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ABSTRACT. Let 0 → B i→ E π→ A → 0 be a short exact sequence of C∗-algebras
where A is a purely infinite simple C∗-algebra and B is an essential ideal of
E. In the case B is the compacts or a nonunital purely infinite simple C∗-
algebra we completely determine the homotopy groups of the unitary group
of E in terms of K-theory. The result can be viewed as a generalization of the
well-known Kuiper’s theorem to a new class of C∗-algebras (including certain
separable C∗-algebras).

KEYWORDS: C∗-algebras, unitary group, homotopy groups.

MSC (2000): Primary 46L05; Secondary 46L80, 55Q52.

INTRODUCTION

Let A be a unital C∗-algebra. It is known that the unitary group of A denoted
by U(A) carries important information about the internal structure of the C∗-
algebra A. U(A) is a topological group with the norm topology inherited from A.
A long standing open problem in topology is to compute the homotopy groups
of the unitary group of Mn(C) [1]. One important result in this direction was
obtained by Kuiper in [9] where he proved that the unitary group of the algebra of
bounded operators on an infinite Hilbert space is contractible (i.e. πn(B(H)) = 0
for every n).

A generalization of Kuiper’s result was obtained by Mingo [11] and then
generalized by Cuntz and Higson [7]: The unitary group ofL(HA), the C∗-algebra
of A-linear endomorphisms of the countably generated trivial Hilbert A-module
HA which have an adjoint, is contractible. The homotopy groups of the unitary
group were computed for other classes of algebras: von Neumann Algebras [3],
[4], [13]; Aθ , a noncommutative irrational torus [12]; tensor products of any C∗-
algebra with an infinite dimensional simple AF-algebra or a Cuntz algebra On
[14]; purely infinite simple C∗-algebras [19], nonelementary simple C∗-algebras
with real rank zero and topological rank one [17].
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In all the above results the formula for the homotopy groups of the unitary
group is given by the K-theory of the algebra:

(0.1) πn(U(A)) =

{
K0((A)) n odd,
K1((A)) n even.

In this article we will extend Kuiper’s result to new classes of C∗-algebras ,
namely:

(1) essential extensions of purely infinite simple C∗-algebras by the compacts;
(2) extensions of purely infinite simple C∗-algebras by purely infinite simple

C∗-algebras with real rank zero.

For these C∗-algebras we are going to show that formula (0.1) still holds.
If A is a nonunital C∗-algebra let A+ be the unital C∗-algebra obtained by

joining a unit to A, and let A+ = A if A is unital. For a nonunital C∗-algebra
U(A) is defined to be U(A+). Let K be the C∗-algebra of compact operators on a
separable infinite Hilbert space H. Let Un(A) be the unitary group of Mn(A). We
are going to denote by U∞(A) the inductive limit of Un(A) where the inclusion

map is Un(a) 3 u →
(

u 0
0 1

)
∈ Un+1(A).

If p is a projection in A then Up(A) represents the unitary group of pAp.
Note that if A is a nonunital C∗-algebra then pAp = pA+ p and ((1 − p)A(1 −
p))+ = (1− p)A+(1− p). We view Up(A) as a subgroup of U(A),

Up(A) =
{

u ∈ U(A) : u has the matrix form
(

u0 0
0 1− p

)
,

with respect to the decomposition 1 = p + 1− p
}

.

Two projections p and q in A are said to be equivalent, denoted by p ∼ q,
if there exists a partial isometry v in A such that vv∗ = p and v∗v = q. The
equivalence class of p is denoted by [p]. Two projections p and q in A are said to be
unitarily equivalent, denoted by p ' q, if there exists a unitary u in A+ such that
upu∗ = q. Here p and q are said to be homotopic equivalent, denoted by p ≈ q, if
they are in the same path component of Proj(A). It is known that p ≈ q ⇒ p ' q
⇒ p ∼ q, but the converses are not true in general.

E is an extension of A by B if the C∗-algebras A, E, and B form a short exact

sequence 0 → B i→ E π→ A → 0. E is an essential extension if B is an essential ideal
of E (B ∩ I 6= 0 ∀ nonzero I ideal of E). An essential extension of A by B can be
viewed as a subalgebra of M(A) ([10], 5.2).

A C∗-algebra A is said to be purely infinite if for any x ∈ A the hereditary
subalgebra xAx of A contains an infinite projection. A C∗-algebra A has real rank
zero if the set of invertible self-adjoint elements of A+ is dense in A+

sa (the self
adjoint part of A ). This is equivalent with the FS Property: the set of all self-
adjoint elements with finite spectrum is norm dense in the set of all self-adjoint
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elements. It was proven by S. Zhang that a simple C∗-algebra A is purely infinite
if and only if each projection of A is infinite and A has real rank zero.

In this paper we will extend the results obtained by S. Zhang in [19] for
purely infinite simple C∗-algebras and some of the techniques used here are sim-
ilar to the ones used by S. Zhang.

1. MAIN RESULT

In this section, we state our main result and corollaries.

THEOREM 1.1. Let 0 → B → E → A → 0 be an exact sequence of C∗-algebras,
where A is a purely infinite simple C∗-algebra, B is an essential ideal of E.

If B = K or B is a purely infinite simple C∗-algebra and every projection in A lifts
to a projection in E, then

πn(U(E)) = πn(U(pEp)) =

{
K0(E) n odd,
K1(E) n even,

∀p ∈ Proj(E), π(p) 6= 0, 1.

If B is the C∗-algebra of compact operators, E is B(H) and A is the Calkin
algebra, we obtain:

COROLLARY 1.2 ([9], Theorem (3)). If H is a separable Hilbert space then
U(B(H)) is contractible.

An example of separable purely infinite C∗-algebras is the Cuntz algebra
On. The Cuntz algebra On is the C∗-algebra generated by n isometries S1, . . . , Sn

on a separable Hilbert space H such that SiS∗i = 1 ,
n
∑

i=1
S∗i Si = 1.

If En = C∗(S1, . . . , Sn), SiS∗i = 1,
n
∑

i=1
S∗i Si < 1 then we have the following

short exact sequence:

0 → K → En → On → 0

and the above theorem determines the homotopy groups of the unitary group of
these separable C∗-algebras.

COROLLARY 1.3. Let En be the extension of the Cuntz algebra On. Then

πn(U(En)) =

{
Z n odd,
0 n even.

REMARK. Theorem 2.1 extends Kuiper’s result to some separable purely
infinite C∗-algebras that are not necessarily simple.



116 BOGDAN VIŞINESCU

2. PROOF OF THE MAIN RESULT

Let E be an essential extension of a purely infinite simple C∗-algebra A by
a C∗-algebra B, where B is either a purely infinite simple C∗-algebra or the C∗-
algebra of compact operators. In the first part of this section we will study some
properties of projections of E and in the second part we will focus on the unitary
group of E.

LEMMA 2.1. Let 0 → B i→ E π→ A → 0 be a short exact sequence of C∗-algebras,
B a C∗-algebra with real rank zero. Let p, q ∈ Proj(E) such that [π(p)] 6 [π(q)], i.e.
there exists q0 ∈ Proj(A) such that π(p) ∼ q0 6 π(q). Then there exists a lifting
projection q0 of q0 and a projection p0 in B such that [p− p0] = [q0] and q0 6 q.

Proof. Let v ∈ A be a partial isometry such that vv∗ = q0 and v∗v = π(p).
Let v ∈ π−1(v). Since π(qvp) = qvp = v we can assume that vp = v and qv = v.
Let b := p− v∗v ∈ pBp. Since RR(B) = 0, then the hereditary subalgebra pBp has
an approximate unit consisting of projections. Therefore, there exists a projection
p0 ∈ pBp such that ‖b− bp0‖ < 1 which implies that:

‖(p− p0)(p− p0 − v∗v)(p− p0)‖ = ‖(p− p0)(b− p0)(p− p0)‖
= ‖(p− p0)b(p− p0)‖ = ‖b− bp0‖ < 1.

Then (p − p0)v∗v(p − p0) is invertible in (p − p0)E(p − p0). Consider now x =
[(p− p0)v∗v(p− p0)]−1, i.e.

(p− p0)v∗v(p− p0)x = x(p− p0)v∗v(p− p0) = p− p0.

Consider w = x1/2v∗. Then w w∗ = x1/2v∗vx1/2 = x1/2(p − p0)v∗v(p −
p0)x1/2 = p− p0. Therefore, w is a partial isometry in E.

Since

π(x) = π(xp) = π(x)π(p)3 = π(x)π((p− p0)v∗v(p− p0))

= π(x(p− p0)v∗v(p− p0)) = π(p− p0) = π(p),

then π(w) = π(x1/2)π(v∗) = v∗. Hence, w is a lift of v∗. Let q0 = w∗w. Then
q0 ∼ p− p0. Since wq = x1/2v∗q = x1/2(qv)∗ = x1/2v∗ = w, then q0 6 q.

LEMMA 2.2. Let 0 → B i→ E π→ A → 0 be a short exact sequence of C∗-
algebras with B ⊂ E an essential ideal. If either B is isomorphic to the compacts or B
is a purely infinite simple C∗-algebra, then [q] < [p] for any q ∈ Proj(B) and for any
p ∈ Proj(E)\B.

Proof. First notice that pBp 6= 0. Otherwise, ‖px‖2 = ‖pxx∗p‖ = 0 for any
x ∈ B contradicting the essentiality of B.

Case 1. B = K.
Since pKp is a hereditary subalgebra of K, pKp is isomorphic to either Mn

or K .
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If pKp ' Mn let pn be the unit in pKp . Then p − pn ∈ Proj(E)\K and
(p − pn)K(p − pn) = ((p − pn)p)K(p(p − pn)) = (p − pn)(pKp)(p − pn) = 0.
Therefore, pKp ' K. Choose q′ ∈ Proj(pKp) to have the same dimension as q.

Case 2. B is a purely infinite simple C∗-algebra.

Since pBp 6= 0 we can choose a projection p0 ∈ B, p0 6= 0 such that p0 6 p.
Since B is purely infinite then [q] < [p0]. This completes the proof.

LEMMA 2.3. Let 0 → B i→ E π→ A → 0 be a short exact sequence of C∗-
algebras, A be a purely infinite simple C∗-algebra, B ⊂ E essential ideal. Assume that
either B is isomorphic to the compacts or B is a purely infinite simple C∗-algebra. If p, q
∈ Proj(E)\B then [p] < [q].

Proof. Since A is a purely infinite simple C∗-algebra then [π(p)] < [π(q)],
i.e. there exists q0 ∈ Proj(A) such that π(p) ∼ q0 6 π(q), π(q) − q0 6= 0. From
Lemma 2.1, there exists p0 ∈ Proj(B), q′0 ∈ Proj(E) such that p − p0 ∼ q′0 6 q .
Then from Lemma 2.2, there exists a projection p′0 ∈ Proj(B) such that p0 ∼ p′0 <

q− q′0. For q0 = q′0 + p′0 we have p ∼ q0 6 q.

COROLLARY 2.4. Let 0 → B i→ E π→ A → 0 be a short exact sequence of C∗-
algebras, A a purely infinite simple C∗-algebra, B ⊂ E essential ideal. Assume that either
B is isomorphic to the compacts or B is a purely infinite simple C∗-algebra. Then every
projection of E\B is infinite.

REMARK. The assumption that B is an essential ideal of E is a necessary
condition in Lemma 2.2.

In our setting the above assumption is equivalent to the nontriviality of the
extension E (E 6= B⊕ A). Indeed if B is a nonessential ideal of E then there exists
a nonzero ideal I of A such that B ∩ I = 0. Then π(I) is a nonzero ideal of A.
Since A is simple then π(I) = B and therefore E = B⊕ A.

From now on we will use three well known lemmas about the Murray von
Neumann equivalence of projections and the homotopic equivalence of projec-
tions:

LEMMA 2.5. If A is a C∗-algebra and if p, q are two nonzero equivalent projections
of A such that pq = 0 then p ≈ q.

LEMMA 2.6 ([7], Lemma 1). If A is a C∗-algebra and p, q are two nonzero equiv-
alent projections of A such that ‖pqp‖ < 1, then q ≈ q0 6 1− p and p ≈ p0 6 1− q.

LEMMA 2.7 ([8], Lemma 2.1). If A is a C∗-algebra and p, q are two nonzero
projections of A such that ‖p− pqp‖ 6 β < 1/4, then there exists a unitary u in A+,
such that

upu∗ 6 q, ‖u− 1‖ 6 6β1/2.
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We will prove next that in the above setting two projections p and q of E are
Murray von Neumann equivalent if and only if p and q are homotopic equivalent.

LEMMA 2.8. Let 0 → B i→ E π→ A → 0 be a short exact sequence of C∗-
algebras, and A be a purely infinite simple C∗-algebra. Assume that B ⊂ E either is an
essential ideal, B is isomorphic to the compacts or is a purely infinite simple C∗-algebra.
If p, q ∈ Proj(E), π(p) 6= 1 6= π(q), and p ∼ q then p, q are homotopic equivalent.

Proof. If p ∈ B then q = vpv∗ ∈ B. Then it is known that p and q are
homotopic equivalent, since B is isomorphic to the compacts or B is a nonunital
purely infinite simple C∗-algebra. When p, q /∈ B we consider two cases.

Case 1. E is unital.

Since RR(E) = 0 by Lemma 3.2 of [15] we have that there exists two projec-
tions p1, p2 in E such that p ≈ p1 + p2, p1 6 q, p2 6 1− q.

Then π(q) 6= 0, 1 implies that π(p1) 6= 1 6= π(p2).
Then π(p) 6= 1 implies that π(p1) 6= π(q) or π(p2) 6= π(1− q).
If π(p1) 6= π(q) then q− p1 /∈ K and using Lemma 2.3 we can find p′2 ∼ p2,

p′2 6 q− p1.
Since p′2 and p2 are orthogonal, then by Lemma 2.5 they are homotopic and

the homotopy can be chosen in (1− p1)E(1− p1). So p1 + p2 ≈ p1 + p′2.
Using Lemma 2.3 we can find a subprojection q′ of 1 − q such that q′ ∼

p′2 + p1. So q′ ≈ p′2 + p1. Therefore p ≈ q.
If π(p2) 6= π(1− q) the same proof as above holds.

Case 2. E is nonunital.

RR(E) = 0 implies that there exists p0 ∈ Proj(E) such that ‖(1− p0)q‖ < 1.
By Lemma 2.7 there exists a unitary element u in E+ such that ‖u − 1‖ < 6ε1/2

and p 6 up0u∗ = p′0. Then ‖p − p′0‖ 6 2‖u − 1‖ 6 12ε1/2 hence ‖(1− p′0)q‖ 6
‖(1− p0)q‖+ ‖(p0 − p′0)q‖ 6 ε + 12ε1/2.

By Lemma 2.7 there exists a unitary v in E+ with ‖v− 1‖ small if ε is small
enough, and vqv∗ 6 p′0. Since q ≈ vqv∗ < p′0 and p ≈ u∗pu < p′0 we can work in
p′0Ep′0 where the proof from Case 1 will apply.

LEMMA 2.9. Let 0 → B i→ E π→ A → 0 be a short exact sequence of C∗-algebras,
RR(E) = 0 and A be a purely infinite simple C∗-algebra. If x1, x2, . . . , xn are elements in
E and e, f are two fixed projections in E but not in B then for any positive number ε there
exists two projections in E but not in B e0 < e, f0 < f such that sup

16i6n
‖ f0xie0t‖ < ε.

Proof. Since E is a C∗-algebra with real rank zero and the set {p∈Proj(E)\B}
is a set with no minimal projections one can use the proof of Lemma 2.2 in [19] to
get the result.
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For the rest of this article we are going to consider the following short exact
sequence:

0 → B i→ E π→ A → 0, with B an essential ideal of E.

In our study we assume that A is a purely infinite simple C∗-algebra, and B
is the C∗-algebra of compact operators or a purely infinite simple C∗-algebra. In
the following lemmas we also assume that E has real rank zero.

If B has the first K-theory group trivial then it follows that RR(E) = 0. So if
B = K then RR(E) = 0. In general RR(E) = 0 if and only if RR(A) = 0, RR(B) =
0, and every projection of A can be lifted to a projection of E.

LEMMA 2.10. Let E be an essential extension of A by B. Let X be a compact
topological space. If f (·) is a unitary in (C(X) ⊗ E)+ and p is any fixed projection
in E, π(p) 6= 0, 1, then the continuous map p(·) := f (·)p f (·)∗ from X to Proj(E) is
homotopic to the constant map p.

Proof. The following proof is a modification of the proof of Lemma 2.4 in
[19]. With respect to the decomposition 1 = p + (1− p), we write:

f (·) =
(

a(·) b(·)
c(·) d(·)

)
,

where a(·) = p f (·)p, b(·) = p f (·)(1 − p), c(·) = (1 − p) f (·)p, d(·) = (1 −
p) f (·)(1− p).

Since f (X) is a compact subspace of U(E+), for any positive number ε <

1/8 there exists a subset {t1, t2, . . . , tn} such that

sup
t∈X

min
16i6n

‖ f (t)− f (ti)‖ < ε1/2.

Applying Lemma 2.9 to the elements c(t1), c(t2), . . . , c(tn) of E, we find e0 <

p, f0 < 1− p e0, f0 ∈ Proj(E)\B such that

max
16i6n

‖ f0xie0‖ < ε1/2.

From Lemma 2.3 there exists a partial isometry v ∈ E such that v∗v = p and
vv∗ = p0 < e0.

Since π(p) 6= 1 and π(p0) 6= 1, we have, by Lemma 2.8, that p and p0
are homotopic equivalent. Hence there exists a unitary w ∈ U0(E+) such that
wpw∗ = p0. So the constant map p and the constant map p0 are homotopic and
we have that max

16i6n
‖ f0xie0‖ < ε1/2.
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Let p1(t) := f (t)wpw∗ f (t)∗ = f (t)p0 f (t)∗ =
(

a(t)p0a(t)∗ a(t)p0c(t)∗

c(t)p0a(t)∗ c(t)p0c(t)∗

)
.

Then p(·) is homotopic to p1(·) as continuous maps from X to Proj(E). We have:

sup
t∈X

∥∥∥(0 0
0 f0

)
p1(t)

(
0 0
0 f0

)∥∥∥=sup
t∈X

‖ f0c(t)p0c(t)∗ f0‖

6
[

sup
t∈X

min
16i6n

‖ f0(c(t)−c(ti))p0‖+max ‖ f0c(ti)p0‖
]2

6
[

sup
t∈X

min
16i6n

‖ f (t)− f (ti)‖+ ε1/2
]2

6 4ε 6
1
2

,

where
(

0 0
0 f0

)
, p1(t) are two projections in (C(X)⊗ E)+. Using Lemma 2.6 we

find a unitary v(·) in (C(X)⊗ E)+ homotopic to the identity such that

q(·) := v(·)p1v(·)∗ 6
(

p 0
0 1− p− f0

)
.

Since q(·)
(

0 0
0 f0

)
= 0 in C(X)⊗ E, using again Lemma 2.6 we find u(·) ∈

U0((C(X) ⊗ E)+) such that r(·) := u(·)q(·)u(·)∗ 6
(

0 0
0 f0

)
. Thus q(·) and r(·)

are orthogonal projections, and hence homotopic. Since r(·) and p are equivalent
orthogonal projections in C(X)⊗E it follows that r(·) is homotopic to the constant
map p.

Therefore, p(·) ≈ p1(·) ≈ q(·) ≈ r(·) ≈ p.

LEMMA 2.11. Let E be an essential extension of a A by B. If f (·) is a unitary in
(C(X)⊗ E)+ and p is any fixed projection in E, π(p) 6= 0, 1, then f (·) is homotopic to
a unitary in (C(X)⊗ E)+ of the form:(

f1(·) 0
0 f2(·)

)
(with respect to the decomposition 1 = p + (1− p)),

where f1(·) is a unitary in C(X)⊗ pEp and f2(·) is a unitary in (C(X)⊗ (1− p)E(1−
p))+.

Proof. From the above lemma the map p(·) := f (·)p f (·)∗ and the constant
map p are homotopic. So there exists a path of unitaries {u(·, s) : s ∈ [0, 1]} in
(C(X)⊗ E)+ such that u(·, 0) = 1 and u(·, 1)∗pu(·, 1) = p(·).

It follows that u(·, 1) f (·)p = pu(·, 1) f (·) and hence,

u(·, 1) f (·) =
(

f1(·) 0
0 f2(·)

)
where f1(·) is a unitary in C(X) ⊗ pEp and f2(·) is a unitary in (C(X) ⊗ (1 −
p)E(1 − p))+. Since u(·, 1) is homotopic to the identity, we draw the conclu-
sion.
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LEMMA 2.12 ([18], 4.1). Assume that B is a nonunital C∗-algebra with an approx-
imate identity consisting of projections and p is a fixed projection of B. If u is a unitary
of B+, then there exists a projection q > p in B (actually a member of an approximate
identity of projections) such that u is homotopic to a unitary with the form u1 + (1− q)
in the unitary group of B, where u1 is a unitary of qBq.

LEMMA 2.13. Let E be an essential extension of A by B. Let X be a compact
topological space, p is any fixed projection in E, π(p) 6= 0, 1. Then every unitary f (·) in
(C(X)⊗ E)+ is homotopic to a unitary with the form:(

g(·) 0
0 1− p

)
, where g(·) is a unitary in C(X)⊗ pEp.

Proof. From Lemma 2.11 it follows that f (·) is homotopic to a unitary with

the form
(

f1(·) 0
0 f2(·)

)
.

Case 1. E is unital.

Using Lemma 2.3 and Lemma 2.8 for any projection p1 < p we find a unitary
u ∈ E connected to the identity such that uu∗ = p1 and u∗u = 1− p.

Then the unitary
(

p 0
0 f2(·)

)
is homotopic to the unitary u

(
p 0
0 f2(·)

)
u∗

which has the matricial form
(

g1(·) 0
0 1− p

)
with respect to the decomposition

1 = p + (1− p) where g1(·) =
(

u f2(·)u∗ 0
0 p− p1

)
with respect to the decompo-

sition p = p1 + (p− p1).
It follows that:(

f1(·) 0
0 f2(·)

)
=

(
p 0
0 f2(·)

) (
f1(·) 0

0 1− p

)
is homotopic to(

g1(·) 0
0 1− p

) (
f1(·) 0

0 1− p

)
:=

(
g(·) 0

0 1− p

)
,

where g(·) = g1(·) f2(·)
By the construction above g(·) is a unitary of C(X)⊗ pEp.

Case 2. E is nonunital.

Since E has real rank zero, E has an approximate identity consisting of pro-
jections, say {eλ}. Then {1 ⊗ eλ} is an approximate identity for C(X) ⊗ E. By
Lemma 2.12, there exists a projection q = 1 ⊗ eλ such that f (·) is homotopic to
a unitary f0(·) + (1 − q) in the unitary group of (C(X) ⊗ E)+, where f0(·) is a
unitary in C(X)⊗ eλEeλ.
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From Lemma 2.3 and Lemma 2.8, it follows that there is a unitary w in E+

homotopic to the identity such that wpw∗ = p0 < eλ. Working now with the
unital C∗-algebra eλEeλ, we obtain the conclusion.

LEMMA 2.14. Let E be an essential extension of a purely infinite simple C∗-algebra
A by compacts. Let X be a compact topological space. Let p be a fixed projection in E such
that π(p) 6= 0, 1. If two continuous maps f1, f2 from X to Up are homotopic as maps
from X to Up(E) then they are homotopic as maps from X to U(E).

Proof. Using Lemma 2.3 and Lemma 2.8 we can make slight adjustments in
the proof of Lemma 2.9 in [19] to draw the conclusion.

REMARK. Let (X, x0), (Y, y0) be two pointed topological spaces. [X, Y] is
the standard notation for the set of homotopy classes of continuous functions
f : X → Y, f (x0) = y0. By definition πn(U(E)) = [Sn, U(a)]. The base point s0
can be chosen arbitrarily since Sn is path connected. Since two path components
of U(E) are homeomorphic topological spaces, then any point in U(E) can be
chosen as base point. We choose here the base point for U(E) to be the unit of E+.

Lemma 2.14 shows that two maps from X to Up(E) are homotopic if they are
homotopic as maps from X to U(E). Therefore Lemma 2.13 gives an isomorphism
between [X, Up(E)] and [X, U(E)].

Since the C∗-algebra of compact operators is a nuclear C∗-algebra we have
the following exact sequence:

0 → B⊗K i→ E⊗K π→ A⊗K → 0

and we have that [X, Up(E)] is isomorphic to [X, U∞(E)].

As a conclusion of the above remark we have the following lemma:

LEMMA 2.15. Let E be an essential extension of A by B. Let X be a compact
topological space. Let p be a fixed projection in E, π(p) 6= 0, 1. Then

[X, U∞] ' [X, Up] ' [X, U(E)].

Replacing X by the m-th sphere we have, for any m,

πm(U∞(E)) = πm(Up(E)) = πm(U(E)).

Proof of Theorem 1.1. By definition of the K-theory we have that K1(E) =
π0(U∞(E)). It follows by Bott periodicity [2] that

π0(U∞(E)) = K1(E) and πm(U∞(E)) = πm−2(U∞(E)), for any m > 2.

Thus, π2m+1(U∞(E)) = K0(E) and π2m(U∞(E)) = K1(E).
Applying Lemma 2.15, one has, for any m,

πm(U∞(E)) = πm(Up(E)) = πm(U(E)).

Hence

π2m+1(U(E)) = K0(E) and π2m(U(E)) = K1(E).
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Any projection p ∈ E with the property that π(p) 6= 0, 1 is a full projection.
It is known from 2.8 of [5] that K∗(E) = K∗(pEp) for any full projection p.

It follows that π2m+1(U(pEp)) = K0(E) and π2m(U(pEp)) = K1(E).
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