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ABSTRACT. We will show the uniqueness of outer coactions of finite groups
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model action.
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1. INTRODUCTION

In the theory of operator algebras, the study of automorphisms is one of
the most important topics. Especially, much progress has been made on clas-
sification of automorphisms and group actions on injective factors since funda-
mental works of A. Connes. In [2] and [3], A. Connes succeeded in classifying
automorphisms of the approximately finite dimensional (AFD) factor of type II1
up to outer conjugacy. The first generalization of Connes’ results was made by
V.F.R. Jones in [5], where he classified actions of finite groups on the AFD fac-
tor of type II1. Soon after Jones’ theory, A. Ocneanu classified actions of discrete
amenable groups on the AFD factor of type II1. One of the extension of their re-
sults is analysis (or classification) of actions of dual object of groups, i.e., coaction
of groups, which will be useful to understand actions of compact groups. (See [9]
on basic of coactions.)

In this paper, we give the classification theorem for outer coactions of fi-
nite groups. Here we have to remark that this follows indirectly from the works
cited in above. In fact, the uniqueness of outer coactions of finite groups follows
from [5], since every outer coaction of a finite group is dual to some outer (usual)
action. Nowadays, this also follows from the general theory of Popa’s classifica-
tion of subfactors [11] (also see [13]). However in these approach one does not
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handle coactions directly. Hence in this paper, we present the direct approach
for classification theorem of outer coactions of finite groups on the AFD factor of
type II1, which can be generalized to finite dimensional Kac algebras. Our argu-
ment is similar to Connes-Jones-Ocneanu theory. We construct the model action
on the AFD factor of type II1, prove several cohomology vanishing theorem, and
compare a given action to the model action. The main technical tools in these ar-
guments is the ultraproduct and central sequence algebras. Unfortunately, coac-
tions do not necessary induce coactions on the central sequence algebra unlike
the usual group action case. Hence we have to modify actions to apply the ultra-
product technique to handle coactions, and this is one of the important points in
our theory.

Here we have another formulation to treat actions of duals of (finite) groups
other than coactions due to Roberts in [14]. His approach is essentially equivalent
to coactions. However it is convenient (at least for the author) to regard coactions
as the Roberts type actions, which we often call actions of finite group duals.
Hence in this paper we present our main theorem as the uniqueness of Roberts
type actions of finite group duals.

This paper is organized as follows. In Section 2, we prepare notations used
in this paper, and discuss the Roberts type actions. In Section 3, we construct the
infinite tensor product type action, which we call the model action. In Section
4, we collect some technical lemmas, which is necessary to treat actions on the
ultraproduct algebra in Section 6. In Section 5, we show three kinds of cohomol-
ogy vanishing theorems, which are important tools for analysis of actions. The
contents in Section 6 and Section 7 are central in this paper. We discuss actions on
the ultraproducts algebra, and the central sequence algebra of the AFD factor of
type II1. By means of cohomology vanishing, we construct the piece of the model
action, and complete classification. In the appendix, we present the Roberts type
action approach for the (twisted) crossed product construction for actions of finite
group duals.

After completion of this paper, the author and R. Tomatsu obtained a unique-
ness of free actions of a discrete amenable Kac algebra on the AFD factor of type
II1 in [8], which contains the main result in this paper. However the approach
is completely different from that of this paper. Namely, in [8], classification is
done by the Evans-Kishimoto type intertwining argument without using model
actions. The author thinks that it may be useful to present a model action splitting
argument.

2. PRELIMINARIES AND NOTATIONS

2.1. NOTATIONS ON DUALS OF FINITE GROUPS. Throughout this paper, we al-
ways assume that G is a finite group. Let Rep(G) and Irr(G) be the collection of
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all finite dimensional unitary representations, and irreducible unitary represen-
tations of G respectively. We denote the trivial representation by 1. We fix rep-
resentative elements of Irr(G)/∼, where ∼ means a usual unitary equivalence,
denote by Ĝ the set of representative elements, and assume 1 ∈ Ĝ.

Let dπ := dim Hπ be the dimension of π ∈ Rep(G). For π, ρ ∈ Rep(G),
we denote the intertwiner space between σ and π by (σ, π) := {T ∈ B(Hσ, Hπ) :
Tσ(g) = π(g)T, g ∈ G}. If σ is irreducible, (σ, π) becomes a Hilbert space with
an inner product 〈T, S〉1 := S∗T.

Let π, ρ ∈ Ĝ, and π ⊗ ρ ∼=
⊕

σ∈Ĝ
Nσ

πρσ be the irreducible decomposition,

where Nσ
πρ is a multiplicity. Fix an orthonormal basis {Tσ,e

π,ρ}
Nσ

πρ

e=1 ⊂ (σ, π ⊗ ρ).

Then we have Tσ,e∗
π,ρ Tξ, f

π,ρ = δσ,ξ δe, f 1σ, and ∑
σ,e

Tσ,e
π,ρTσ,e∗

π,ρ = 1π⊗ρ, where 1σ ∈ (σ, σ)

is an identity. Hence we have π(g)⊗ ρ(g) = ∑
σ,e

Tσ,e
π,ρσ(g)Tσ,e∗

π,ρ especially.

Let {v(π)}π∈Ĝ with v(π) ∈ Mdπ(C). Then ∑
e

Tσ,e
π,ρv(σ)Tσ,e∗

π,ρ does not de-

pend on the choice of {Tσ,e
π,ρ} ⊂ (σ, π ⊗ ρ).

In a similar way, one can easily see

∑
η,a,b

(Tη,a
π,ρ⊗ 1σ)Tξ,b

η,σv(ξ)Tξ,b∗
η,σ (Tη,a∗

π,ρ ⊗ 1σ) = ∑
ζ,c,d

(1π⊗Tζ,c
ρ,σ)Tξ,d

π,ζ v(ξ)Tξ,d∗
π,ζ (1π⊗Tζ,c∗

ρ,σ )

since both {(Tη,a
π,ρ ⊗ 1σ)Tξ,b

η,σ}η,a,b and {(1π ⊗ Tζ,c
ρ,σ)Tξ,d

π,ζ}ζ,c,d are orthonormal basis
for (ξ, π ⊗ ρ⊗ σ).

REMARK 2.1. Assume that {v(π)}π∈Ĝ, v(π) ∈ A ⊗ B(Hπ), is given for
some vector space A. We can extend v(π) for a general π ∈ Rep(G) as follows.
Let π ∼=

⊕
i

σi, σi ∈ Ĝ, be an irreducible decomposition, and fix Ti ∈ (σi, π) with

Ti∗T j = δi,j and ∑
i

TiTi∗ = 1. Define v(π) = ∑
i

Tiv(σi)Ti∗ ∈ A⊗ B(Hπ). Then

v(π) is well-defined, i.e., it is independent from the choice of {Ti}, and satisfies
v(π)T = Tv(σ) for T ∈ (σ, π). In this notation, the contents of the previous
paragraph is written as v((π ⊗ ρ)⊗ σ) = v(π ⊗ (ρ⊗ σ)), for example.

Let {eπ
i }dπ

i=1 be an orthonormal basis for Hπ , and fix it. Let us express

Tσ,e
π,ρ = (Tσm ,e

πi ,ρk ) as a matrix form. Then we can write Tσ,e∗
π,ρ Tξ, f

π,ρ = δσ,ξ δe, f 1σ and
∑
σ,e

Tσ,e
π,ρTσ,e∗

π,ρ = 1π⊗ρ by matrix coefficients as

∑
i,k

Tσm ,e
πi ,ρk Tξn , f

πi ,ρk = δσ,ξδe, f δm,n, and ∑
σ,m,e

Tσm ,e
πi ,ρk

Tσm ,e
πj ,ρl = δi,jδk,l .

Let T1
π,π ∈ (1, π ⊗ π) be an isometry given by T1

π,π1 = 1√
dπ

∑
i

eπ
i ⊗ eπ

i , and

fix it. It is easy to see T1
πi ,π j

=
δi,j√
dπ

. Since T1∗
π,πTρ,e

π,π = δ1,ρ, we have ∑
k

Tρl ,e
πk ,πk

=
√

dπδ1,ρ.
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Set T̃ρ,e
π,σ :=

√
dρdπ√
dσ

(1π ⊗ Tσ,e∗
π,ρ )(T1

π,π ⊗ 1ρ) ∈ (ρ, π ⊗ σ). Then {T̃ρ,e
π,σ} is

an orthonormal basis for (ρ, π ⊗ σ). It is easy to see T̃ρk ,e
πiσm

=
√

dρ
dσ Tσm ,e

πi ,ρk . As a
consequence we have, for example

∑
σ,m,n,e

Tσm ,e
πi ,ρk

v(σ)m,nTσn ,e
πj ,ρl = ∑

σ,m,n,e

dσ

dρ
Tρk ,e

πi ,σm
v(σ)m,nTρl ,e

π j ,σn
.

2.2. COACTIONS AND ROBERTS TYPE ACTIONS. Let A, B be von Neumann alge-
bras. We denote the set of unital ∗-homomorphisms from A to B by Mor (A, B).

Let ug be the (right) regular representation of G, and R(G) := {ug}′′ the
group algebra. The coproduct ∆ of R(G) is given by ∆(ug) = ug ⊗ ug.

For simplicity, we denote 1M ⊗ T ∈ M⊗ B(Hπ , Hρ), T ∈ B(Hπ , Hρ), by T.

DEFINITION 2.2. (i) Let M be a von Neumann algebra. We say that α =
{απ}π∈Rep(G) is an action of Rep(G) if απ ∈ Mor (M, M ⊗ B(Hπ)), and the fol-
lowing hold:

(ia) α1 = idM.
(ib) απ(x)T = Tασ(x) for any T ∈ (σ, π).
(ic) απ ⊗ idσ ◦ ασ = απ⊗σ.

(ii) We say α = {απ}π∈Irr(G) is an action of Irr(G) if απ ∈ Mor (M, M⊗ B(Hπ))
and the following holds:

(iia) α1 = idM.
(iib) απ ⊗ idρ ◦ αρ(x)T = Tασ(x) for any T ∈ (σ, π ⊗ ρ).

(iii) We say α = {απ}π∈Ĝ an action of Ĝ if απ ∈ Mor (M, M⊗ B(Hπ)) and we
have the following:

(iiia) α1 = idM.
(iiib) απ ⊗ idρ ◦ αρ(x)T = Tασ(x) for any T ∈ (σ, π ⊗ ρ).

If an action α of Ĝ is given, then it is a routine work to extend α to those
of Irr(G) and Rep(G). Hence in this paper, we do not distinguish these notions.
When M is properly infinite, it is not difficult to see Definition 2.2 is reduced to
that of Roberts action.

We remark that απ is automatically injective. Suppose απ(x) = 0. Then we
have 0 = T1∗

π,παπ ⊗ idπ ◦ απ(x)T1
π,π = T1∗

π,πT1
π,πα1(x) = x.

Let {eπ
ij} be a system of matrix units for B(Hπ). Then απ(x) is decom-

posed as απ(x) = ∑
i,j

απ(x)ij ⊗ eπ
ij . The ∗-homomorphism property of απ implies

∑
k

απ(x)ikαπ(y)kj = απ(xy)ij and (απ(x)ij)∗ = α(x∗)ji.

The group algebra R(G) can be decomposed as R(G) =
⊕

π∈Ĝ
B(Hπ), and

eπ
ij = dπ

|G|∑
g

π(g)ijug
gives a matrix unit for B(Hπ). Then α ∈ Mor (M, M ⊗ R(G))

can be decomposed as α(x) = ∑
π

απ(x)ij(x) ⊗ eπ
ij , and we get απ ∈ Mor (M,
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M ⊗ B(Hπ)). One can verify that α is a coaction, i.e., α is injective and satis-
fies (α⊗ id) ◦ α = (id⊗∆) ◦ α, if and only if {απ} is an action of Ĝ in the sense of
Definition 2.2.

DEFINITION 2.3. Let α be an action of Ĝ on M. The fixed point algebra Mα is
defined as Mα := {a ∈ M : απ(a) = a⊗ 1π for any π ∈ Ĝ}.

If K ⊂ Mα, then we say α is trivial on K, and often write as απ = id on K.
Let K ⊂ M be a von Neumann subalgebra, on which α acts trivially. Then it is
easily seen that απ(K′ ∩M) ⊂ (K′ ∩M)⊗ B(Hπ), and α is an action on K′ ∩M.
Note that even if we have απ(K) ⊂ K ⊗ B(Hπ), α does not induce an action on
K′ ∩M in general unlike the usual group action case.

Let α be an action of Ĝ on M, and N be another von Neumann algebra. Then
α′π(x) := ∑

i,j
απ(x)ij ⊗ 1N ⊗ eπ

ij is an action of Ĝ on M ⊗ N, which we denote by

α⊗ idN for simplicity.

2.3. CROSSED PRODUCT CONSTRUCTION BY ROBERTS TYPE ACTION. Let α be
a coaction of G on M. The crossed product M oα Ĝ is defined as α(M) ∨ C ⊗
`∞(G) ⊂ M ⊗ B(`2(G)). We discuss the crossed product construction from the
point of view of the Roberts type action. (Also see Appendix.)

We begin with the following definition.

DEFINITION 2.4. Let M be a von Neumann algebra. We say {Uπ}π∈Irr(G) is
a (unitary) representation of Irr(G) in M if we have the following:

(i) Uπ ∈ U(M⊗ B(Hπ)), U1 = 1.
(ii) Let Fπ,σ ∈ B(Hπ ⊗ Hρ, Hρ ⊗ Hπ) be a flip map. Set U12

π := Uπ ⊗ 1ρ, and
U13

ρ := Fρ,π(Uρ ⊗ 1π)Fπ,ρ. Then U12
π U13

ρ T = TUσ for any T ∈ (σ, π ⊗ ρ).

If we represent Uπ and T as Uπ = (Uπij)16i,j6dπ and T = (Tm
i,k)

16m6dσ
16i6dπ,16k6dρ

respectively by matrix elements, then Definition 2.4(ii) is written as ∑
j,l

Uπij Uρkl T
n
j,k

= ∑
m

Tm
i,kUσmn .

LEMMA 2.5. Let {Uπ} be a unitary representation of Ĝ. Then we have U∗πij
=

Uπij , and [Uπij , Uρkl ] = 0.

Proof. Since we have ∑
j,l

Uπij Uπkl T
1
πj ,πl

= T1
πi ,πk

U1, ∑
j

Uπij Uπkj = δik holds.

This implies Uπ
tUπ = 1, and hence U∗π = tUπ . Thus we get U∗πij

= Uπij .
We will verify the second statement. Since Uπ is a representation, we have

U12
π U13

ρ = ∑
σ,e

Tσ,e
π,ρUσTσ,e∗

π,ρ . Then we get

Fπ,ρ(U12
π U13

ρ )Fρ,π = ∑
i,j,k,l

Uπij Uρkl ⊗ eρ
kl ⊗ eπ

ij = ∑
σ,e

(Fπ,ρTσ,e
π,ρ)Uσ(Fπ,ρTσ,e

π,ρ)
∗.
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On the other hand, U12
ρ U13

π = ∑
σ,e

Fπ,ρTσ,e
π,ρUσ(Fπ,ρTσ,e

π,ρ)∗ holds, since {Fπ,ρTσ,e
π,ρ}

⊂ (σ, ρ⊗ π) is an orthonormal basis. (Note that we use π ⊗ ρ ∼ ρ⊗ π here.) By
comparing these, we get [Uπij , Uρkl ] = 0.

Lemma 2.5 shows that {Uπij} behave like matrix coefficients {π(g)ij}. Let

Uπ be a representation of Ĝ, then it follows immediately that so is U∗π , since
[Uπij , Uρkl ] = 0.

REMARK 2.6. One can see that {U∗π} is a conjugate representation of Ĝ, i.e.,
(U∗π)12(U∗ρ )13T = TU∗σ for T ∈ (σ, π⊗ ρ), without using the commutativity of Ĝ.

Let π(g)ij be a matrix coefficient for π ∈ Rep(G). We regard π(g)ij as an
element πij in `∞(G) and set λπij := 1M ⊗ πij. Then λπ = ∑

i,j
λπij ⊗ eπ

ij is the

unitary representation of Ĝ in the sense of Definition 2.4.
Since `∞(G) =

∨{πij}, we have M oα Ĝ = α(M) ∨ {λπij}. The relation
of generators are ∑

k
λπik xλ∗πjk

= απ(x)ij, or equivalently λπ(x ⊗ 1π)λ∗π = απ(x).

Here we identify α(x) and x as in the usual way. A unitary λπ plays a roll of
the implementing unitary in the usual crossed product construction. Hence we
also call λπ the implementing unitary in M oα Ĝ. We can expand a ∈ M oα Ĝ as
∑

π,i,j
aπ,i,jλπij , aπ,i,j ∈ M, uniquely.

DEFINITION 2.7. Let α be an action of Ĝ on M. We say α is free if there exists
no non-zero a ∈ M⊗ B(Hπ), 1 6= π ∈ Ĝ, so that απ(x)a = a(x ⊗ 1π) for every
x ∈ M. When α is an action of a factor M, then we also say α is outer if α is free.

In usual, freeness of a coaction α on a factor M is defined by the relative
commutant condition M′ ∩ M oα Ĝ = Z(M). We see that the usual definition
and ours coincide in the following proposition.

PROPOSITION 2.8. Let α be an action of Ĝ on M. Then α is free if and only if
M′ ∩M oα Ĝ = Z(M). Especially, M oα Ĝ is a factor when α is free, and M is a factor.

Proof. Let a = ∑
π,i,j

aπ,i,jλπij ∈ M oα Ĝ. Set aπ := ∑
i,j

aπ,j,i ⊗ eπ
ij ∈ M⊗ B(Hπ).

Then it is easy to see a ∈ M′ ∩ M oα Ĝ if and only if (x ⊗ 1π)aπ = aπαπ(x)
for any x ∈ M, π ∈ Ĝ. Then it is easily shown that α is free if and only if
M′ ∩M oα Ĝ = Z(M).

In the end of this subsection, we explain the dual action of G on the crossed
product. Let α be an action of Ĝ on M. Then the dual action α̂ of G on M oα Ĝ
is given by α̂g(a) = a for a ∈ M, and α̂g ⊗ idπ(λπ) = λππ(g), or equivalently



CLASSIFICATION OF ACTIONS OF DUALS OF FINITE GROUPS ON THE AFD FACTOR OF TYPE II1 279

α̂g(λπij) = ∑
k

λπik π(g)kj. Then it is shown that α̂ is an action of G, and the fixed

point algebra is (M oα Ĝ)α̂ = M.

2.4. QUANTUM DOUBLE CONSTRUCTION FOR FINITE GROUP DUALS. In this sub-
section, we collect definitions and basic properties for quantum double construc-
tion (also known as the symmetric enveloping algebra [12], or the Longo-Rehren
construction [6]) arising from actions of group duals. We will use them in Sec-
tion 6. We refer Chapter 12.8, 15.5 of [4], or Appendix A of [7] for details of this
topic.

For π, ρ ∈ Rep(G), let π⊗̂ρ a representation of G×G given by π⊗̂ρ(g, h) :=
π(g)⊗ ρ(h). Let α be an action of Ĝ× Ĝ on M. Set P := M oα (Ĝ× Ĝ). Let λπ⊗̂ρ

be an implementing unitary for α.

LEMMA 2.9. Set wπij := ∑
k

λπik⊗̂π jk
. Then wπ = (wπij) is a unitary representa-

tion of Ĝ.

Proof. Set vπij := λπij⊗̂1, uπij := λ1⊗̂π ji
. Obviously we have wπij =∑

k
vπik uπkj

and [vπij , uρkl ] = 0. Since {Tσ,e
π,ρ} ⊂ (σ, π ⊗ ρ) is an orthonormal basis, uπ =

(uπij)ij becomes a unitary representation of Ĝ (also see Remark 2.6). Hence the
following holds:

∑
j,l

wπij wρkl T
σm ,e
πj ,ρl

= ∑
j,l,n,a

vπin vρka uπnj uρaj T
σm ,e
πj ,ρl

= ∑
j,l,n,a,

ξ,b,c,pη,d, f ,q

Tξb ,p
πi ,ρk vξbc Tξc ,p

πn ,ρa Tηd ,q
πn ,ρa uηd f T

η f ,q
πj ,ρl T

σm ,e
πj ,ρl

= ∑
ξ,b,c,pη,d, f ,q

Tξb ,p
πi ,ρk

(
∑
n,a

Tξc ,p
πn ,ρa Tηd ,q

πn ,ρa

)
vξbc uηd f

(
∑
j,l

T
η f ,q
πj ,ρl T

σm ,e
πj ,ρl

)
= ∑

b
Tσb ,e

πi ,ρk

(
∑

c
vσbc uσcm

)
= ∑

b
Tσb ,e

πi ,ρk wσbm .

DEFINITION 2.10. Set N := M ∨ {wπij}. We call M ⊂ N is the quantum
double for α.

REMARK 2.11. In the above definition, we consider an action of Ĝ × Ĝ on
M directly. However, the usual quantum double construction is given as follows.
Let M be a von Neumann algebra, and α be an action of Ĝ on M. By the commu-
tativity of Ĝ, (απ)opp becomes an action of Ĝ on Mopp. Hence we have an action
of Ĝ× Ĝ on M⊗Mopp. The rest of construction is same as above.

We embed G into G × G by g → (g, g). Let β := α̂ be the dual action of
G× G on P. Then it is shown that N = (M oα (Ĝ× Ĝ))G.
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For example, we have

βg,g(wπij) = ∑
k

βg,g(λπik⊗̂π jk
) = ∑

k,l,m
λπil⊗̂π jm

π(g)lkπ(g)mk = ∑
l,m

λπil⊗̂π jl
= wπij .

If we expand a ∈ P as a = ∑ aπij ,ρkl λπij⊗̂ρkl
, then N = (M oα (Ĝ × Ĝ))G is

verified in a similar way as above. We leave the proof to the reader. We remark
that a ∈ N can be expanded uniquely as a = ∑

π,i,j
aπ,i,jwπij , aπ,i,j ∈ M, and there

exists the canonical conditional expectation E : N → M given by E(a) = a1.

2.5. MAIN RESULT.

DEFINITION 2.12. Let α be an action of Ĝ. We say {wπ}π∈Ĝ is a (unitary)
1-cocycle for α if wπ ∈ U(M⊗ B(Hπ)), normalized as w1 = 1, and the following
holds:

(wπ ⊗ 1ρ)απ ⊗ idρ(wρ)T = Twσ, T ∈ (σ, π ⊗ ρ).

A 1-cocycle {wπ} for α is called a coboundary if there exists a unitary v ∈ U(M)
such that wπ = (v∗ ⊗ 1π)απ(v).

If we extend vξ for ξ ∈ Rep(G) as in the remark in Section 2.1, then we have
(vξ ⊗ 1η)αξ(vη) = vξ⊗η . It is easy to see that Ad wπαπ is an action of Ĝ for a
1-cocycle wπ .

DEFINITION 2.13. Let α and β be actions of Ĝ on M.
(i) We say α and β are conjugate if there exists θ ∈ Aut (M) with θ⊗ idπ ◦ απ ◦

θ−1 = βπ for every π ∈ Ĝ.
(ii) We say α and β are cocycle conjugate if there exists a 1-cocycle {wπ} for α,

and Ad wπαπ and βπ are conjugate.

Our main purpose is to show the following theorem by a traditional Connes-
Jones-Ocneanu type approach, i.e., the model action splitting argument.

THEOREM 2.14. LetR be the AFD factor of type II1. Let α and β be outer actions
of Ĝ onR. Then α and β are conjugate.

3. MODEL ACTION

In this section, we construct an infinite tensor product type action of Ĝ on
R, which we adopt as the model action.

It is easy to see the following lemma.

LEMMA 3.1. Let M, N be von Neumann algebras, and Uπ , Vπ unitary represen-
tation of Ĝ in M and N respectively. We regard Uπ and Vπ as representations of Ĝ in
M⊗ N in the canonical way. Then UπVπ is also a representation of Ĝ.
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To construct the model action, we first construct (the canonical) unitary rep-
resentation of Irr(G) on M|G|(C). Although we already discussed it in Section 2.3,
we give a slightly different approach, which will be useful for our argument.

Let φ be the Haar functional for R(G), i.e., φ(ug) = |G|δe,g. For v ∈ R(G),
we denote by v =

⊕
v(π), v(π) ∈ B(Hπ), via the decomposition R(G) ∼=⊕

π∈Ĝ
B(Hπ). Then we have φ(v) = ∑

π
dπTrπ(v(π)), where Trπ be the canonical

(non-normalized) trace on B(Hπ). We regard R(G) as a Hilbert space equipped
with an inner product arising from φ, and denote by `2(Ĝ). Namely, an inner
product on `2(Ĝ) is given by 〈v, w〉 = ∑

π∈Ĝ
dπ〈v(π), w(π)〉π for v =

⊕
v(π),

w =
⊕

w(π). Here 〈v(π), w(π)〉π = Trπ(w(π)∗v(π)) It is easy to see that
{dπ−1/2eπ

ij} ⊂ `2(Ĝ) forms an orthonormal basis with respect to this inner prod-
uct.

Set Tσ,e
ρ,πi ∈ B(Hσ, Hρ) by (Tσ,e

ρ,πi )ρj ,σk = Tσk ,e
ρj ,πi .

LEMMA 3.2. Define λπij ∈ B(`2(Ĝ)) = M|G|(C) by

(λπij v)(ρ) := ∑
σ,e

Tσ,e
ρ,πi

v(σ)Tσ,e∗
ρ,πj

and λπ := ∑
i,j

λπij ⊗ eπ
ij ∈ M|G|(C)⊗ B(Hπ). Then {λπ} is a unitary representation of

Irr(G) on M|G|(C).

Proof. We freely use notations and results in Section 2.1. We first show
λ12

π λ13
ρ Tσ,a

π,ρ = Tσ,a
π,ρλσ, Tσ,a

π,ρ = (Tσm ,a
πi ,ρk ) ∈ (σ, π ⊗ ρ), equivalently λπij λρkl T

σn ,a
πj ,ρl =

∑
m

Tσm ,a
πi ,ρk λσmn . We have:(

∑
j,l

λπij λρkl T
σn ,a
πj ,ρl

v
)
(ξ) = ∑

j,l,η,e
Tη,e

ξ,πi
(λρk,l T

σn ,a
πj ,ρl

v)(η)Tη,e∗
ξ,πj

= ∑
j,l,η,e,ζ, f

Tη,e
ξ,πi

Tζ, f
η,ρk

Tσn ,a
πj ,ρl

v(ζ)Tζ, f ∗
η,ρl

Tη,e∗
ξ,πj

= ∑
j,l,η,e,ζ, f

Tη,e
πi ,ρk Tζ, f

ξ,η
Tσn ,a

πj ,ρl
v(ζ)Tζ, f ∗

ξ,η
Tη,e∗

πj ,ρl

= ∑
η,ζ,e, f

Tη,e
πi ,ρk Tζ, f

ξ,η
v(ζ)Tζ, f ∗

ξ,η

(
∑
j,l

Tσn ,a
πj ,ρl

Tη∗,e
πj ,ρl

)
= ∑

ζ, f
Tσ,a

πi ,ρk
Tζ, f

ξ,σ
v(ζ)Tζ, f ∗

ξ,σn

= ∑
m,ζ, f

Tσm ,a
πi ,ρk

Tζ, f
ξ,σm

v(ζ)Tζ, f ∗
ξ,σn

= ∑
m

(Tσm ,a
πi ,ρk

λσm,n v)(ξ).

It is easy to see that ∑
k
〈λπki v, λπkj w〉 = δi,j. Hence we have ∑

k
λ∗πki

λπkj = δi,j

and consequently λ∗πλπ = 1. Thus it suffices to show λπλ∗π = 1.
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Here we have

∑
k

λπik λπ jk = ∑
k,ρ,l,m,e

Tρl ,e
πi ,π j

λρlm Tρm ,e
πk ,πk

=
√

dπT1
πi ,π j

λ1 = δi,j.

Hence we have λπ
tλπ = 1, and tλπ = λ∗π . It follows that λ∗πij

= λπij and
λπλ∗π = 1.

Let E = {eπij ,ρkl} be a system of matrix units for B(`2(Ĝ)) ∼= M|G|(C), that

is, eπij ,ρkl is a partial isometry which sends dρ−1/2eρ
kl ∈ `2(Ĝ) to dπ−1/2eπ

ij . It is
not difficult to see

λπij = ∑
ρ,k,l,σ,m,n,e

√
dρ

dσ
Tσm ,e

πi ,ρk
Tσn ,e

πj ,ρl eσmn ,ρkl .

It follows that
√

dπdρλπij e1,1λρkl
= eπij ,ρkl from the above expression of λπ .

Let M be a von Neumann algebra, and E = {eπij ,ρkl} ⊂ M a system of

matrix units for B(`2(Ĝ)). Then we can construct a unitary representation λπ of
Ĝ in E′′ by the above formula. In this case, we call {λπ} a representation of Ĝ
associated with E = {eπij ,ρkl}. When we have to specify E, we denote the unitary

representation of Ĝ associated with E by λE
π .

We define the product type action of Ĝ on R. Express R =
∞⊗

n=1
Kn, where

Kn is a copy of M|G|(C). Let λn
π := λKn

π be a unitary representation of Ĝ on
Kn, and regard it as one on R. Define λ̃1

π := λ1
π , and λ̃n

π = λ̃n−1
π λn

π . Then λ̃n
π is a

representation of Ĝ on K1⊗ · · · ⊗Kn by Lemma 3.1. Set mn
π(x) := Ad λ̃n

π(x⊗ 1π).
Since λ̃n

π is a unitary representation of Ĝ, mn
π is indeed an action of Ĝ on R. If

x ∈
n−1⊗
k=1

Kk, then

Ad λ̃n
π(x⊗ 1π) = Ad λ̃n−1

π λn
π(x⊗ 1π) = Ad λ̃n−1

π (x⊗ 1π)

holds. Hence lim
n→∞

mn
π(x) exists for x∈

∞⋃
n=1

n⊗
k=1

Kk, and so does mπ(x)= lim
n→∞

mn
π(x)

for every x ∈ R.

DEFINITION 3.3. We call m = {mπ} the model action for Ĝ.

THEOREM 3.4. The model action m is outer.

Proof. Fix 1 6= π ∈ Ĝ. Assume there exists non-zero a ∈ R⊗ B(Hπ) such

that mπ(x)a = a(x ⊗ 1) holds for x ∈ R. If x ∈
n⊗

k=1
Kn, then (x ⊗ 1)λ̃n∗

π a =

λ̃n∗
π a(x ⊗ 1) holds. Hence a is expressed as a = λ̃n

πbn+1, bn+1 = ∑
ij

bn+1
ij ⊗ eπ

ij ∈
∞⊗

k=n+1
Kk ⊗ B(Hπ). Since we assume a 6= 0, there exists c ∈ R ⊗ B(Hπ) with
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τ ⊗ Trπ(ca) 6= 0. We may assume c is of the form c1 ⊗ eπ
ij , c1 ∈

m⊗
k=1

Kk for some m.

Then

τ⊗Trπ(ca)=τ(c1λm+1
πij

bm+2
ji )=τ(c1λ̃m+1

πij
)τ(bm+2

ji )=∑
l

τ(c1λ̃m
πil

)τ(λm+1
πl j

)τ(bm+2
ji )=0

holds, and this is a contradiction. Hence a must be 0, and m is an outer action.

DEFINITION 3.5. Let E = {eπij ,ρkl} ⊂ M be a system of matrix units, and

λE
π a representation of Ĝ associated with E. Let α be an action of Ĝ on M. We

say {eπij ,ρkl} is an α-equivariant system of matrix units if απ(x) = Ad λE
π(x⊗ 1) for

x ∈ E.

The following lemma is easily verified. We leave the proof to the reader.

LEMMA 3.6. Let α be an action of Ĝ on M.
(i) Let E = {eπij ,ρkl} be an α-equivariant system of matrix units. Then λE∗

π is a 1-
cocycle for α, and Ad λE∗

π απ = id on E. Hence Ad λE∗
π απ induces an action on E′ ∩M.

(ii) Let M ⊃ K ∼= M|G|(C), and suppose α is trivial on K. Then λK
π is a 1-cocycle for

α. It follows that Ad λK
παπ is an action on M.

4. TECHNICAL RESULTS

In this section, we collect some technical lemmas, whose proofs can be
found in [2], [5], [10]. In the following, M is a factor of type II1, and τ is the
unique normalized trace on M.

LEMMA 4.1 ([5], Lemma 3.2.7). Let f ∈ M be such that ‖ f ‖ 6 1, ‖ f 2 − f ‖2 <
δ and ‖ f ∗ − f ‖2 < δ 6 1

4 . Then there exists a projection p ∈ M such that ‖ f − p‖2 <

6 4
√

δ and τ(p) = τ( f ).

LEMMA 4.2 ([5], Lemma 3.2.1). Let u ∈ M be such that ‖u∗u− 1‖2 < δ. Then
there exists a unitary v ∈ M with ‖u− v‖2 < (3 + ‖u‖)δ.

LEMMA 4.3 ([2], Proposition 1.1.3; [10], Proposition 7.1). Let us fix a free ul-
trafilter ω over N.

(i) Let A ∈ Mω be a unitary (respectively projection). Then there exists a represent-
ing sequence A = (an) consisting of unitaries (respectively projections).

(ii) Let V ∈ Mω be a partial isometry with V∗V = E and VV∗ = F. Let E =
(en), F = ( fn) ∈ Mω be representing sequences consisting of projections such that en
and fn are equivalent for any n. Then there exist a representing sequence (vn) for V such
that v∗nvn = en, vnv∗n = fn.

(iii) Let {Eij}16i,j,6m⊂Mω be a system of matrix units. Then there exists a represent-
ing sequence Eij ={en

ij} such that {en
ij}16i,j6m is a system of matrix units for every n.



284 TOSHIHIKO MASUDA

5. COHOMOLOGY VANISHING

In this section, we mainly deal with actions of Ĝ on factors of type II1. How-
ever many parts of results in this section are valid for general factors (or von
Neumann algebras).

We begin with the following lemma, which is known as the “push-down
lemma” in subfactor theory ([4], Lemma 9.26).

LEMMA 5.1. Let α be an action of Ĝ, and set e := 1
|G| ∑

π,i
dπλπii

∈ M oα Ĝ. For

any a ∈ M oα Ĝ there exists b ∈ M such that ae = be.

Proof. Let a = ∑
ρ,k,l

aρkl λρkl , aπkl ∈ M be an expansion of a. Then

|G|ae = ∑
π,i,ρ,k,l

dπaρkl λρkl λπii = ∑
π,i,ρ,k,l

∑
σ,m,n,e

dπaρkl T
σm ,e
πi ,ρk

λσmn Tσn ,e
πi ,ρl

= ∑
ρ,k,l,σ,m,n

dσaρkl

(
∑

π,i,e
Tπi ,e

σm ,ρk
Tπi ,e

σn ,ρl

)
λσmn = ∑

ρ,k,σ,m
dσaρkk λσmm =

(
∑
ρ,k

aρkk

)
|G|e

holds. Set b := ∑
ρ,k

aρkk , then we have ae = be and b ∈ M.

PROPOSITION 5.2. Let α be an outer action of Ĝ. Then any 1-cocycle for α is a
coboundary.

Proof. Let {wπ} be a 1-cocycle for α, and λπ an implementing unitary in
M oα Ĝ. It follows that {wπλπ} is a representation of Ĝ. Set e := |G|−1 ∑

π,i
dπλπii ,

and f := |G|−1 ∑
π,i

dπ(wπλπ)ii = |G|−1 ∑
π,i,j

dπwπij λπji . Then e and f are projec-

tions in M oα Ĝ with EM(e) = EM( f ) = |G|−1, where EM is the canonical con-
ditional expectation from M oα Ĝ to M. Since M oα Ĝ is a factor due to the out-
erness of α, there exists v ∈ M oα Ĝ such that vev∗ = f . By Lemma 5.1, we may
assume v ∈ M. Since vev∗ = |G|−1 ∑

π,i
dπvλπii v

∗ = |G|−1 ∑
π,i,j

dπvαπ(v∗)ijλπji , we

have wπij = vαπ(v∗)ij, and this implies wπ = (v ⊗ 1)απ(v∗). Especially v is a
unitary.

COROLLARY 5.3. Let α be an outer action of Ĝ on M. Then there exists an α-
equivariant system of matrix units {eπij ,ρkl} ⊂ M.

Proof. We can choose a system of matrix units F = { fπij ,ρkl} ⊂ Mα, since
Mα is of type II1. Then λF

π is a 1-cocycle for απ . By Proposition 5.2, there exists
v ∈ U(M) such that λF

π = (v∗ ⊗ 1)απ(v). Define E = {eπij ,ρkl} := {v fπij ,ρkl v
∗}.

Then λE
π = (v⊗ 1)λF

π(v∗ ⊗ 1) and

απ(eπij ,ρkl ) = απ(v)( fπij ,ρkl ⊗ 1)απ(v∗)
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= (v⊗ 1)λF
π( fπij ,ρkl ⊗ 1)λF∗

π (v∗ ⊗ 1) = λE
π(eπij ,ρkl ⊗ 1)λE∗

π .

DEFINITION 5.4. Let απ ∈ Mor (M, M⊗ B(Hπ)), normalized as α1 = idM,
and Uπ,ρ ∈ U(M⊗ B(Hπ)⊗ B(Hρ)). We say {απ , Uπ,ρ}π,ρ∈Ĝ is a cocycle twisted

action of Ĝ if we have the following:
(i) Uπ,1 = U1,π = 1.

(ii) απ ⊗ idρ ◦ αρ(x)Uπ,ρT = Uπ,ρTασ(x), T ∈ (σ, π ⊗ ρ).

(ii) Let {Tσ,a
π,ρ}

Nσ
πρ

a=1 be an orthonormal basis for (σ, π ⊗ ρ). Set Uσ,a
π,ρ := Uπ,ρTσ,a

π,ρ.
Then

∑
η,a,ξ,b

(απ⊗ id)(Uη,a
ρ,σ)Uξ,b

π,ηTξ,b∗
π,η (1π⊗Tη,a∗

ρ,σ ) = ∑
ζ,c,ξ,d

(Uζ,c
π,ρ⊗ 1σ)Uξ,d

ζ,σTξ,d∗
ζ,σ (Tζ,c∗

π,ρ ⊗ 1σ)

holds. The unitary Uπ,ρ is called a 2-cocycle for α.

We explain the meaning of Definition 5.4(iii). Note that {(1π⊗Tη,a
ρ,σ )Tξ,b

π,η}η,a,b

and {(Tζ,c
π,ρ ⊗ 1σ)Tξ,d

ζ,σ}ζ,c,d are both orthonormal bases for (ξ, π ⊗ ρ ⊗ σ). Then

V(ζ,c,d),(η,a,b) =Tξ,d∗
ζ,σ (Tζ,c∗

π,ρ ⊗1σ)(1π⊗Tη,a
ρ,σ )Tξ,b

π,η∈ (ξ, ξ)=C, and V = {V(ζ,c,d),(η,a,b)}
gives a unitary transformation between the above two orthonormal bases. From
the condition (iii), we get

(απ ⊗ id)(Uη,a
ρ,σ)Uξ,b

π,η = ∑
ζ,c,d

(Uζ,c
π,ρ ⊗ 1σ)Uξ,d

ζ,σV(ζ,c,d),(η,a,b).

This shows that the same unitary V gives the transformation between (απ ⊗
id)(Uη,a

ρ,σ)Uξ,b
π,η and (Uζ,c

π,ρ ⊗ 1σ)Uξ,d
ζ,σ.

Let {απ , Uπ,σ} be a cocycle twisted action of Ĝ, and extend it to that of
Rep(G) as in the remark in Section 2.1. Then (απ ⊗ idρ) ◦ αρ = Ad (Uπ,ρ)απ⊗ρ,
and (Uπ,ρ⊗ 1σ)Uπ⊗ρ,σ = (απ ⊗ idρ⊗ idσ)(Uρ,σ)Uπ,ρ⊗σ from the above equalities.

DEFINITION 5.5. Let {απ , Uπ,ρ} be a cocycle twisted action of Ĝ. We say
that Uπ,ρ is a coboundary if there exist unitaries Wπ ∈ M⊗ B(Hπ), normalized as
W1 = 1, such that

Wπαπ ⊗ id(Wρ)Uπ,ρT = TWσ, T ∈ (σ, π ⊗ ρ).

Define

(∂αW)π,ρ :=απ⊗idρ(Wρ)(Wπ⊗1ρ)W∗π⊗ρ =∑
σ,e

απ⊗idρ(Wρ)(Wπ⊗1ρ)Tσ,e
π,ρW∗σ Tσ,e∗

π,ρ .

Then the above condition is shown to be equivalent to Uπ,ρ = (∂αW∗)π,ρ.

Let {α, Uπ,ρ} be a cocycle twisted action, and assume Uπ,ρ = (∂αW∗)π,ρ for
some {Wπ}. Then Ad Wπαπ becomes a genuine action of Ĝ.

REMARK 5.6. Here we make a useful remark on perturbations of cocycle
twisted actions. Let α be an action of Ĝ, and wπ ∈ U(M ⊗ B(Hπ)). Then α̃π =
Ad wπαπ is a cocycle twisted action with a 2-cocycle u(π, ρ) = ∂α̃w(π, ρ). If there
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exists another unitary wπ such that ∂α̃w∗(π, ρ) = u(π, ρ), then it is easy to verify
that wπwπ is a 1-cocycle for α.

In a similar way as in [5] and [15], we can prove the 2-cohomology vanishing
theorem for cocycle twisted actions of Ĝ as follows.

THEOREM 5.7. Let {απ , Uπ,ρ} be a (not necessary outer) cocycle twisted action of
Ĝ. Then Uπ,ρ is a coboundary.

Proof. Fix a finite dimensional subfactor K ⊂ M, K ∼= M|G|(C), and a sys-
tem of matrix units {eij}16i,j6|G| for K. Choose a unitary uπ ∈ M ⊗ B(Hπ)
with Ad uπαπ(eij) = eij ⊗ 1, and set α̃π := Ad uπαπ . Then α̃π(x) = x ⊗ 1,
x ∈ K. Hence α̃π sends K′ ∩ M into (K′ ∩ M) ⊗ B(Hπ). Moreover if we de-
fine Ũπ,ρ := u12

π απ(uρ)Uπ,ρu∗π⊗ρ = ∑
σ,a

u12
π απ(uρ)Uσ,a

π,ρu∗σTσ,a∗
πρ , then Ũπ,ρ ∈ (K′ ∩

M)⊗ B(Hπ)⊗ B(Hρ) and {α̃, Ũπ,ρ} is a cocycle twisted action of Ĝ on K′ ∩M. It
is trivial that Ũπ,ρ is a coboundary if and only if so is Uπ,ρ.

Hence we may assume α is of the form απ = α0
π ⊗ id on N ⊗ B(`2(Ĝ)) and

Uπ,ρ = ∑
π,i,j,ρ,k,l

Uπij ,ρkl ⊗ 1⊗ eπ
ij ⊗ eρ

kl ∈ N ⊗C1⊗ B(Hπ)⊗ B(Hρ). Fix a system of

matrix units { fξab ,ηcd} for B(`2(Ĝ)).
In the rest of this section, we denote Uσ,a

π,ρ and Tσ,a
π,ρ by Uσ

π,ρ and Tσ
π,ρ respec-

tively to simplify notations.
Define wπij as

wπij := ∑
ξ,a,b,η,c,d

√
dξ

dη
Tηc

πiξa
U

η∗d
πjξb
⊗ fηcd ,ξab ∈ N ⊗ B(`2(Ĝ)).

We will see that wπ ∈ U(M⊗ B(Hπ)), and (∂αw∗)π,ρ = Uπ,ρ. At first we verify
that wπ is a unitary. We will see that ∑

k
wπik w∗πjk

= δi,j holds as follows:

∑
k

wπik w∗πjk

= ∑
k

(
∑

ρ,l,m,σ,s,t

√
dρ

dσ
Tσs

πiρl
Uσ∗t

πkρm ⊗ fσst ,ρlm

)(
∑

ξ,a,b,η,c,d

√
dξ

dη
Tηc

πjξa
Uηd

πkξb
⊗ fξab ,ηcd

)
= ∑

ρ,l,σ,s,t,η,c,d

dρ√
dσdη

Tσs
πiρl

Tηc
πjρl

(
∑
k,m

Uσ∗t
πkρm Uηd

πkρm

)
⊗ fσst ,ηcd

= ∑
ρ,m,η,c,d,s

dρ

dη
Tηs

πiρl T
ηc
πjρl⊗ fηsd ,ηcd =∑

η,c,d,s

(
∑
ρ,l

Tρl
πiηs

Tρl
π jηc

)
⊗ fηsd ,ηcd=δi,j∑

η,c,d
1⊗ fηcd ,ηcd =δi,j.

In a similar way as above, ∑
k

w∗πki
wπkj = δi,j can be verified. Hence wπ is indeed a

unitary.
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We next show that Uπ,ρ = (∂αw∗)π,ρ. It suffices to show wπαπ(ωρ)Uσ
π,ρw∗σ =

Tσ
π,ρ. This follows from the computation:

(wπαπ(ωρ)Uσ
π,ρw∗σ)σm

πi ,ρk

= ∑
j,l,n,a

wπij απ(wρkl )jn(Uσa
πnρl
⊗ 1)w∗σma

= ∑
j,l,n,a,ξ,b,c,

η,d,e,ζ,s,t,φ,u,v

√
dξ

dη

√
dζ

dξ

√
dζ

dφ
Tηd

πiξb
Uηe∗

πjξc
Tξb

ρkζs
απ(Uξc∗

ρlζt
)jnUσa

πnρl
Tφu

σm ,ζs
Uφv

σaζt
⊗ fηed ,φuv

= ∑
l,n,a,η,d,e,
ζ,s,t,φ,u,v

dζ√
dηdφ

(
∑

j,ξ,b,c
απ(Uξc

ρl ζt
)njU

ηe
πjξc

Tξb
ρkζs

Tηd
πiξb

)∗
Uσa

πnρl
Tφu

σm ,ζs
Uφv

σaζt
⊗ fηed ,φuv

= ∑
l,n,a,η,d,e,
ζ,s,t,φ,u,v

dζ√
dηdφ

(
∑

ξ,b,c
Uξc

πnρl U
ηe
ξcζt

Tξb
πiρk Tηd

ξbζs

)∗
Uσa

πnρl
Tφu

σm ,ζs
Uφv

σaζt
⊗ fηed ,φuv

= ∑
a,ξ,b,c,η,d,e,
ζ,s,t,φ,u,v

dζ√
dηdφ

Tξb
πiρk Tηd

ξbζs
Uηe∗

ξcζt

(
∑
n,l

Uξc∗
πnρl U

σa
πnρl

)
Tφu

σm ,ζs
Uφv

σaζt
⊗ fηed ,φuv

= ∑
b,η,d,e,

ζ,s,φ,u,v

dζ√
dηdφ

Tσb
πiρk Tηd

σbζs
Tφu

σm ,ζs ∑
a,t

(
Uηe∗

σaζt
Uφv

σaζt

)
⊗ fηed ,φuv

= ∑
b,η,d,e,u,ζ,s

dζ

dη
Tσb

πiρk Tηd
σbζs

Tηu
σm ,ζs
⊗ fηed ,ηud = ∑

b,η,d,e,u
Tσb

πiρk

(
∑
ζ,s

Tζs
σbηd

Tζs
σm ,ηu

)
⊗ fηed ,ηud

= Tσm
πiρk ∑

η,d,e
1⊗ fηed ,ηed = Tσm

πiρk
.

Hence we have Uπ,ρ = (∂αw∗)π,ρ.

We need another type of 2-cohomology vanishing theorem, which asserts
that we can choose a coboundary close to 1 if a 2-cocycle is close to 1.

THEOREM 5.8. Let {απ , Uπ,ρ} be a cocycle twisted outer action of Ĝ. If ‖Uπ,ρ −
1‖2 < δ for sufficiently small enough δ, then there exist a unitary Wπ ∈ M⊗ B(Hπ)
such that Uπ,ρ =(∂αW∗)π,ρ and ‖Wπ − 1‖2 < f (δ). Here f (δ) is a positive valued func-
tion, which depends only on G and is independent from α and Uπ,ρ, with lim

δ→0
f (δ)= 0.

Proof. Let N := M oα,U Ĝ be a twisted crossed product, and λπ be an im-
plementing unitary. (See Appendix for the twisted crossed product construction.)
Hence we have Ad λπ(x⊗ 1π) = απ(x) for x ∈ M, λ12

π λ13
ρ Tσ

π,ρ = Uπ,ρTσ
π,ρλσ for

Tσ
π,ρ ∈ (σ, π ⊗ ρ), and M oα,U Ĝ = M ∨ {λπij}. By Theorem 5.7, there exist a

unitary wπ ∈ M ⊗ B(Hπ), π ∈ Ĝ such that Uπ,ρ = (∂αw∗)π,ρ. This implies
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λ̃π := wπλπ is a representation of Ĝ. Thus e := |G|−1 ∑
π,i

dπλ̃πii is a projection

with EM(e) = 1
|G| .

(If one is not familiar to the twisted crossed product, he (or she) may treat
it as follows. Let wπ be as above. Since Ad wπαπ is a usual action, we can con-
struct a usual crossed product algebra M oAd wα Ĝ. Let λ̃π be an implementing
unitary, and set λπ := w∗πλπ . Then it is easy to see that {λπ} behave like as
the implementing unitary in M oα,U Ĝ. Hence M ∨ {λπ} is identified with the
twisted crossed product M oα,U Ĝ. )

Set f := |G|−1 ∑
π,i

dπλπii . We will show f is almost a projection, and apply

Lemma 4.1. Set Λπ := ∑
i

λπii and we investigate ΛπΛρ −∑
σ

Nσ
π,ρΛσ at first.

Since we have

ΛπΛρ = ∑
i,k

λπii λρkk = ∑
i,k,σ,m,n,a

Uσm ,a
πi ,ρk

λσmn Tσn ,a
πi ,ρk = ∑

i,j,k,l,σ,m,n
Uπij ,ρkl T

σm ,a
πj ,ρl

λσmn Tσn ,a
πi ,ρk

= ∑
i,j,k,l,σ,m,n

(Uπij ,ρkl − δijδkl)Tσm ,a
πj ,ρl

λσmn Tσn ,a
πi ,ρk + ∑

i,k,σ,m,n
Tσm ,a

πi ,ρk
λσmn Tσn ,a

πi ,ρk

= ∑
i,j,k,l,σ,m,n

(Uπij ,ρkl − δijδkl)Tσm
πj ,ρl

λσmn Tσn
πi ,ρk + ∑

σ

Nσ
π,ρΛσ,

we get the following estimate:∥∥∥ΛπΛρ −∑
σ

Nσ
π,ρΛσ

∥∥∥
2

6 ∑
i,j,k,l

∥∥∥(Uπijρkl − δijδkl) ∑
σ,m,n,a

Tσm ,a
πjρl

λσmn Tσn ,a
πiρk

∥∥∥
2

6 ∑
i,j,k,l
‖Uπijρkl − δijδkl‖2 6 dπdρ

√
∑

i,j,k,l
‖Uπijρkl − δijδkl‖2

2

6 dπdρ
√

dπdρδ.

Now we give the estimate of ‖ f 2 − f ‖2. Since

f 2 − f =
1
|G|2 ∑

π,ρ
dπdρΛπΛρ −

1
|G|∑σ

dσΛσ

=
1
|G|2 ∑

π,ρ,σ
dπdρ(ΛπΛρ−Nσ

π,ρΛσ)+
1
|G|2 ∑

π,ρ,σ
dπdρNσ

π,ρΛσ−
1
|G|∑σ

dσΛσ

=
1
|G|2 ∑

π,ρ,σ
dπdρ(ΛπΛρ − Nσ

π,ρΛσ)

holds, we get

‖ f 2 − f ‖2 6
1
|G|2 ∑

π,ρ
dπdρ

∥∥∥ΛπΛρ −∑
σ

Nσ
π,ρΛσ

∥∥∥
2

6
1
|G|2 ∑

π,ρ
dπ2dρ2

√
dπdρδ.
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Next we estimate ‖ f ∗− f ‖2. Set Ũπi ,π j =∑
k

Uπik ,π jk . Then λ∗πij
=∑

k
Ũ∗πk ,πi

λπkj ,

(see Appendix), and we have f ∗ = |G|−1 ∑
π,i,j

dπŨ∗πj ,πi
λπji .

Hence the following holds:

‖ f ∗ − f ‖2 6
1
|G| ∑

π,i,j
dπ‖(Ũ∗πj ,πi

− δi,j)λπji‖2 6
1
|G| ∑

π,i,j,k
dπ‖(U∗πjk ,πik

− δi,kδj,k)‖2

6
1
|G|∑π

dπ2
√

dπ

√
∑
i,j,k
‖(U∗πjk ,πik

− δi,kδj,k)‖2
2 6

1
|G|∑π

dπ3
√

dπδ.

If we set C := max
{
|G|−1 ∑

π,ρ
dπ2dρ2

√
dπdρ, |G|−1 ∑

π
dπ3
√

dπ
}

, then ‖ f 2

− f ‖2 6 Cδ and ‖ f ∗ − f ‖2 6 Cδ. Here note that C is determined only by G.
By Lemma 4.1, there exists a projection p ∈ M oα,U Ĝ such that ‖ f − p‖2 <

6 4
√

Cδ and τ(p) = 1
|G| , provided Cδ < 1

4 . Then there exists a unitary a ∈ M oα,U Ĝ
such that p = aea∗, and by Lemma 5.1, there exists u ∈ M with p = ueu∗. Note
that u is not necessary a unitary, and we have ‖u‖ 6 |G| since u = |G|EM(ae).
Then ‖ f − ueu∗‖2 < 6 4

√
Cδ. By applying the canonical conditional expectation,

we get ‖1− uu∗‖2 < 6|G| 4
√

Cδ. By Lemma 4.2, there exists a unitary v ∈ M such
that ‖u− v‖2 < 6|G|(3 + |G|) 4

√
Cδ. Hence we have ‖ f − vev∗‖2 < f (δ) for some

positive valued function f (δ), which depends only on G, with lim
δ→0

f (δ) = 0. Set

wπ := (v⊗ 1)wπαπ(v∗). Then wπ is a coboundary for Uπ,ρ, and ‖wπ− 1‖2 < f (δ)
holds by looking at coefficients of f − vev∗ = |G|−1 ∑

π,i,j
dπ(1− wπij)λπji .

6. ACTIONS AND ULTRA PRODUCT

Fix a free ultrafilter ω over N. Then αω
π is an action of Ĝ on Mω, however αω

π

does not preserve Mω unless Ĝ is a group, i.e., G is commutative.
Our first task in this section is to show the existence of an outer action of

Ĝ× Ĝ on Mω by modifying αω
π .

We first recall Ocneanu’s central freedom lemma.

LEMMA 6.1. Let A ⊂ B ⊂ C be finite von Neumann algebras with A ∼= R. Then
(A′ ∩ Bω)′ ∩ Cω = A ∨ (B′ ∩ C)ω.

See [4] for proof.
From now on, we assume M ∼= R. Set M1 := M oα Ĝ. Let λπ ∈ M1 ⊗

B(Hπ) be an implementing unitary for α.

LEMMA 6.2. Let H be a finite dimensional Hilbert space. Then α ∈ Mor (R,R⊗
B(H)) is approximately inner in the following sense; there exists a sequence of unitary
{un} ⊂ R⊗ B(H) such that lim

n
‖Ad un(x⊗ 1)− α(x)‖2 = 0, x ∈ R.
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Proof. Represent R =
∞⊗

n=1
M2(C), and set Ln :=

n⊗
k=1

M2(C). Let {en
ij} be a

system of matrix units for Ln. Then {en
ij ⊗ 1} and {α(en

ij)} are both systems of
matrix units in R ⊗ B(H). Hence there exists a unitary un ∈ R ⊗ B(H) with
α(eij) = Ad un(eij ⊗ 1), and hence α(x) = Ad un(x⊗ 1) for x ∈ Ln. Then it is easy
to see that lim

n
‖α(x)−Ad un(x⊗ 1)‖2 = 0 for x ∈ R.

By Lemma 6.2, there exists a unitary Uπ ∈ Mω ⊗ B(Hπ) such that απ(x) =
Ad Uπ(x⊗ 1) for x ∈ M ⊂ Mω, π ∈ Ĝ. Set Vπ := U∗πλπ ∈ Mω

1 .

LEMMA 6.3. Define γ1
π(x) := Ad Vπ(x ⊗ 1), γ2

ρ(x) := Ad U∗ρ (x ⊗ 1ρ). Then
γπ⊗̂ρ := (γ1

π ⊗ 1ρ) ◦ γ2
ρ defines an outer cocycle twisted action of Ĝ× Ĝ on Mω.

Proof. Define Wπ⊗̂ρ := V12
π U13∗

ρ ∈ Mω
1 ⊗ B(Hπ)⊗ B(Hρ). Then γ is a per-

turbation of the trivial action of Ĝ× Ĝ on Mω
1 by Wπ⊗̂ρ, and w(π1⊗̂ρ1, π2⊗̂ρ2) :=

∂γ(W)(π1⊗̂ρ1, π2⊗̂ρ2) is a 2-cocycle for γ. Hence we only have to verify that
γ preserves Mω, outer on Mω, and w(π1⊗̂ρ1, π2⊗̂ρ2) ∈ Mω ⊗ B(Hπ1⊗̂ρ1) ⊗
B(Hπ2⊗̂ρ2).

We verify that γi
π ∈ Mor (Mω, Mω ⊗ B(Hπ)), i = 1, 2. Indeed this follows

from the computation below, where x ∈ M, a ∈ Mω (note γ1
π(a) = Ad U∗παω

π (a)
for a ∈ Mω):

U∗π(a⊗1)Uπ(x⊗1)=U∗π(a⊗1)απ(x)Uπ=U∗παπ(x)(a⊗1)Uπ=(x⊗1)Ad U∗π(a⊗1),

U∗παω
π (a)Uπ(x⊗ 1) = U∗παω

π (a)απ(x)Uπ = U∗παω
π (ax)Uπ

= U∗παω
π (xa)Uπ = (x⊗ 1)U∗παω

π (a)Uπ .

Then it is trivial that γπ⊗̂ρ ∈ Mor (Mω, Mω ⊗ B(Hπ)⊗ B(Hρ)).
We next verify that γπ⊗̂ρ is outer on Mω. We divide to π 6= 1 case and

π = 1 case. Fix 1 6= π ∈ Ĝ and assume γπ⊗̂ρ(x)a = a(x ⊗ 1), x ∈ Mω, holds
for some a ∈ Mω ⊗ B(Hπ) ⊗ B(Hρ). On one hand, b := U13

ρ V12∗
π a ∈ (Mω ⊗

C)′ ∩Mω
1 ⊗ B(Hπ)⊗ B(Hρ) = M⊗ B(Hπ)⊗ B(Hρ) by Lemma 6.1. On the other

hand, it is easy to see b = U13
ρ V12∗

π a is of the form ∑
i,j,k,l,m,n

Xk,l
i,j,m,nλπm,n ⊗ eπ

ij ⊗ eρ
kl ,

Xk,l
i,j,m,n ∈ Mω. Hence if π 6= 1, b must be 0, and consequently a = 0.

Assume π = 1, and we verify that γ1⊗̂ρ = γ2
ρ is outer for ρ 6= 1. Assume

γ2
ρ(x)a = a(x ⊗ 1). Then bρ := Uρa ∈ (Mω ⊗C)′ ∩Mω ⊗ B(Hρ) = M⊗ B(Hρ)

by Lemma 6.1.
Then we have

αρ(x)bρ = Uρ(x⊗ 1)U∗ρ bρ = Uρ(x⊗ 1)a = Uρa(x⊗ 1) = bρ(x⊗ 1)

for x ∈ M. Since α is an outer action on M, bρ is 0 and hence so is a.
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We will see w(π1⊗̂ρ1, π2⊗̂ρ2) ∈ U(Mω ⊗ B(Hπ1⊗̂ρ1) ⊗ B(Hπ2⊗̂ρ2)). Al-
though we can prove this directly, we will show the statement for w(π⊗̂1, ρ⊗̂1),
w(1⊗̂π, 1⊗̂ρ) and w(1⊗̂π, ρ⊗̂1) separately to abuse notations. Then we can ob-
tain the desired result since

w(π1⊗̂ρ1, π2⊗̂ρ2)

= γ1
π1
⊗ idρ1 ⊗ idπ2 ⊗ idρ2(w(1⊗̂ρ1, π2⊗̂1)⊗ 1ρ2)×

(w(π1⊗̂1, π2⊗̂1)⊗ 1ρ1 ⊗ 1ρ2)γ1
π1⊗π2

⊗ idρ1 ⊗ idρ2(w(1⊗̂ρ1, 1⊗̂ρ2)).

(We identify Hπ1⊗̂ρ1
⊗ Hπ2⊗̂ρ2

and Hπ1 ⊗ Hπ2 ⊗ Hρ1 ⊗ Hρ2 in the canonical
way.)

We first verify w(π⊗̂1, ρ⊗̂1) ∈ Mω ⊗ B(Hπ) ⊗ B(Hρ). This follows from
the following computation. Here we extend Vπ and Uπ for π ∈ Rep(G) as in the
remark in Section 2.1:

w(π⊗̂1, ρ⊗̂1) = V12
π V13

ρ V∗π⊗σ = ∑
σ,a

U12∗
π λ12

π U13∗
ρ λ13

ρ Tσ,a
π,ρλ∗σUσTσ,a∗

π,ρ

= ∑
σ,a

U12∗
π αω

π ⊗ idρ(U∗ρ )λ12
π λ13

ρ Tσ,a
π,ρλ∗σUσTσ,a∗

π,ρ

= ∑
σ,a

U12∗
π αω

π ⊗ idρ(U∗ρ )Tσ,a
π,ρUσTσ,a∗

π,ρ

= U12∗
π αω

π ⊗ idρ(U∗ρ )Uπ⊗ρ ∈ Mω ⊗ B(Hπ)⊗ B(Hρ).

Let us examine whether w(π⊗̂1, ρ⊗̂1) commutes with x ⊗ 1π ⊗ 1ρ ∈ M⊗
C1π ⊗C1ρ. Note that Ad Uπ(x) = απ(x) holds for π ∈ Rep(G), x ∈ M. Thus

w(π⊗̂1, π⊗̂1)(x⊗ 1π ⊗ 1ρ) = U12∗
π αω

π ⊗ idρ(U∗ρ )Uπ⊗ρ(x⊗ 1π ⊗ 1ρ)

= U12∗
π αω

π ⊗ idρ(U∗ρ )(απ ⊗ idρ) ◦ αρ(x)Uπ⊗ρ

= U12∗
π αω

π ⊗ idρ(U∗ρ αρ(x))Uπ⊗ρ

= U12∗
π αω

π ⊗ idρ(x⊗ 1ρ)απ ⊗ idρ(U∗ρ )Uπ⊗ρ

= (x⊗ 1π ⊗ 1ρ)U12∗
π α⊗ idρ(U∗ρ )Uπ⊗ρ

= (x⊗ 1π ⊗ 1ρ)w(π⊗̂1, ρ⊗̂1)

holds, and w(π⊗̂1, ρ⊗̂1) ∈ Mω ⊗ B(Hπ)⊗ B(Hρ).
It is trivial that w(1⊗̂π, 1⊗̂ρ) = U12∗

π U13∗
ρ Uπ⊗ρ ∈ Mω ⊗ B(Hπ) ⊗ B(Hρ).

Thus we only have to see that [w(1⊗̂π, 1⊗̂ρ), (x ⊗ 1π ⊗ 1ρ)] = 0, x ∈ M. This
follows from the following computation:

w(1⊗̂π, 1⊗̂ρ)(x⊗ 1π ⊗ 1ρ) = U12∗
π U13∗

ρ Uπ⊗ρ(x⊗ 1π ⊗ 1ρ)

= U12∗
π U13∗

ρ (απ ⊗ idρ) ◦ αρ(x)Uπ⊗ρ

= U12∗
π U13∗

ρ (Fρ,παρ ⊗ idπ(απ(x))Fπ,ρ)Uπ⊗ρ
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= (x⊗ 1π ⊗ 1ρ)U12∗
π U13∗

ρ Uπ⊗ρ = (x⊗ 1π ⊗ 1ρ)w(1⊗̂π, 1⊗̂ρ),

where we used the commutativity of απ and αρ in the third equality.
Finally we verify w(1⊗̂π, ρ⊗̂1) ∈ Mω ⊗ B(Hρ)⊗ B(Hπ). As in the above,

we will see that w(1⊗̂π, ρ⊗̂1) ∈ Mω ⊗ B(Hρ) ⊗ B(Hπ) and [w(1⊗̂π, ρ⊗̂1), x ⊗
1ρ ⊗ 1π ] = 0, x ∈ M separately as follows:

w(1⊗̂π, ρ⊗̂1) = U13∗
π V12

ρ U13
π V12∗

ρ = U13∗
π U12∗

ρ λ12
ρ U13

π λ12∗
ρ U13

ρ

= U13∗
π U12∗

ρ αω
ρ ⊗idπ(Uπ)U12

ρ ∈ Mω⊗B(Hρ)⊗B(Hπ);

w(1⊗̂π, ρ⊗̂1)(x⊗ 1ρ ⊗ 1π) = U13∗
π U12∗

ρ αω
ρ ⊗idπ(Uπ)U12

ρ (x⊗1ρ⊗1π)

= U13∗
π U12∗

ρ (αω
ρ ⊗ idπ)(Uπ)(αρ(x)⊗ 1π)U12

ρ

= U13∗
π U12∗

ρ (αω
ρ ⊗ 1π)(Uπ(x⊗ 1π))U12

ρ

= U13∗
π U12∗

ρ (αω
ρ ⊗ 1π ◦ απ(x))(αρ ⊗ idπ(Uπ))U12

ρ

= (x⊗ 1π ⊗ 1ρ)U13∗
π U12∗

ρ αω
ρ ⊗ idπ(Uπ)U12

ρ

= (x⊗ 1ρ ⊗ 1π)w(1⊗̂π, ρ⊗̂1).

LEMMA 6.4. We can choose Uπ ∈ Mω so that Ad Uπ(x⊗ 1) = απ(x), x ∈ M,
and Uπ and U∗πλπ are both representations of Ĝ with [Uπij , (U∗ρλρ)kl ] = 0.

Proof. By Lemma 6.3, γπ⊗̂ρ defines a cocycle twisted action of Ĝ× Ĝ on Mω.
Hence by Theorem 5.7, w(·, ·) = ∂γ(u)(·, ·) for some uπ⊗̂ρ ∈ Mω ⊗ B(Hπ⊗̂ρ). Set

Ũπ = Uπu∗1⊗̂π
, and Ṽπ = uπ⊗̂1Vπ . By the Remark 5.6, uπ⊗̂ρV12

π U13∗
ρ is a 1-cocycle

for the trivial action of Ĝ⊗ Ĝ. This implies that Ũ∗π and Ṽπ are representations of
Ĝ in Mω

1 with [Ũπij , Ṽρkl ] = 0. Moreover we have

Ad Ũπ(x) = Ad Uπu∗1⊗̂π
(x⊗ 1) = Ad Uπ(x⊗ 1) = απ(x), x ∈ M.

Put cπ := Ṽπλ∗πŨπ = uπ⊗̂1U∗πλπλ∗πUπu∗1⊗̂π
= uπ⊗̂1u∗1⊗̂π

∈ Mω.

Define Wπij := ∑
k

Ṽπik Ũπkj , Set P := Mω ∨ {Wπij}(⊂ Mω
1 ). Then Mω ⊂ P

is the quantum double for Ad uπγπ . (Unitaries Ṽπ , Ũπ , and Wπ correspond to
vπ , uπ , and wπ in the proof of Lemma 2.9.) We have the (unique) conditional
expectation E from P on Mω, and it satisfies E(Wπij) = δπ,1.

We next prove ∑
i

λπii ∈ P. Since cπ = Ṽπλ∗πŨπ , we have λπij = ∑
k,l

Ũπik c∗lkṼπl j .

Note γ2
π(x) := Ũ∗π(x⊗1)Ũπ is an action on Mω, and it follows Ũ∗πji

x=∑
k

γ2
π(x)ikŨ∗πjk

,

x ∈ Mω.
Then we have

∑ λπii = ∑
i,k,l

Ũπik c∗lkṼπli = ∑
i,k,l

Ũ∗πik
c∗lkṼπli = ∑

i,j,k,l
γ2

π(c∗lk)kjŨ∗πij
Ṽπli
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= ∑
i,j,k,l

γ2
π(c∗lk)kjŨπij Ṽπli = ∑

j,k,l
γ2

π(c∗lk)kjWπl j ,

and thus ∑
i

λπii ∈ P.

Define e := |G|−1 ∑
π,i,j

dπWπii , and f := |G|−1 ∑
π,i,j

dπλπii . Then e and f are

projections in P with E(e) = E( f ) = 1
|G| . Hence there exists a unitary z ∈ Mω

such that z f z∗ = e by Lemma 5.1. (Though P is not a crossed product of Mω by
Ĝ, the proof of Lemma 5.1 works for Mω ⊂ P since {Wπ} is a representation of
Ĝ, and a ∈ P can be expressed as ∑

π,i,j
aπ,i,jWπij .)

On one hand, we have

|G|z f z∗ = ∑
π,i

dπzλπii z
∗ = ∑

π,i,j
dπzαπ(z∗)ijλπji .

On the other hand, since Ṽπ = cπŨ∗πλπ , we get

|G|e = ∑
π,i,j

dπŨπij Ṽπji = ∑
π,i,j,k,l

dπŨπij cπjk Ũ∗πlk
λli.

Since zαπ(z∗)ij, Ũπij cπjk Ũ∗πlk
∈ Mω, we have zαπ(z∗)il = ∑

j,k
Ũπij cπjk Ũ∗πlk

, and this

implies (z⊗ 1)αω
π (z∗) = ŨπcπŨ∗π .

Define Vπ and Uπ by Vπ=(z∗⊗1)Ṽπ(z⊗1), Uπ=(z∗⊗1)Ũπ(z⊗1). We have

Vπλ∗πUπ = (z∗ ⊗ 1)Ṽπ(z⊗ 1)λ∗π(z∗ ⊗ 1)Ũπ(z⊗ 1)

= (z∗ ⊗ 1)Ṽπλπαπ(z)(z∗ ⊗ 1)Ũπ(z⊗ 1)

= (z∗ ⊗ 1)ṼπλπŨπc∗πŨ∗πŨπ(z⊗ 1) = 1,

hence Vπ = U∗πλπ . Since z ∈ Mω, Ad Uπ(x⊗ 1) = απ(x) holds for x ∈ M ⊂ Mω.
It is clear that Uπ and Vπ are both representations of Ĝ with [Vπij , Uρkl ] = 0.

REMARK 6.5. To avoid using the commutativity of Ĝ, we should consider
γ3

π(x) := AdU∗π(x⊗ 1) rather than γ2
π = Ad U∗π(x⊗ 1). By suitable inner pertur-

bation, this γ3
π is shown to be a “conjugate” action of Ĝ in the sense (γ3

π ⊗ idρ) ◦
γ3

ρ(x)T = Tγ3
σ(x) for T ∈ (σ, π ⊗ ρ) without using the commutativity of Ĝ. (See

Remark 2.6.)

COROLLARY 6.6. Fix Uπ as in Lemma 6.4. Then we have αω
ρ(Uπij)=Ad Uρ(Uπij

⊗1ρ).

Proof. By Lemma 6.4, we have UπVπ = λπ . Since [Uπij , Vρkl ] = 0, we have

αω
ρ (Uπij) = Ad λπ(Uπij ⊗ 1ρ) = Ad UρVρ(Uπij ⊗ 1ρ) = Ad Uρ(Uπij ⊗ 1ρ).

LEMMA 6.7. We choose Uπ as in Lemma 6.4. There exists an αω-equivariant
system of matrix units E = {Eπij ,ρkl} ⊂ Mω such that λE

π = Uπ and E1,1 ∈ Mω.
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Proof. Let γi
π and γπ⊗̂ρ =(γ1

π⊗1ρ)◦γ2
ρ(x) be as in Lemma 6.3. By Lemma 6.4,

γ is an outer action of Ĝ× Ĝ on Mω. By Corollary 5.3, there exists a γ-equivariant
system of matrix units {e(ξab⊗̂πij),(ηcd⊗̂ρkl)

} in Mω. Put Fπij ,ρkl := ∑
ξ,a,b

e(ξab⊗̂πij),(ξab⊗̂ρkl)
.

Then {Fπij ,ρkl} is in Mγ1

ω , and becomes a γ2-equivariant system of matrix units.
Set F̃π

i,j := ∑
k

Fπik ,πjk . Then it is easy to see that {F̃π
i,j} forms a system of matrix

units for R(G). Namely we have F̃π
i,j F̃

ρ
k,l = δπ,ρδj,k F̃π

i,l , F̃π∗
i,j = F̃π

j,i and ∑
π,i

F̃π
i,i =

1. Since F = {Fπij ,ρkl} is γ2-equivariant, we have γ2
π(F̃1)i,j = ∑

k
λF

πik
F1,1λF

π jk
=

dπ−1 F̃π
i,j. Since γ2

π(x) = Ad U∗π(x ⊗ 1π) by definition and U∗πij
= Uπij , we have

Uπ ji x = ∑
k

γ2
π(x)ikUπ jk .

Define Eπij ,ρkl :=
√

dπdρUπij F1,1Uρkl
. It is trivial that E1,1 ∈ Mω.

We first prove λE
π = Uπ :

λE
πij

= ∑
ρ,k.l,σ,m,n,e

√
dρ

dσ
Tσm ,e

πi ,ρk
Tσn ,e

πj ,ρl Eσmn ,ρkl = ∑
ρ,k,l,σ,m,n,e

dρTσm ,e
πi ,ρk

Uσmn Tσn ,e
πj ,ρl F1,1Uρkl

= ∑
ρ,k,l

dρUπij Uρkl F1,1Uρkl
= ∑

ρ,k,l,m
dρUπij γ

2
ρ(F1,1)lmUρkm Uρkl

= ∑
ρ,l,m

dρUπij γ
2
ρ(F1,1)lm

(
∑
k

U∗ρkm
Uρkl

)
=∑

ρ,l
dρUπij γ

2
ρ(F1,1)ll =∑

ρ,l
Uπij F̃

ρ
l,l =Uπij .

We next prove E = {Eπij ,ρkl} is a system of matrix units.
If we set π = 1 in the above computation, we get ∑

π,i,j
Eπij ,πij = 1. It is

easy to see that E∗πij ,ρkl
= Eρkl ,πij . Thus we only have to verify Eπij ,ρkl Eσmn ,ξab =

δρ,σδk,mδl,nEπij ,ξab . At first we compute F1,1Uπij Uρkl F1,1. Note that F1,1γσ(F1,1)m,n =
dσ−1 F̃1 F̃σ

m,n = δ1,σF1,1.
Then

F1,1Uπij Uρkl F1,1 = ∑
σ,m,n

F1,1Tσm
πi ,ρk

Uσmn Tσn
πj ,ρl F1,1 = ∑

σ,m,n,a
Tσm

πi ,ρk
Tσn

πj ,ρl F1,1γ2
σ(F1,1)m,aUσna

= ∑
σ,m,n,a

dσ−1Tσm
πi ,ρk

Tσn
πj ,ρl F̃

1 F̃σ
m,aUσna=T1

πi ,ρk
T1

πj ,ρl F̃
1=δπ,ρδi,kδj,ldπ−1F1,1

holds, and hence we have

Eπij ,ρkl Eσmn ,ξab =
√

dπdρdσdξUπij F1,1Uρkl
Uσmn F1,1Uξab

= δρ,σδk,mδl,ndρ−1
√

dπdρdσdξUπij F1,1Uξab
= δρ,σδk,mδl,nEπij ,ξab .

Finally we verify that {Eπij ,ρkl} is an αω-equivariant system of matrix units.

Since F1,1 ∈ Mγ1

ω , αω
π (F1,1) = Ad Uπ(F1,1 ⊗ 1) holds. Together with Corollary 6.6,
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we have

αω
σ (Eπij ,ρkl ) =

√
dπdρ αω

σ (Uπij)αω
σ (F1,1)αω

σ (Uρkl
)

=
√

dπdρ Ad Uσ(Uπij ⊗ 1σ)(F1,1 ⊗ 1σ)(Uρkl
⊗ 1σ)

= Ad Uσ(Eπij ,ρkl ⊗ 1σ) = Ad λE
σ(Eπij ,ρkl ⊗ 1σ).

REMARK 6.8. We can regard {F̃π
i,j} as an analogue of Rohlin projections for

γ2. See [8] for more details on Rohlin projections for actions of group duals.

PROPOSITION 6.9. Let E = {Eπij ,ρkl} ⊂ Mω be an αω-equivariant system of ma-
trix units. Then there exists a representing sequence of systems of matrix units {en

πij ,ρkl
}

for Eπij ,ρkl , and 1-cocycles {un
π} for α, n = 1, 2, 3, . . ., such that (un

π) = 1 in Mω and
each {en

πij ,ρkl
} is Ad un

παπ-equivariant.

Proof. Fix a representing sequence {en
πij ,ρkl

} for Eπij ,ρkl consisting of systems
of matrix units. Set An := {en

πij ,ρkl
}′′ ⊂ M, and λn

π the unitary representa-

tion of Ĝ associated with An. Since E1,1 ⊗ 1 = (E1,1 ⊗ 1)λE∗
π λE

π(E1,1 ⊗ 1) and
απ(E1,1) = Ad λE

π(E1,1 ⊗ 1) = λE
π(E1,1 ⊗ 1)(E1,1 ⊗ 1)λE∗

π , we can choose a repre-
senting sequence {vn

π} for (E1,1 ⊗ 1)λ∗π such that vn
πvn∗

π = en
1,1 ⊗ 1, and vn∗

π vn
π =

απ(en
1,1) by Lemma 4.3. Set wn

π := ∑
π,i,j

(en
πij ,1
⊗ 1)vn

παπ(en
1,πij

). Then wn
π is a uni-

tary, and Ad wn
παπ(eσij ,ρkl ) = (eσij ,ρkl ⊗ 1) holds. Define αn

π := Ad wn
παπ , and

Un
π,ρ := (∂αn wn)π,ρ. Since αn

π is trivial on An, Un
π,ρ ∈ (A′n ∩M)⊗ B(Hπ)⊗ B(Hρ)

and {αn
π , Un

π,ρ} is a cocycle twisted action on A′n ∩M.
We have (wn

π) = ∑
π,i,j

(Eπij ,1⊗ 1)(E1,1⊗ 1)λE∗
π απ(E1,πij) = λE∗

π , hence Un
π,ρ →

1 as n → ω. By Theorem 5.8, there exists wn
π ∈ U((A′n ∩ M) ⊗ B(Hπ)) with

Un
π,ρ = (∂αn wn∗)π,ρ and lim

n→ω
‖wn

π − 1‖2 = 0. Set un
π := λn

πwn
πwn

π . Then (un
π) =

(λn
πwn

π) = λE
πλE∗

π = 1 in Mω, and un
π is a 1-cocycle for απ by Lemma 3.6 and the

remark after Definition 5.5. It is trivial that Ad un
παπ = Ad λn

π on An, and hence
{en

πij ,ρkl
} is Ad un

παπ-equivariant.

7. CLASSIFICATION

PROPOSITION 7.1. Let α be an outer action onR. Then α is conjugate to α⊗ idR.

Proof. This follows from [1] sinceR′ ∩ (Rα)ω is noncommutative.

LEMMA 7.2. Let K ⊂ R be a subfactor with K ∼= Mn(C), and {eij} be a system
of matrix units for K. If ‖[x, eij]‖2 < ε

n , then ‖EK′∩R(x)− x‖2 < ε.
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Proof. Since EK′∩R(x) = 1
n ∑

i,j
eijxeji, the following holds:

‖EK′∩R(x)− x‖2 6
1
n ∑

i,j
‖eijxeji − xeijeji‖2 6

1
n ∑

i,j
‖[eij, x]‖2 < ε.

LEMMA 7.3. For any ε > 0, a1, a2, . . . , an ∈ R, there exist a 1-cocycle uπ for απ ,
and an Ad uπα-equivariant system of matrix units E = {eπij ,ρkl} such that ‖απ(ai)−
Ad λE

π(ai ⊗ 1)‖2 < ε, ‖uπ − 1‖1 < ε and ‖[e1,1, ai]‖2 < ε.

Proof. By Lemma 6.7 and Proposition 6.9, we have systems of matrix units
En = {en

πij ,ρkl
} and 1-cocycles un

π for απ such that {en
πij ,ρkl

} is Ad un
παπ equivariant,

απ(x) = lim
n→ω

Ad λEn
π (x⊗ 1), lim

n→ω
‖un

π − 1‖2 = 0 and lim
n→ω
‖[en

1,1, x]‖2 = 0 for any

x ∈ M. Put E := En and uπ := un
π for sufficiently large n.

Now we can prove the main theorem of this paper.

THEOREM 7.4. Let α be an outer action of Ĝ on R. Then α is conjugate to the
model action m.

Proof. We use the notations in Section 3. Let {ai}∞
i=1 be a strongly dense

countable subset of the unit ball of R. We fix a sequence {εn} such that 0 <
9|G|3εn 6 2−n. Especially we have ∑

n
εn < ∞. We will construct mutually com-

muting finite dimensional subfactors Kn ∼= M|G|(C), unitary 1-cocycles vn
π for απ ,

a unitary 1-cocycle wn
π for Ad λ̃n−1∗

π vn−1
π απ satisfying the following conditions in-

ductively:

(1.n) vn
π := λ̃n−1

π wn
π λ̃n−1∗

π vn−1
π , n > 2;

(2.n) ‖wn
π − 1‖2 < εn;

(3.n) ‖[ai, en
1,1]‖2 < εn, 1 6 i 6 n;

(4.n) Ad vn
παπ = Ad λ̃n

π on K1 ∨ · · · ∨ Kn;

(5.n) ‖Ad vn
παπ(ai)−mn

π(ai)‖2 < εn, 1 6 i 6 n.

By Lemma 7.3, we get a unitary cocycle w1
π for απ , and an Ad w1

παπ-equi-
variant system of matrix units {e1

πij ,ρkl
} such that ‖[a1, e1

1,1]‖2 < ε1, ‖w1
π − 1‖2 <

ε1, and ‖Ad w1
παπ(a1) − Ad λ1

π(a1 ⊗ 1)‖2 < ε1. Let K1 be a finite dimensional
subfactor generated by {e1

πij ,ρkl
}, and set v1

π := w1
π . Then we get the conditions

(2.1), (3.1), (4.1) and (5.1).
Suppose that we have done up to the n-th step. By (4.n) it follows that

Ad λ̃n∗
π vn

παπ = id on K1 ∨ · · · ∨ Kn. Hence Ad λ̃n∗
π vn

παπ induces an action of Ĝ on
(K1 ∨ · · · ∨ Kn)′ ∩ R. Decompose ai as ai = ∑

i
bikek, bik ∈ (K1 ∨ · · · ∨ Kn)′ ∩ R,

ek ∈ K1 ∨ · · · ∨ Kn. By Lemma 7.3, we get a unitary cocycle wn+1
π for Ad λ̃n∗

π vn
παπ ,

a Ad wn+1
π λ̃n∗

π vn
παπ -equivariant system matrix units Kn+1 := {en+1

πij ,ρkl
} ⊂ (K1 ∨
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· · · ∨ Kn)′ ∩R, such that:

(a.n + 1) ‖[en
1,1, bik]‖2 < δn+1;

(b.n + 1) ‖wn+1
π − 1‖2 < εn+1;

(c.n + 1) ‖Ad wn+1
π λ̃n∗

π vn
παπ(bik)−Ad λn+1

π (bik ⊗ 1)‖2 < δn+1;

for sufficiently small δn+1 > 0. The condition (b.n + 1) is nothing but (2.n + 1).
If we choose sufficiently enough small δn+1, then we get (3.n + 1) and

(c.n + 1)′ ‖Ad wn+1
π λ̃n∗

π vn
παπ(ai)−Ad λn+1

π (ai ⊗ 1)‖2 < εn+1, 1 6 i 6 n + 1

from (a.n + 1) and (c.n + 1) respectively. Set vn+1
π := λ̃n

πwn+1
π λ̃n∗

π vn
π . Then we get

(1.n + 1) and (5.n + 1). Since {en+1
πij ,ρkl

} ⊂ (K1 ∨ · · · ∨Kn)′ ∩R is Ad wn+1
π λ̃n∗

π vn
παπ-

equivariant, we get (4.n + 1), and Kn+1 commutes with Ki, 1 6 i 6 n. Thus we
complete induction.

We will show that {vn
π} is a Cauchy sequence:

‖vn+1
π − vn

π‖2 = ‖vn
π λ̃n

πwn+1
π λ̃n∗

π − vn
π‖2 = ‖λ̃n

πwn+1
π λ̃n∗

π − 1‖2 < εn+1.

By the choice of εn, {vn
π} is Cauchy, and hence lim

n→∞
vn

π = vπ exists.

We will prove ‖[en+1
πij ,ρkl

, ai]‖2 < εn, 1 6 i 6 n. By (5.n) and (5.n + 1), we get

‖Ad vn∗
π λ̃n

π(ai)−Ad vn+1∗
π λ̃n+1

π (ai)‖2 < 2εn, 1 6 i 6 n.

By the definition of vn
π , we get ‖ai ⊗ 1−Ad wn+1∗

π λn+1
π (ai ⊗ 1)‖2 < 2εn. Then

‖[ai ⊗ 1, λn+1
π ]‖2 = ‖[ai ⊗ 1, wn+1

π wn+1∗
π λn+1

π ]‖2

6 ‖[ai ⊗ 1, wn+1
π ]wn+1∗

π λn+1
π ‖2 + ‖wn+1

π [ai ⊗ 1, wn+1∗
π λn+1

π ]‖2

6 ‖[ai ⊗ 1, wn+1
π − 1]‖2 + 2εn < 4εn.

Hence we get ‖[λn+1
πij

, ai]‖2 < 4dπεn < 4|G|εn for 1 6 i 6 n. Then we have

‖[ai, en+1
πij ,ρkl

]‖2

=
√

dπdρ‖[ai, λn+1
πij

en+1
1,1 λn+1

ρkl
]‖2

6 |G|(‖[ai, λn+1
πij

]en+1
1,1 ‖2 + ‖λn+1

πij
[ai, en+1

1,1 ]λn+1
ρkl
‖2 + ‖λn+1

πij
en+1

1,1 [ai, λn+1
ρkl

]‖2)

< 9|G|2εn <
1

2n|G| .

This implies ‖EK′n+1∩R
(ai) − ai‖2 < 1

2n for 1 6 i 6 n by Lemma 7.2. Set
K :=

∨
Kn(∼= R). By Lemma 2.3.6 of [2],R = K ∨K′ ∩R ∼= K⊗K′ ∩R. By (5.n),

Ad vπαπ = mπ ⊗ idK′∩R. By Proposition 7.1 mπ
∼= mπ ⊗ idR, and Ad vπαπ is

conjugate to mπ ⊗ idK∨K′∩R = mπ ⊗ idR ∼= mπ . By Proposition 5.2, α is conjugate
to m.

It is obvious that Theorem 2.14 follows immediately from Theorem 7.4.
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REMARK 7.5. So far we treat only actions of Ĝ for a finite group G. However
we can generalize our theory to outer actions of finite dimensional Kac algebras.
The difference between Ĝ and general finite dimensional Kac algebras is the com-
mutativity π⊗ ρ ∼= ρ⊗π. We do not use the commutativity of Ĝ in proofs except
Lemma 6.3. To generalize Lemma 6.3 to a finite dimensional Kac algebra K, we
should consider a (cocycle) action ofK⊗Kopp on Mω as in the Remark 6.5. (Note
R(G) and R(G)opp are essentially same Kac algebras due to cocommutativity of
R(G).)

APPENDIX A: TWISTED CROSSED PRODUCT CONSTRUCTION

Let {α, U} be a cocycle twisted action of Ĝ on M. In this appendix, we give
the definition of a twisted crossed product M oα,U Ĝ.

Let H := L2(M) be the standard Hilbert space. We identify H ⊗ `2(Ĝ) with{⊕
π

v(π) : v(π) ∈ H ⊗ B(Hπ)
}

as usual. Put 〈v, w〉π = ∑
ij
〈vij, wij〉 for v, w ∈

H ⊗ B(Hπ). Then the inner product is given by 〈v, w〉 = ∑
π

dπ〈v(π), ω(π)〉π for

v, w ∈ H ⊗ `2(Ĝ).
We define an action α of M on H ⊗ `2(Ĝ), and λπij ∈ B(H ⊗ `2(Ĝ)) by

(α(a)v)(π) = απ(a)v(π), (λπij v)(ρ) := ∑
σ

Uσ,e
ρ,πi

v(σ)Tσ,e∗
ρ,πj

.

DEFINITION A.1. Define M oα,U Ĝ := α(M) ∨ {λπij}, and call it the twisted
crossed product of M by {α, U}.

LEMMA A.2. Set λπ = (λπij) ∈ B(H ⊗ `2(Ĝ))⊗ B(Hπ). Then λπ is a uni-
tary, and we have λπ(a⊗ 1π)λ∗π = απ(a), and λ12

π λ13
ρ Tσ,e

π,ρ = Uσ,e
π,ρλσ. Set Ũπi ,π j :=

∑
k

Uπik ,π jk . Then we have λ∗πij
= ∑

k
U∗πk ,πi

λπkj . Here we identify α(a) and a. We call λπ

an implementing unitary.

To show Lemma A.2, we prepare the following lemma.

LEMMA A.3. We have ∑
k,l

Ũ∗πk ,πl
απ(Ũπl ,πi )k,j = δi,j.

Proof. Recall the following 2-cocycle condition (see a paragraph after Defi-
nition 5.4):

(απ ⊗ id)(Uη,a
ρ,σ)Uξ,b

π,η = ∑
ζ,c,d

(Uζ,c
π,ρ ⊗ 1σ)Uξ,d

ζ,σV(ζ,c,d),(ηa,b).

We put ρ = σ = π, η = 1 (hence ξ = π), and multiply U1
π,π ⊗ 1π from the left on

both sides. Then we get the following:

(U1∗
π,π ⊗ 1π)απ ⊗ id(U1

π,π) = V1,1 = (T1∗
π,π ⊗ 1π)(1π ⊗ T1

π,π) =
1

dπ
.
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Since U1
πi ,π j

= ∑
k

1√
dπUπik ,π jk

= 1√
dπŨπi ,π j

, we get the conclusion.

Proof of Lemma A.2. It is easy to see α is an action of M on H ⊗ B(Hπ). We
verify that λπ implements απ . Then

(λπij α(a)v)(ρ) = ∑
σ,e

Uσ,e
ρ,πi

(α(a)v)(σ)Tσ,e∗
ρ,πj

= ∑
σ,e

Uσ,e
ρ,πi

ασ(a)v(σ)Tσ,e∗
ρ,πj

= ∑
σ,e,k

αρ(απ(a)ik)Uσ,e
ρ,πk

v(σ)Tσ,e∗
ρ,πj

= ∑
k

(α(απ(a)ik)λπkj v)(ρ)

holds. Therefore we have λπ(a⊗ 1π) = απ(a)λπ by identifying α(a) and a.
We next compute λ12

π λ13
σ as follows:

(λπij λρkl v)(ξ) = ∑
σ,a,η,b

Uσ,a
ξ,πi

Uη,b
σ,ρk v(η)Tη,b∗

σ,ρl Tσ,a∗
ξ,πj

= ∑
σ,a,m,n,η,b

αξ(Uσm ,a
πi ,ρk

)Uη,b
ξ,σm

v(η)Tη,b∗
ξ,σn

Tσn ,a∗
πj ,ρl

(by 2-cocycle condition)

= ∑
σ,m,n,a

(α(Uσm ,a
πi ,ρk

)λσm,n Tσn ,a
πj ,ρl

v)(ξ).

Hence we have λ12
π λ13

ρ Tσ,a
π,ρ = Uσ,a

π,ρλσ.
Finally, we verify that λπ is a unitary. One can easily to see ∑

k
λ∗πki

λπkj = δi,j

(hence λ∗πλπ = 1) from the definition of λπij and Uσ,a∗
π,ρ Uξ,b

π,ρ = δσ,ξ δa,b. Hence we
only have to see λπλ∗π = 1.

To this end, we first show λ∗πij
=∑

k
Ũ∗πk ,πi

λπkj . Since ∑
k

λπik λπ jk = ∑
ρ,l,m,a

Uρl ,a
πi ,π j

λρlm

Tρm ,a
πk ,πk

= Ũπi ,π j , we have λπ
tλπ = (Ũπi ,π j)i,j.

Then we get tλπ = λ∗π(Ũπi ,π j)i,j. Comparing matrix elements of both sides,

we get λ∗πij
= ∑

k
Ũ∗πk ,πi

λπkj .

Then we get

∑
k

λπik λ∗πjk
= ∑

k,l
λπik Ũ∗πl ,πj

λπlk = ∑
k,l,m

απ(Ũ∗πl ,πj
)imλπmk λπlk

= ∑
k,l,m,ξ,a,b

απ(Ũ∗πl ,πj
)imUξa

πm ,πl
λξab Tξb

πk ,πk
= ∑

k,l,m
απ(Ũ∗πl ,πj

)imŨπm ,πl =δi,j

by Lemma 7, and λπ is indeed a unitary.

We construct a conditional expectation E from M oα,U Ĝ onto M. Let P be
a projection from H ⊗ `2(Ĝ) to H ⊗ B(H1) ∼= H, and set E(x) := PxP∗. Then E
is indeed a conditional expectation from M oα,U Ĝ onto M with E(λπij) = δ1,π .
Then the following lemma can be easily verified as in the usual crossed product.

LEMMA A.4. Every a ∈ M oα,U Ĝ is expressed uniquely as a = ∑
π,i,j

aπ,i,jλπij ,

aπ,i,j ∈ M.
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Here we only remark that a coefficient aπ,i,j is given by aπ,i,j = dπE(aλ∗πij
).
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