫
G

∫
G

πB(βt−1(〈x(t), y(ts)〉B))vsdsdt

=
∫
G

∫
G

v∗tπB(〈x(t), y(ts)〉B)vtvsdsdt=
∫
G

∫
G

v∗tπX(x(t))∗πX(y(ts))vtsdsdt

=
∫
G

v∗t πX(x(t))∗(πX × v)(y)dt = (πX × v)(x)∗(πX × v)(y).
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Similarly we can prove that (πX × v)( f x) = (πA × u)( f )(πX × v)(x) and that
(πA × u)(A×αG〈x, y〉) = (πX × v)(x)(πX × v)(y)∗. So we will leave the detail to
the reader. Thus we complete the proof.

Let (A, G, α) and (B, G, β) be C∗-dynamical systems. Let η be an (α, β)-
compatible action of G on an A − B Hilbert bimodule X. Consider a repre-
sentation (πA, πX, πB) of X, where (πA,HA) (respectively (πB,HB)) is a repre-
sentation of A (respectively B). Then we obtain the covariant representations
(π̃A, λA, L2(HA, G)) and (π̃B, λB, L2(HB, G)) of A and B, respectively. Define the
representation π̃X of X into B(L2(HB, G), L2(HA, G)) by

(π̃X(x)ξ)(t) = πX(ηt−1(x))ξ(t)

for all x ∈ X, t ∈ G and ξ ∈ L2(HB, G). Then we have the following.

LEMMA 2.9. Let X be an A− B Hilbert bimodule, and let (π̃A, λA, L2(HA, G))
and (π̃B, λB, L2(HB, G)) be as above. Then (π̃A, π̃X, π̃B, λA, λB) is a representation of X
into B(L2(HB, G), L2(HA, G)), and we have, for s, t ∈ G and ξ ∈ L2(HB, G),

(π̃X(ηs(x))ξ)(t) = ((λAsπ̃X(x)λB∗s )ξ)(t).

Proof. The proof is straightforward. So the detail is left to the reader.

DEFINITION 2.10. Let (A, G, α) and (B, G, β) be C∗-dynamical systems. Let
η be a (β, α)-compatible action of G on a B− A Hilbert bimodule X. Consider a
representation (πB, πX, πA) of X, where (πA,HA) and (πB,HB) are faithful repre-
sentations of A and B, respectively. Then πX is automatically faithful. Consider
the representation π̃X × λA of X×η G into B(L2(HA, G), L2(HB, G)). Then we say
that (π̃X × λA)(X ×η G) is the reduced crossed product of X by G, and we denote it
by X ×η,r G. It is easy to verify that X ×η,r G is a (B×β,r G)− (A×α,r G) Hilbert
bimodule. We will see later that it follows from Proposition 2.11 that X ×η,r G
does not depend on the choice of a pair of faithful representations πA and πB of
A and B.

From now on, we suppose that X is a right A-Hilbert module. Note that
K(X) has a canonical action Adη of G which is defined by

Adηs(t) = ηs · t · ηs−1 , t ∈ K(X).

Then η is an (Adη, α)-compatible action of G on X. Define the action η̃ of G on X̃
by

η̃s(x̃) = η̃s(x)

for x̃ ∈ X̃ and s ∈ G. We thus define an action θ of G on the linking algebra L(X)
for X by

θs

((
t x
ỹ a

))
=
(

Adηs(t) ηs(x)
η̃s(ỹ) αs(a)

)
.
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Then we denote θs simply by

θs =
(

Adηs ηs
η̃s αs

)
.

Thus we obtain the C∗-dynamical system (L(X), G, θ). Here we remark that
L(X) ×θ G is canonically identified with the linking algebra L(X ×η G) (cf. the
proof of Theorem 4.1 in [5]). This fact plays a crucial role throughout this paper
and we will use it repeatedly. We remark that X̃ ×η̃,r G is canonically identified
with (X×η,r G)̃ . The following result is essentially Lemma 3.3 in [6].

PROPOSITION 2.11. Let X be a K(X)− A Hilbert bimodule and let L(X) be the
linking algebra for X. Suppose that (L(X), G, θ) is the C∗-dynamical system above. We
define a representation πL of L(X) by

πL =
(

πK πX

πX̃ πA

)
,

where (πK, πX, πA) and (πA, πX̃, πK) are representations of X and X̃ respectively, and
define the unitary representation λL of G by λL = λK⊕ λA on L2(HK, G)⊕ L2(HA, G).
Then we have

(π̃L × λL)(L(X)×θ G) =

(
(π̃K × λK)(K(X)×Adη G) (π̃X × λA)(X×η G)

(π̃X̃ × λK)(X̃×η̃ G) (π̃A × λA)(A×α G)

)
.

Hence we obtain that

L(X)×θ,r G =

(
K(X)×Adη,r G X×η,r G

X̃×η̃,r G A×α,r G

)
.

Here we need to give a remark about the above proposition, which will be
used later to prove Lemma 4.5. It is not necessarily essential in Proposition 2.11
that the action of G on K(X) is Adη. In fact, if K(X) admits another action κ of G
and if η on X is κ-compatible, we can define an action θ of G on L(X) by

θs =
(

κs ηs
η̃s αs

)
.

Then it is not hard to verify that we can obtain the result similar to Proposi-
tion 2.11 above, that is,

(π̃L × λL)(L(X)×θ G) =
(

(π̃K × λK)(K(X)×κ G) (π̃X × λA)(X×η G)
(π̃X̃ × λK)(X̃×η̃ G) (π̃A × λA)(A×α G)

)
.

Now as a corollary to Proposition 2.11, we obtain the following.

PROPOSITION 2.12. Under the notation in Lemma 2.9, suppose that π̃A is a faith-
ful representation of A. Then π̃X × λA is a faithful representation of X×η,r G.

Proof. Since π̃A is faithful, so is also π̃X. Since we see that π̃L =
(

π̃K π̃X
π̃X̃ π̃A

)
and since it then follows from Lemma 2.1 that π̃K is faithful, we see that so is also
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π̃L. Thus π̃L×λL is a faithful representation ofL(X)×θ,r G (cf. 7.7.5 in [13]). Then
it follows from Proposition 2.11 that every component of π̃L × λL, in particular,
π̃X × λA is faithful.

PROPOSITION 2.13. Let (A, G, α) be a C∗-dynamical system and let X be a right
A-Hilbert module. Suppose that there exists an α-compatible action η of G on X. If G is
amenable, then X×η G is isomorphic to X×η,r G.

Proof. Consider the C∗-crossed productL(X)×θ G ofL(X) by θ as in Propo-
sition 2.11. Then L(X) ×θ G is canonically identified with the linking algebra
L(X ×η G) (cf. the proof of Theorem 4.1 in [5]). Since G is amenable, L(X)×θ G
is isomorphic to the reduced C∗-crossed product L(X) ×θ,r G which is canoni-
cally identified with L(X×η,r G) by Proposition 2.11. Since such an isomorphism
is componentwise, taking the right upper corners of those linking algebras, the
desired result follows from Lemma 2.6.

Now the reader is referred to the proof of 7.7.12 in [13] for the following
discussion. We always denote by C0(G) the set of all continuous functions on G
vanishing at infinity which is a C∗-algebra in a canonical way and let τ be the left
translation on C0(G), that is,

τs( f )(t) = f (s−1t)

for f ∈ C0(G). Then we obtain a C∗-dynamical system (C0(G), G, τ).
Let (L(X), G, θ) be as above, and we denote by C0(L(X), G) the C∗-algebra

of all continuous functions vanishing at infinity from G into L(X), which is iso-
morphic to L(X)⊗ C0(G). Let ρA be a faithful representation of A on a Hilbert
spaceHA. Take faithful representations ρK ofK(X) onHK, ρX of X intoB(HA,HK),
and ρX̃ of X̃ into B(HK,HA), as in Lemma 2.2. We define a faithful representation
πX of the C0(K(X), G)−C0(A, G) Hilbert bimodule C0(X, G)(∼= X⊗C0(G)) into
B(L2(HA, G), L2(HK, G)) by

(πX(z)ξ)(t) = ρX(z(t))ξ(t)

for z ∈ C0(X, G), ξ ∈ L2(HA, G). Then we obtain the representation π̃X × λA of
(X ⊗ C0(G)) ×η⊗τ,r G into B(L2(HA, G × G), L2(HK, G × G)) . Representations
πK of C0(K(X), G), πX̃ of C0(X̃, G) and πA of C0(A, G) are also defined in a sim-
ilar way, and similarly we obtain π̃K × λK, π̃

X̃
× λK and π̃A × λA. Let πL be the

faithful representation of L(X) on H (= HK ⊕HA) defined by πL =
(

ρK ρX
ρX̃ ρA

)
.

Define a faithful representation π of C0(L(X), G) on L2(H, G) by

(π(z)ξ)(t) = πL(z(t))ξ(t)

for z ∈ K(L(X), G), ξ ∈ L2(H, G), and put

γs(z)(t) = θs(z(s−1t))
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for s, t ∈ G. Then we obtain a faithful representation (π̃ × λ, L2(H, G × G)) of
C0(L(X), G)×γ,r G. Define a unitary operator w on L2(H, G× G) by

(wξ)(s, t) = ∆(t)1/2ξ(st, t) =
(

∆(t)1/2ξ1(st, t)
∆(t)1/2ξ2(st, t)

)
≡
(

(w1ξ1)(s, t)
(w2ξ2)(s, t)

)
for ξ = ξ1⊕ ξ2 ∈ L2(H, G×G) with ξ1 ∈ L2(HK, G×G) and ξ2 ∈ L2(HA, G×G).
Take any z =

( z1 z2
z3 z4

)
∈ K(K(L(X), G), G) (= K(L(X), G× G)). Then we have

(w∗(π̃ × λ)(z)wξ)(s, t)

=
∫
G

πL(θts−1(z(r, s)))ξ(r−1s, t)dr

=
∫
G

(
ρK(Adηts−1(z1(r, s))) ρX(ηts−1(z2(r, s)))

ρX̃(η̃ts−1(z3(r, s))) ρA(αts−1(z4(r, s)))

)(
ξ1(r−1s, t)
ξ2(r−1s, t)

)
dr

=


∫
G

ρK(Adηts−1(z1(r, s)))ξ1(r−1s, t)dr +
∫
G

ρX(ηts−1(z2(r, s)))ξ2(r−1s, t)dr∫
G

ρX̃(η̃ts−1(z3(r, s)))ξ1(r−1s, t)dr +
∫
G

ρA(αts−1(z4(r, s)))ξ2(r−1s, t)dr


=

(w∗1(π̃K × λK)(z1)w1ξ1)(s, t) + (w∗1(π̃X × λA)(z2)w2ξ2)(s, t)

(w∗2(π̃
X̃
× λK)(z3)w1ξ1)(s, t) + (w∗2(π̃A × λA)(z4)w2ξ2)(s, t)

 .

Thus we obtain that

w∗(π̃ × λ)(z)w =
(

w∗1(π̃K × λK)(z1)w1 w∗1(π̃X × λA)(z2)w2
w∗2(π̃

X̃
× λK)(z3)w1 w∗2(π̃A × λA)(z4)w2

)
∈ L(X)⊗ C(L2(G)) =

(
K(X)⊗ C(L2(G)) X⊗ C(L2(G))

X̃⊗ C(L2(G)) A⊗ C(L2(G))

)
,

which shows that the isomorphism z → w∗(π̃ × λ)(z)w is componentwise from
C0(L(X), G) ×γ,r G onto L(X) ⊗ C(L2(G)). Furthermore, if we denote by ρ the
right regular representation of G on L2(G) and if we define

ρ̃t(z)(r, s) = z(r, st) =
(

z1(r, st) z2(r, st)
z3(r, st) z4(r, st)

)
,

then we have

w∗(π̃ × λ)(ρ̃t(z))w = (θ ⊗Adρ)t(w∗(π̃ × λ)(z)w)

(see the proof of 7.7.12 in [13]), which shows that the isomorphism z → w∗(π̃ ×
λ)(z)w is G-equivariant. If we identify C0(L(X), G) with L(X)⊗ C0(G), we ob-
tain

γs = θs ⊗ τs.
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Then C0(L(X), G)×γ,r G can be regarded as a linking algebra. In fact, it follows
from Lemma 2.3 and the remark preceding Proposition 2.11 that

(L(X)⊗C0(G))×θ⊗τ,r G = L(X⊗C0(G))×θ⊗τ,r G = L((X⊗C0(G))×η⊗τ,r G).

Now we define the isomorphism Ψ : C0(L(X), G)×γ,r G → L(X)⊗ C(L2(G)) by
Ψ(z) = w∗(π̃ × λ)(z)w, and we obtain the following lemma.

LEMMA 2.14. The isomorphism Ψ : C0(L(X), G)×γ,r G → L(X)⊗ C(L2(G))
is componentwise. Furthermore Ψ carries ρ̃ to θ ⊗Adρ.

3. DUALITY FOR CROSSED PRODUCTS BY GROUP ACTIONS

In this section, we shall prove the duality theorem for crossed products of
Hilbert C∗-modules by actions of groups. Throughout this section, if necessary,
without comment we suppose that a C∗-algebra is concretely represented on the
universal Hilbert space.

First of all we briefly review the definition of the crossed products by coac-
tions. Let G be a locally compact group with left invariant Haar measure ds. We
denote by λ the left regular representation of G on L2(G). We define the repre-
sentation λ̃ of L1(G) on L2(G) by

λ̃( f ) =
∫
G

f (s)λsds

for f ∈ L1(G). Then the reduced group C∗-algebra C∗r (G) of G is defined as the
norm closure of λ̃(L1(G)) in the set of all bounded linear operators on L2(G).
If no confusion is possible, we write λ( f ) for λ̃( f ) above. In the definition of
a coaction of G, the references ([7], [8], [12], [14]) of the duality theorems adopt
the use of C∗r (G). Therefore we prefer the use of C∗r (G) to that of the full group
C∗-algebra C∗(G) for the convenience of the reader.

Let A be a C∗-algebra and denote by M(A ⊗min C∗r (G)) the multiplier al-
gebra of the injective C∗-tensor product A ⊗min C∗r (G). We then define the C∗-
subalgebra M̃(A⊗min C∗r (G)) of M(A⊗min C∗r (G)) by

M̃(A⊗min C∗r (G)) =

{m∈M(A⊗min C∗r (G)) : m(1⊗ x), (1⊗ x)m∈A⊗min C∗r (G) for all x∈C∗r (G)}.

We denote by WG the unitary operator on L2(G× G) defined by

(WGξ)(s, t) = ξ(s, s−1t) for ξ ∈ L2(G× G) and s, t∈G.

Define the homomorphism δG from C∗r (G) into M̃(C∗r (G)⊗min C∗r (G)) by

δG(λ( f )) = WG(λ( f )⊗ 1)WG
∗ for f ∈ L1(G).

We say that an injective homomorphism δ from A into M̃(A ⊗min C∗r (G)) is a
coaction of a locally compact group G on A if δ satisfies:
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(C1) there is an approximate identity {ei} for A such that δ(ei) → 1 strictly in
M̃(A⊗min C∗r (G));
(C2) (δ⊗ id)(δ(a)) = (id⊗ δG)(δ(a)) for all a ∈ A, where we always denote by
id the identity map on each considered set.

Furthermore, the coaction δ is said to be nondegenerate if it satisfies the addi-
tional condition:

(C3) for every nonzero ϕ∈A∗, there exists ψ∈C∗r (G)∗ such that (ϕ⊗ψ)◦δ 6=0.

This is equivalent to the condition that the closed linear span of δ(A)(1A⊗C∗r (G))
be equal to A⊗min C∗r (G) (see, for example, 2.2 in [14]), where 1A is the identity of
the multiplier algebra M(A) for A. (In (C2) and (C3), we implicitly extended δ to
M̃(A⊗min C∗r (G)), which is ensured by (C1).) Throughout this paper, we always
denote by the same symbol δ the extension of δ to M̃(A⊗min C∗r (G)).

Let δ be a coaction of a locally compact group G on A and let C0(G) be the
set of all continuous functions on G vanishing at infinity. We denote by M f the
multiplication operator on L2(G) given by f ∈ C0(G) which is defined by

(M f ξ)(t) = f (t)ξ(t)

for all ξ ∈ L2(G). Then the crossed product A×δ G of A by δ is the C∗-subalgebra
of M(A ⊗ C(L2(G))) generated by the set {δ(a)(1⊗ M f ) : a ∈ A, f ∈ C0(G)},
where C(L2(G)) denotes the C∗-algebra of all compact linear operators on L2(G).

We denote by M(X) the set of all multipliers of a right A-Hilbert module
X. Here we must remark that we do not require X to be full as a right A-Hilbert
module. In fact, even though X is not full, it is possible to define a multiplier of a
K(X)− A Hilbert bimodule X. But we need to require X to satisfy condition (H6)
in Section 2, and we leave checking to need (H6) in [7] to the reader. Following
Section 1 in [7], we refer to M(X) as the multiplier bimodule of X, and note that
M(X) is an M(K(X))−M(A) Hilbert bimodule, where M(K(X)) and M(A) are
the multiplier algebras for K(X) and A, respectively. The reader is referred to [7]
for the further details of multiplier modules of Hilbert C∗-modules.

Let δA : A → M̃(A ⊗min C∗r (G)) be a coaction of a locally compact group
G on the C∗-algebra A and let δB : B → M̃(B ⊗min C∗r (G)) be a coaction of G
on the C∗-algebra B. Suppose that X is a B − A Hilbert bimodule. We say that
a linear map δX : X → M(X ⊗ C∗r (G)) is a δA-compatible coaction (respectively a
δB-compatible coaction) of G on X if δX satisfies the following conditions:

(D1) δX(x)(1A ⊗ z) lies in X⊗ C∗r (G) for all x ∈ X and z ∈ C∗r (G);
(respectively (D1)′ (1B ⊗ z)δX(x) lies in X⊗ C∗r (G) for all x ∈ X and z ∈
C∗r (G);)

(D2) δX(x · a) = δX(x) · δA(a) for all x ∈ X and a ∈ A;
(respectively (D2)′ δX(b · x) = δB(b) · δX(x) for all x ∈ X and b ∈ B;)

(D3) δA(〈x, y〉A) = 〈δX(x), δX(y)〉M(A⊗minC∗r (G));
(respectively (D3)′ δB(B〈x, y〉) = M(B⊗minC∗r (G))〈δX(x), δX(y)〉;)
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(D4) (δX ⊗ id) ◦ δX = (id⊗ δG) ◦ δX.

(In (D1) and (D2) (respectively in (D1)′ and (D2)′), we implicitly extended
the module actions on the (B ⊗min C∗r (G)) − (A ⊗min C∗r (G)) Hilbert bimodule
X ⊗ C∗r (G) to actions of the multiplier algebras on the multiplier bimodule; in
(D3) (respectively (D3)′) we extended the inner products to M(X ⊗ C∗r (G)) ; and
in (D4), we used the strictly continuous extensions of δX ⊗ id and id⊗ δG to make
sense of the compositions.) The combination of these two compatibility condi-
tions will be simply called (δB, δA)-compatible.

Furthermore, we say that δX is nondegenerate if δX satisfies the following ad-
ditional conditions:

(D5) the closed linear span of δX(X)(1A ⊗ C∗r (G)) is equal to X⊗ C∗r (G);
(D5)′ the closed linear span of (1B ⊗ C∗r (G))δX(X) is equal to X⊗ C∗r (G).

For a Hilbert A-module X with a coaction δX of G, we define a coaction δX̃

of G associated with δX on the dual Hilbert A-module X̃ by

δX̃(x̃) = δ̃X(x) for x̃ ∈ X̃.

Let δA be a coaction of G on a C∗-algebra A and let X be a right A-Hilbert
module throughout this section, and we suppose that A and K(X) are concretely
represented on Hilbert spaces HA and HK, respectively. Given a δA-compatible
coaction δX of G on X, the crossed product X×δX

G of X by δX is the right (A×δA
G)-

Hilbert closed submodule of M(X⊗ C(L2(G))) ⊂ B(L2(HA, G), L2(HK, G)) gen-
erated by the set {δX(x)(1A ⊗ M f ) : x ∈ X, f ∈ C0(G)}. Then the inner prod-
uct on X ×δX

G is given in terms of the usual operator adjoint ∗ : B(L2(HA, G),
L2(HK, G))→ B(L2(HK, G), L2(HA, G)) by

〈x, y〉A×δA
G = x∗y for x, y ∈ X×δX

G

(see Theorem 3.2 in [7] for the detail).
Let (A, G, α) be a C∗-dynamical system and let A×α,r G be the reduced C∗-

crossed product of A by G. If π is a faithful representation of A on a Hilbert space
H, there is a faithful representation (π̃ × λ,H⊗ L2(G)) of A×α,r G. Then

((π̃ × λ)⊗ id)(δ(x)) = (1A ⊗WG)((π̃ × λ)⊗ id)(x⊗ 1)(1A ⊗WG
∗)

for x ∈ A ×α,r G defines a nondegenerate coaction δ of G on A ×α,r G, which
is called the dual coaction (cf. 2.3(1) in [14]). The duality that (A ×α,r G) ×δ G is
isomorphic to A⊗ C(L2(G)) is referred to as Imai-Takai’s duality [8].

DEFINITION 3.1. Let (A, G, α) be a C∗-dynamical system and let X be a right
A-Hilbert module with an α-compatible action η of G. We then regard X as a
K(X)− A Hilbert bimodule and let (πK, πX, πA) be a representation of X, where
(πK,HK) and (πA,HA) are representations of K(X) and A, respectively. If πX is
a faithful representation of X into B(HA,HK), then there is a faithful representa-
tion π̃X × λA of X ×η,r G (see Proposition 2.12). Denote by 1K the identity of the
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multiplier algebra M(K(X)) for K(X). Then the dual coaction δX of G on X×η,r G
is defined by

((π̃X × λA)⊗ id)(δX(x)) = (1K ⊗WG)((π̃X × λA)⊗ id)(x⊗ 1)(1A ⊗WG
∗)

for x ∈ X ×η,r G. Similarly, we define also the dual coaction δX̃ of G on X̃ ×η̃,r G.
We remark that if we canonically identify X̃×η̃,r G with (X×η,r G)̃, then δX̃(x̃) =

δ̃X(x).

For a representation (πK, πX, πA) of X, as in Lemma 2.2 we define a repre-
sentation πL of the linking algebra L(X) for X by

πL =
(

πK πX

πX̃ πA

)
,

where the representation πX̃ of X̃ is defined by πX̃(x̃) = π̃X(x). From now on, we
will consider only such a form as a representation πL of L(X).

We recall thatK(X) has a canonical action Adη of G, and so η is an (Adη, α)-
compatible action of G on X. Denote again by η̃ the action of G on X̃ defined by

η̃s(x̃) = η̃s(x) for x̃ ∈ X̃ and s ∈ G. As in Section 2, we denote again by θ the
action of G on the linking algebra L(X) of X given by

θs

((
t x
ỹ a

))
=
(

Adηs(t) ηs(x)
η̃s(ỹ) αs(a)

)
.

From now on, we use this notation for (L(X), G, θ) without comment.

PROPOSITION 3.2. Let (L(X), G, θ) be the C∗-dynamical system above and let
δL be the dual coaction of G on L(X) ×θ,r G. Then we have δL =

(
δK δX
δX̃ δA

)
, where

δX and δX̃ are as in Definition 3.1, δK and δA are the dual coactions of A ×α,r G and
K(X)×Adη,r G, respectively.

Proof. Take a faithful representation πL =
(

πK πX
πX̃ πA

)
of L(X). Put

δ =
(

δK δX

δX̃ δA

)
.

In order to show that δL = δ, it suffices to verify that δ satisfies

((π̃L × λL)⊗ id)(δ(z)) = (1L(X) ⊗WG)((π̃L × λL)⊗ id)(z⊗ 1)(1L(X) ⊗WG
∗)

for z =
(

t x
ỹ a

)
∈ L(X)×θ,r G (= L(X×η,r G)).

Since (π̃L × λL) ⊗ id =
(

(π̃K×λK)⊗id (π̃X×λA)⊗id
(π̃

X̃
×λK)⊗id (π̃A×λA)⊗id

)
(see Proposition 2.11)

and since we have

1L(X)⊗WG =
(

1K 0
0 1A

)
⊗WG =

(
1K ⊗WG 0

0 1A ⊗WG

)
,
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we have

(1L(X) ⊗WG)((π̃L × λL)⊗ id)(z⊗ 1)(1L(X) ⊗WG
∗)

=
(

(1K ⊗WG)((π̃K × λK)⊗ id)(t⊗ 1)(1K ⊗WG
∗)

(1A ⊗WG)((π̃
X̃
× λK)⊗ id)(ỹ⊗ 1)(1K ⊗WG

∗)

(1K ⊗WG)((π̃X × λA)⊗ id)(x⊗ 1)(1A ⊗WG
∗)

(1A ⊗WG)((π̃A × λA)⊗ id)(a⊗ 1)(1A ⊗WG
∗)

)
=
(

((π̃K × λK)⊗ id)(δK(t)) ((π̃X × λA)⊗ id)(δX(x))
((π̃

X̃
× λK)⊗ id)(δX̃(ỹ)) ((π̃A × λA)⊗ id)(δA(a))

)
= ((π̃L × λL)⊗ id)

((
δK(t) δX(x)
δX̃(ỹ) δA(a)

))
.

This shows that δL = δ. Thus we complete the proof.

The following result is essentially Proposition 3.5 in [6]. So we omit the
proof.

LEMMA 3.3. With notation as in Proposition 3.2, δX is a (δK, δA)-compatible coac-
tion and δX̃ is a (δA, δK)-compatible coaction. Furthermore, δX and δX̃ are nondegenerate.

LEMMA 3.4. Let (L(X), G, θ) be as above and let δL be the dual coaction of G on
L(X)×θ,r G. Then

(L(X)×θ,r G)×δL G = L(X×η,r G)×δL G

=

(
(K(X)×Adη,r G)×δK G (X×η,r G)×δX

G
(X̃×η̃,r G)×δX̃

G (A×α,r G)×δA
G

)
.

Proof. Since L(X) ×θ,r G = L(X ×η,r G), the first equality is trivial. By
Appendix: Remarks (4) in [7], we can identify (K(X) ×Adη,r G) ×δK G, (X ×η,r

G)×δX
G, (X̃×η̃,r G)×δX̃

G and (A×α,r G)×δA
G with the corresponding corners

in the crossed product L(X ×η,r G) ×δL G, respectively. Thus we complete the
proof.

From now on, we denote as usual by ρ the right regular representation of G
on L2(G), that is,

(ρsξ)(t) = ∆(s)1/2ξ(ts)

for s, t ∈ G, where ∆ is the modular function of G with respect to left invariant
Haar measure ds. Let (C0(G), G, τ) be a C∗-dynamical system, where τ is the left
translation on C0(G), that is,

τs( f )(t) = f (s−1t)

for f ∈ C0(G). Here we employ the result that there is an isomorphism Φ from
(A ×α,r G) ×δ G onto (A ⊗ C0(G)) × α⊗τ,rG which carries the dual action δ̂s (≡
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Ad(1A ⊗ 1⊗ ρs)) to Ad(1A ⊗ ρs ⊗ 1) (see Lemma 6.1 in [14], or Proposition 3.1
in [8]). In fact, the isomorphism Φ is defined by

Φ(δ(π̃(a))) = (π ⊗M)̃(a⊗ 1), a ∈ A;

Φ(δ(1A ⊗ λ( f ))) = 1A ⊗ 1⊗ λ( f ), f ∈ L1(G);

Φ(1A ⊗ 1⊗Mg) = (π ⊗M)̃(1A ⊗ g), g ∈ C0(G);

where π is a faithful representation of A, and it satisfies that

Φ(1A ⊗ 1⊗ ρs) = 1A ⊗ ρs ⊗ 1, s ∈ G.

In the following lemma, we use this isomorphism Φ for (L(X), G, θ) and we keep
the notation in Definition 3.1 and Proposition 3.2.

LEMMA 3.5. Let (L(X), G, θ) be the C∗-dynamical system as in Lemma 3.4. Then
the above Φ:(L(X) ×θ,r G) ×δL G → (L(X) ⊗ C0(G)) × θ⊗τ,rG is a componentwise
isomorphism which carries δ̂L to Ad(1L(X) ⊗ ρs ⊗ 1).

Proof. We have only to show that Φ is componentwise. Take any z =
(

t x
ỹ a

)
∈ L(X) =

(
K(X) X

X̃ A

)
, any f ∈ L1(G) and g ∈ C0(G). Since we see that π̃L =(

π̃K π̃X
π̃X̃ π̃A

)
, we have

Φ

((
δK(π̃K(t)) δX(π̃X(x))
δX̃(π̃X̃(ỹ)) δA(π̃A(a))

))
= Φ

(
δL

((
π̃K(t) π̃X(x)
π̃X̃(ỹ) π̃A(a)

)))
= Φ(δL(π̃L(z)))

= (πL ⊗M)˜(z⊗ 1) =
(

(πK ⊗M)˜(t⊗ 1) (πX ⊗M)˜(x⊗ 1)
(πX̃ ⊗M)˜(ỹ⊗ 1) (πA ⊗M)˜(a⊗ 1)

)
;

Φ

((
δK(1K ⊗ λ( f )) 0

0 δA(1A ⊗ λ( f ))

))
= Φ

(
δL

((
1K 0
0 1A

)
⊗ λ( f )

))
= Φ(δL(1L(X) ⊗ λ( f )))

= 1L(X) ⊗ 1⊗ λ( f ) =
(

1K ⊗ 1⊗ λ( f ) 0
0 1A ⊗ 1⊗ λ( f )

)
;

Φ

((
1K ⊗ 1⊗Mg 0

0 1A ⊗ 1⊗Mg

))
= Φ(1L(X) ⊗ 1⊗Mg)

= (πL ⊗M)˜(1L(X) ⊗ g) = (πL ⊗M)˜((1K ⊗ g 0
0 1A ⊗ g

))
=
(

(πK ⊗M)˜(1K ⊗ g) 0
0 (πA ⊗M)˜(1A ⊗ g)

)
.

Hence Φ is a componentwise isomorphism.
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Consider the C∗-dynamical system (C0(G), G, τ), where τ is the left trans-
lation on C0(G). Then it is well known, as the Stone-von Neumann theorem, that
there exists an isomorphism from the reduced C∗-crossed product C0(G)×τ,r G
onto C(L2(G)) (see Theorem C.34 in [15]). Define an action ρ̃ of G on C0(G)×τ,r G
by

ρ̃s(x)(t) = x(ts)

for x ∈ L1(C0(G), G) (see Lemma 2.14). Then the above isomorphism carries ρ̃s
on C0(G)×τ,r G to Adρs on C(L2(G)). Hence the canonical isomorphism carries
the action θ ⊗ ρ̃ of G on L(X) ⊗ (C0(G) ×τ,r G) to the action θ ⊗ Adρ of G on
L(X) ⊗ C(L2(G)) (cf. 7.7.12 in [13]). With the canonical identification (L(X) ⊗
C0(G))×ι⊗τ,r G = L(X)⊗ (C0(G)×τ,r G), we can identify Ad(1L(X)⊗ ρ⊗ 1) with
θ ⊗ ρ̃. Now it only remains to apply Imai-Takai’s duality to the C∗-dynamical
system (L(X), G, θ). Then the duality isomorphism carries the dual action δ̂L of
G on (L(X)×θ,r G)×δL G to the action θ ⊗Adρ of G on L(X)⊗ C(L2(G)), (see
Theorem 6.3 in [14] for the detail).

PROPOSITION 3.6. Let (L(X), G, θ) be the above C∗-dynamical system where G
is a locally compact group. Then (L(X)×θ,r G)×δL G is componentwisely isomorphic
to L(X)⊗ C(L2(G)), where δL is the dual coaction of G on L(X)×θ,r G. Furthermore
the isomorphism carries the dual action δ̂L to θ ⊗ Adρ, where ρ is the right regular
representation of G on L2(G).

Proof. We remark that, as is well known, C0(L(X), G)× γ,rG is canonically
identified with (L(X) ⊗ C0(G)) × θ⊗τ,rG and the identification map is a compo-
nentwise isomorphism. Consider the isomorphisms Φ : (L(X)×θ,r G)×δL G →
(L(X) ⊗ C0(G)) × θ⊗τG in Lemma 3.5 and Ψ : C0(L(X), G) ×γ,r G → L(X) ⊗
C(L2(G)) in Lemma 2.14. Then Ψ ◦Φ gives a desired isomorphism.

Now we define the dual action δ̂X of G on (X×η,r G)×δX G by

δ̂Xs(z) = (1K ⊗ 1⊗ ρs)z(1A ⊗ 1⊗ ρs)∗, z ∈ (X×η,r G)×δX
G.

LEMMA 3.7. Under the notation in Proposition 3.6, let δ̂L be the dual action of G
on (L(X)×θ,r G)×δL G. Then δ̂L is componentwise, in fact, we have

δ̂L =

(
δ̂K δ̂X

δ̂X̃ δ̂A

)
.

Proof. By Lemma 3.4, we have

(L(X)×θ,r G)×δL G =

(
(K(X)×Adη,r G)×δK G (X×η,r G)×δX

G
(X̃×η̃,r G)×δX̃

G (A×α,r G)×δA
G

)
.
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Take any
(

t x
ỹ a

)
∈ L((X×η,r G)×δX

G). Then we have

δ̂Ls

((
t x
ỹ a

))
= Ad(1L(X) ⊗ 1⊗ ρs)

((
t x
ỹ a

))
=
(

1K ⊗ 1⊗ ρs 0
0 1A ⊗ 1⊗ ρs

)(
t x
ỹ a

)(
(1K ⊗ 1⊗ ρs)∗ 0

0 (1A ⊗ 1⊗ ρs)∗

)
=
(

(1K ⊗ 1⊗ ρs)t(1K ⊗ 1⊗ ρs)∗ (1K ⊗ 1⊗ ρs)x(1A ⊗ 1⊗ ρs)∗

(1A ⊗ 1⊗ ρs)ỹ(1K ⊗ 1⊗ ρs)∗ (1A ⊗ 1⊗ ρs)a(1A ⊗ 1⊗ ρs)∗

)
=

(
δ̂Ks(t) δ̂Xs(x)
δ̂X̃s(ỹ) δ̂As(a)

)
=

(
δ̂Ks δ̂Xs
δ̂X̃s δ̂As

)((
t x
ỹ a

))
,

which shows the desired result.

Now we are in a position to establish the main result in this section.

THEOREM 3.8 (Duality). Let (A, G, α) be a C∗-dynamical system where G is a lo-
cally compact group, and let X be a Hilbert A-module. Suppose that η is an α-compatible
action of G on X. Then there exist a coaction δA of G on A ×α,r G and a coaction δX

of G on X ×η,r G such that the ((A×α,r G)×δA
G)-Hilbert module (X ×η,r G)×δX

G
is isomorphic to the (A⊗ C(L2(G)))-Hilbert module X ⊗ C(L2(G)). Furthermore the
isomorphism carries the dual action δ̂X to η ⊗Adρ.

Proof. Since (L(X)×θ,r G)×δL G is componentwisely isomorphic to L(X)⊗
C(L2(G)) by Proposition 3.6, taking the right upper corners of the linking alge-
bras L((X ×η,r G)×δX

G) and L(X ⊗ C(L2(G))), it follows from Lemma 2.6 that
(X ×η,r G)×δX

G is isomorphic as a Hilbert C∗-module to X ⊗ C(L2(G)). Since
δ̂L is componentwise by Lemma 3.7 and since so is also θ ⊗ Adρ by definition,
it is easy to verify that the duality isomorphism carries the dual action δ̂X to
η ⊗Adρ.

4. DUALITY FOR CROSSED PRODUCTS BY COACTIONS

In this section, we shall prove the duality theorem for crossed products of
Hilbert C∗-modules by coactions of locally compact groups.

Let A be a C∗-algebra and let δA be a coaction of a locally compact group
G on A. Suppose that X is a right A-Hilbert module with a nondegenerate δA-
compatible coaction δX of G. First we need to establish a canonical coaction of G
on K(X) associated with δX. Recall that for given x, y ∈ X, the operator Θx,y on
X is defined by Θx,y(z) = x · 〈y, z〉A for z ∈ X, and that K(X) is the C∗-algebra
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generated by those operators Θx,y. Given a coaction δX of G on X, we define a
linear map δK on K(X) by

δK(Θx,y) = ΘδX(x),δX(y)

for all x, y ∈ X. Lemma 4.1 below is shown in Proposition 2.8 in [2] in a spatial
form of δK based upon representation theory of Hilbert C∗-modules. Of course,
it is possible to give its direct proof without use of the representation theory of
Hilbert C∗-modules. But the direct proof is long and is a little bit complicated.

LEMMA 4.1. Suppose that δX is nondegenerate. Then δK above is a nondegenerate
coaction of G on K(X). Furthermore, δX is δK-compatible.

Let X be a (right) A-Hilbert module. From now on, we regard X as aK(X)−
A Hilbert bimodule and we consider only δK above as a coaction of G on K(X).
Then the linking algebraL(X) for X is given byL(X) =

(
K(X) X

X̃ A

)
. The following

result is Lemma 2.22 in [6].

LEMMA 4.2. Let δA be a nondegenerate coaction of G on A and let δX be a non-
degenerate δA-compatible coaction of G on X. Then δL =

(
δK δX
δX̃ δA

)
is a nondegenerate

coaction of G on L(X), where δX̃ is defined by δX̃(x̃) = δ̃X(x) for x̃ ∈ X̃.

As in Section 3, we denote again by ρ the right regular representation of G
on L2(G), that is, (ρsξ)(t) = ∆(s)1/2ξ(ts) for s, t ∈ G, where ∆ is the modular
function of G with respect to left invariant Haar measure ds. For each f ∈ L1(G),
we set

ρ̃( f ) =
∫
G

f (s)ρsds.

If no confusion is possible, we write ρ( f ) for ρ̃( f ). Let δA be a nondegenerate
coaction of G on a C∗-algebra A. Without loss of generality, we can assume that
the C∗-algebra A is concretely represented on a Hilbert space HA, and also we
denote by 1A the identity of the multiplier algebra M(A) of A. We define δ̂As =
Ad(1A ⊗ ρs) which gives an action of G on A ×δA

G. Then we define a faithful
representation π̃ of A×δA

G on L2(L2(HA, G), G) (= L2(HA, G)⊗ L2(G) = (HA⊗
L2(G))⊗ L2(G) ) by

(π̃(z)ξ)(s) = δ̂As
−1(z)(ξ(s))

for z ∈ A×δA
G and ξ ∈ L2(L2(HA, G), G).

DEFINITION 4.3. Let δA be a nondegenerate coaction of G on a C∗-algebra A
and let δX be a nondegenerate δA-compatible coaction of G on a Hilbert A-module
X. We assume that A and K(X) are concretely represented on a Hilbert spaceHA

and on a Hilbert space HK, respectively. Then X can be concretely represented
into B(HA,HK). Here we remark that the (K(X) ×δK G) − (A ×δA

G) Hilbert
bimodule X ×δX

G is concretely represented into B(L2(HA, G), L2(HK, G)) and
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that the inner products are then given by

K(X)×δK
G〈x, y〉 = xy∗ and 〈x, y〉A×δA

G = x∗y

for x, y ∈ X×δX
G. Then we define the dual action δ̂X of G on X×δX

G by

δ̂Xs(·) = (1K ⊗ ρs)(·)(1A ⊗ ρs)∗

for s ∈ G which gives an action of G on X ×δX
G. We define a representation π̃X

of X×δX
G into B(L2(HA, G)⊗ L2(G), L2(HK, G)⊗ L2(G)) by

(π̃X(z)ξ)(s) = δ̂X
−1
s (z)(ξ(s))

for z ∈ X ×δX
G and ξ ∈ L2(L2(HA, G), G). Similarly, we define the dual action δ̂X̃

of G on X̃×δX̃
G and a representation π̃X̃ of X̃×δX̃

G.

LEMMA 4.4. Let δ̂X and δ̂X̃ be as above. Then δ̂X is (δ̂K, δ̂A)-compatible and δ̂X̃ is
(δ̂A, δ̂K)-compatible.

Proof. By symmetry, if we show that δ̂X is (δ̂K, δ̂A)-compatible, then (δ̂A, δ̂K)-
compatibility of δ̂X̃ follows. Hence we will show only that δ̂X is (δ̂K, δ̂A)-compatible.
In fact, for x, y ∈ X×δX

G and a ∈ A×δA
G, we have

δ̂Xs(xa) = (1K ⊗ ρs)xa(1A ⊗ ρs)∗

= (1K ⊗ ρs)x(1A ⊗ ρs)∗(1A ⊗ ρs)a(1A ⊗ ρs)∗= δ̂Xs(x)δ̂As(a);

〈δ̂Xs(x), δ̂Xs(y)〉A×δX
G ≡ δ̂Xs(x)∗ δ̂Xs(y)

= ((1K ⊗ ρs)x(1A ⊗ ρs)∗)∗((1K ⊗ ρs)y(1A ⊗ ρs)∗)

= (1A ⊗ ρs)x∗y(1A ⊗ ρs)∗ = δ̂As(〈x, y〉A×δX
G).

Thus we see that δ̂X is δ̂A-compatible. Similarly δ̂K-compatibility of δ̂X can be also
shown.

From now on, as a nondegenerate coaction δL of G on L(X), we consider
only

δL =
(

δK δX

δX̃ δA

)
.

LEMMA 4.5. Let δL be the above nondegenerate coaction of G on L(X). Then we

see that δ̂L =
(

δ̂K δ̂X
δ̂X̃ δ̂A

)
, and we have

(L(X)×δL G)×
δ̂L ,r G = L(X×δX

G)×
δ̂L ,r G = L((X×δX

G)×
δ̂X ,r G)

=

(
(K(X)×δK G)×

δ̂K ,r G (X×δX
G)×

δ̂X ,r G
(X̃×δX̃

G)×
δ̂X̃ ,r G (A×δA

G)×
δ̂A ,r G

)
.
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Proof. Since L(X) ×δL G = L(X ×δX
G) by Appendix: Remarks (4) in [7],

the first equality in the second assertion follows.
Now we show the first assertion. Take any

(
t x
ỹ a

)
∈L(X)×δLG. Then we

have

δ̂Ls

((
t x
ỹ a

))
= (1L(X) ⊗ ρs)

(
t x
ỹ a

)
(1L(X) ⊗ ρs)∗

=
(

1K ⊗ ρs 0
0 1A ⊗ ρs

)(
t x
ỹ a

)(
(1K ⊗ ρs)∗ 0

0 (1A ⊗ ρs)∗

)
=
(

(1K ⊗ ρs)t(1K ⊗ ρs)∗ (1K ⊗ ρs)x(1A ⊗ ρs)∗

(1A ⊗ ρs)ỹ(1K ⊗ ρs)∗ (1A ⊗ ρs)a(1A ⊗ ρs)∗

)
=

(
δ̂Ks(t) δ̂Xs(x)
δ̂X̃s(ỹ) δ̂As(a)

)
=

(
δ̂Ks δ̂Xs
δ̂X̃s δ̂As

)((
t x
ỹ a

))
,

which shows the first assertion.
The second equality in the second assertion follows from the remark follow-

ing Proposition 2.11.

Let A be a C∗-algebra with a nondegenerate coaction δA of G. Here we em-
ploy again the notation in the paragraph preceding Definition 4.3. Note that there
is an isomorphism Φ from A⊗C(L2(G)) onto (A×δA

G)×
δ̂A ,r G (for example, see

page 768 in [14]), and that Φ is given by the correspondences between generators:

Φ(δA(a)) = π̃(δA(a)), a ∈ A;

Φ(1A ⊗M f ) = π̃(1A ⊗M f ), f ∈ C0(G);

Φ(1A ⊗ ρ(g)) = 1A ⊗ 1⊗ λ(g), g ∈ L1(G).

We define a dual coaction ̂̂δA of G on (A×δA
G)×

δ̂A ,r G by

̂̂δA(z) = (1A ⊗ 1⊗WG)(z⊗ 1)(1A ⊗ 1⊗WG
∗)

for z ∈ (A ×δA
G) ×

δ̂A ,r G, which is a nondegenerate coaction of G (see [12]).

Furthermore we define also a coaction δ̃ of G on A⊗ C(L2(G)) by

δ̃(z) = (1A ⊗WG
∗)((id⊗ σ) ◦ (δA ⊗ id))(z)(1A ⊗WG)

for z ∈ A ⊗ C(L2(G)), where σ is the flip map from C∗r (G) ⊗ C(L2(G)) onto

C(L2(G)) ⊗ C∗r (G). Then the inverse Φ−1 of Φ carries the dual coaction ̂̂δA of
G on (A×δA

G)×
δ̂A ,r G to the coaction δ̃ of G on A⊗ C(L2(G)) (see Theorem 8 in

[12]). Now we apply this fact to L(X) with a nondegenerate coaction δL of G.

LEMMA 4.6. Let L(X) be the linking algebra for a Hilbert A-module X. Suppose
that δL is the above nondegenerate coaction of G on L(X). Let Φ be the isomorphism
above from L(X)⊗C(L2(G)) onto (L(X)×δL G)×

δ̂L ,r G. Then Φ is a componentwise
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isomorphism from L(X ⊗ C(L2(G))) onto L((X ×δX
G)×

δ̂X ,r G). Furthermore, Φ−1

carries the dual coaction ̂̂δL of G on (L(X)×δL G)×
δ̂L ,r G to the coaction δ̃L of G on

L(X)⊗ C(L2(G)), that is, (Φ−1 ⊗ id) ◦ ̂̂δL = δ̃L ◦Φ−1.

Proof. We may assume that A is concretely represented on some Hilbert
space HA, and that K(X) is also concretely represented on some Hilbert space
HK. Then we can assume that L(X) is concretely represented on H = HK ⊕HA.
Consider a (faithful) representation Π̃ ofL(X)×δL G on L2(L2(H, G), G) (= (H⊗
L2(G))⊗ L2(G)) defined by

(Π̃(z)ξ)(s) = δ̂L
−1
s (z)(ξ(s))

for z ∈ L(X)×δL G. The representation π̃A of A ×δA
G on L2(L2(HA, G), G) (=

(HA ⊗ L2(G))⊗ L2(G)) is defined by

(π̃A(z)ξ)(s) = δ̂A
−1
s (z)(ξ(s))

for z ∈ A ×δA
G and the representation π̃K of K(X) ×δK G is also similarly de-

fined. Let π̃X and π̃X̃ be as in Definition 4.3. Then we claim that

Π̃ =
(

π̃K π̃X

π̃X̃ π̃A

)
.

For
(

t x
ỹ a

)
∈ L(X) ×δL G and ξ = ξK ⊕ ξA ∈ L2(HK ⊕ HA, G), in fact, using

Lemma 4.5, we have(
Π̃

((
t x
ỹ a

))
ξ

)
(s)= δ̂L

−1
s

((
t x
ỹ a

))
ξ(s) =

(
δ̂K
−1
s (t) δ̂X

−1
s (x)

δ̂X̃
−1
s (ỹ) δ̂A

−1
s (a)

)
ξ(s)

=
(

(π̃K(t)ξK)(s)⊕(π̃X(x)ξA)(s)
(π̃X̃(ỹ)ξK)(s)⊕(π̃A(a)ξ A)(s)

)
=
((

π̃K(t) π̃X(x)
π̃X̃(ỹ) π̃A(a)

)
ξ

)
(s),

which implies that Π̃ =
(

π̃K π̃X
π̃X̃ π̃A

)
.

The isomorphism Φ is given by the correspondences:

Φ(δL(z)) = Π̃(δL(z)), z ∈ L(X);

Φ(1L(X) ⊗M f ) = Π̃(1L(X) ⊗M f );

Φ(1L(X) ⊗ ρ(g)) = 1L(X) ⊗ 1⊗ λ(g).

Recall again that we can identify L(X)⊗ C(L2(G)) with L(X ⊗ C(L2(G)))
by Lemma 2.3. Then we have

Φ

((
δK(t) δX(x)
δX̃(ỹ) δA(a)

))
= Φ

(
δL

((
t x
ỹ a

)))
= Φ(δL(z)) = Π̃(δL(z))

= Π̃

((
δK(t) δX(x)
δX̃(ỹ) δA(a)

))
=
(

π̃K(δK(t)) π̃X(δX(x))
π̃X̃(δX̃(ỹ)) π̃A(δA(a))

)
;
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Φ

((
1K ⊗M f 0

0 1A ⊗M f

))
= Φ

((
1K 0
0 1A

)
⊗M f

)
= Φ(1L(X) ⊗M f )

= Π̃(1L(X) ⊗M f ) = Π̃

((
1K 0
0 1A

)
⊗M f

)
= Π̃

((
1K ⊗M f 0

0 1A ⊗M f

))
=
(

π̃K(1K ⊗M f ) 0
0 π̃A(1A ⊗M f )

)
;

Φ

((
1K⊗ρ(g) 0

0 1A⊗ρ(g)

))
=Φ

((
1K 0
0 1A

)
⊗ ρ(g)

)
= Φ(1L(X) ⊗ ρ(g))

=1L(X)⊗1⊗λ(g)=
(

1K⊗1⊗λ(g) 0
0 1A⊗1⊗λ(g)

)
.

Hence Φ is a componentwise isomorphism.

We define a (dual) coaction ̂̂δX of G on (X×δX
G)×

δ̂X ,r G bŷ̂δX(z) = (1K ⊗ 1⊗WG)(z⊗ 1)(1A ⊗ 1⊗WG
∗)

for z ∈ (X ×δX
G)×

δ̂X ,r G, which is a nondegenerate coaction of G. We define a

coaction δ̃X of G on X⊗ C(L2(G)) by

δ̃X(z) = (1K ⊗WG
∗)((id⊗ σ) ◦ (δX ⊗ id))(z)(1A ⊗WG)

for z ∈ X ⊗ C(L2(G)), where σ is the flip map from C∗r (G) ⊗ C(L2(G)) onto
C(L2(G))⊗ C∗r (G).

Now we are in a position to establish duality for crossed products of Hilbert
C∗-modules by coactions.

THEOREM 4.7 (Duality). Let A be a C∗-algebra and let δA be a nondegenerate
coaction of a locally compact group G on A. Suppose that X is a Hilbert A-module
with a nondegenerate δA-compatible coaction δX of G. Then there exists a dual action
δ̂X of G on the crossed product X ×δX

G such that the ((A ×δA
G) ×

δ̂A ,r G) -Hilbert

module (X ×δX
G)×

δ̂X ,r G is isomorphic to the (A⊗ C(L2(G)))-Hilbert module X ⊗

C(L2(G)). Furthermore, the isomorphism carries ̂̂δX to δ̃X.

Proof. By Lemma 4.5, we can identify (L(X)×δL G)×
δ̂L ,r G with

L((X×δX
G)×

δ̂X ,r G) =

(
(K(X)×δK G)×

δ̂K ,r G (X×δX
G)×

δ̂X ,r G
(X̃×δX̃

G)×
δ̂X̃ ,r G (A×δA

G)×
δ̂A ,r G

)
.

Since L(X⊗ C(L2(G))) is componentwisely isomorphic to L((X×δX
G)×

δ̂X ,r G)
by Lemma 4.6, taking the right upper corners of those linking algebras, it follows
from Lemma 2.6 that (X×δX

G)×
δ̂X ,r G is isomorphic to X⊗ C(L2(G)).
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It remains to show that ̂̂δX is carried to δ̃X by such an isomorphism. Let̂̂δK and ̂̂δA be the dual coactions of G on (K(X) ×δK G) ×
δ̂K ,r G and on (A ×δA

G)×
δ̂A ,r G, respectively. Take any

z =
(

t x
ỹ a

)
∈ L((X×δX

G)×
δ̂X ,r G).

Then we havê̂δL(z)=(1L(X) ⊗ 1⊗WG)(z⊗ 1)(1L(X) ⊗ 1⊗WG
∗)

=Ad
(

1K ⊗ 1⊗WG 0
0 1A ⊗ 1⊗WG

)((
t⊗ 1 x⊗ 1
ỹ⊗ 1 a⊗ 1

))
=
(

(1K⊗1⊗WG)(t⊗1)(1K⊗1⊗WG
∗) (1K⊗1⊗WG)(x⊗1)(1A⊗1⊗WG

∗)
(1A⊗1⊗WG)(ỹ⊗1)(1K⊗1⊗WG

∗) (1A⊗1⊗WG)(a⊗1)(1A⊗1⊗WG
∗)

)

=

(̂̂δK(t) ̂̂δX(x)̂̂δX̃(ỹ) ̂̂δA(a)

)
,

which shows that ̂̂δL is componentwise.
On the other hand, since we see that

δL ⊗ id =
(

δK ⊗ id δX ⊗ id
δX̃ ⊗ id δA ⊗ id

)
on L(X) ⊗ C(L2(G)) = L(X ⊗ C(L2(G))), δL ⊗ id is componentwise. Further-
more it is easy to verify that id⊗σ : L(X)⊗min (C∗r (G)⊗C(L2(G)))→ L(X)⊗min
(C(L2(G))⊗ C∗r (G)) is a componentwise isomorphism. Since Ad(1L(X) ⊗WG

∗) is
a componentwise isomorphism on L(X) ⊗min (C(L2(G)) ⊗ C∗r (G)), we see that
δ̃L(z) = (1L(X) ⊗WG

∗)(id⊗ σ)((δL ⊗ id)(z))(1L(X) ⊗WG) is also componentwise.

Since Φ−1 is componentwise, so is (Φ−1 ⊗ id) ◦ ̂̂δL = δ̃L ◦ Φ−1. This means that

the duality isomorphism carries ̂̂δX to δ̃X.

REMARK 4.8. Let (A, G, α) be a C∗-dynamical system. Recall that every C∗-
algebra A can be regarded as a Hilbert A-module in the usual way (see Exam-
ple 3.5 in [15]). Then α is an α-compatible action of G on the Hilbert module A.
Then Theorem 3.8 coincides with Imai-Takai’s duality. For the coaction case, sim-
ilarly we consider the Hilbert A-module A with a nondegenerate δA-compatible
coaction δA of G. Then Theorem 4.7 coincides with Katayama’s duality [12].
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ADDED IN PROOFS. As is mentioned in Section 1, by applying Theorem 3.8 (Duality)
in this paper, we can give a proof of the duality theorem for crossed products of Hilbert
C∗-modules by abelian group actions. Such a proof is shown in the author’s paper entitled
An alternative proof of the duality theorem for crossed products of Hilbert C∗-modules by
abelian group actions, Tech. Rep. Kansai Univ. 48(2006), 111–117.


