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ABSTRACT. We will show the uniqueness of outer coactions of finite groups
on the AFD factor of type II; along the arguments by Connes, Jones and Oc-
neanu. Namely, we construct the infinite tensor product type action, adopt
it as the model action, and prove that any outer coaction is conjugate to the
model action.
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1. INTRODUCTION

In the theory of operator algebras, the study of automorphisms is one of
the most important topics. Especially, much progress has been made on clas-
sification of automorphisms and group actions on injective factors since funda-
mental works of A. Connes. In [2] and [3], A. Connes succeeded in classifying
automorphisms of the approximately finite dimensional (AFD) factor of type II;
up to outer conjugacy. The first generalization of Connes’ results was made by
V.ER. Jones in [5], where he classified actions of finite groups on the AFD fac-
tor of type II;. Soon after Jones’ theory, A. Ocneanu classified actions of discrete
amenable groups on the AFD factor of type II;. One of the extension of their re-
sults is analysis (or classification) of actions of dual object of groups, i.e., coaction
of groups, which will be useful to understand actions of compact groups. (See [9]
on basic of coactions.)

In this paper, we give the classification theorem for outer coactions of fi-
nite groups. Here we have to remark that this follows indirectly from the works
cited in above. In fact, the uniqueness of outer coactions of finite groups follows
from [5], since every outer coaction of a finite group is dual to some outer (usual)
action. Nowadays, this also follows from the general theory of Popa’s classifica-
tion of subfactors [11] (also see [13]). However in these approach one does not
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handle coactions directly. Hence in this paper, we present the direct approach
for classification theorem of outer coactions of finite groups on the AFD factor of
type II;, which can be generalized to finite dimensional Kac algebras. Our argu-
ment is similar to Connes-Jones-Ocneanu theory. We construct the model action
on the AFD factor of type II;, prove several cohomology vanishing theorem, and
compare a given action to the model action. The main technical tools in these ar-
guments is the ultraproduct and central sequence algebras. Unfortunately, coac-
tions do not necessary induce coactions on the central sequence algebra unlike
the usual group action case. Hence we have to modify actions to apply the ultra-
product technique to handle coactions, and this is one of the important points in
our theory.

Here we have another formulation to treat actions of duals of (finite) groups
other than coactions due to Roberts in [14]. His approach is essentially equivalent
to coactions. However it is convenient (at least for the author) to regard coactions
as the Roberts type actions, which we often call actions of finite group duals.
Hence in this paper we present our main theorem as the uniqueness of Roberts
type actions of finite group duals.

This paper is organized as follows. In Section 2, we prepare notations used
in this paper, and discuss the Roberts type actions. In Section 3, we construct the
infinite tensor product type action, which we call the model action. In Section
4, we collect some technical lemmas, which is necessary to treat actions on the
ultraproduct algebra in Section 6. In Section 5, we show three kinds of cohomol-
ogy vanishing theorems, which are important tools for analysis of actions. The
contents in Section 6 and Section 7 are central in this paper. We discuss actions on
the ultraproducts algebra, and the central sequence algebra of the AFD factor of
type II;. By means of cohomology vanishing, we construct the piece of the model
action, and complete classification. In the appendix, we present the Roberts type
action approach for the (twisted) crossed product construction for actions of finite
group duals.

After completion of this paper, the author and R. Tomatsu obtained a unique-
ness of free actions of a discrete amenable Kac algebra on the AFD factor of type
II; in [8], which contains the main result in this paper. However the approach
is completely different from that of this paper. Namely, in [8], classification is
done by the Evans-Kishimoto type intertwining argument without using model
actions. The author thinks that it may be useful to present a model action splitting
argument.

2. PRELIMINARIES AND NOTATIONS

2.1. NOTATIONS ON DUALS OF FINITE GROUPS. Throughout this paper, we al-
ways assume that G is a finite group. Let Rep(G) and Irr(G) be the collection of
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all finite dimensional unitary representations, and irreducible unitary represen-
tations of G respectively. We denote the trivial representation by 1. We fix rep-
resentative elements of Irr(G)/ ~, where ~ means a usual unitary equivalence,
denote by G the set of representative elements, and assume 1 € G.

Let d7t := dim H; be the dimension of 7t € Rep(G). For 7,p € Rep(G),
we denote the intertwiner space between ¢ and 7t by (¢, ) := {T € B(Hy, Hr) :
To(g) = m(g)T,g € G}. If 0 is irreducible, (o, r) becomes a Hilbert space with
an inner product (T, S)1 := S*T.

Let 1,p € G,and n®p = @ N%pa be the irreducible decomposition,

ceG
N(T
where N7, is a multiplicity. Fix an orthonormal basis {T7,},”] C (0,771 ® p).
Then we have Ty" Tg‘[’; = 0g,¢0,1,, and 026 T Try = lngp, where 1, € (0,0)
is an identity. Hence we have 77(g) ® p(g) = L Trp0(8) T especially.

oe
Let {v()} g with v(71) € Myr(C). Then ¥ T7v(0) Ty, does not de-
e
pend on the choice of {Tr} C (o, T ® p).

neG
In a similar way, one can easily see
/ b b / , A A /
Y (Thy @ 1) T0(&) Ty (Thy ©10) = Y- (1@ TE6) T70(O) TS (1 @ 55"
n,a,b Zcd
since both {(T}, ® 1U)T,§,’3},7,ﬂ/b and {(1; ® Tgf;)T,i’Z}g,c,d are orthonormal basis
for (§, T®@p®0).

REMARK 2.1. Assume that {v(7)} _a, v(7r) € A® B(Hz), is given for
some vector space A. We can extend v(7r) for a general 7 € Rep(G) as follows.
Let m = @ ol, o' € G, be an irreducible decomposition, and fix T! € (0!, ) with

1
T*T) = §;jand Y T'T™* = 1. Define v(7) = ¥ T'v(0")T"* € A ® B(Hy). Then
i i

v(7) is well-defined, i.e., it is independent from the choice of {T'}, and satisfies
v(m)T = To(c) for T € (o, 7). In this notation, the contents of the previous
paragraph is written as v((T ® p) ® 0) = (T ® (p ® 7)), for example.

Let {e] }?:”1 be an orthonormal basis for H,, and fix it. Let us express

f

Trp = (TRty,) as a matrix form. Then we can write T7/;" T p = 05,60, ¢ls and
Y T Tre” = lngp by matrix coefficients as

e
O onf O, TOmE _
Z Trion Tior = Oo O¢,fOmn, and Z Tﬂ?fpk T”?Pl = 0i 0k,
ik o,m,e
Let T}rﬁ € (1, 1 ® 77) be an isometry given by T}Tﬁl = \/% Zef ® eiﬁ, and
1

.. . O .
fix it. It is easy to see T}Tﬁj = 74 Since TY TH. = 61, we have %Tﬁ;”eﬁk =

A d7'[51,p.
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~0, \/dpd y _ =00y .
Set T/ := V%”(l;@T%/Z*)(T%’n@lp) € (0, T®0). Then {TE} is

. — . FOke TOme
an orthonormal basis for (p, 77 ® o). It is easy to see =5, = \/ Tnj’[pk As a
consequence we have, for example

Y T oy = L ST o0 T2,
om,n,e o,m,n,e Y I
2.2. COACTIONS AND ROBERTS TYPE ACTIONS. Let A, B be von Neumann alge-
bras. We denote the set of unital x-homomorphisms from A to B by Mor (A, B).
Let ug be the (right) regular representation of G, and R(G) := {ug}"” the
group algebra. The coproduct A of R(G) is given by A(ug) = ug ® u.
For simplicity, we denote 1, ® T € M ® B(Hy, Hp), T € B(Hr, Hp), by T.

DEFINITION 2.2. (i) Let M be a von Neumann algebra. We say that « =
{7} rerep(c) is an action of Rep(G) if ax € Mor (M, M ® B(Hz)), and the fol-
lowing hold:

(ia) n] = idM.
(ib) a7 (x)T = Tay(x) forany T € (o, 7).
(ic) ar ®idg 0 &y = A g
(ii) We say & = {a } reprr(G) is an action of Irr (G) if ar € Mor (M, M ® B(Hzr))
and the following holds:
(iia) N = idM.
(iib) ar ® idy 0 ay(x)T = Tay(x) forany T € (0, T @ p).
(iii) We say & = {ar} g an action of G if ar € Mor (M, M ® B(Hy)) and we
have the following;:
(111a) n] — ldM
(iiib) ar ®idp 0 ap(x)T = Tay(x) forany T € (0, T ® p).

If an action « of G is given, then it is a routine work to extend « to those
of Irr(G) and Rep(G). Hence in this paper, we do not distinguish these notions.
When M is properly infinite, it is not difficult to see Definition 2.2 is reduced to
that of Roberts action.

We remark that a; is automatically injective. Suppose a,(x) = 0. Then we
have 0 = TX: ax @ idy 0 an(x)TE o = TE" TE a1(x) = x.

Let {eg } be a system of matrix units for B(Hz). Then ax(x) is decom-

posed as az(x) = Yaz(x)ij © efj. The +-homomorphism property of ay implies
i,j

%“n(x)ik“ﬂ(y)kj = “ﬂ(xy)ij and (D‘ﬂ(x)ij) = a(x )]z

The group algebra R(G) can be decomposed as R(G) = @ B(Hy), and
neG

- d . . .
eff = WW gives a matrix unit for B(Hy). Then « € Mor (M, M ® R(G))

can be decomposed as a(x) = Lar(x);(x) ® el?]?, and we get oy € Mor (M,
7
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M ® B(Hy)). One can verify that « is a coaction, i.e., « is injective and satis-
fies (¢ ®1id) oa = (id ® A) o a, if and only if {a, } is an action of G in the sense of
Definition 2.2.

DEFINITION 2.3. Let & be an action of G on M. The fixed point algebra M* is
defined as M* := {a € M : az(a) =a® 1, forany 7 € G}.

If K C M*, then we say « is trivial on K, and often write as a; = id on K.
Let K C M be a von Neumann subalgebra, on which & acts trivially. Then it is
easily seen that a;(K' " M) C (K'N M) ® B(Hy), and « is an action on K’ N M.
Note that even if we have a(K) C K® B(Hy), « does not induce an action on
K’ N M in general unlike the usual group action case.

Let a be an action of G on M, and N be another von Neumann algebra. Then
a(x) = Laz(x); @1y ® el?]T- is an action of G on M ® N, which we denote by

L]

a ®idy for simplicity.

2.3. CROSSED PRODUCT CONSTRUCTION BY ROBERTS TYPE ACTION. Let a be
a coaction of G on M. The crossed product M X, G is defined as oc(M) VC®
(*(G) € M® B(£?*(G)). We discuss the crossed product construction from the
point of view of the Roberts type action. (Also see Appendix.)

We begin with the following definition.

DEFINITION 2.4. Let M be a von Neumann algebra. We say {Usr } rep(c) i
a (unitary) representation of Irr(G) in M if we have the following:
(i) Uy € UM ® B(Hz)), Uy = 1.
(i) Let Fre € B(Hx ® Hp, Hy ® Hy) be a flip map. Set U}? := U, ®1,, and
Up? = Fpn(Up ® 17) Frp. Then UPURPT = TU, forany T € (0, 7 © p).

)1<m<d17
1<i<dr l<k<dp

respectively by matrix elements, then Definition 2.4(ii) is written as }_ Uy, U, T7), ik

il
= LT/ Uoy,-
m

If we represent U, and T as U, = (unij)lgi,jgdn and T = (T}}

LEMMA 2.5. Let {Uy} be a unitary representation of G. Then we have U;‘Tij =
Uz, and [Umj/ Uy, ] = 0.

Proof. Since we have ZU;,]]U TL _ = T lll, len,] T = d;x holds.

Wkl = 775,71

This implies U'Uz = 1, and hence U}, = 'Uz. Thus we get Uy, = Usz,.
We will verify the second statement. Since Uy is a representation, we have
U12U13 Z TrpUsTrp" . Then we get

Frp(URUR ) Ep e = Y Uy Uy, @ ey @ eff = ) (Frp T ) Uo (Frp Tog )™
ijk,l e
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On the other hand, U,*U}? = 2anT”eu(,(Fn,pT”) holds, since { Fr, Ty}

C (0, p ® ) is an orthonormal b351s (Note that we use 7 ® p ~ p ® 7 here.) By
comparing these, we get [Ur,, Uy, ] =0. 1

Lemma 2.5 shows that {Um } behave like matrix coefficients {7(g);;}. Let

U, be a representation of G, then it follows immediately that so is U, since
[unq upkl} = 0.

REMARK 2.6. One can see that {U*} is a conjugate representation of G, ie.,
(u%)lz(ug)BT = TU: for T € (¢, 1 ® p), without using the commutativity of G.

Let 71(g);; be a matrix coefficient for 7 € Rep(G). We regard 7(g);; as an
element 77;; in £*(G) and set Ami = 1m @ mij. Then Ap = Y An, ® el?]T- is the
ij

unitary representation of G in the sense of Definition 2.4.
Since (*(G) = V{m;}, we have M %y G = a(M) V {Ar,}. The relation
of generators are Y A, xAL, = ar(x)j, or equivalently Az (x ® 17)A% = ar(x).
k

Here we identify «(x) and x as in the usual way. A unitary A, plays a roll of
the implementing unitary in the usual crossed product construction. Hence we
also call A the implementing unitary in M x, G. We can expand a € M x, G as
Z,”n,i,j/\mj/ ;i € M, uniquely.
0,0,

DEFINITION 2.7. Let & be an action of G on M. We say « is free if there exists
nonon-zeroa € M® B(Hz),1 # m € G, so that ar(x)a = a(x ® 1,) for every
x € M. When « is an action of a factor M, then we also say « is outer if « is free.

In usual, freeness of a coaction « on a factor M is defined by the relative

commutant condition M' N1 M x, G = Z(M). We see that the usual definition
and ours coincide in the following proposition.

PROPOSITION 2.8. Let a be an action of G on M. Then w is free if and only if
M NM %, G = Z(M). Especially, M X, G is a factor when w is free, and M is a factor.

Proof. Leta = Z ﬂn,,])\n,] € M, G. Set ay := Zaml®e € M ® B(Hp).

Then it is easy to see a € M' N M X, G if and only 1f (x @ 1z)ar = agur(x)
for any x € M, m € G. Then it is easily shown that « is free if and only if
M NMxyG=2Z(M).

In the end of this subsection, we explain the dual action of G on the crossed
product. Let a« be an action of G on M. Then the dual action @ of G on M x, G
is given by #¢(a) = a fora € M, and &y ® id(Ar) = Az7(g), or equivalently
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Qg(Ar;) = L Ary70(g)kj- Then it is shown that @ is an action of G, and the fixed
k

point algebra is (M x, G)* = M.

2.4. QUANTUM DOUBLE CONSTRUCTION FOR FINITE GROUP DUALS. In this sub-
section, we collect definitions and basic properties for quantum double construc-
tion (also known as the symmetric enveloping algebra [12], or the Longo-Rehren
construction [6]) arising from actions of group duals. We will use them in Sec-
tion 6. We refer Chapter 12.8, 15.5 of [4], or Appendix A of [7] for details of this
topic.

For 77, p € Rep(G), let T®p a representation of G x G given by t&p(g, ) :=
71(g) ® p(h). Let a be an action of G x G on M. Set P := M x, (G x G). Let Argp
be an implementing unitary for a.

LEMMA 2.9. Set Wry; 1= E)\m@ﬁjk. Then wy, = (wmj) is a unitary representa-
k 1

tion of G.
Proof. Set Uy 1= An,@l, Un = Al@ﬁ'i' Obviously we have Wy = Z Uy Uy
and [vr,, up,] = 0. Since {Tgp} C (0, T®p) is an orthonormal ba51s Ug =

(”ﬂi,')lj becomes a unitary representation of G (also see Remark 2.6). Hence the
following holds:

me Om €
Zwﬂijwpkl T7T 01 Z vﬂmvpkauﬂn]quT Tj,01
jil jlna

_ Co,P [y A e
- Z Tﬂerkv(fbc Tﬂana TnanaqufT 70,01 Tﬂ’]n,ﬂl
jlma,
Sbe,pnd.fa
_ CorP e lad A o€
= Z T Z Tt 00 Trtpa ) 02, Ynag Z T 0, T o
&bepndfg na jil

(Tb, _ Tp,€
Z TPk ( Z Vo, ugcm) - Z Tnz 0 Wy, 1
Cc

DEFINITION 2.10. Set N := MV {wx;}. We call M C N is the quantum
double for «.

REMARK 2.11. In the above definition, we consider an action of G x G on
M directly. However, the usual quantum double construction is given as follows.
Let M be a von Neumann algebra, and « be an action of G on M. By the commu-
tativity o of G, (a7 )°PP becomes an action of G on M°PP. Hence we have an action
of G x G on M ® M°PP. The rest of construction is same as above.

We embed G into G x G by ¢ — (g,g). Let p := @ be the dual action of
G x G on P. Then it is shown that N = (M x, (G x G))C.
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For example, we have

:ng w”u Zﬁgg 1k®7'f]k - Z Aﬂil®ﬁjn,n(g)lkn(g)mk = ZAﬁi1®ﬁj1 = w”ij'
k1m Im
If we expand a € Pasa = Za”ij'Pkl)\mj@pkz’ then N = (M x, (G x G))©
verified in a similar way as above. We leave the proof to the reader. We remark
that 2 € N can be expanded uniquely as a = Z A7,ijWr;;, Arij € M, and there
A

exists the canonical conditional expectation E : N — M given by E(a) = a3.

2.5. MAIN RESULT.

DEFINITION 2.12. Let « be an action of G. We say {wn} cc is a (unitary)
1-cocycle for w if w; € U(M ® B(Hy)), normalized as wy = 1, and the following
holds:

(wr @ 1p)ag ®idp(wp)T = Twy, T € (0,T®0p).

A 1-cocycle {wx} for « is called a coboundary if there exists a unitary v € U(M)
such that w; = (v* ® 17)ax(v).

If we extend vz for { € Rep(G) as in the remark in Section 2.1, then we have

(v @ 1y)az(vy) = vggy- It is easy to see that Ad wra, is an action of G for a
1-cocycle wy.

DEFINITION 2.13. Let a and B be actions of G on M.
(1) We say a and f are conjugate if there exists 6 € Aut (M) with 6 ® id o az o
— B forevery 7 € G.
(11) We say « and B are cocycle conjugate if there exists a 1-cocycle {wy} for g,
and Ad wr«a,; and B, are conjugate.

Our main purpose is to show the following theorem by a traditional Connes-
Jones-Ocneanu type approach, i.e., the model action splitting argument.

THEOREM 2.14. Let R be the AFD factor of type I1;. Let a and B be outer actions
of G on R. Then a and B are conjugate.

3. MODEL ACTION

In this section, we construct an infinite tensor product type action of G on
‘R, which we adopt as the model action.
It is easy to see the following lemma.

LEMMA 3.1. Let M, N be von Neumann algebras, and U, V; unitary represen-
tation of G in M and N respectively. We regard U, and V as representations of G in
M ® N in the canonical way. Then U, Vy is also a representation of G.
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To construct the model action, we first construct (the canonical) unitary rep-
resentation of Irr(G) on M| (C). Although we already discussed it in Section 2.3,
we give a slightly different approach, which will be useful for our argument.

Let ¢ be the Haar functional for R(G), i.e., ¢(ug) = |G|d,q. For v € R(G),
we denote by v = @uo(m), v(rr) € B(Hy), via the decomposition R(G) =
@ B(Hjy). Then we have ¢(v) = Y. dnTry(v(7)), where Tr; be the canonical

al w

neG
(non-normalized) trace on B(Hy). We regard R(G) as a Hilbert space equipped

with an inner product arising from ¢, and denote by 62(6). Namely, an inner

product on ¢2(G) is given by (v,w) = ¥, dr(v(n),w(n))x for v = Do(r),
neG

= @w(m). Here (v(n),w(m))r = Trr(w(m)*v(m)) It is easy to see that

{dﬂ’l/ 2et } C £2(G) forms an orthonormal basis with respect to this inner prod-

uct.
Set Ty, € B(Ho, Hp) by (Tp7:) g0 = Tpire;

LEMMA 3.2. Define Ar,; € B((2(G)) = M| (C) by
(Ary0)(0) 1= LTS 0(0) T
e
and An := Y Am; @ eff € Mg (C) ® B(Hy). Then { Ay} is a unitary representation of
1]
Irr(G) on Mg (C).

Proof. We freely use notations and results in Section 2.1. We first show
ARASR TRy = Trphe, Trp = (Tiip) € (0,71 ® p), equivalently Az, Ay, T =
Y Tg"‘pi/\gmn We have:

m

rlr —_— 17’ n/s ﬁ’e*
();Am,xpk,nz 00) (@) = L T (e T ) T
s JAAa.e
_ ’7‘3 Cf* 17,e%
_; 77Z€CfT§”z wo () Ty Téﬂ
_ Z T* Té'fTa”’ (@)Téf*T”’e*

) T Pk &y usi p; &y TP
jilned.f

_ e 1o o\l ot T

- Z Tﬂ; PkTg ( T (ZTU] ng”/ PZ)
n..e.f

<, f Cf*

2 Tg[lapk Tgr Tg n

= 2 T T o) T = Y (T A, 0) (2.
mg,f m

It is easy to see that %(A,rkiv, Ankjw> = ¢;,;. Hence we have %A*ﬂkiAﬂkj =0

and consequently A3 A, = 1. Thus it suffices to show A A = 1.
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Here we have

[ 01, pm, =+/d — 5.
Z/\nik/\”jk - Z Tn n]/\le T, Tk Tn 7r - ‘51,]-
k kp,l,me

Hence we have A;'Ax = 1, and 'Az = A%. It follows that A%, = Amy; and
Ay =10 1

Let E = {er,; 0, } be a system of matrix units for B(¢? (A(A})) = Mg|(C), that
is, e, p,, 1s a partial isometry which sends dp~1/2el, € (2(G) to dmr 1/ zel?]T- Ctis

_ (9P e TomE
/\nij = Z dO'Tn’:ka 7,0[ef7mnfpkl'

ok 1,o,mmne

not difficult to see

It follows that /dmdpA ;€1 1/\sz et o from the above expression of A .
Let M be a von Neumann algebra, and E = {em,-,pkl} C M a system of

matrix units for B(£2(G)). Then we can construct a unitary representation A of
G in E” by the above formula. In this case, we call {1} a representation of G
associated with E = {em].,pkl }. When we have to specify E, we denote the unitary

representation of G associated with E by AE.
We define the product type action of G on R. Express R = ® K, where
n=1
Ky is a copy of M|g|(C). Let A := AKn pe a unitary representation of G on
K, and regard it as one on R. Define AL = AL, and AL = AZ71A%. Then A% is a

representation of G on K @ - - - © K, by Lemma 3.1. Set . (x) := Ad A%L(x @ 1y).
Since A% is a unitary representation of G, m; is indeed an action of G on R. If

n—1
x € @ K, then
k=1
AdAL(x@1;) = AdAL AL (x @1,) = AdAL H(x @ 15)

[e°) n
holds. Hence lim m!(x) exists forx€ |J @ K, and so does m(x)= lim m?(x)
n—eo n=1k=1 n—eo
for every x € R.
DEFINITION 3.3. We call m = {m} the model action for G.
THEOREM 3.4. The model action m is outer.
Proof. Fix1 # m € G. Assume there exists non-zero a € R ® B(Hy) such
n ~
that my(x)a = a(x® 1) holds for x € R. If x € ® Ky, then (x @ 1)A%a =

/N\’;[* a(x ® 1) holds. Hence a is expressed as a = = Al an, il = Zb”“ ® e

® Ky ® B(Hy). Since we assume a # 0, there exists ¢ € R ® B(H,) with
k=n+1
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m
T®Trz(ca) # 0. We may assume c is of the form ¢; ® e}, ¢1 € @ Ky for some .
k=1
Then
T®Trn(ca) ( Am+1bm+2) ( Am-i—l bm+2 ZT Cl/\ﬂll /\m-&-l) (b;j;-i-Z):O

Ttij TTij T
holds, and this is a contradiction. Hence @ must be 0, and m is an outer action. 1

DEFINITION 3.5. Let E = {en,p,} C M be a system of matrix units, and
AL a representation of G associated with E. Let a be an action of G on M. We
say {er;;p, } is an a-equivariant system of matrix units if ax(x) = Ad AL (x®1) for
x €E.

The following lemma is easily verified. We leave the proof to the reader.

LEMMA 3.6. Let a be an action of G on M.
(i) Let E = {emj,pkz} be an a-equivariant system of matrix units. Then AE* is a 1-
cocycle for &, and Ad AE*a; = id on E. Hence Ad AL* o induces an action on E' N M.
(ii) Let M D K = M|(C), and suppose a is trivial on K. Then AK'is a 1-cocycle for
w. It follows that Ad AR is an action on M.

4. TECHNICAL RESULTS

In this section, we collect some technical lemmas, whose proofs can be
found in [2], [5], [10]. In the following, M is a factor of type II;, and T is the
unique normalized trace on M.

LEMMA 4.1 ([5], Lemma 3.2.7). Let f € M be such that ||f]| < 1, ||f2 — f|l2 <
Sand ||f* — flla < & < L. Then there exists a projection p € M such that ||f — p||2 <

6v/6 and T(p) = T(f).

LEMMA 4.2 ([5], Lemma 3.2.1). Let u € M be such that ||u*u — 1|| < 8. Then
there exists a unitary v € M with ||u —v|p < (34 ||u||)d.

LEMMA 4.3 ([2], Proposition 1.1.3; [10], Proposition 7.1). Let us fix a free ul-
trafilter w over N.

(i) Let A € M® be a unitary (respectively projection). Then there exists a represent-
ing sequence A = (ay) consisting of unitaries (respectively projections).

(i) Let V. € MY be a partial isometry with V*V = E and VV* = F. Let E =
(en), F = (fn) € MY be representing sequences consisting of projections such that e,
and f, are equivalent for any n. Then there exist a representing sequence (vy,) for V such
that v}v, = ey, VuU; = fu.

(iii) Let {El]}1<l,],<mCM“’ be a system of matrix units. Then there exists a represent-
ing sequence E;; = {e}: } such that {ez]}1<w<m is a system of matrix units for every n.
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5. COHOMOLOGY VANISHING

In this section, we mainly deal with actions of G on factors of type IT;. How-
ever many parts of results in this section are valid for general factors (or von
Neumann algebras).

We begin with the following lemma, which is known as the “push-down
lemma” in subfactor theory ([4], Lemma 9.26).

LEMMA 5.1. Let a be an action of é, and set €M X, G. For

— 1
€= 1GTT drhn,
any a € M x, G there exists b € M such that ae = be.

Proof. Leta = Y ap,Apy,, ar,; € M be an expansion of a. Then

Pk,
_ _ Op1,€ T0n,e
\G\ae - Z drmsz )‘sz)‘ﬂn - Z 2 dmszz Trr pk/\ffmn TﬂT,pz
70,1,0,k,1 70,0,0,k,1 Omn,e
_ e T _
- Z d‘mPkl ( Z Ta,,i Ok onl pl) )‘Umn - Z daapkkAUnznz - (Zapkk) |G|e
o,k,1,0,mn o,k,om ok

holds. Set b := ) ap,,, then we have ae = beand b € M. &
ok

PROPOSITION 5.2. Let a be an outer action of G. Then any 1-cocycle for a is a
coboundary.

Proof. Let {wx} be a 1-cocycle for a, and A, an implementing unitary in
M x, G. It follows that {wx A} is a representation of G. Set e := |G|~} Z drtAy,,

and f := |G|7' Cdn(waAr)i = |G| & dmwr;Ar;. Then e and f are projec-
7,

7T, i ]
tions in M x, G with Eps(e) = EM(f) = |G|~!, where E,; is the canonical con-
ditional expectation from M X, G to M. Since M x, G is a factor due to the out-
erness of a, there exists v € M x, G such that vev* = f. By Lemma 5.1, we may
assume v € M. Since vev* = |G| ™! Y dmoA s, vt = |G|t L dmoan(0")ijAq,, we
77,1 i,

have wr,; = vaz(v");;, and this implies wr = (v ® 1)0&;1(7]}*). Especially v is a
unitary. 1

COROLLARY 5.3. Let a be an outer action of G on M. Then there exists an a-
equivariant system of matrix units {emj,pkz} C M.

Proof. We can choose a system of matrix units F = {fz, 0, } C M", since
M* is of type II;. Then AL is a 1-cocycle for a,;. By Proposition 5.2, there exists
v € U(M) such that AL, = (v* ® 1)a,(v). Define E = {enyont == {vfrjouv"}-
Then AL = (v®@ 1)AL(v* ®1) and

“ﬂ(eﬂijrpkl) = ‘Xﬂ(v) (fﬂij,Pkl ® 1)“7T(v*)
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= (V@ DAL (fry 0 @ DAF (07 ®@1) = AL (er 0 @ DAL
DEFINITION 5.4. Let a; € Mor (M, M ® B(Hjy)), normalized as aq = idyy,
and Uz, € UM ® B(Hz) ® B(Hp)). We say {ar, Un,p} ¢ is a cocycle twisted
action of G if we have the following:
(i) un,l = U1,7r =1
(i) ax ®@idp o ap(x)UrpT = UrpTae(x), T € (0, T@p).

€

(ii) Let {ng}s[:"{ be an orthonormal basis for (¢, 71 ® p). Set U5 := Uy, pTr/p.
Then
Y (ax ®id) (U U To (e @ The™) = Y (U ® 1o USATES (Teg @1,)
1,a,8,b gctd
holds. The unitary Uy , is called a 2-cocycle for .

We explain the meaning of Definition 5.4(iii). Note that {(1,&Tpy) Tg’,l,’] Yo

and {(T,Cri) ® 10)T§,’5}§,C,d are both orthonormal bases for (, 7 ® p @ ¢). Then
,d g , ,b
V(g,c,d),(iy,a,h) = Tg,g* (Tgt,i)* ®117) (17T®Tg,;)T7§I,17 € (Cr (;{) =C,and V = {V(g,c,d),(iy,a,b) }
gives a unitary transformation between the above two orthonormal bases. From
the condition (iii), we get
. , b , A
(nr @id) (Upo) Uy = gz;i(ui,i; ® 1U)U§,UV(§,c,d),(17,u,b)-
s

This shows that the same unitary V gives the transformation between (a,; ®
. , b , ,d
id) (U Uy and (US5 © 1)UL, A

Let {ax, Ure} be a cocycle twisted action of G, and extend it to that of

Rep(G) as in the remark in Section 2.1. Then (a; ®idy) o ap = Ad (Ur,p)anep,
and (Ur,p ® 1o)Urgpe = (a7 ®id, ®ide) (Up,e)Ur,pee from the above equalities.

DEFINITION 5.5. Let {ay, Uy} be a cocycle twisted action of G. We say
that Un,p is a coboundary if there exist unitaries W, € M ® B(H), normalized as
W1 =1, such that

Wrar @1d(Wp)Ur T = TW,, T € (0,T®p).
Define
(0aW) 7,0 := a7 ®idp (W) (Wr®1p) Wy :szn®idp(W,;)(W;T@lp)ngZW;ngg*.
oe
Then the above condition is shown to be equivalent to Uz, = (0aW*) 7.

Let {a, Uy, } be a cocycle twisted action, and assume Uy p = (9aW*) 1, for
some { Wy }. Then Ad Wra, becomes a genuine action of G.

REMARK 5.6. Here we make a useful remark on perturbations of cocycle

twisted actions. Let & be an action of G, and w,; € U(M ® B(Hy)). Then &, =
Ad wrar is a cocycle twisted action with a 2-cocycle u(7, p) = dzw(7, p). If there
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exists another unitary @, such that 05" (7T, p) = u(7, p), then it is easy to verify
that w,w, is a 1-cocycle for a.

In a similar way as in [5] and [15], we can prove the 2-cohomology vanishing
theorem for cocycle twisted actions of G as follows.

THEOREM 5.7. Let {ar, Uy} be a (not necessary outer) cocycle twisted action of
G. Then U p is a coboundary.

Proof. Fix a finite dimensional subfactor K C M, K = M¢|(C), and a sys-
tem of matrix units {e;j}1<;j<|g| for K. Choose a unitary ur € M ® B(Hxr)
with Ad unocn(ei]-) = ¢;®1, and set W = Aduzayr. Then &-(x) = x®1,
x € K. Hence @ sends K’ N M into (K’ N M) ® B(Hz). Moreover if we de-
fine Uy, := () U oty = Zu 20 (up ) Urous Ty, then Uy € (KN

M) ® B(Hz) ® B(H,) and {&, Uy} is a cocycle twisted action of G on K’ N M. It
is trivial that ljln,p is a coboundary if and only if so is Un,p.

Hence we may assume « is of the form a; = 2% ®id on N ® B(#?( A)) and

Urp = m%klunu,pkl R1l®e: ®ekl € N® Cl1® B(Hy) ® B(H,). Fix a system of

matrix units {fz, , .} for B(2(G)).

In the rest of this section, we denote Uy, and Ty, by Ug , and Ty, , respec-
tively to simplify notations.

Define Wr;; as

(: 7]5 2
Wy == Z \/ dy N,Ca njcj’b ®f'//cdr§ah € N®B(£ ( ))
¢ab.cd

We will see that w, € U(M ® B(Hy)), and (0aw*)r, = Upp. At first we verify
that wy is a unitary. We will see that } wnikw;]_k = Ji/j holds as follows:
k

Y W

k

_ dp TU’S u g 7]5

- ; ( 2 do 0]~ TTkPm ® fg’“ le) ( Z d;7 (:,1 nkcb ®f§ubﬂ7cd>

o1,m,c.s,t ¢abm,.cd
do o
. Nd
a 1 2 d d0'd17 jpl 7T]pz ( Z unkpm u?‘[kpm> ® fU—St'md
o1,0,8t1,.c,
de
_ s milc Ol . —5. .
— Z q T7T1PI T7T]P1 ®f7lsd Hed = Z (ZTTI s )®f7]sd Ned— 1]21®fflcdﬂ7cd - 51,].
o, neds pl .6

In a similar way as above, ) w*nkiwnk]. = ¢;;j can be verified. Hence wy is indeed a
k

unitary.
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We next show that U, = (9aw") 7. It suffices to show wraz(wp)U7 ;w; =
T7 p- This follows from the computation:

(wn"‘n(wp)u%,pwé)%ﬂk
= Z wnij"‘n(wpkl)jn(u%,p, ® 1)w;ma
jimna

d¢ /dg [d¢ 14 He¥ gl Co* h Pu ¢
- L dp\ dg @TmébunjécTpfés“ﬂ(up,cf)fnugnmTam,ésuaaét®f'7ed'¢w

jlmagb.c,
n,d,e,,s,t,,u,0
e ey e, T8 T\ e TP gt
= e 1 TS T77d us 1%yt
%%d d’7d4’(j,§,zb,ca"( e U Tt T, ) W Ton e U, ©
d¢ (%2 U, ke, 78, T S T
= Ut UL, o, TH, ) USe, T U2 @ o
Iénf%d,e, dnd¢ g§c TnPL = GeCt ™ TPk~ GpGs TPl " O, Gs — 0aly < /Med P
dé 19 7 1e* Eox* . T P
B Z ﬁTnlb‘pk Té‘:gs ugfét ( 2 uﬂnpl ugnpl) Tamxés Uﬂaét ® fﬂed/‘pbuv
ﬂ§’~b;6g,d’& 7] ¢ nl

d 7“ e (4
— Z 7€T0'b Tﬂd T¢ Z (UZggtha§t> ®fﬂgd1¢uv

biydge, dﬂd(P TPk~ 0p0s ~ O Cs —~

C5,p,u,0
d’ .., i

— b Ma  fu _ 0 s s
- di Tﬂipk T(Tbgs TU'm,gS & fﬂedﬂud - Z TT[iPk ( Z Tﬁbr/d TVmJ]u) & f’?edﬂud

bydeug,s 17 bydeu o
— T, __ 70,
- T7T’i70k ~ 1 ®f NedMed — Tﬂ?;’k'

n.ae

Hence we have Uy, = (020" ). 1

We need another type of 2-cohomology vanishing theorem, which asserts
that we can choose a coboundary close to 1 if a 2-cocycle is close to 1.

THEOREM 5.8. Let {ay, Ur,} be a cocycle twisted outer action of G. If|| Urp —
1||2 < 9 for sufficiently small enough 6, then there exist a unitary W, € M @ B(Hy)
such that Uy p = (0. W*) rp and [|[Wr — 1|2 < f(0). Here f () is a positive valued func-
tion, which depends only on G and is independent from a and Uy p, with (1513(1) f(o)= 0.

Proof. Let N := M X, 1 G be a twisted crossed product, and A, be an im-
plementing unitary. (See Appendix for the twisted crossed product construction.)
Hence we have Ad A (x @ 1,) = ar(x) forx € M, A}TZ)\},?’Tg,p = Un,pTg,p/\g for
T7, € (o,m®p), and M x4y G = MV {Azr;}. By Theorem 5.7, there exist a
unitary w; € M ® B(Hy), m € G such that Uy, = (9.w*)rp. This implies
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Az = WrAy is a representation of G. Thus e := |G|™! ¥ d7A, is a projection
7,

with Ep(e) = ﬁ

(If one is not familiar to the twisted crossed product, he (or she) may treat
it as follows. Let w, be as above. Since Ad w &, is a usual action, we can con-
struct a usual crossed product algebra M X aq yu G. Let A, be an implementing
unitary, and set A, := wiAy;. Then it is easy to see that {A,} behave like as
the implementing unitary in M x, ;; G. Hence M V {A;} is identified with the
twisted crossed product M X, iy G. )

Set f := |G|7! ¥ dmAy,. We will show f is almost a projection, and apply

TT,1

Lemma 4.1. Set A, = Y An; and we investigate Az A, — ) N%,F,Ag at first.
i o

Since we have

— — Om,a TOn,a O, A T0n,a
AnAp =) Agihoy = Y, UZ it Mgy, Tlrg, = Y Urey o Ty A T
ik

ik,ommn,a i,jk,l,ommn

T 1 TOn,a O, T ,a
= Z (uﬂij,pkz - 5ij5kl)Trr pl/\lfmn T7T111pk + Z Tn:npk)\(fmn Trf’,lpk

ijk,1,0omn ik,o,mn

— T0n (%

- Z (uﬂij/pkl 51]5](1) 7'( pl /\an ’1—'77.'1,1 Ok + Z NT( pAV/
i,jk,1,0mn

we get the following estimate:

TCmA =y
Z H u”z]Pkl 51]51(1 Z 71'”‘101 Agmn Tﬂ{lpk

o,mn,a

(LY ESS N pAd |
o

< ZHUm,»pk; 51]5le2 drdp Z”quz]pkl 51]5le2
i,jk,1 ikl

< drrdp+/dmrdpd.

Now we give the estimate of || f2 — f||». Since
1
2
fFf-f= |G|2 ZdndpAnAp ql ;dm{,

1
Y drdo(ArAp—Ng ,Ac)+ ‘ G\Z Y dndpNg, Ag—@deg
ag

B |G |27'L',p o 0,0
1
= Z drdp(ArAp — Ny pAr)
0,0
holds, we get

1
172 = fll2 < (g L e[ Anay — T NG
TT,0 v

|G|2 Zdnzdp V/dmdps.
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Next we estimate || f*— f||». Set l,I7T 7 _zu,rkn Then A% —zunk 7, A0
Appendix), and ha * = |G|7! dr(U A

(see Appendix) we have [* = |G|~ ﬂzl] An;
Hence the following holds:

1" = flla < g X Al (@, = 60l < g7 X Al (U, = st

T,0,j 70,7,k

2 * 3
<@;dnv ZHU}kmk ik |G|Zdnv 7d.

i,jk

If we set C := max {\G|’1 Z dm?dp?\/dndp, |G|~ Zdn3\/d7(}, then || f2

—fll2 < Cdand || f* — fll < Cé. Here note that C is determined only by G.

By Lemma 4. 1 there exists a pro]ectlon p € M,y G such that || f — p|, <
6v/Cd and T(p) = ‘G‘ , provided Cé < 4 Then there exists a unitary a € M X, 11 G
such that p = aea*, and by Lemma 5.1, there exists u € M with p = ueu*. Note
that u is not necessary a unitary, and we have ||u|| < |G| since u = |G|Ep(ae).
Then | f — ueu*|» < 6v/Cé. By applying the canonical conditional expectation,
we get |1 — uu* |2 < 6/G|v/Cé. By Lemma 4.2, there exists a unitary v € M such
that ||u — v||> < 6|G|(3 + |G|)v/Cé. Hence we have ||f — vev* |, < f(J) for some
positive valued function f(6), which depends only on G, with }ii% f(8) = 0. Set

Wy = (v®1)wrar(v*). Thenwy is a coboundary for Uy p, and ||, — 1{|2 < f(J)
holds by looking at coefficients of f — vev* = |G|™! ¥ dr(1 - Wr ) Amy- 1

T,

6. ACTIONS AND ULTRA PRODUCT

Fix a free ultrafilter w over N. Then «% is an action of G on M“, however wy
does not preserve M, unless Gisa group, i.e., G is commutative.

Our first task in this section is to show the existence of an outer action of
G x G on M,, by modifying a¥.

We first recall Ocneanu’s central freedom lemma.

LEMMA 6.1. Let A C B C C be finite von Neumann algebras with A = R. Then
(AANBY)NCY=AV (B NC)«.
See [4] for proof.

From now on, we assume M = R. Set M1 := M X, G. Let Ar € M1 ®
B(Hj) be an implementing unitary for «.

LEMMA 6.2. Let H be a finite dimensional Hilbert space. Then o € Mor (R, R ®
B(H)) is approximately inner in the following sense; there exists a sequence of unitary
{un} C R ® B(H) such that lim ||Ad u,(x ® 1) — a(x)|, =0, x € R.

n
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Proof. Represent R = ® M (C), and set L, := ® M (C). Let {e’?} be a

system of matrix units for Ln Then {e ® 1} and {zx( )} are both systems of

matrix units in R ® B(H). Hence there exists a umtary u, € R ® B(H) with
a(e;j) = Aduy(e;;®1),and hence a(x) = Aduy (x ® 1) for x € L. Then it is easy
to see that lirrln lla(x) — Aduy(x@1)|, =0forx € R. 1

By Lemma 6.2, there exists a unitary U, € M“ ® B(Hy) such that a(x) =
Ad Uy (x®1) forx € M C M¥, 7T € G. Set Vyy 1= UiA, € M.

LEMMA 6.3. Deﬁne Yr(x) = Ad Vz(x ® 1), 75(x) —Adu*(x®1p) Then

Yrgp = (7L ®1,)0 'yp defines an outer cocycle twisted action of G x G on M.

Proof. Define Wz, := V12U13* € MY ® B(Hr) ® B(Hp). Then v is a per-
turbation of the trivial action of G x G on M¢ by W5, and w(m' ®pt, T ®p?) =
9, (W) (m'®p!, m2®p?) is a 2-cocycle for v. Hence we only have to verify that
v preserves M, outer on M,, and w(rt'®@p!, 1?®p?) € My ® B(Hn1®p1) ®
B(Hp2g,2)-

We verify that %, € Mor (Mg, My, ® B(Hy)), i = 1,2. Indeed this follows
from the computation below, where x € M,a € M,, (note y%(a) = Ad U%a%(a)
fora € My):

Uy (a@1)Ux (x@1)=U% (a®@1)az (x) Ur=Urar(x)(a@1)U=(x®1)Ad U} (a®1),
Urad(a)Ur(x@1) = Uraty (a)ar (x) Uy = Upaly (ax)Ux
= Uray (xa)Ur = (x @ 1)Upasy (a)Usx.

Then it is trivial that 7,5, € Mor (Mw, Mw ® B(Hz) ® B(Hp)).

We next verify that 7, o o is outer on M. We divide to 71 # 1 case and
T = 1 case. Fix1 # 7 € G and assume 7n®p(x)a =a(x®1), x € M, holds
for some 4 € My, ® B(Hz) ® B(Hp). On one hand, b := U*V*a € (Mg ®
C)'NM{ ® B(Hz) ® B(Hy) = M ® B(Hz) ® B(H,) by Lemma 6.1. On the other
hand, it is easy to see b = LI13 V2% is of the form ¥ XM A ® efjf ® e,’zl,

KL i,jmmn’ TTmn
ijkl,mn

Xf ]l mn € M. Hence if 7t # 1, b must be 0, and consequently a = 0.

Assume 77 = 1, and we verify that 7,5, = ”yg is outer for p # 1. Assume
Y5(x)a = a(x ®1). Then b, := Upa € (M, ® C)' N M“ @ B(H,) = M © B(H))
by Lemma 6.1.

Then we have

ap(x)bp = Up(x @ 1)Upbp = Up(x @ 1)a = Upa(x ® 1) = bp(x ® 1)

for x € M. Since a is an outer action on M, b, is 0 and hence so is a.
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We will see w(rt'®p!, m*®p?) € U(M, ® B(Hpgn) ® B(an®ﬁz)). AAI-
though we can prove this directly, we will show the statement for w(n®1, p®1),

w(1®7,18p) and w(1®7, pR1) separately to abuse notations. Then we can ob-
tain the desired result since

w(r'®p!, &p?)
= T, ®idy, @ idr, ® idy, (w(18p1, 1B1) @ 1y, ) X
(w(m@l, ﬂz@l) ® 1P1 ® 1P2)7}Tl®7rz ® idpl & idpz(w(1®p1, 1@()2)).

(We identify H ®H
way.)

We first verify w(7®1,p0®1) € MY ® B(Hz) ® B(H,). This follows from
the following computation. Here we extend V and U for 77 € Rep(G) as in the
remark in Section 2.1:

and Hp, ® Hp, ® Hy) ® Hp, in the canonical

yst <§P1 7T2®P2

w(n®1,081) = VIV Vi, =Y u}f*A}T2u;3*A},3Tg;gA;ung;g*

og,a

= Zu}f*a% ® id (U T U, Ts*

o,a

_ ulZ* © @ id,(U )ur@p € M“ ® B(Hr) ® B(H,).

Let us examine whether w(7®1, p®1) commutes with x ® 1, ® lbe M®
Cl1, ® Cl,. Note that Ad U (x) = a(x) holds for 7t € Rep(G), x € M. Thus

w(n®1, ®1)(x ® 1, ® 1,) = U a% @1 dp(u;)u,@p(x @1 ®1p)
= UZa¥ @id o (Upeeo (%)) Unp
= U oy @idp(x ® 1p)ar @ idy (U ) Uneyp
= (x® 17 @ 1)U a ®idy (U ) Unep
= (x® 1z ® 1,)w(n®1, p®1)
holds, and w(n®1,p®1) € My, ® B(Hz) ® B(H,).
It is trivial that w(1&7,10p) = WU Urey € M ® B(Hyx) ® B(Hp).

Thus we only have to see that [w(187,1®p), (x ® 1; ® 15)] = 0, x € M. This
follows from the following computation:

w(187,18p) (x @ 17 ® 1p) = U Up* Ungp(x © 1, ® 1)
= U U (ar ©idy) 0 g (x) Unep
= U2 Uy (Fo ety @ id (a7 (%)) Frp) U
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= (x @17 ® L) U U Ungyp = (x @ 1 @ 1,)w(187,18p),

where we used the commutativity of ar and &, in the third equality.

Finally we verify w(1®7, p®1) € M, ® B(H,) ® B(Hy). As in the above,
we will see that w(1®7, p®1) € MY ® B(H,) ® B(Hy) and [w(1®7, p®1),x ®
1p ® 1] = 0, x € M separately as follows:

ZU(l@n,p@l) — u}f* Vp12u71_[3VF)12* _ u7]t3>k U;Z*A‘})Zu}_[3/\}72* u‘33
= U Uy o @idy (Ur)Uy> € MY®B(Hp)©B(Hy);
w(1B7,p®1) (x @ 1, @ 1) = U Up> afy @id (Ur)Uy* (x®@1,®15)
= U U™ (o @id ) (Un) (ap(x) @ 17)Uy°
= U U™ (o) @ 17) (Un(x @ 1))Uy?
= U U (0 @ 17 0wz (x)) (et @ i (Ur) ) U
= (x @ 1; ® 1)U U o) @ id (Ur)Uy”
= (x®1,® 1) w(1®m, pR1).

LEMMA 6.4. We can choose Uy € MY so that AdUr(x®1) = ax(x), x € M,
and U and U, A are both representations of G with [Ur,;, (U;)\p) il =0.

Proof. By Lemma 6.3, 7,5, defines a cocycle twisted action of G x G on M,,.
I:Ience by Theorem _"'1.7, w(-,-) = 0y (u)(-,-) for some Ungp € Mo ® B(Hﬂ®p). Set
U= Unui@)n, and Vz =15, Vr. By the Remark 5.6, u,@pv}fu;ﬁ‘* is a 1-cocycle
for the trivial action of G ® G. This implies that U} and V;; are representations of
G in MY’ with [Upr,, V] = 0. Moreover we have

AdUr(x) = AdUntt; (x®1) = AdUn(x®1) = az(x),x € M.
Put cr := VeAr Uy = g UpAnA Uil = Ul € M.
Define Wy, := Y. Vi, Un,, Set P := M, V {Wy, }(C MY). Then M, C P
k

is the quantum double for Ad u,;y. (Unitaries \771, fln, and Wj correspond to
Uz, Uz, and wy in the proof of Lemma 2.9.) We have the (unique) conditional
expectation E from P on M,,, and it satisfies E(Wm].) =0r1.

We next prove ) A, € P. Since c; = VnAj‘Tﬁn, we have )\m], =) ﬁnikc?‘kvmj.
i k1
Note 72(x):=U(x®1) Uy is an action on M,,, and it follows fl;‘r]_ixzz'ﬁt (%) ik lj;jk,
k

X € M.
Then we have

_ 1T * Y7 1T¢ kY7 2 (.%\ 1T 17
2/\%‘ = Z Ury eV = Z Uz, CixVr; = E 'Yﬁ(clk)k]uﬁ,-j Va,
ik, ik, ik,
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= 2 ,Y%(C;kk)kjﬁﬂ'ijvﬂ'li = Z’Y%(C;kk)kjwn]jl
i,j,k,1 jk,1
and thus ) A, € P.
i
Define ¢ := |G|} ¥ dnWg,, and f := |G|™! ¥ dntAy,. Theneand f are
T,i,] T,i,]

projections in P with E(e) = E(f) = I%I Hence there exists a unitary z € M,,
such that zfz* = e by Lemma 5.1. (Though P is not a crossed product of M,, by
G, the proof of Lemma 5.1 works for M, C P since {W;} is a representation of
G, and a € P can be expressed as ) an,i,]-Wnij.)

0,0,
On one hand, we have

|Glzfz* = Zdnz)xnﬁz* = Z'dnzzxn(z*)ij/\nji.
TT,1

TT,0,j
On the other hand, since \771 = cnljl;;)\n, we get
|Gle = E‘dnﬁnﬁvmi =) dnljlnijcnjkljl;,k)\”.

T,i,] 7,4,k

Since zax (%), ﬁm/ank fI,*TIk € MY%, we have za(z*); = ¥ ljlnijcnjk lejf[Zk, and this
ik
implies (z ® 1)a%(z*) = Uyc, Us%.
Define V; and Uy by V=(z*®1) V7 (z2®1), Ur=(z* ®1)Ur(z21). We have
Vadilly = (2 @ 1) Ve(z@ DAL(Z* @ 1) Ur(z® 1)
= (2" @ 1)Vidrar(2)(z- @ 1)U (z® 1)
= (2@ D) VAUt UilUn(z®1) =1,
hence V,; = Uy Ax. Sincez € My, AdUx(x®1) = ar(x) holds forx € M € M.
It is clear that U, and V  are both representations of G with [VﬂijfUsz] =0. 1

REMARK 6.5. To avoid using the commutativity of @, we should consider
v3(x) :== AdU%(x ® 1) rather than 72 = Ad U} (x ® 1). By suitable inner pertur-
bation, this 73 is shown to be a “conjugate” action of G in the sense (73 ® idy) o
73(x)T = Tg(x) for T € (0,1 @ p) without using the commutativity of G. (See
Remark 2.6.)

COROLLARY 6.6. Fix Uy as in Lemma 6.4. Then we have af(Ur,; )=Ad UpUnr,
®1p).

Proof. By Lemma 6.4, we have U, V;; = A,. Since [Uni]., Vpu] = 0, we have
08 (Un) = Ad Ax(Uny © 1p) = Ad UV (U, ©1p) = Ad Up(Ur; ©1,). 1

LEMMA 6.7. We choose Uy as in Lemma 6.4. There exists an a“-equivariant
system of matrix units E = {Er, o, } C M such that AL =Uyand E1q € M,
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Proof. Let+', and Yngp= (7n®1p)o'yp( ) be as in Lemma 6.3. By Lemma 6.4,
7 is an outer action of G x G on M,,. By Corollary 5.3, there exists a y-equivariant

system of matrix units {e( Ean®73), (et D) } in M,,. Put anpk, ézhe( Eunmi) (s Bon)”
A,

1
Then {F”ijrpkl} is in M/, , and becomes a y?-equivariant system of matrix units.
Set 1717; i= ¥ Frymy- Thenitis easy to see that {f"} forms a system of matrix
’ k

units for R(G). Namely we have F F k1 = Ompdj kFl,, F"* ?an and 1 17175 =
7T,

1. Since F = {Fr,, } is y2-equivariant, we have 7% (F! )ij = %/\iikplll/\%k =

dn_lfg. Since 7% (x) = Ad U} (x ® 1,) by definition and Uz, = Uz, we have

Urx = %7721(x)ikuﬁjk-

Define E”ijfpkl =/ dndpllnl.].PLlUpkl. It is trivial that E11 € M,,.
We first prove AL = Up:

dp

E P m;/ ns J—
/\ﬂll o do T;.T[ Pé;c T;-T[] ,sl E‘Tmn/Pkl - Z deﬁ Ok U, T7('T[] 01 151 1upkl
pk.lLo,mn,e o,k,1,0,m,mn,e
2

= 2 dp uﬂij Up F1alp, = 2 dp umj Yo (F1,1)1mUpy,, U,
o.k,1 o.k1,m

- Z dpuﬂ'z]r)/p(Fll Im (Z Pkl) :Zldpuﬂ',‘]")/%(l:l,l)ll:Zluﬂl‘/f{j[:uﬂij-
p.lm [ 0,

We next prove E = {Er, o, } is a system of matrix units.
If we set 1 = 1 in the above computation, we get ) Em] i = 1. Itis
T,0,j

easy to see that E} = Ep,n;- Thus we only have to verify Er, o, Eq,, ¢, =

TLij Pkl
30,00k mO1nE T3 Ea At first we compute F 1 Ur,; Uy, F1,1- Note that F1 1Yo (F1,1)mn =

dU’ilﬁlﬁgln = 51,(71:1,1.

Then
2
Fia uﬁij qul Fa= Z Fia Tg?fpk Uoy Tg}ip; Fia= Z Tgmpk Tgy 01 Fl,l'Yﬁ(Fl,l)m,u Ug,,
ommn o,mmn,a
_ ~1om T0x T1T0 _7rl 1 Fl_ —1
= Z do Tnmpk Tn7 o1 F°F, Ug,,= Tn Ok Tr[] 01 F! —57r,ﬁ5i,k5j,ld7r Fi1
o,mn,a

holds, and hence we have

Er[l] Okl g'nm Cn — V dﬂdpd(?’d U,Tl] Fl 1Up, ngmn F1’1 u@b
= 5p,g'§k’m51’ndp \ dndpdadguﬂij F1,1 Ugab = 5Pf05krm(sl/"E7TijrCab .
Finally we verify that {Er; o, } is an a“-equivariant system of matrix units.

Since Fi1 € MZ,I, a¥(F11) = AdUx(F11 ® 1) holds. Together with Corollary 6.6,
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we have

“gj(Eﬂij/sz) = +/dmdp “y(uﬂij)“fru(ljl,l)“y(uﬁkl)
= /drdp Ad Uy (U, @ 16) (Fia © 1o) (Up,, © 1¢)
= Ad Uy (Emypy ® 1o) = Ad AL (B @ 10).

REMARK 6.8. We can regard {1?175} as an analogue of Rohlin projections for
92, See [8] for more details on Rohlin projections for actions of group duals.

PROPOSITION 6.9. Let E = {Eg; o, } C M® bean a“-equivariant system of ma-
trix units. Then there exists a representing sequence of systems of matrix units {e’}rij,pk,}
for Ex o, and 1-cocycles {uy } for o, n = 1,2,3,..., such that (uf) = 1in M and

each {egi],,pkl} is Ad ut az-equivariant.

Proof. Fix a representing sequence {egij,pkl} for Ex;; p,, consisting of systems
of matrix units. Set A, := {er .} C M, and A% the unitary representa-

tion of G associated with A,. Since E1q ®1 = (E11 ® 1)AE*AE(E;q ® 1) and
ar(E11) = AdAL(E1q ®1) = AE(Eq; ® 1)(Eq1 ® 1)AL*, we can choose a repre-
senting sequence {v%} for (E11 ® 1)Aj such that v} 0" = ef; ® 1, and vi'vly =

ax(ef) by Lemma 4.3. Set w := Z{(ej’w,l ® 1)0’;&”(4’%). Then w? is a uni-

7T,
tary, and Ad wiaz(eo;0,) = (€000 é@ 1) holds. Define a!. := Adw’a,, and
Ul o := (9anw" ). Since aly is trivial on Ay, U , € (A}, N M) ® B(Hr) ® B(Hp)
and {af, U} ,} is a cocycle twisted action on Aj, N M.

We have (w'.) = 7TZ;j(l-fnl./,l ®1)(E11 ® 1))\5;*0(”(131,”1,}.) = AE*, hence Ui, —
lasn — w. By Theorem 5.8, there exists W € U((A), N M) ® B(Hy)) with
Uy, = (0@ )7, and ’}Ercld [@h — 1|2 = 0. Set u” := ALwlw’. Then (uh) =
(ALwl) = AEAE* = 1in M“, and ul is a 1-cocycle for a,; by Lemma 3.6 and the
remark after Definition 5.5. It is trivial that Ad ul,a; = Ad AL on A,, and hence
{e?rij,pkl} is Ad uar-equivariant. I

7. CLASSIFICATION

PROPOSITION 7.1. Let a be an outer action on R. Then w is conjugate to x ® idg.

Proof. This follows from [1] since R’ N (R*)“ is noncommutative. &

LEMMA 7.2. Let K C R be a subfactor with K = M, (C), and {e;; } be a system
of matrix units for K. If ||[x, e;j][|2 < &, then | Epng (x) — x[]2 <&
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Proof. Since Exing(x) = 1 Y_ejjxej;, the following holds:
ij

1 1

[Exnr (x) = x[2 < Y lleijxeji — xejjejilla < - Y lleij, x]llz <&
ij ij

LEMMA 7.3. Foranye > 0, ay,4ay,...,a, € R, there exist a 1-cocycle u for ar,

and an Ad ura-equivariant system of matrix units E = {en; o, } such that ||ax(a;) —
AdAE(a; @ 1)|2 <& |Jur — 1|1 < eand ||[ex1, ai]ll2 < e

Proof. By Lemma 6.7 and Proposition 6.9, we have systems of matrix units

E, = {e?’tl_]_,pkl} and 1-cocycles u, for a,; such that {e%}_,pkl} is Ad u”, a5 equivariant,
. E, . o . o
an(x) = J%Ad)\n (x®1), nlgl;lu ||ut —1||» = 0 and r}g}(}] l|fef 1, x]||l2 = O for any

x € M. Put E := E;; and uy := ul} for sufficiently large n. 1

Now we can prove the main theorem of this paper.

THEOREM 7.4. Let a be an outer action of G on R. Then « is conjugate to the
model action m.

Proof. We use the notations in Section 3. Let {a,}{°, be a strongly dense
countable subset of the unit ball of R. We fix a sequence {¢,} such that 0 <
9|G|Pe, < 27 Especially we have Y ¢, < co. We will construct mutually com-

n
muting finite dimensional subfactors K, = M| (C), unitary 1-cocycles v}; for ar,
a unitary 1-cocycle w?. for Ad A%~ 1*0".~la; satisfying the following conditions in-

ductively:

(1.n) ol = ALl Ay > 0,
@)t —1]s < e

Gn) e efqllla <en1<i<n;

(4.n) Advla, = AdAL on Ky V- - -V Ky;

(5.n) |Ad vl (a;) — mly(a;)|2 < en, 1 <i<n.

By Lemma 7.3, we get a unitary cocycle w); for ar, and an Ad wka-equi-
variant system of matrix units {E}Tijxpkl} such that || [al,eil} o < e, [[wh — 1|2 <
e1, and |Adwlar(a;) — AdAL(a; ®1)|| < e1. Let K; be a finite dimensional
subfactor generated by {e}[ij,pkl }, and set v, := wl. Then we get the conditions
(2.1), (3.1), (4.1) and (5.1).

Suppose that we have done up to the n-th step. By (4.n) it follows that
Ad APV a; =idon Ky V - - - V K. Hence Ad AL vlka; induces an action of G on
(K1 V---VKy,) NR. Decompose a; as a; = Y. byeg, by € (K31 V---VK,)' NR,

i

ex € K1V -+ -V K,. By Lemma 7.3, we get a unitary cocycle w’:! for Ad A vla,

a Ad w" A 0" o -equivariant system matrix units K, 41 = {e?f;}?kz} C (Ky Vv
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-+ V K,)'N'R, such that:

(an+1)  |le1q, biclll2 < bnv1;
(bn+1) it =12 < enry;
(cn+1)  [JAdwi T A 0wy (by) — Ad AL (b @ 1) ||z < Spgt;

for sufficiently small 6,11 > 0. The condition (b.n 4 1) is nothing but (2.n +1).
If we choose sufficiently enough small 6,1, then we get (3.n + 1) and

(cn+1)  JAdw A o ay(a;) — AAAS Y a; @1) |2 < epy1, 1<i<n+1
from (a.n 4 1) and (c.n + 1) respectively. Set o1 := Aw 1A v’ Then we get

(1.n+1)and (5.n+1). Since {e?r;lpkl} C (K1 V---VK,) NRis Adwt A0 g -

equivariant, we get (4.n + 1), and K, 11 commutes with K;, 1 < i < n. Thus we
complete induction.
We will show that {v. } is a Cauchy sequence:

it = oll2 = opARwi AL — oflla = [ARwiTIAR — 12 < e
By the choice of ¢,,, {v: } is Cauchy, and hence nhrrolo v = v, exists.
We will prove || [eﬁﬁjkl,ai] |l <én,1<i<n By (5n)and (5.n+1), we get
|Ad v A% (a;) — Ad oA (g) ||, < 26,1 < i < 1.
By the definition of v, we get ||a; ® 1 — Ad w1 A"+ (a; ® 1) || < 2e,. Then
la: ® LA 2 = [l © 1, wi wl T A% |12
< H [ai ® 1,w171r+1] n+1*An+l|| + Hwn—&-l[al ®1, wn-&-l*/\n—&-l] ||2

< a ® 1, witt —1]|5 + 26, < 4ep.

Hence we get ||[A’7’T$1,ai] llo < 4d7e, < 4|Gley, for 1 < i < n. Then we have
e €3, 1z

= Vdndp||la;, A ter 7T A 12

1 1 1 1 1 1
< 1G]y A }eu g e AL o AT e o, A )

9|G? —
<9|G|%e, < 2"|G|
This implies HEK’HOR(W) —ailp < 5 for 1 < i < nby Lemma 7.2. Set
K:=VKy(=2R). By Lemma23.60f[2, R=KVK' NR =2 K®K NR.By (5.n),
Advga; = my @ idgAg. By Proposition 7.1 m,; = my; ® idg, and Advay is
conjugate to m,; @ idgyxnr = Mz @idr = my. By Proposition 5.2, « is conjugate
tom. 1

It is obvious that Theorem 2.14 follows immediately from Theorem 7.4.
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REMARK 7.5. So far we treat only actions of G for a finite group G. However
we can generalize our theory to outer actions of finite dimensional Kac algebras.
The difference between G and general finite dimensional Kac algebras is the com-
mutativity 77 ® p 2 p ® 7. We do not use the commutativity of G in proofs except
Lemma 6.3. To generalize Lemma 6.3 to a finite dimensional Kac algebra K, we
should consider a (cocycle) action of K @ K°PP on M“ as in the Remark 6.5. (Note
R(G) and R(G)°FP are essentially same Kac algebras due to cocommutativity of

R(G).)

APPENDIX A: TWISTED CROSSED PRODUCT CONSTRUCTION

Let {a, U} be a cocycle twisted action of G on M. In this appendix, we give
the definition of a twisted crossed product M x, i1 G.
Let H := L?(M) be the standard Hilbert space. We identify H ® ¢*(G) with

{@v(n) co(m) € H® B(Hn)} as usual. Put (v,w), = Y(vyj, w;;) for v, w €

ij
H ® B(Hy). Then the inner product is given by (v, w) = Y dn(v(m), w(m)) for
T
v,we H®2(G).
We define an action « of M on H ® £%(G), and Ar; € BH® ?2(G)) by
(2(a)0)(7r) = an(a)o(m), (An;0)(p) =} Ugro(o)Tr .

g

DEFINITION A.1. Define M x,; G := a(M) V {An;}, and call it the twisted
crossed product of M by {a, U}.

LEMMA A.2. Set Ax = (Ax;) € B(H®(*(G)) ® B(Hy). Then A is a uni-
tary, and we have Ax(a ® 17)A%y = az(a), and AZASPT, = UipAq. Set flmﬁ], =
)}; Uy 7z, Then we have /\%ij = )l_;ll;kﬁi/\nkj. Here we identify a(a) and a. We call A,
an implementing unitary.

To show Lemma A.2, we prepare the following lemma.

LEMMA A.3. We have Y U7, — an(Us, r,)kj = i
k1 !

Proof. Recall the following 2-cocycle condition (see a paragraph after Defi-
nition 5.4):
; 1y peb e ¢
(a;-[ [ 1d)(LIW)U,T,,7 = gzd(un,p ® 1g)uC/(TV(§,C,d),(%/b).
e
We putp = o = 7, § =1 (hence { = ), and multiply U}Tﬁ ® 1 from the left on
both sides. Then we get the following:

. 1
(LI,I{,% ®1z)ar ® ld(u%,n) =Vi1= (T}rj% 1)1z ® T%,n) = I
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; 1 1
1N — =
Since Um,n]_ % T,

ik jk

we get the conclusion. 1

— 1
V dﬂ.’ani/ﬁ], ’

Proof of Lemma A.2. 1t is easy to see & is an action of M on H ® B(H). We
verify that A; implements a,;. Then

(Arya(a)v)(p) = ZUZ,Q,( a(a)o) (o) Ty =) Uprao(a)o(o) Tgr
= Z ap (o (@) i) Uiz, 0(0) Tglr = ;(“(an(ﬂ)ik))\nkjv)(f))

o,ek

holds. Therefore we have A (a ® 1) = a,(a)Ax by identifying a(a) and a.
We next compute AM2AL as follows:

1, 11,bx *
(/\nijAPkl Z u(m Uy o0 W)T 7,01 Tg;é
Uﬂ,ﬂ,
= Y (UZ:’”F,k)Ug’m (U)Tg ) TZ%I* (by 2-cocycle condition)
o,a,m,n,n,b
= ) ((Ugr5)Acu, Tp0) (€)-
o,mn,a

Hence we have AZA P T = Ugphs.

Finally, we verify that A is a unitary. One can easily to see %Aj‘rk’_)\nkj =i

(hence Az A = 1) from the definition of A, and uy “*Ué b = 0y,20,p- Hence we
only have to see AzAj = 1.

To this end, we first show )\i = ZU Since Z Ay Az ZUP’ 4 Aot

T,
o,l,m,a

T, 7T nk/

T:;Zlﬁk = Unﬁ],, we have /\nt)xf = (ﬁni/ﬁj)i,]‘.
Then we get 'Az = A, (Unﬁj)i,j. Comparing matrix elements of both sides,
we get /\* = Z Uﬂk BT
Then we get

2)‘”1‘1/\; Z/\T[zk T, 7T 7le = Z “ﬂ(u%z,nj)im)‘”mk)‘ﬁm
k k,l,m

_ * Ca (. — —§:
- Z (uﬂ[ TTj )lmum,, 7T gub 7Tk T Z IXn— 7T[ 7'[ uﬂm,ﬂ?l _51/]
k1m,,a,b k,1,m

by Lemma 7, and Ay is indeed a unitary. 1

We construct a conditional expectation E from M X, i G onto M. Let P be
a projection from H ® ¢2(G) to H ® B(H;) = H, and set E(x) := PxP*. Then E
is indeed a conditional expectation from M x, ;; G onto M with E(Ar;) = d1,7.
Then the following lemma can be easily verified as in the usual crossed product.

LEMMA A.4. Everya € M X, G is expressed uniquely as a = Y. ar;jAn;,
T j

Armij € M.
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Here we only remark that a coefficient a; ; is given by a, ; ; = dnE (u)\’;rij ).
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