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ABSTRACT. We study the differentiable structure and the homotopy type of
some spaces related to the Grassmannian of closed linear subspaces of an
infinite dimensional Hilbert space, such as the space of Fredholm pairs, the
Grassmannian of compact perturbations of a given space, and the essential
Grassmannians. We define a determinant bundle over the space of Fredholm
pairs. We lift the composition of Fredholm operators to the Quillen determi-
nant bundle, and we show how this map can be used in several constructions
involving the determinant bundle over the space of Fredholm pairs. We de-
duce some properties of suitable orientation bundles.
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INTRODUCTION

Infinite dimensional Grassmannians play a relevant role in many fields of
mathematics. For instance, they appear as classifying spaces in the homotopy
theory of classical groups (see [7]), they provide a natural setting to study com-
pletely integrable systems and loop groups (see [27], [28], [25], [15], [3]). Further-
more, they turn out to be significant in the Morse theory of infinite dimensional
manifolds (see [9], [2], [16]).

This paper is devoted to a systematic study of the analytic and homotopic
properties of some infinite dimensional Grassmannians.

After having established some useful facts about the set of symmetric idem-
potent elements of a Banach ∗-algebra, we recall the properties of the Grassman-
nian Gr(H) of all closed subspaces of a real or complex Hilbert space H, and then
we focus our analysis on the following topics.

We study the space of Fredholm pairs Fp(H), i.e. the set of pairs of closed
linear subspaces (V, W) of H having finite dimensional intersection and finite
codimensional sum, and its open and closed subset Fp∗(H) consisting of the
Fredholm pairs (V, W) with dim V = dim W = ∞. These are analytic Banach



20 ALBERTO ABBONDANDOLO AND PIETRO MAJER

manifolds, and we show that each component of Fp∗(H) has the homotopy type
of BO, in the real case, or BU, in the complex case, the classifying spaces of the
infinite orthogonal group, respectively of the infinite unitary group (see [4] for
similar results about the homotopy type of the space of skew-adjoint Fredholm
operators).

We study the Grassmannian Grc(V, H) of all compact perturbations of the
closed linear subspace V ⊂ H, i.e. of all the closed linear subspaces W ⊂ H
such that the orthogonal projection onto W differs from the orthogonal projection
onto V by a compact operator. This space is called restricted Grassmannian by
some authors (see [9], where this space is considered with a weaker topology,
or [25], where the ideal of compact operators is replaced by the ideal of Hilbert-
Schmidt operators). It has the structure of an analytic Banach manifold, but when
dim V = codimV = ∞, as a subset of Gr(H) it is just a topological submanifold.
In the latter case, each component of Grc(V, H) has the homotopy type of BO,
if H is real, or of BU, if H is complex. A similar result is proved in [25], the
Hilbert-Schmidt case is treated in that reference, but the difference turns out to be
irrelevant from the point of view of homotopy theory. The proof we give here is
somehow more direct.

We study the essential Grassmannian Gre(H), i.e. the quotient of Gr(H)
by the equivalence relation V ∼ W if and only if V is a compact perturbation of
W. This is also an analytic Banach manifold, isometric to the space of symmet-
ric idempotent elements in the Calkin algebra, and its homotopy type is easily
determined. Quotient spaces by finer equivalence relations, taking the Fredholm
index into account, are also introduced and studied.

We define the determinant bundle over Fp(H) as an analytic line bundle
whose fiber at (V, W) ∈ Fp(H) is the top degree component in the exterior alge-
bra of the finite dimensional space (V ∩W)⊕ (H/(V + W))∗. The space of Fred-
holm pairs is in some sense the larger space on which the determinant bundle can
be defined, and from this it is possible to deduce the construction of other line
bundles, such as the determinant bundle over the space of Fredholm operators
introduced by Quillen [26], or the determinant bundle over the Grassmannian of
compact perturbations of a given infinite dimensional and infinite codimensional
space (see [28], [25]). We also show that the composition of Fredholm operators
can be lifted analytically to the Quillen determinant bundles, and that such a lift
has a useful associativity property. These facts are used to show how the sum
of a finite dimensional space to one of the elements in a Fredholm pair can be
lifted analytically to the determinant bundles, and to prove associativity for such
a construction.

In the case of a real Hilbert space H, the determinant bundle over the space
of Fredholm pairs Fp∗(H) induces a double covering of Fp∗(H), called its the
orientation bundle. This is an explicit presentation of the universal covering of
Fp∗(H). The associativity property of determinant bundles implies that the ori-
entation bundle can be used quite effectively to determine orientations of finite
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dimensional linear spaces which are found as transverse intersections of infinite
dimensional ones. These facts are used in [2] to associate a chain complex with
integer coefficients to functionals defined on infinite dimensional manifolds, hav-
ing critical points with infinite Morse index.

Two appendices conclude the paper. In the first one, we prove the existence
of a continuous global section for a continuous linear surjective map between
Banach spaces, a result which is used several times in the paper. In the second
one, we prove the above mentioned associativity for the composition of Fredholm
operators lifted to the determinant bundles.

1. A FEW FACTS ABOUT BANACH ALGEBRAS

LetA be a real or complex Banach ∗-algebra, that is a real or complex Banach
algebra A endowed with an involution map ∗. The involution x 7→ x∗ satisfies
the following properties:

x∗∗ = x, (xy)∗ = y∗x∗, ‖x∗‖ = x∗, (x + y)∗ = x∗ + y∗, (λx)∗ = λx∗,

where λ is a real respectively a complex number. Let

Sym(A) = {x ∈ A : x∗ = x}, and Skew(A) = {x ∈ A : x∗ = −x},

be the subspaces of symmetric and skew-symmetric elements of A, so that A =
Sym(A)⊕ Skew(A). Denote by U(A) the group of unitary elements of A,

U(A) := {u ∈ A : u∗u = uu∗ = 1},

and by Ps(A) the set of symmetric idempotent elements of A,

Ps(A) := {p ∈ Sym(A) : p2 = p}.

The aim of this section is to prove the following facts.

PROPOSITION 1.1. The set Ps(A) of symmetric idempotent elements of the Ba-
nach ∗-algebra A is an analytic Banach submanifold of A.

PROPOSITION 1.2. Consider the analytic group action

U(A)× Ps(A)→ Ps(A), (u, p) 7→ upu−1.

The orbit of every p ∈ Ps(A), U(A) · p := {upu−1 : u ∈ U(A)}, is open and closed in
Ps(A), and the map

U(A)→ U(A) · p, u 7→ upu−1,

is an analytic principal I(p)-bundle, where I(p) is the isotropy subgroup of p,

I(p) := {u ∈ U(A) : upu−1 = p}.
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PROPOSITION 1.3. If Φ : A → B is a surjective homomorphism of Banach ∗-
algebras, its restriction to the space of symmetric idempotent elements

Φ|Ps(A) : Ps(A)→ Ps(B),

is a C0 fiber bundle (possibly with a non-constant fiber). It is an analytic fiber bundle if
and only if the linear subspace Ker Φ ∩ Skew(A) has a direct summand in A.

REMARK 1.4. The above results hold also in a Banach algebra setting, by
dropping the symmetry requirement, and by replacing the group of unitary ele-
ments by the group of invertible elements.

1.1. SQUARE ROOTS OF 1. An element p ∈ A is symmetric and idempotent if
and only if 2p− 1 is a symmetric square root of 1. This fact allows us to deduce
the above propositions by analogous statements for the space

Qs(A) := {q ∈ Sym(A) : q2 = 1}.

Denote by ‖ · ‖ the norm of A, and by Br(a) the open ball of radius r centered in
a ∈ A. The set Qs(A) is a closed subset of U(A), in particular every q ∈ Qs(A)
has norm 1. The elements 1 and −1 are isolated in Qs(A). More precisely

(1.1) Qs(A) ∩ B2(1) = {1}, Qs(A) ∩ B2(−1) = {−1}.

Indeed, q2 = 1 implies 2(1− q) = (1− q)2, whence 2‖1− q‖ 6 ‖1− q‖2, and
hence either ‖1− q‖ = 0 or ‖1− q‖ > 2, proving the first identity. The second
identity follows, because −Qs(A) = Qs(A).

Notice that every q ∈ Qs(A) determines a decomposition Sym(A) = As(q)
⊕Cs(q) into the symmetric anti-commutant and the symmetric commutant of q:

As(q) = {a ∈ Sym(A) : aq = −qa}, Cs(q) = {a ∈ Sym(A) : aq = qa}.

Indeed, the corresponding projections are

Sym(A)→ As(q), a 7→ 1
2
(a− qaq); Sym(A)→ Cs(q), a 7→ 1

2
(a + qaq).

LEMMA 1.5. Let q ∈ Qs(A). Then the map

φq : B√3/2(0) ∩As(q)→ Cs(q), x 7→ (1− x2)1/2q,

is analytic, and Qs(A) is locally the graph of φq:

Qs(A) ∩ [(B√3/2(0) ∩As(q))× (B1/2(q) ∩Cs(q))] = graph φq.

Proof. Let x ∈ B√3/2(0) ∩As(q). Since
√

3/2 < 1, a square root of 1− x2 is
well-defined:

z = (1− x2)1/2 =
∞

∑
k=0

(−1)k
(

1/2
k

)
x2k = 1−

∞

∑
k=1

∣∣∣(1/2
k

)∣∣∣x2k.
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So φq is analytic on B√3/2(0). Moreover, z is invertible and

z−1 = (1− x2)−1/2 =
∞

∑
k=0

(−1)k
(
−1/2

k

)
x2k =

∞

∑
k=0

∣∣∣(−1/2
k

)∣∣∣x2k.

Since the coefficients of the above series are positive, we obtain the inequalities:

‖1− z‖ 6 1− (1− ‖x‖2)1/2 <
1
2

,(1.2)

‖z−1‖ 6 (1− ‖x‖2)−1/2 < 2,(1.3)

‖1− z−1‖ 6 (1− ‖x‖2)−1/2 − 1 < 1.(1.4)

From (1.2) we have

‖q− φq(x)‖ = ‖q− zq‖ 6 ‖1− z‖ ‖q‖ <
1
2

.

Since x anti-commutes with q, z commutes with q, and so does φq(x) = zq. There-
fore, φq maps B√3/2(0) ∩As(q) into B1/2(q) ∩Cs(q).

Let p ∈ Qs(A), p = x + y with x ∈ B√3/2(0) ∩As(q), y ∈ B1/2(q) ∩ Cs(q).
We claim that y = φq(x), that is z−1yq = 1, with z as before. By (1.1), it is enough
to show that (z−1yq)2 = 1 and ‖z−1yq− 1‖ < 2. Since

x2 + y2 ∈ Cs(q), xy + yx ∈ As(q),

and x2 + y2 + xy + yx = p2 = 1 ∈ Cs(q), from Sym(A) = As(q) ⊕ Cs(q) we
deduce that x2 + y2 = 1 and xy + yx = 0. Therefore, [y, x2] = 0, whence [y, z−1] =
0. Using also [q, z−1] = 0, we obtain that (z−1yq)2 = 1. Moreover,

‖z−1yq− 1‖ 6 ‖z−1yq− z−1‖+ ‖z−1 − 1‖ 6 ‖z−1‖ ‖yq− q2‖+ ‖z−1 − 1‖

6 ‖z−1‖ ‖y− q‖+ ‖z−1 − 1‖,

so by (1.3) and (1.4),

‖z−1yq− 1‖ 6 2‖y− q‖+ 1 < 2,

concluding the proof of the claim, by (1.1).
On the other hand, let p = x + φq(x), with x ∈ B√3/2(0) ∩ As(q). Then,

since xq = −qx and zq = qz, we conclude that p2 = 1.

The above lemma has the following consequence, which implies Proposi-
tion 1.1.

PROPOSITION 1.6. The set Qs(A) of symmetric square roots of 1 in the Banach
∗-algebra A is an analytic submanifold of A, and its tangent space at q ∈ Qs(A) is the
symmetric anti-commutant As(q) of q.
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1.2. THE ACTION OF U(A) ON Qs(A). The group U(A) acts analytically on
Qs(A), by

U(A)×Qs(A)→ Qs(A), (u, q) 7→ uqu−1,

and the isotropy subgroup of q ∈ Qs(A) is

I(q) := {u ∈ U(A) : uqu−1 = q} = U(A) ∩ C(q),

where C(q) denotes the commutant subalgebra of the element q. The bijection
Ps(A) → Qs(A), p 7→ 2p− 1, commutes with the respective actions of U(A), so
Proposition 1.2 is implied by the following:

PROPOSITION 1.7. The orbit of every q ∈ Qs(A), U(A) · q := {uqu−1 : u ∈
U(A)}, is open and closed in Qs(A), and the following map is an analytic principal
(U(A) ∩ C(q))-bundle:

ψq : U(A)→ U(A) · q, u 7→ uqu−1.

Proof. By a well known simple argument (see for instance Section 7.4 in
[30]), it is enough to prove that the map ψq has an analytic local section near q.
Let q ∈ Qs(A). Note that B1(q) consists of invertible elements: if a ∈ B1(q),
then ‖aq − 1‖ = ‖aq − q2‖ 6 ‖a − q‖ < 1, thus aq is invertible, and so is a. If
p ∈ B2(q) ∩Qs(A), then (p + q)/2 ∈ B1(q). So p + q is invertible, and the map

s : B2(q) ∩Qs(A)→ U(A), p→ (p + q)|p + q|−1q

is analytic. Since q commutes with (p + q)2, it commutes also with |p + q|−1, so

ps(p) = (p + q)q|p + q|−1q = (p + q)|p + q|−1 = s(p)q,

implying that s is an analytic local section near q for the map ψq.

1.3. SURJECTIVE HOMOMORPHISMS. Since the bijection Ps(A) → Qs(A), p 7→
2p− 1, commutes with Banach ∗-algebra homomorphisms, statement (ii) of the
following proposition implies Proposition 1.3.

PROPOSITION 1.8. Let Φ : A → B be a surjective homomorphism of Banach
∗-algebras.

(i) The following group homomorphism is a C0 principal bundle (possibly with a non
constant fiber):

ΦU := Φ|U(A) : U(A)→ U(B).

(ii) The following restriction is a C0 fiber bundle (possibly with a non-constant fiber):

ΦQs := Φ|Qs(A) : Qs(A)→ Qs(B).
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(iii) The maps ΦU and ΦQs are compatible with the group actions, meaning that the
following diagram commutes:

U(A)×Qs(A)
ΦU×ΦQs
−−−−−→ U(B)×Qs(B)y y

Qs(A)
ΦQs
−−−−→ Qs(B)

The bundles in (i) and (ii) are analytic if and only if the linear subspace Ker Φ ∩
Skew(A) has a direct summand in A.

Proof. The restriction of Φ to the subspaces of skew-symmetric elements,

Φ|Skew(A) : Skew(A)→ Skew(B),

is surjective, because A and B are the direct sum of the subspaces of their sym-
metric and skew-symmetric elements, and because Φ is surjective. By Proposi-
tion A.1 of Appendix A, the above map has a continuous global section, which
can be chosen to be linear if and only if the linear subspace Ker Φ ∩ Skew(A) has
a direct summand in Skew(A), or equivalently inA. The map Φ|Skew(A) is locally
conjugated at 0 to ΦU by the exponential map. Hence the map ΦU has a contin-
uous local section mapping 1B to 1A. As already mentioned, this is equivalent to
(i).

Let q ∈ Qs(B). By Proposition 1.7, the map

ψq : U(B)→ U(B) · q, u 7→ uqu−1,

has an analytic local section mapping q to 1B , so by composition we get a contin-
uous local section for the map ψq ◦ΦU: there exists a neighborhoodN ⊂ U(B) · q
of q, and a map

s : N → U(A), s(q) = 1A,

such that Φ(s(p))qΦ(s(p))−1 = p for every p ∈ N . Therefore, the continuous
map

N ×Φ−1
Qs ({q})→ Φ−1

Qs (N ), (p, x) 7→ s(p)xs(p)−1.

is a local trivialization for ΦQs near q, proving (ii).
Claim (iii) is readily checked. The last statement follows from the fact that

ΦU has an analytic local section if and only if ker Φ ∩ Skew(A) has a direct sum-
mand in A.

REMARK 1.9. The maps ΦU and ΦQs need not be surjective. Indeed, if Φ :
A → B is the quotient map from the Banach algebra of bounded linear operators
on a Hilbert space onto its Calkin algebra, then ΦU is not onto: indeed, the image
of ΦU is the set of unitary elements in the Calkin algebra having index zero. As
for the map ΦQs , notice that if X is a compact Hausdorff space and Y is a closed
subspace, the map Φ : C(X)→ C(Y), f 7→ f |Y, is surjective, but ΦQs is surjective
if and only if each connected component of X contains at most one connected
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component of Y (by the Gel’fand duality, see Theorem 4.29 in [12], this situation
covers the general case of commutative complex C∗-algebras).

2. THE HILBERT GRASSMANNIAN AND THE SPACE OF FREDHOLM PAIRS

By L(E, F), respectively Lc(E, F), we denote the space of continuous linear,
respectively compact linear, maps from the Banach space E to the Banach space
F. If F = E we also use the short forms L(E) and Lc(E). The group of invertible
linear maps on E is denoted by GL(E), and GLc(E) denotes the subgroup of the
compact perturbations of the identity. The norm of the operator T ∈ L(E, F) is
denoted by ‖T‖.

Let now H be a real or complex infinite dimensional separable Hilbert space.
The orthogonal projection onto a closed subspace V ⊂ H is denoted by PV , while
V⊥ denotes the orthogonal complement of V in H. The unitary group of H is
denoted by

U(H) = {U ∈ GL(H) : U∗U = UU∗ = I},
(in the real case it would be more appropriate to call U(H) the orthogonal group,
and to denote it by O(H), but since we wish to deal with the complex and the
real case simultaneously, we do not make such a distinction).

Let Gr(H) be the Grassmannian of H, i.e. the set of closed linear subspaces
of H. The assignment V 7→ PV is an inclusion of Gr(H) into L(H), onto the
closed subset of the orthogonal projectors of H. We can therefore define, for any
V, W ∈ Gr(H) the distance

dist (V, W) := ‖PV − PW‖,

which makes Gr(H) a complete metric space. We always consider the topology
on Gr(H) induced by this distance. The weak topologies of L(H) induce other
interesting topologies on the Grassmannian, whose properties are examined in
[29].

2.1. ANALYTIC STRUCTURE OF Gr(H). For any V ∈ Gr(H), the unit open ball
B1(V) ⊂ Gr(H) is contractible, as shown by the homeomorphism

ΨV : B1(V)→ L(V, V⊥), W 7→ PV⊥(PV |W)−1,

the inverse mapping being

Ψ−1
V : L(V, V⊥)→ B1(V), A 7→ graph A.

Indeed, ΨV is well-defined because PV |W is the restriction of the isomorphism

I − (PW − PV)(PW − PW⊥) = PV PW + PV⊥PW⊥ : W ⊕W⊥ → V ⊕V⊥.

The collection {ΨV}V∈Gr(H) is an analytic atlas, with transition maps

ΨW ◦Ψ−1
V (A) = PW⊥(I + A)[PW(I + A)]−1.
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Therefore, Gr(H) is an analytic Banach manifold. Actually, the identification V 7→
PV allows to see Gr(H) as an analytic submanifold of L(H), by Proposition 1.1.

REMARK 2.1. It easily seen that the analytic structure on Gr(H) does not
depend on the choice of the Hilbert inner product on H. In other words, if H =
V ⊕V′ then the following map is an analytic coordinate system:

L(V, V′)→ Gr(H), A 7→ graph A.

2.2. TRANSVERSE INTERSECTIONS. We often use the fact that the map

{(V, W) ∈ Gr(H)×Gr(H) : V + W = H}, (V, W) 7→ V ∩W,

is analytic. To prove this fact, let (V, W) be a pair of closed linear subspaces such
that V + W = H and set H0 := V ∩W, H1 := H⊥0 ∩V, H2 := H⊥0 ∩W, so that

H = H0 ⊕ H1 ⊕ H2, V = H0 ⊕ H1, W = H0 ⊕ H2.

Consider the analytic coordinate system

L(H0⊕H1, H2)×L(H0⊕H2, H1)→Gr(H)×Gr(H), (A, B) 7→ (graph A, graph B),

mapping (0, 0) into (V, W). If ‖A‖ < 1 and ‖B‖ < 1, then

graph A ∩ graph B = graph T(A, B),

where T(A, B) ∈ L(H0, H1 ⊕ H2) is the linear mapping

T(A, B) = (IH0⊕H1 − BA)−1(B + BA) + (IH0⊕H2 − AB)−1(A + AB)
= A + B + AB + BA + ABA + BAB + ABAB + BABA + · · · ,

which depends analytically on (A, B), proving the claim.
We may also express PV∩W in terms of PV and PW . First notice that if V + W

is closed then

(2.1) ‖PV PW − PV∩W‖ < 1.

Indeed, in the case H = V ⊕W, W is the graph of some L ∈ L(V⊥, V), and (2.1)
reduces to

‖PV PW‖ = ‖PV |W‖ =
‖L‖√

1 + ‖L‖2
< 1.

The general case of a closed sum follows because

PV PW − PV∩W = PV′PW ′ ,

where V′ := (V ∩W)⊥ ∩V, W ′ := (V ∩W)⊥ ∩W are in direct sum in the closed
linear subspace (V ∩W)⊥ ∩ (V + W).

From the fact that X ⊂ Y implies PXPY = PYPX = PX it follows that

(PV PW)n − PV∩W = (PV PW − PV∩W)n.

Together with (2.1), this implies that when V + W is closed,

PV∩W = lim
n→∞

(PV PW)n,
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in the operator norm. Notice also that the above limit is uniform on the set of
those pairs (V, W) with ‖PV PW − PV∩W‖ < θ < 1. Since the function (V, W) 7→
‖PV PW − PV∩W‖ is continuous on the open set of pairs (V, W) such that V +
W = H, we conclude that on this space the analytic function PV∩W is the locally
uniform limit of the sequence of monomials (PV PW)n.

2.3. HOMOTOPY OF Gr(H). The connected components of Gr(H) are the subsets

Grn,k(H) :={V∈Gr(H) : dim V =n, codimV = k}, n, k∈N∪{∞}, n+k=∞.

The unitary group U(H) acts analytically and transitively on each component
Grn,k(H), and if V ∈ Grn,k(H), the map

U(H)→ Grn,k(H), U 7→ UV,

defines an analytic principal U(V)×U(V⊥)-bundle, by Proposition 1.2 (see also
Corollary 8.1 in [20]). In particular, the above map is a fibration. It is a well known
result of Kuiper’s that U(H) is contractible when H is an infinite dimensional
Hilbert space (see [18]), so the exact homotopy sequence associated to the above
fibration yields the following isomorphisms:

πi(Grn,∞(H))∼=πi(Gr∞,n(H))=

{
0 if i=0,
πi−1(GL(n)) if i>1,

πi(Gr∞,∞(H))=0, ∀i∈N.

Therefore, a theorem by Whitehead (see the Corollary after Theorem 15 in [23])
implies that Gr∞,∞(H) is contractible, while Grn,∞(H) and Gr∞,n(H) have the
homotopy type of the classifying space of GL(n).

2.4. STIEFEL SPACES. Let n, k ∈ N ∪∞, n + k = ∞. The Stiefel spaces Stn,k(H) are
the sets

Stn,∞(H):={T ∈ L(Rn, H) : T is injective}, n ∈ N;

St∞,n(H):={T∈L(H) : T is semi-Fredholm of index −n and injective}, n∈N∪{∞};

endowed with the operator norm topology. The map

Stn,k(H)→ Grn,k(H), T 7→ ran T,

defines a GL(n)-principal bundle, in the case n < ∞, and a GL(H)-principal
bundle, in the case n = ∞ (see Theorem 8.6 in [20]). The Stiefel spaces Stn,∞(H)
are contractible, for every n ∈ N ∪ {∞}, while, for n ∈ N (see Corollary 8.4 in
[20]),

πi(St∞,n(H)) =

{
0 if i = 0,
πi−1(GL(n)) if i > 1.
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2.5. FREDHOLM PAIRS. A pair (V, W) of closed subspaces of H is said to be a
Fredholm pair if V ∩W is finite dimensional, and V + W is finite codimensional,
hence closed (see Section IV paragraph 4 in [17]). In this situation, the Fredholm
index of (V, W) is the integer number

ind (V, W) = dim V ∩W − codim(V + W).

The pair (V, W) is Fredholm if and only if the operator PW⊥ |V ∈ L(V, W⊥) is
Fredholm, in which case ind (V, W) = ind (PW⊥ |V).

The set of Fredholm pairs in H is denoted by Fp(H). If X, Y ∈ Gr(H), with
dim X < ∞ and codimY < ∞, then (X, Y) is a Fredholm pair, of index

ind (X, Y) = dim X− codimY.

If (V, W) is a Fredholm pair, and V ∈ Gr∞,∞(H), then also W ∈ Gr∞,∞(H).
Therefore we set

Fp∗(H) := {(V, W) ∈ Fp(H) : V, W ∈ Gr∞,∞(H)}.

2.6. HOMOTOPY OF Fp(H). The space Fp(H) is open in Gr(H)×Gr(H), and the
index is a continuous function on Fp(H). It is easily checked that the connected
components of Fp(H) are the subsets

Grn,∞(H)×Gr∞,m(H), Gr∞,n(H)×Grm,∞(H), n, m ∈ N;

Fp∗k (H) := {(V, W) ∈ Fp∗(H) : ind (V, W) = k}, k ∈ Z.

The homotopy type of the first two families of spaces can be deduced from the re-
sults seen before. As for the homotopy type of Fp∗k (H), we recall some definitions
and basic facts.

Let GL be be the infinite linear group, that is the inductive limit GL =
lim
→

GL(n). In the complex case, GL has the homotopy type of U = lim
→

U(n),
the infinite unitary group, while in the real case it has the homotopy type of
O = lim

→
O(n), the infinite orthogonal group. By the Bott periodicity theorem

[7], for i > 0,

(2.2) πi(U) =

{
Z if i is odd,
0 if i is even;

πi(O) =


Z2 if i ≡ 0, 1 (mod 8),
0 if i ≡ 2, 4, 5, 6 (mod 8),
Z if i ≡ 3, 7 (mod 8).

By BGL we denote the classifying space (see Section 7 in [11]) of the topological
group GL: in the complex case, BGL has the homotopy type of BU, the classifying
space of U, while in the real case it has the homotopy type of BO, the classifying
space of O. The spaces BU and BO are path connected, and (2.2) implies that for
i > 1,

πi(BU) =

{
Z if i is even,
0 if i is odd;

πi(BO) =


Z if i ≡ 0, 4 (mod 8),
Z2 if i ≡ 1, 2 (mod 8),
0 if i ≡ 3, 5, 6, 7 (mod 8).
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THEOREM 2.2. The components Fp∗k (H) are pairwise homeomorphic, and they
have the homotopy type of BU, if H is a complex space, or BO, if H is a real space.

The proof of this result is given at the end of Section 4.

3. THE GRASSMANNIAN OF COMPACT PERTURBATIONS

We say that the subspace W is a compact perturbation of V if its orthogonal
projector PW is a compact perturbation of PV . It is an equivalence relation.

If V is a compact perturbation of W, then (V, W⊥) is a Fredholm pair, and
the operator PW |V : V → W is Fredholm. The relative dimension of V with respect
to W is the integer

(3.1) dim(V, W) := ind (V, W⊥)=dim V∩W⊥−dim V⊥∩W = ind(PW |V : V→W).

See [1] for a proof of the identities above. See also Remark 4.9 in [8] for an early
appearance of the concepts of compact perturbation and of relative dimension
for linear subspaces. When V and W are finite dimensional (respectively finite
codimensional), we have

dim(V, W) = dim V − dim W (respectively dim(V, W) = codimW − codimV).

It is easy to see that the image by a linear isomorphism T of a compact perturba-
tion of some V ∈ Gr(H) is a compact perturbation of TV, and that the relative
dimension is preserved (see [1], Proposition 2.4). Hence nor the notion of com-
pact perturbation, neither the relative dimension depend on the choice of an inner
product in H.

PROPOSITION 3.1. If (W, Z) is a Fredholm pair of subspaces and V is a compact
perturbation of W, then (V, Z) is a Fredholm pair, with

ind (V, Z) = ind (W, Z) + dim(V, W).

Proof. From the identity

(3.2) PZ⊥ |V = PZ⊥ |W ◦ PW |V + PZ⊥(PV − PW)|V ,

we see that PZ⊥ |V ∈ L(V, Z⊥) is a compact perturbation of the Fredholm operator

V
PW |V−→ W

PZ⊥ |W−→ Z⊥.

Therefore PZ⊥ |V is Fredholm, and the conclusion follows from (3.1) and from the
additivity of the index by composition.

In particular, if each of the subspaces V, W, Y is a compact perturbation of
the other subspaces, there holds

dim(Y, V) = dim(Y, W) + dim(W, V).

The following fact is proved in [1], Proposition 2.3.
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PROPOSITION 3.2. Let H1, H2 be Hilbert spaces, let T, T′ ∈ L(H1, H2) be such
that T′ is a compact perturbation of T, ran T and ran T′ are closed. Then ker T′ is a
compact perturbation of ker T, ran T′ is a compact perturbation of ran T, and

dim(ran T′, ran T) = −dim(ker T′, ker T).

If V ∈ Gr(H), the Grassmannian of compact perturbations of V

Grc(V, H) := {W ∈ Gr(H) : W is a compact perturbation of V}
is a closed subspace of Gr(H). If V has finite dimension (respectively finite codi-
mension), then

Grc(V, H) =
⋃

n∈N
Grn,∞(H), (respectively =

⋃
n∈N

Gr∞,n(H)).

The interesting case arises when V has both infinite dimension and infinite codi-
mension. In such a situation, Grc(V, H) is a closed proper subset of Gr∞,∞(H).
Moreover, the continuity of the Fredholm index implies that the function

dim(·, ·) : Grc(V, H)×Grc(V, H)→ Z
is continuous. So the subsets

Grc,n(V, H) := {W ∈ Grc(V, H) : dim(W, V) = n}, n ∈ Z.

are open and closed in Grc(V, H). It is easily checked that the above sets are
connected, so they are the connected components of Grc(V, H).

3.1. ANALYTIC STRUCTURE OF Grc(V, H). The restriction of the map ΨV defined
in Section 2 to the unit open ball B1(V) ∩ Grc(V, H) is a homeomorphism onto
Lc(V, V⊥). The collection of these homeomorphisms defines an analytic atlas on
Grc(V, H), which is therefore an analytic Banach manifold modeled on Lc(V, V⊥).
Actually, Proposition 1.1 implies that Gr(V, H) can be seen as an analytic Banach
submanifold of the Banach affine space PV + Lc(H). However, if both V and V⊥

are infinite-dimensional, Grc(V, H) is not a C1-submanifold of Gr(H), because in
this case the subspace Lc(V, V⊥) does not admit a direct summand in L(V, V⊥).
Indeed, if H is an infinite dimensional separable Hilbert space, Lc(H) is not com-
plemented in L(H), a fact which can be deduced from the analogous and more
known fact that c0 is not complemented (actually, in `∞ every infinite dimen-
sional complemented subspace of `∞ is isomorphic to `∞, see Theorem 2.a.7 in
[19]). In fact, let us fix an orthonormal basis {en}n∈N in H. Consider the canon-
ical inclusion j of `∞ into the space of diagonal operators with respect to this
basis, and its left inverse r : L(H) → `∞ mapping T ∈ L(H) into the sequence
(〈Ten, en〉)n∈N ∈ `∞. Then j(c0) ⊂ Lc(H), and r(Lc(H)) = c0. If by contradiction
P : L(H) → L(H) is a linear projection onto Lc(H), the above properties of j
and r imply that PjrP = jrP. It follows that rPj : `∞ → `∞ is a projection onto
c0. The fact that every surjective continuous linear map between Banach spaces
admits a (in general non differentiable) global section (see Appendix A), implies
that Grc(V, H) is a C0-submanifold of Gr(H).



32 ALBERTO ABBONDANDOLO AND PIETRO MAJER

3.2. THE ACTION OF GLc(H) ON Grc(V, H). The group GLc(H), consisting of
the linear automorphisms of H which are compact perturbations of the identity,
is an open subset of the affine Banach space I + Lc(H). It inherits therefore the
structure of an analytic group, although it is just a C0-subgroup of GL(H) (again,
because Lc(H) does not have a direct summand in L(H)). By Proposition 3.2,
there is an analytic group action

GLc(H)×Grc(V, H)→ Grc(V, H), (L, W) 7→ LW,

which preserves the connected components of Grc(V, H), and such an action is
easily seen to be transitive on each component. Fix some V ∈ Gr(H). We claim
that the map

(3.3) GLc(H)→ Grc,0(V, H), L 7→ LV,

is an analytic principal G-bundle, with G = {L ∈ GLc(H) : LV = V}. Indeed, an
analytic local section of (3.3) near V is

s : B1(V)∩Grc,0(V, H)→GLc(H), W 7→PW PV+PW⊥PV⊥= I−(PV−PW)(PV−PV⊥),

and such a local section defines a local trivialization near any W0 ∈ Grc,0(V, H)
in the standard way: fixing L0 ∈ GLc(H) such that L0V = W0, the map

L0[B1(V) ∩Grc,0(V, H)]× G → GLc(H), (W, L) 7→ L0s(L−1
0 W)L,

is an analytic trivialization of (3.3) near W0.

3.3. HOMOTOPY OF Grc(V, H). Let V ∈ Gr∞,∞(H). The components Grc,n(V, H)
are pairwise analytically diffeomorphic. More generally, Grc,0(V, H) is analyt-
ically diffeomorphic to Grc,0(W, H), for V, W ∈ Gr∞,∞(H), a diffeomorphism
being induced by an L ∈ GL(H) mapping V onto W.

In order to study the homotopy type of Grc,0(V, H), we introduce the Stiefel
space of compact perturbations of V ↪→ H,

Stc(V, H) := {T ∈ L(V, E) : T is injective, Tx = x + Kx with K ∈ Lc(V, H)},

endowed with the norm topology. The set Stc(V, H) is open in the affine Banach
space I + Lc(V, H), so it is an analytic manifold. The map

(3.4) Stc(V, H)→ Grc,0(V, H), T 7→ ran T,

is an analytic principal GLc(V)-bundle. Indeed, if W0 ∈ Grc,0(V, H) and s0 : U →
GLc(H) is an analytic local section of the fiber bundle (3.3), with U a neighbor-
hood of W0 in Grc,0(V, H), the map

U ×GLc(V)→ Stc(V, H), (W, A) 7→ s0(W)A,

is an analytic local trivialization of (3.4) near W0.
Let (Vn) be an increasing sequence of subspaces of V, with dim Vn = n and

such that their union is dense in V. Then the union of the closed subspaces

Kn = {K ∈ Lc(V, H) : KPV⊥n
= 0}, n ∈ N,
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is dense in Lc(V, H). A well known result by Palais (see [23], Corollary after The-
orem 17) implies that Stc(V, H) is homotopically equivalent to the inductive limit
of the spaces Stc(V, H) ∩ (I +Kn), equipped with the limit topology. Moreover,
the set Stc(V, H)∩ (I +Kn) is homeomorphic to the Stiefel space Stn,∞(H), intro-
duced in Section 2. Since such a space is contractible, this proves that Stc(V, H)
is also contractible. In particular, the principal bundle (3.4) is the universal prin-
cipal bundle for the topological group GLc(V), and Grc,0(V, H) is the classifying
space for such a group. The exact homotopy sequence now implies that

πi(Grc,0(V, H)) ∼= πi−1(GLc(V)), for i > 1.

Palais [22] has shown that GLc(V) has the homotopy type of the infinite dimen-
sional general linear group GL, hence of U in the complex case, and of O in the
real case. Therefore, we have proved the following result.

THEOREM 3.3. Let V ∈ Gr∞,∞(H). Then the components Grc,n(V, H) are pair-
wise analytically diffeomorphic, and πi(Grc,n(V, H)) ∼= πi−1(GL) for i > 1, so that
Grc,n(V, H) has the homotopy type of BU, if H is complex, or BO, if H is real.

4. ESSENTIAL GRASSMANNIANS

We have seen that the notion of compact perturbation produces an equiv-
alence relation on Gr(H). The essential Grassmannian of H is the space of the
equivalence classes for such a relation, endowed with the quotient topology, and
it is denoted by Gre(H). Denote by

Π : Gr(H)→ Gre(H)

the quotient projection. This space can be described in terms of the Calkin algebra
of H, i.e. the quotient C∗-algebra C(H) := L(H)/Lc(H). Denote by π : L(H) →
C(H) the quotient projection. The closed subspace V is a compact perturbation
of W if and only if π(PV) = π(PW), so π maps the set of orthogonal projectors
into the set of symmetric idempotent elements of the Calkin algebra. The next
result shows that every symmetric idempotent element of the Calkin algebra is
the image of some orthogonal projector (compare this result with Remark 1.9).

PROPOSITION 4.1. The restriction of the map π to the set of the (orthogonal) pro-
jectors of H is onto the set of (symmetric) idempotent elements of C(H).

Proof. In any Banach ∗-algebra, an element x is (symmetric) idempotent if
and only if 2x − 1 is a (symmetric) square root of the identity. It is therefore
equivalent to show that the quotient projector π maps the (symmetric) square
roots of I in L(H) onto the set of (symmetric) square roots of 1 in C(H).

Let Q ∈ L(H) and K ∈ Lc(H) be such that Q2 = I − K. We have to find
J∈Lc(H) such that (Q− J)2 = I. The operator J will be self-adjoint if Q and K are.
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The spectral mapping theorem implies that

σ(Q)2 = σ(Q2) = σ(I − K),

so the set σ(Q) \ {−1, 1} consists of isolated eigenvalues of finite multiplicity.
Let U = {z ∈ C : |z2 − 1| < 1}, and let H = H0 ⊕ H1, Q = Q0 ⊕ Q1 be the

spectral decomposition of the operator Q corresponding to the decomposition of
σ(Q) into the closed sets σ(Q) \ U and σ(Q) ∩ U. Denote by P0, P1 the corre-
sponding projectors. Then H0 is finite dimensional, and Q1 is invertible, with
σ(Q1) ⊂ U. Therefore, the spectrum of the operator K1 := K|H1 = I − Q2

1 ∈
Lc(H1) is contained in the unit ball {z ∈ C : |z| < 1}. The analytic function

f (z) := 1− z− (1− z)1/2 = − z
2

+
∞

∑
n=2

∣∣∣(1/2
n

)∣∣∣zn, |z| < 1,

verifies the identity

(4.1)
f (z)2

1− z
− 2 f (z)− z = 0.

Set J0 := Q0 − P0 ∈ L(H0), J1 := Q−1
1 f (K1) ∈ Lc(H1). Then J := J0 ⊕ J1 is

compact, and by (4.1) it satisfies (Q− J)2 = I.

The above result implies that π induces a homeomorphism between the es-
sential Grassmannian Gre(H) and the space of idempotent symmetric elements
of C(H). Therefore Gre(H) inherits the structure of a complete metric space. Fur-
thermore, Proposition 1.1 shows that Gre(H) can be given the structure of an
analytic Banach submanifold of C(H).

4.1. HOMOTOPY OF Gre(H). The finite dimensional and the finite codimensional
spaces represent two isolated points in the essential Grassmannian. What re-
mains is a connected component, which is the image of Gr∞,∞(H) by Π, and
which is denoted by Gr∗e(H). By Proposition 1.3, the map

Π : Gr∞,∞(H)→ Gr∗e(H)

is a C0 fiber bundle, with typical fiber Grc(V, H), for some V ∈ Gr∞,∞(H). In
particular, the above map is a fibration, and since its total space is contractible,
the exact homotopy sequence implies that

πi(Gr∗e(H)) ∼= πi−1(Grc(V, H)).

Therefore, Theorem 3.3 has the following consequence.

COROLLARY 4.2. The space Gr∗e(H) is path connected, its fundamental group is
infinite cyclic, and πi(Gr∗e(H)) ∼= πi−2(GL) for i > 2.
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4.2. THE (m)-ESSENTIAL GRASSMANNIAN. In order to represent the coverings
of Gr∗e(H), we consider the quotient of Gr(H) by stronger equivalence relations,
which take the relative dimension into account: if m ∈ N, we define the (m)-
essential Grassmannian Gr(m)(H) to be the quotient of Gr(H) by the equivalence
relation

{(V,W)∈Gr(H)×Gr(H) : V is a compact perturbation of W, and dim(V, W)∈mZ}.

Denote by

Πm : Gr∞,∞(H)→ Gr(m)(H)

the quotient map. With this terminology, the (1)-essential Grassmannian is just
the essential Grassmannian, and the (0)-essential Grassmannian distinguishes
commensurable spaces according to their relative dimension. We can endow
Gr(m)(H) with the quotient topology induced by Gr(H).

Every set Grn,∞(H) or Gr∞,n(H), n ∈ N, represents an isolated point in
Gr(0)(H), which has thus infinitely many isolated points. If m > 1, the sets⋃

n∈mZ+k

Grn,∞(H) and
⋃

n∈mZ+k

Gr∞,n(H), k = 0, 1, . . . , m− 1,

represent distinct isolated points in Gr(m)(H), which has thus 2m isolated points.
The remaining part of Gr(m)(H) consists of the quotient of Gr∞,∞(H), de-

noted by Gr∗(m)(H). Since Gr∞,∞(H) is connected, so is Gr∗(m)(H), for any m ∈ N.

4.3. THE ACTION OF U(H) ON Gr∗(m)(H). The action of U(H) on Gr∞,∞(H) in-
duces a transitive action of U(H) on the quotient Gr∗(m)(H). This action presents
Gr∗(m)(H) as a quotient of U(H): fixing V ∈ Gr∞,∞(H), the map

hm : U(H)→ Gr∗(m)(H), U 7→ Πm(UV),

is indeed open and onto. Let us determine the isotropy subgroup h−1
m ([V]). By

the identity

PUV − PV = UPVU∗ − PV = [U, PV ]U∗, ∀U ∈ U(H),

the subspace UV is a compact perturbation of V if and only if U belongs to the
closed subgroup

H := {U ∈ U(H) : [U, PV ] ∈ Lc(H)}.

If U ∈ H, since

PVUPV + PV⊥UPV⊥ = U − [[U, PV ], PV ] ∈ U + Lc(H),

the operator PVUPV + PV⊥UPV⊥ is Fredholm of index 0. So PVUPV and PV⊥UPV⊥

are Fredholm operators on V and V⊥, respectively, with the relation ind (PVUPV)
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= −ind (PV⊥UPV⊥). By (3.1), and by the additivity of the Fredholm index with
respect to composition,

dim(V, UV) = ind (PUV |V : V → UV) = ind (UPVU∗|V : V → UV)

= ind (PVU∗|V : V → V) + ind (U|V : V ∼→ UV) = ind (PVU∗PV)

= −ind (PVUPV).

Therefore,
dim(UV, V) = ind (PVUPV), ∀U ∈ H,

which shows that h−1
m ([V]) is the open and closed subgroup ofH ,

Hm := {U ∈ H : ind (PVUPV) ∈ mZ}.

Therefore the space Gr∗(m)(H) is homeomorphic to the space of left cosets
U(H)/Hm. Now assume that n ∈ N∗ divides m ∈ N. Since Hm is an open
subgroup ofHn, the quotient map

Πm
n : Gr∗(m)(H)→ Gr∗(n)(H)

is a covering, with fiber nZ/mZ. We claim that the map hm is a C0 principal
Hm-bundle. Since h1 = Πm

1 ◦ hm, it is enough to prove that h1 is a C0 principal
H1-bundle. In this case

Gr∗(1)(H) = Gr∗e(H) = Ps(C) \ {1, 0} = {u π(PV) u−1 : u ∈ U(C(H))},

so by Proposition 1.2 the map

U(C(H))→ Gr∗(1)(H), u 7→ u π(PV) u−1,

has a continuous local section near Π1(V), mapping Π1(V) to 1. By Proposi-
tion 1.8 (i), the quotient map U(H) → U(C(H)) has a continuous local section
near 1. By composition we get a continuous local section for h1, which is there-
fore a C0 principalH1-bundle by the standard trivialization.

4.4. THE HOMOTOPY OF Gr∗(m)(H). We claim that the quotient map

Πm|Gr∞,∞(H) : Gr∞,∞(H)→ Gr∗(m)(H)

is a C0 fiber bundle, with typical fiber

{W ∈ Grc(V, H) : dim(W, V) ∈ mZ}.

Indeed, if s : U ⊂ Gr∗(m)(H) → U(H) is a continuous local section for the map
hm, the map

U × {W ∈ Grc(V, H) : dim(W, V) ∈ mZ} → Gr∞,∞(H), (α, W) 7→ s(α)W,

is a local trivialization for the map Πm|Gr∞,∞(H).
Since Gr∞,∞(H) is contractible, by the exact homotopy sequence of a fibra-

tion we immediately get the following result.
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COROLLARY 4.3. Let m ∈ N. The space Gr∗(m)(H) is connected, its fundamental
group is trivial for m = 0, and infinite cyclic for m > 1. Moreover, for every m ∈ N,

πi(Gr∗(m)(H)) ∼= πi(Gre(H)) ∼= πi−2(GL), for i > 2.

In particular, the quotient map

Π0
1 : Gr∗(0)(H)→ Gr∗(1)(H) = Gr∗e(H)

is the universal covering of Gr∗e(H), and the covering corresponding to the sub-
group mZ ⊂ Z = π1(Gr∗e(H)), m ∈ N, is the quotient map

Πm
1 Gr∗(m)(H)→ Gr∗(1)(H) = Gr∗e(H).

These are all the coverings of the essential Grassmannian.
We end this section by determining the homotopy groups of the space of

Fredholm pairs, thus proving Theorem 2.2.

4.5. PROOF OF THEOREM 2.2. For k ∈ Z, the map

Qk : Fp∗k (H)→ Gr∞,∞(H), (V, W) 7→W,

defines a fiber bundle. Indeed, if W0 ∈ Gr∞,∞(H), the map

B1(W0)×Q−1
k ({W0})→ Fp∗k (H), (W, V) 7→ ((PW PW0 + PW⊥PW⊥0

)V, W),

defines a local trivialization near W0. Since Gr∞,∞(H) is contractible, Fp∗k (H) is
homeomorphic to the product Gr∞,∞(H)×Q−1

k ({W0}), for any W0 ∈ Gr∞,∞(H).
Let W1 be a compact perturbation of W0 with dim(W0, W1) = k. Then by Proposi-
tion 3.1, Q−1

k ({W0}) = Q−1
0 ({W1}), so Fp∗k (H) is homeomorphic to Fp∗0(H), and

it has the homotopy type of the fiber of Q0.
There remains to determine the homotopy type of Q−1

0 ({W0}), for some
fixed W0 in the component Gr∞,∞(H). Consider the fiber bundle

Π : Gr∞,∞(H)→ Gr∗e(H),

and the open subset of Gr∗e(H)

Ω := {Π(graph T) : T ∈ L(W⊥0 , W0)}.

The space Ω is contractible: indeed the homotopy

Ω× [0, 1]→ Ω, (Π(graph T), λ) 7→ Π(graph λT)

is well defined, because the graphs of T, S ∈ L(W⊥0 , W0) are commensurable if
and only if T− S is compact, by Proposition 3.2. Moreover, using Proposition 3.1
it is easy to see that

Π−1(Ω) = {V ∈ Gr∞,∞(H) : (V, W0) ∈ Fp(H)},

and that Q−1({W0}) is a connected component of Π−1(Ω), that is

Q−1({W0}) = {V ∈ Grc,0(graph T, H) : T ∈ L(W⊥0 , W0)}.
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Therefore, the restriction of the map Π,

Π0 : Q−1({W0})→ Ω, V 7→ Π(V),

defines a fiber bundle, with typical fiber

Π−1
0 (Π(W⊥0 )) = Grc,0(W⊥0 , H).

Since the base space of Π0 is contractible, Q−1
0 ({W0}) has the homotopy type of

Grc,0(W⊥0 , H), and the conclusion follows from Theorem 3.3.

5. THE FUNCTOR Det

We denote by Det the functor which associates to any finite dimensional
real vector space the one-dimensional real vector space Λmax(X), the component
of top degree of the exterior algebra of X, and to any linear map T : X → Y the
linear map

Det(T) =

{
Λmax(T) if dim X = dim Y,
0 otherwise.

Therefore, Det(T) 6= 0 if and only if T is an isomorphism.
As it is well known, an exact sequence T of finite dimensional vector spaces

0
T0−→ X1

T1−→ X2
T2−→ · · · Tn−1−→ Xn

Tn−→ 0

induces an isomorphism

φT :
⊗

i odd

Det(Xi) ∼=
⊗

i even

Det(Xi).

Actually, there are different conventions in the literature concerning the choice
of the sign of such an isomorphism. As shown in the following sections, the
choice of proper signs is important, so let us exhibit an explicit construction for
the standard isomorphism φT , and let us fix notations to denote the opposite
isomorphism.

Consider an exact sequence S

0
S1←− X1

S2←− X2
S3←− · · · Sn←− Xn

Sn+1←− 0

such that for every i

(5.1) Ti−1Si + Si+1Ti = IXi .

Such an exact sequence is uniquely determined by the choice of an algebraic lin-
ear complement Vi for each subspace ker Ti in Xi. In fact, Ti restricts to an isomor-
phism from Vi to ker Ti+1, and we can define Si+1 : Xi+1 → Xi to coincide with
the inverse of such an isomorphism on ker Ti+1 and to be zero on Vi+1.

The linear maps Pi := Ti−1Si and Qi := Si+1Ti are the projectors associated
to the splitting Xi = ker Ti ⊕ ker Si.
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The linear map

ΦS
T :

⊕
i odd

Xi −→
⊕

i even

Xi, ΦS
T =

⊕
i odd

(Ti + Si)

is an isomorphism, its inverse being

ΦS
T
−1

=
⊕

i even

(Ti + Si).

If S′ is another exact sequence satisfying (5.1), then

ΦS′
T
−1
◦ΦS

T =
⊕

i odd

(S′i+1Ti + Ti−1Si) = I +
⊕

i odd

Ti−1(Si − S′i),

and the last term is nilpotent,( ⊕
i odd

Ti−1(Si − S′i)
)2

= 0.

It follows that
det ΦS′

T
−1
◦ΦS

T = 1,
which implies

Det(ΦS
T) = Det(ΦS′

T ).
Recalling that the exterior algebra of a direct sum is naturally identified with the
tensor product of the corresponding exterior algebras, we can associate to the
exact sequence T the isomorphism

φT :
⊗

i odd

Det(Xi) ∼=
⊗

i even

Det(Xi), φT := Det(ΦS
T),

where S is any sequence satisfying (5.1). Such an isomorphism is natural, in the
sense that if we have an isomorphism of exact sequences

(5.2)

0 −−−−→ X1
T1−−−−→ X2

T2−−−−→ X3 −−−−→ · · · −−−−→ Xn −−−−→ 0

R1

y yR2

yR3

y
0 −−−−→ X′1

T′1−−−−→ X′2
T′2−−−−→ X′3 −−−−→ · · · −−−−→ X′n −−−−→ 0

there holds

(5.3)
( ⊗

i even
Det(Ri)

)
◦ φT = φT′ ◦

( ⊗
i odd

Det(Ri)
)

.

This immediately follows from the fact that if S satisfies (5.1) for T then the se-
quence S′ defined by S′i := Ri−1SiR−1

i satisfies (5.1) for T′.
The exact sequence A

0→ A1 −→ A1 ⊕ A2 −→ A2 ⊕ A3 −→ · · · −→ An−1 ⊕ An −→ An → 0,

consisting of inclusions and projections produces the isomorphism φA given by

φA(α1 ⊗ (α2 ∧ α3)⊗ · · · ) = (α1 ∧ α2)⊗ (α3 ∧ α4)⊗ · · · ,
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where αi generates Det(Ai). In the case of a general exact sequence T, if Det(Xi)
is generated by Ti−1∗αi−1 ∧ αi, the isomorphism φT is given by

(5.4) φT(α1 ⊗ (T2∗α2 ∧ α3)⊗ · · · ) = (T1∗α1 ∧ α2)⊗ (T3∗α3 ∧ α4)⊗ · · · .

For every subset J ⊂ {1, . . . , n}, the isomorphism φT induces an isomor-
phism

φJ
T :

⊗
j∈J

Det(Xj)∗(j−1) ∼=
⊗
j/∈J

Det(Xj)∗(j),

where V∗(j) denotes V when j is even, V∗ when j is odd. The convention here is
that a tensor product over an empty set of indices produces the field of scalars,
R or C. The isomorphism φJ

T is defined by tensorizing φT by the identity on
Det(Xj)∗, for every even j ∈ J and every odd j /∈ J, and identifying each tensor
product V ⊗ V∗ with the field of scalars, R or C, by the duality pairing. The
original isomorphism ΦT corresponds to choosing J to be the subset of {1, . . . , n}
consisting of odd numbers.

Naturality now means that if we are given the isomorphism (5.2) between
the exact sequences T and T′, there holds

(5.5)
( ⊗

j/∈J

Det(R(−1)j

j )∗(j)
)
◦ φJ

T = φJ
T′ ◦

( ⊗
j∈J

Det(R(−1)j−1

j )∗(j−1)
)

.

Since the naturality property only involves pairs of exact sequences where the
corresponding vector spaces have identical dimension, we still achieve natural-
ity if we multiply each ΦJ

T by a non-zero number which depends only on the
dimensions of X1, . . . , Xn. In particular, we are interested in changing φJ

T just by
a factor ±1. We can summarize the above discussion into the following:

PROPOSITION 5.1. For any choice of the subset J ⊂ {1, . . . , n} and of the function
σ : Nn → {−1, 1}, the transformation T 7→ φJ,σ

T which associates the isomorphism

φJ,σ
T = σ(dim X1, . . . , dim Xn) φJ

T :
⊗
j∈J

Det(Xj)∗(j−1) ∼=
⊗
j/∈J

Det(Xj)∗(j),

to the exact sequence T of finite dimensional vector spaces

0
T0−→ X1

T1−→ X2
T2−→ · · · Tn−1−→ Xn

Tn−→ 0,

is natural with respect to isomorphisms of exact sequences.

We conclude this section by considering the particular case of a sequence
with four terms, that is the exact sequence T

0→ ker T i−→ X T−→ Y π−→ coker T −→ 0.
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induced by some homomorphism T : X → Y between finite dimensional vector
spaces. We shall associate to such an exact sequence the isomorphism

ψT : Det(ker T)⊗Det(coker T)∗ ∼= Det(X)⊗Det(Y)∗,(5.6)

α⊗ (π∗γ)∗ 7→ (i∗(α) ∧ β)⊗ (γ ∧ T∗β)∗,

where α generates Det(ker T), i∗(α) ∧ β generates Det(X), γ ∧ T∗β generates
Det(Y), and the superscript ∗ indicates the dual generator. Comparing this defi-
nition with formula (5.4), we notice an exchange in the exterior product between
the generators γ and T∗β ψT , which produces a sign change equal to

(−1)(dim ran T)(dim coker T).

Therefore, ψT coincides with the isomorphism φJ,σ
T , where

J = {1, 4}, σ(d1, d2, d3, d4) = (−1)d4(d3−d4).

Let X = X0 ⊕ Z, Y = Y0 ⊕ Z be finite dimensional vector spaces, and let
T ∈ L(X, Y) be such that TX0 ⊂ Y0 and QT|Z is an automorphism of Z, where Q :
Y0 ⊕ Z → Z denotes the projection. Denote by T0 ∈ L(X0, Y0) the restriction of T.
The fact that QT|Z is an isomorphism implies that there are natural identifications

(5.7) ker T0 ∼= ker T, coker T0 ∼= coker T.

Let

ψT : Det(ker T)⊗Det(coker T)∗ ∼= Det(X)⊗Det(Y)∗,

ψT0 : Det(ker T0)⊗Det(coker T0)∗ ∼= Det(X0)⊗Det(Y0)∗,

be the isomorphisms defined above. By the identifications (5.7) we can consider
the composition

ψT ◦ ψ−1
T0

: Det(X0)⊗Det(Y0)∗ ∼= Det(X)⊗Det(Y)∗.

The next lemma justifies the choice of the sign in the definition of ψT :

LEMMA 5.2. Let x0, y0, z be generators of Det(X0), Det(Y0), Det(Z), respec-
tively. Then

ψT ◦ ψ−1
T0

(x0 ⊗ y∗0) = det(QT|Z) (x0 ∧ z)⊗ (y0 ∧ z)∗.

In particular, the function mapping a homomorphism T ∈ L(X, Y) with the above prop-
erties into ψT ◦ ψ−1

T0
depends analytically on T.

Proof. We can write x0 = α ∧ x1, where α is a generator of Det(ker T0), and
y0 = y1 ∧ T0∗x1, where y1 is a generator of coker T0 ∼= coker T, identified with a
subspace of Y0. Then

ψT0(α⊗ y∗1) = (α ∧ x1)⊗ (y1 ∧ T0∗x1)∗ = x0 ⊗ y∗0 ,

ψT(α⊗ y∗1) = (α ∧ x1 ∧ z)⊗ (y1 ∧ T∗(x1 ∧ z))∗ = (x0 ∧ z)⊗ (y1 ∧ T∗(x1 ∧ z))∗.
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Notice that y1 ∧ T∗(x1 ∧ z) = y1 ∧ T0∗x1 ∧ T∗z = y0 ∧ QT∗z + y0 ∧ (I − Q)T∗z =
det(QT|Z)y0 ∧ z. It follows that ψT(α⊗ y∗1) = det(QT|Z)(x0 ∧ z)⊗ (y0 ∧ z)∗, so,
as claimed:

ψT ◦ ψ−1
T0

(x0 ⊗ y∗0) = det(QT|Z) (x0 ∧ z)⊗ (y0 ∧ z)∗.

Another useful property of the isomorphism ψT defined in (5.6) is that

(5.8) ψ−1
T∗ = ψ∗T ,

whereas the corresponding formula relating a general isomorphism φJ,σ
T to φJ,σ

T∗ is
more complicated, and may involve a change of sign.

6. THE DETERMINANT BUNDLE OVER THE SPACE OF FREDHOLM PAIRS

The determinant bundle over Fp(H) is an analytic line bundle with base
space Fp(H), and fiber at (V, W)

Det(V, W) := Det(V ∩W)⊗Det
( H

V + W

)∗
.

It is denoted by

p : Det(Fp(H))→ Fp(H), Det(Fp(H)) :=
⊔

(V,W)∈Fp(H)

Det(V, W).

The construction of an analytic structure on the total space Det(Fp(H)), making
p an analytic bundle map, is not immediate because the subspaces V ∩W and
V + W do no depend even continuously on (V, W) ∈ Fp(H). We will describe
such an analytic structure first on the counter image by p of those components of
Fp(H) where one of the two spaces is finite dimensional, and then on the other
components.

6.1. ANALYTIC STRUCTURE ON p−1(Fp(H) \ Fp∗(H)). If (V, W) ∈ Grn,∞(H)×
Gr∞,m(H), n, m ∈ N, the exact sequence of inclusions and quotient projections

0→ V ∩W → V → H
W
→ H

V + W
→ 0

yields to the isomorphism

(6.1) ψ : Det(V, W) ∼= Det(V)⊗Det
( H

W

)∗
,

defined in (5.6). The lines Det(V) ⊗Det(H/W)∗ are clearly the fibers of an an-
alytic bundle over Grn,∞(H) × Gr∞,m(H), and we can endow p−1(Grn,∞(H) ×
Gr∞,m(H)) with the analytic structure which makes (6.1) an isomorphism of ana-
lytic bundles. The same construction works for p−1(Gr∞,n(H)×Grm,∞(H)).
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6.2. ANALYTIC STRUCTURE ON p−1(Fp∗(H)). We proceed to define a structure
of analytic bundle on the restriction of p to p−1(Fp∗(H)). Consider the covering
of Fp∗(H) consisting of the open sets

UX := {(V, W) ∈ Fp∗(H) : X + V + W = H, X ∩V = (0)},
for X varying among all finite dimensional linear subspaces of H. If X is finite
dimensional, the map V 7→ X + V is analytic on the space of V ∈ Gr(H) such that
X ∩ V = (0): indeed in this case X + V is closed, so X + V = (X⊥ ∩ V⊥)⊥ and
X⊥ + V⊥ = (X ∩V)⊥ = H, hence the analyticity of the sum follows from the an-
alyticity of the transverse intersection. As a consequence, the map UX → Gr(H),
(V, W) 7→ (X + V) ∩W, is analytic. Therefore, we can consider the analytic line
bundle pX : EX → UX , whose fiber at (V, W) is the line

p−1
X ({(V, W)}) := Det((X + V) ∩W)⊗Det(X)∗.

Let (V, W) ∈ UX . Since X ∩V = (0), we can define a linear map (X + V) ∩W →
X to be the following composition of inclusions, quotient projections, and their
inverses:

(X + V) ∩W → X + V → X + V
V

∼=→ X.

The kernel of this linear map is V ∩W, while its range is X ∩ (V + W), so using
also the identity X + V + W = H, we obtain the exact sequence

0→ V ∩W → (X + V) ∩W −→ X → H
V + W

→ 0.

Therefore formula (5.6) produces the isomorphism

ψX
(V,W) : Det(V, W)→ Det((X + V) ∩W)⊗Det(X)∗,

and we can endow p−1(UX) with the analytic structure which makes the map
p−1(UX) → EX , ξ 7→ ψX

(V,W)ξ for p(ξ) = (V, W), an isomorphism of analytic
bundles.

In order to have an analytic structure on the whole p−1(Fp∗(H)), there re-
mains to show that if X1, X2 are finite dimensional linear subspaces of H, the
transition map

ψX2
X1

: p−1
X1

(UX1∩UX2)→ p−1
X2

(UX1∩UX2), ξ 7→ψX2
(V,W)(ψX1

(V,W))
−1ξ, for pX1(ξ)=(V, W),

is analytic. When X1 ⊂ X2 or X2 ⊂ X1, this fact follows immediately from
Lemma 5.2. In the general case, let (V, W) ∈ UX1 ∩ UX2 . Then there exists a
finite dimensional linear subspace X ⊂ H such that

(6.2) X + V + W = H, (X1 + X) ∩V = (0), (X2 + X) ∩V = (0).

Indeed, setting k = codim(V + W) and recalling that V has infinite codimension,
we have that the set of X ∈ Grk,∞(H) satisfying each of the identities (6.2) is open
and dense. Therefore,

(V, W) ∈ UX1 ∩ UX1+X ∩ UX ∩ UX2+X ∩ UX2 ,
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and on the inverse image by p of such a neighborhood ψX2
X1

is the composition of

analytic maps, by the case seen above. Hence ψX2
X1

is analytic on p−1(UX1 ∩ UX2).

6.3. TRANSPOSITION. Note that, although the fiber Det(V, W) depends symmet-
rically on (V, W), in our construction of the analytic structure on p−1(Fp∗(H))
such a symmetry is lost. However, if we exchange the role of V and W in the
definition above, we obtain the same analytic structure. In other words, the map
Det(Fp(H))→ Det(Fp(H)) which lifts the transposition involution

τ : Fp(H)→ Fp(H), (V, W) 7→ (W, V),

and is the identity on the fibers, is an analytic bundle isomorphism. This fact
is obvious for the components where one of the spaces is finite dimensional, so
we just have to check it locally at some (V0, W0) ∈ Fp∗(H). We can choose a
finite dimensional linear subspace X ⊂ H such that X ∩ (V0 + W0) = (0) and
X + V0 + W0 = H. Then both (V0, W0) and (W0, V0) belong to the τ-invariant
open set

UX ∩ τ(UX) = {(V, W) ∈ Fp∗(H) : X ∩V = X ∩W = (0), X + V + W = H},

and we must check that the isomorphism

ψX
(W,V) ◦ (ψX

(V,W))
−1 : Det((X+V)∩W)⊗Det(X)∗→Det((X+W)∩V)⊗Det(X)∗

depends analytically on (V, W) in such a set. If (V, W) belong to this set, we can
find an isomorphism

T(V,W) : (X + W) ∩V
∼=−→ (X + V) ∩W,

that makes the following diagram

0 // V ∩W //

id

��

(X + V) ∩W //

T(V,W)

��

X //

id

��

H
V+W

//

id
��

0

0 // W ∩V // (X + W) ∩V // X // H
W+V

// 0

commutative. Such an isomorphism is uniquely determined by the choice of two
linear complements of V ∩W in (X + V)∩W and (X + W)∩V, and if we choose
these to be the orthogonal complements, T(V,W) depends analytically on (V, W).
By the naturality property stated in Proposition 5.1, we have

ψX
(W,V) ◦ (ψX

(V,W))
−1 = Det(T(V,W))⊗ id,

which depends analytically on (V, W) ∈ UX ∩ τ(UX), proving the claim.
This fact shows that it is possible to define a determinant bundle also on the

space of unordered Fredholm pairs.
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6.4. NONTRIVIALITY. The determinant bundle p : Det(Fp(H))→ Fp(H) is non-
trivial on every connected component of Fp(H), with the exception of the trivial
components Gr0,∞(H)×Gr∞,0(H) and Gr∞,0(H)×Gr0,∞(H). We shall check this
fact for the connected components Fp∗k (H), k ∈ Z, the case of the other compo-
nents being analogous. First notice that if H0 is 2-dimensional, then the determi-
nant bundle on Gr1,1(H0) is nontrivial, being isomorphic to the tautological line
bundle on the projective line. Fix a splitting H = H0 ⊕ H1, dim H0 = 2, a Fred-
holm pair (V, W) ∈ Fp∗k−1(H1) and a generator ξ of Det(V ∩W)⊗Det(H1/(V +
W))∗, so that for every L ∈ Gr1,1(H0),

(L⊕V) ∩ (H0 ⊕W) = L⊕ (V ∩W),
H

(L⊕V) + (H0 ⊕W)
=

H1

V + W
.

Then the embedding

f : Gr1,1(H0)→ Fpk(H), L 7→ (L⊕V, H0 ⊕W)

can be lifted to an analytic bundle isomorphism

F : Det(Gr1,1(H0))→ p−1( f (Gr1,1(H0))) ⊂ Det(Fp∗k (H)), η 7→ η ⊗ ξ,

and the determinant bundle is nontrivial on Fp∗k (H).

6.5. THE DETERMINANT BUNDLE OVER Grc(V, H). Let V ∈ Gr∞,∞(H). Then the
Grassmannian Grc(V, H) of compact perturbations of V has a natural inclusion
into Fp(H) given by

(6.3) Grc(V, H) ↪→ Fp(H), W 7→ (W, V⊥).

The above map allows us to consider the pull-back of the determinant bundle
Det(Fp(H)) → Fp(H) defined on Grc(V, H), obtaining an analytic line bundle
Det(Grc(V, H))→ Grc(V, H) with fiber at W ∈ Grc(V, H)

Det(W ∩V⊥)⊗Det
( H

W + V⊥
)∗ ∼= Det((W ∩V⊥)⊕ (W⊥ ∩V)).

The argument for the nontriviality used above shows that the above line bundle
is nontrivial on every connected component Grc,n(V, H), for n ∈ Z.

7. THE DETERMINANT BUNDLE OVER THE SPACE OF FREDHOLM OPERATORS

Let Fr(H1, H2) be the open subset of L(H1, H2) consisting of Fredholm op-
erators. The inclusion

i : Fr(H1, H2)→ Fp(H1 × H2), T 7→ (graph T, H1 × (0)),

allows to define the determinant bundle over Fr(H1, H2) as the pull-back of the
determinant bundle over Fp(H1 × H2) by the map i. We obtain a line bundle

q : Det(Fr(H1, H2))→ Fr(H1, H2),
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whose fiber at T is

Det(T) := Det(ker T)⊗Det(coker T)∗.

This is the determinant bundle over the space of Fredholm operators defined by
Quillen in [26] (see also [6]).

A direct construction of the analytic bundle structure on Det(Fr(H1, H2))
goes as follows. Let X be a finite dimensional linear subspace of H2, and consider
the open set

(7.1) UX(H1, H2) := {T ∈ Fr(H1, H2) : T is transverse to X}.

If T ∈ UX(H1, H2), the exact sequence

0→ ker T −→ T−1X T−→ X −→ coker T → 0

induces an isomorphism

(7.2) ψT : Det(T)→ Det(T−1X)⊗Det(X)∗

by formula (5.6). Since the lines Det(T−1X) ⊗ Det(X) are the fibers of an ana-
lytic line bundle over UX(H1, H2), we obtain an analytic line bundle structure for
Det(Fr(H1, H2)) over UX(H1, H2). Lemma 5.2 can again be used to show that the
transition maps are analytic.

An alternative construction for the analytic structure of q is the following. If
T is an element of Fr(H1, H2), the operator T∗T ∈ L(H1) is self-adjoint, positive,
and Fredholm. In particular, if ε > 0 is small enough, the spectrum of T∗T has
finite multiplicity in [0, ε], meaning that σ(T∗T)∩ [0, ε] is a finite set of eigenvalues
with finite multiplicity. Denote by Vε(T∗T) the corresponding finite dimensional
eigenspace. Therefore the sets

Vε(H1, H2):={T∈Fr(H1, H2) : ε /∈σ(T∗T) and σ(T∗T)∩[0, ε] has finite multiplicity},

for ε > 0, constitute an open covering of Fr(H1, H2). Clearly, the operators

T∗T|(ker T)⊥ : (ker T)⊥ → (ker T)⊥ = ran T∗,

TT∗|(ker T∗)⊥ : (ker T∗)⊥ → (ker T∗)⊥ = ran T,

are conjugated by T|(ker T)⊥ : (ker T)⊥ → (ker T∗)⊥. Since ker T∗T = ker T and
ker TT∗ = ker T∗, it follows that any λ > 0 belongs to σ(T∗T) if and only if it
belongs to σ(TT∗), and that it is an eigenvalue of T∗T corresponding to the eigen-
vector x if and only if it is an eigenvalue of TT∗ corresponding to the eigenvector
Tx, with the same multiplicity. Hence, if T ∈ Vε(H1, H2), then T∗ ∈ Vε(H2, H1),
and the sequence

(7.3) 0→ ker T → Vε(T∗T) T−→ Vε(TT∗)→ ker T∗ → 0

is exact. From the isomorphism

ψε
T : Det(T) ∼= Det(Vε(T∗T))∗ ⊗Det(Vε(TT∗))
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defined by (5.6) and from the analyticity of the maps T 7→ Vε(T∗T) and T 7→
Vε(TT∗) on Vε(H1, H2), we obtain the analytic structure of q over Vε(H1, H2). The
analyticity of the transition maps is an immediate consequence of Lemma 5.2,
because if 0 6 ε < ε′ and T ∈ Vε(H1, H2) ∩ Vε′(H1, H2), there holds Vε(T∗T) ⊂
Vε′(T∗T), and Vε(TT∗) ⊂ Vε′(TT∗).

We just mention that an analogous spectral approach provides an alterna-
tive construction of the determinant bundle on Fp(H).

7.1. LEFT AND RIGHT ACTION OF GL(H). The group GL(H2) acts on Fr(H1, H2)
by left multiplication (G, T) 7→ GT, while the group GL(H1) acts on Fr(H1, H2)
by right multiplication (G, T) 7→ TG. Since

ker GT = ker T, coker GT = G̃ coker T,

where G̃ : H2/ran T → H2/G ran T is induced by G, the left action lifts to a
bundle action on Det(Fr(H1, H2)) defined fiberwise by

Det(T)→ Det(GT), ξ ⊗ η∗ 7→ ξ ⊗ (Det(G̃−1)∗η∗).

This action is analytic because of the naturality property of Proposition 5.1. Sim-
ilarly, since

ker TG = G−1 ker T, coker TG = coker T,

the right action lifts to an analytic bundle action on Det(Fr(H1, H2)) defined fiber-
wise by

Det(T)→ Det(TG), ξ ⊗ η∗ 7→ (Det(G−1)ξ)⊗ η∗.

7.2. ADJOINT. The adjoint map

Fr(H1, H2)→ Fr(H2, H1), T 7→ T∗,

has analytic lift to the determinant bundles. Indeed, by using the identifications

ker T∗ = (ran T)⊥ ∼= (coker T)∗, coker T∗ =
H∗1

(ker T)⊥
∼= (ker T)∗,

the lift is defined fiberwise by

Det(T)→ Det(T∗), ξ ⊗ η∗ 7→ η∗ ⊗ ξ.

Let us check that this lift is analytic. If T belongs to the open set Vε(H1, H2), then
T∗ belongs to the open set Vε(H2, H1). The adjoint of the exact sequence (7.3) is

0→ ker T∗ → Vε(TT∗) T−→ Vε(T∗T)→ ker T → 0,

which is precisely the sequence producing the isomorphism

ψε
T∗ : Det(T∗) ∼= Det(Vε(TT∗))⊗Det(Vε(T∗T))∗.

Then property (5.8) allows to conclude.
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7.3. TWO ANALYTIC SECTIONS. The determinant bundle Det(Fr(H1, H2)) has the
global analytic section

s(T) =

{
0 if T is not invertible,
1 ∈ Det(T) = C⊗C∗ if T is invertible.

This section vanishes precisely at the non-invertible elements of Fr(H1, H2).
The restriction of the determinant bundle Det(Fr(H, H)) to the space of self-

adjoint Fredholm operators on H has a nowhere vanishing analytic section σ
which associates to each self-adjoint Fredholm operator T the element

1 ∈ Det(ker T)⊗Det(ker T)∗ = Det(ker T)⊗Det(coker T)∗ = Det(T).

In particular, the restriction of the determinant bundle over the space of self-
adjoint Fredholm operators on H is trivial (as observed by Furutani in [14], The-
orem 4.1).

7.4. COMPOSITION. Let us show how the composition of Fredholm operators

Fr(H1, H2)× Fr(H2, H3)→ Fr(H1, H3), (S, T) 7→ TS,

lifts to the determinant bundles, producing the bundle morphism

Det(Fr(H1, H2))⊗Det(Fr(H2, H3))→ Det(Fr(H1, H3)),

where the domain is seen as a line bundle over the product Fr(H1,H2)×Fr(H2,H3).
If S ∈ Fr(H1, H2) and T ∈ Fr(H2, H3), we have the exact sequence

(7.4) 0→ker S−→ker TS S−→ker T π−→coker S T−→coker TS−→coker T→0,

where π denotes the restriction of the quotient projection. This exact sequence
induces the isomorphism

φS,T : Det(S)⊗Det(T)→ Det(TS),(7.5)

α1⊗(π∗α3∧α4)∗⊗(α3∧S∗α2)⊗α∗5 7→ (−1)ρ(S,T)(α1∧α2)⊗(α5⊗T∗α4)∗,

with

ρ(S, T) := (dim ker S + dim ker TS)(dim coker T + dim coker TS),

where α1 generates Det(ker S), α1 ∧ α2 generates Det(ker TS), α3 ∧ S∗α2 generates
Det(ker T), π∗α3 ∧ α4 generates Det(coker S), α5 ∧ T∗α4 generates Det(coker TS),
and α5 generates the space Det(coker T). If we denote by (S, T) the exact se-
quence (7.4), the isomorphism φS,T coincides with the natural isomorphism φJ,σ

(S,T)
of Section 5, with

(7.6) J = {1, 3, 4, 6}, σ(d1, d2, d3, d4, d5, d6) = (−1)d4(d2−d1)+d6(d5−d6).

Let us check that the bundle map defined by the isomorphisms φS,T is an-
alytic. It is convenient to see the analytic structure on the determinant bundle
of Fr(H1, H2) in terms of the open sets UX(H1, H2) and of the isomorphisms ψT
introduced in (7.1) and (7.2).
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Let Y be a finite dimensional linear subspace of H3. Notice that the compo-
sition TS is transverse to Y if and only if T is transverse to Y and S is transverse
to X := T−1Y. In particular, the composition maps UX(H1, H2)×UY(H2, H3) into
UY(H1, H3). Let

ψS : Det(S)→ Det(S−1X)⊗Det(X)∗,

ψT : Det(T)→ Det(T−1Y)⊗Det(Y)∗ = Det(X)⊗Det(Y)∗,

ψTS : Det(TS)→ Det((TS)−1Y)⊗Det(Y)∗ = Det(S−1X)⊗Det(Y)∗,

be the isomorphisms defined in (7.2). We must show that the upper horizontal
isomorphism which makes the following diagram commutative,

Det(S−1X)⊗Det(X)∗⊗Det(X)⊗Det(Y)∗ −−−−→ Det(S−1X)⊗Det(Y)∗

ψS⊗ψT

x xψTS

Det(ker S)⊗Det(coker S)∗⊗Det(ker T)⊗Det(coker T)∗
φS,T−−−−→Det(ker TS)⊗Det(cokerTS)∗

depends analytically on (S, T) ∈ UX(H1, H2)×UY(H2, H3).
Let α1, α2, α3, α4, α5 be as above. Let ζ be a generator of Det(Y). Since TS is

transverse to Y, we can find an element α0 ∈ Λ∗((TS)−1Y) = Λ∗(S−1X) such that
ζ = α5 ∧ T∗α4 ∧ T∗S∗α0. Then ξ := α1 ∧ α2 ∧ α0 generates Det(S−1X). Moreover,
η := α3 ∧ α4 ∧ S∗α2 ∧ S∗α0 generates Det(X). By (5.6), we have

ψS(α1⊗(π∗α3∧α4)∗) = (α1∧α2∧α0)⊗(α3∧α4∧S∗α2∧S∗α0)∗= ξ⊗η∗,

ψT((α3 ∧ S∗α2)⊗ α∗5) = (α3 ∧ S∗α2 ∧ α4 ∧ S∗α0)⊗ (α5 ∧ T∗α4 ∧ T∗S∗α0)∗

= (−1)|α2| |α4|η ⊗ ζ∗,

ψTS((α1 ∧ α2)⊗ (α5 ∧ T∗α4)∗) = (α1 ∧ α2 ∧ α0)⊗ (α5 ∧ T∗α4 ∧ T∗S∗α0)∗= ξ⊗ζ∗.

Since the parity of |α2| |α4| equals the parity of ρ(S, T), the above formulas imply
that

ψTS ◦ φS,T ◦ (ψS ⊗ ψT)−1(ξ ⊗ η∗ ⊗ η ⊗ ζ∗) = ξ ⊗ ζ∗,

so this isomorphism depends analytically on (S, T), as claimed.

7.5. ASSOCIATIVITY. The commutative diagram

Fr(H1, H2)× Fr(H2, H3)× Fr(H3, H4) −−−−→ Fr(H1, H2)× Fr(H2, H4)y y
Fr(H1, H3)× Fr(H3, H4) −−−−→ Fr(H1, H4)



50 ALBERTO ABBONDANDOLO AND PIETRO MAJER

lifts to a commutative diagram between the corresponding determinant bundles.
In other words, if Ti ∈ Fr(Hi, Hi+1) then the diagram

(7.7)

Det(T1)⊗Det(T2)⊗Det(T3)
id⊗φT2,T3−−−−−→ Det(T1)⊗Det(T3T2)yφT1,T2⊗id

yφT1,T3T2

Det(T2T1)⊗Det(T3)
φT2T1,T3−−−−→ Det(T3T2T1)

commutes. Although completely elementary, the proof of the commutativity of
the above diagram is quite long. It is contained in Appendix B.

8. OPERATIONS ON THE DETERMINANT BUNDLE OVER FREDHOLM PAIRS

Besides the transposition involution already considered in Section 6, other
operations on the space of Fredholm pairs can be lifted to the determinant bundle.

8.1. THE ACTION OF GL(H). The analytic action of GL(H) on Fp(H), (T, (V, W))
7→ (TV, TW), lifts to an analytic bundle action of GL(H) on Det(Fp(H)), defined
fiberwise by

Det(V, W)→ Det(TV, TW), ξ ⊗ η∗ 7→ Det(T)ξ ⊗Det(T̃−1)∗η∗,

for ξ ∈ Det(V ∩W), η∗ ∈ Det(H/(V + W))∗, where T̃ ∈ L(H/(V+W), H/(TV+
TW)) is induced by the linear operator T ∈ GL(H). The analyticity of such an
action follows immediately from the naturality property stated in Proposition 5.1.

8.2. SUM. If X, Y, Z are finite dimensional linear spaces, the isomorphism

S(X, Y) : Det(X)⊗Det(Y)→ Det(X⊕Y), ξ ⊗ η 7→ ξ ∧ η,

is induced by the exact sequence

0→ X → X⊕Y → Y → 0.

It is readily seen that the diagram

(8.1)

Det(X)⊗Det(Y)⊗Det(Z)
S(X,Y)⊗idDet(Z)−−−−−−−−−→ Det(X⊕Y)⊗Det(Z)

idDet(X)⊗S(Y,Z)
y yS(X⊕Y,Z)

Det(X)⊗Det(Y⊕ Z)
S(X,Y⊕Z)−−−−−−→ Det(X⊕Y⊕ Z)

commutes. We would like to extend this construction to Fredholm pairs.
Let X ∈ Gr(H) be finite dimensional, and let (V, W) ∈ Fp(H) be such that

X ∩V = (0). The isomorphism

S(X, (V, W)) : Det(X)⊗Det(V, W)→ Det(X + V, W)
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is induced by the exact sequence

(8.2) 0→V∩W→ (X+V)∩W−→ X+V
V
∼= X→ H

V+W
→ H

X+V+W
→0.

More precisely, if (X, V, W) denotes the above exact sequence, S(X, (V, W)) is
defined to be the isomorphism φJ,σ

(X,V,W) from Section 5, where

(8.3) J = {1, 3, 4}, σ(d1, d2, d3, d4, d5) = (−1)d3d2+d5(d4−d5).

The reason for this choice of the sign is that the above exact sequence can be seen
as the exact sequence associated to the composition of two Fredholm operators.
Indeed, let

R = RX,(V,W) : V ⊕W ↪→ (X + V)⊕W

be the inclusion, and let

T = TX,(V,W) : (X + V)⊕W → H, (v, w) 7→ v− w,

be the difference mapping. Then R and T are Fredholm operators, and the exact
sequence (7.4) associated to their composition is precisely (8.2):

0 // 0 // V ∩W // (X + V) ∩W // X+V
V
∼= X // H

V+W
// H

X+V+W
// 0

0 // ker R // ker TR // ker T // coker R // coker TR // coker T // 0

The choice of the sign in (8.3) is the same as the one in (7.6).

8.3. ANALYTICITY OF THE SUM. Consider the set

S(H) :=
{
(X, (V, W)) ∈

( ⋃
n∈N

Grn,∞(H)
)
× Fp(H) : X ∩V = (0)

}
,

and the analytic map

s : S(H)→ Fp(H), (X, (V, W)) 7→ (X + V, W).

The space S(H) is the base space of the analytic line bundle Det(S) → S(H),
whose fiber at (X, (V, W)) is Det(X)⊗Det(V, W). The collection of the isomor-
phisms S(X, (V, W)) defines a bundle morphism

S : Det(S(H))→ Det(Fp(H)),

which lifts the map s. We can use the fact that the composition of Fredholm
operators has an analytic lift to the determinant bundles to show that the above
bundle morphism is analytic. Indeed, the diagram

Det(X)⊗Det(V, W)
S(X,(V,W)) // Det(X + V, W)

Det(R)∗ ⊗Det(TR) // Det(T)
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commutes, and the lower isomorphism is induced by the inverse of the composi-
tion lift tensorized by the identity on Det(R)∗.

8.4. ASSOCIATIVITY OF THE SUM. The operation S is associative, meaning that if
X, Y ∈ Gr(H) are finite dimensional, (V, W) ∈ Fp(H), and X ∩ Y = (X + Y) ∩
V = (0), then the diagram

Det(X)⊗Det(Y)⊗Det(V, W)
id⊗S(Y,(V,W))−−−−−−−−→ Det(X)⊗Det(Y + V, W)

S(X,Y)⊗id
y yS(X,(Y+V,W))

Det(X + Y)⊗Det(V, W)
S(X+Y,(V,W))−−−−−−−−→ Det(X + Y + V, W)

commutes. This follows from the associativity property for the composition lift
of Fredholm operator and from the commutativity of the diagram

V ⊕W
RY,(V,W) //

RX+Y,(V,W)
��

(Y + V)⊕W
RX,(Y+V,W)

ssgggggggggggggggggggggg
TY,(V,W)

��
(X + Y + V)⊕W

TX+Y,(V,W)=TX,(Y+V,W)

// H.

9. ORIENTATION BUNDLES

The determinant bundle over the space of real Fredholm operators is often
used in global analysis to orient a finite dimensional manifold, which is obtained
as the zero set, or more generally as the inverse image of some other finite di-
mensional manifold, of some nonlinear real Fredholm map. See for instance [13].
Similarly, the determinant bundle over the space of Fredholm pairs can be used
to orient finite dimensional submanifolds which are obtained as transverse inter-
sections of infinite dimensional manifolds. See [2] for applications of the objects
introduced in this section to infinite dimensional Morse theory.

The advantage of using determinant bundles for these kind of problems lies
in the associativity property. See also [24] for other approaches to the orientation
question.

9.1. THE ORIENTATION BUNDLE OVER THE SPACE OF FREDHOLM PAIRS. We as-
sume throughout this section that the Hilbert space H is real, so that the determi-
nant bundle over Fp(H) is a real line bundle. Its Z2-reduction defines a double
covering

Or(Fp(H))→ Fp(H),

whose fiber at (V, W) ∈ Fp(H) is the quotient

Or(V, W) :=Det(V, W)\{0}/∼, where ξ∼η if and only if ξ =λη with λ>0.
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Such a Z2-bundle will be said the orientation bundle over Fp(H). Since the deter-
minant bundle is nontrivial over each connected component of Fp(H), except the
two trivial ones, so is the orientation bundle. Since in the real case the funda-
mental group of each connected component of Fp∗(H) is Z2 (see Theorem 2.2),
Or(Fp∗(H)) → Fp∗(H) is the universal covering of Fp∗(H). If (V, W) ∈ Fp(H),
X ∈ Gr(H) is finite dimensional, and X ∩V = (0), then any orientation of two of

X, (V, W), (X + V, W),

determines, by the isomorphism S(X, (V, W)), an orientation of the third one. By
the properties of S, this way of summing orientations is continuous and associa-
tive.

9.2. CO-ORIENTATIONS. Let V, W ∈ Gr(H), W a compact perturbation of V. If
V′ is a linear complement of V in H, then (W, V′) is a Fredholm pair (by Proposi-
tion 3.1). Moreover, the set

C(W, V) := {(W, V′) : V′ is a linear complement of V in H}

is contractible, being homeomorphic to the Banach space L(V⊥, V). In particular,
the restriction of the orientation bundle of Fredholm pairs to C(W, V) is trivial,
and we can give the following:

DEFINITION 9.1. Let W be a compact perturbation of V. A co-orientation of
(W, V) is the choice of one of the two continuous sections of the trivial double
covering

Or(Fp(H))|C(W,V) .

If H is endowed with a preferred inner product, we can identify a co-orienta-
tion of (W, V) with an orientation of (W, V⊥), hence with an orientation of the
finite dimensional space (W ∩ V⊥) ⊕ (W⊥ ∩ V). It follows that the concept of
co-orientation is symmetric, meaning that a co-orientation of (W, V) canonically
induces a co-orientation of (V, W).

The set of the two co-orientations of (W, V) is denoted by coOr(V, W).
These sets are the fibers of the co-orientation bundle coOr(H), a double cover-
ing of the space

{(W, V) ∈ Gr(H)×Gr(H) : W is a compact perturbation of V}.

If we restrict this double covering to the Grassmannian Grc(V, H) of compact
perturbations of a fixed V ∈ Gr∞,∞(H), we obtain a nontrivial Z2-bundle

coOr(Grc(V, H))→ Grc(V, H),

called the co-orientation bundle over Grc(V, H). By Theorem 3.3, this is the univer-
sal covering of Grc(V, H).
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9.3. INDUCED ORIENTATIONS AND CO-ORIENTATIONS. Now let (V, Z) be a Fred-
holm pair, and let W be a compact perturbation of V. We know from Proposi-
tion 3.1 that (W, Z) is also a Fredholm pair. Let us show how the choice of two
among the following three objects

(9.1) o(V,Z) ∈ Or(V, Z), o(W,Z) ∈ Or(W, Z), co(W,V) ∈ coOr(W, V),

determines the third one. The argument mimics the proof of Proposition 3.1.
The pair (W, Z) is Fredholm if and only if the operator PZ⊥ |W ∈ L(W, Z⊥)

is Fredholm, and

Det(PZ⊥ |W) = Det(W ∩ Z)⊗Det(Z⊥/PZ⊥W)∼=Det(W ∩ Z)⊗Det(H/(W + Z))

= Det(W, Z),

where we have used the fact that PZ⊥W + Z = W + Z. Since W is a compact
perturbation of V, we can apply the above facts to the Fredholm pair (V, W⊥),
obtaining that PW |V ∈ L(V, W) is Fredholm and

Det(PW |V) = Det(V, W⊥).

By (3.2) we have

PZ⊥ |V = PZ⊥ |W ◦ PW |V + PZ⊥ ◦ (PV − PW)|V .

The last term is a compact operator, so PZ⊥ |V is a compact perturbation of the
composition T := PZ⊥ |W ◦ PW |V . Using the composition lift isomorphism given
by (7.5), we obtain an isomorphism

Det(T) ∼= Det(PW |V)⊗Det(PZ⊥ |W) ∼= Det(V, W⊥)⊗Det(W, Z).

Since Lc(V, Z⊥) is simply connected (it is actually contractible), an orientation of
Det(T) determines an orientation of Det(T′) for each compact perturbation T′ of
T. In particular, an orientation of Det(T) determines an orientation of

Det(PZ⊥ |V) ∼= Det(V, Z).

Therefore an orientation of

Det(V, W⊥)⊗Det(W, Z)

determines an orientation of Det(V, Z). We conclude that the choice of two among
the three objects in (9.1) determines the third one.

If we exchange the role of V and W in the above construction, we still get the
same way of inducing orientations. This follows from the fact that the diagram

V
PW |V

33

PZ⊥ |V   AAAAAAAA W
PV |W

ss

PZ⊥ |W~~||||||||

Z⊥
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commutes up to compact perturbations. Moreover, the way of inducing orienta-
tions does not depend on the choice of the Hilbert product.

Here is a typical application of this construction: We are given a Hilbert
manifold M with a preferred linear subbundle V of the tangent bundle TM.
Then we have two submanifolds W and Z of M, such that for every p ∈ W
the tangent space of W at p is a compact perturbation of Vp, whereas for every
p ∈ Z the pair (TpZ ,Vp) is Fredholm. Then a co-orientation of TZ with respect
to V and an orientation of (TZ ,V) determine an orientation of the Fredholm pair
(TW , TZ), at every point in the intersectionW ∩Z . If moreover this intersection
is transverse, such an orientation is an orientation of the finite dimensional man-
ifoldW ∩Z . See [2] for an application of these concepts to infinite dimensional
Morse theory.

9.4. ASSOCIATIVITY. Let V, W, Z be as before, and consider a compact perturba-
tion Y of Z. Then also (V, Y) and (W, Y) are Fredholm pairs, and we can consider
six elements

a ∈ Or(V, Z), b ∈ Or(V, Y), c ∈ Or(W, Z), d ∈ Or(W, Y),

e ∈ coOr(V, W), f ∈ coOr(Y, Z),

to be associated with the edges of the tetrahedron with faces {a, c, e}, {a, b, f },
{b, d, e}, {c, d, f }:

•
d

vvvvvvvv

b

������������
f

---------

•

e 222222 c
VVVVVVVVVVVV

•
alllllll

•
Then associativity can be stated in this way: If we are given five of these elements
in such a way that the two triplets corresponding to the complete faces in the
above tetrahedron are compatible, then there exists a unique element to be put on
the remaining edge which makes also the triplets corresponding to the remaining
faces compatible.

In order to prove this fact, we may choose the Hilbert product in such a way
that Y, hence also Z, is a compact perturbation of the orthogonal complement
of V, hence also of W. The choice of the orientations for the triplets associated
to the four faces is determined by the following four compositions of Fredholm
operators

V
PW−→W

PY⊥−→ Y⊥, V
PW−→W

PZ⊥−→ Z⊥, Z
PY−→ Y

PV⊥−→ V⊥, Z
PY−→ Y

PW⊥−→W⊥.

By the canonical isomorphism between the determinant line of a Fredholm pair
and the determinant line of the pair consisting of the orthogonal complements,
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we may replace the last two compositions by the compositions

Z⊥
PY⊥−→ Y⊥

PV−→ V, Z⊥
PY⊥−→ Y⊥

PW−→W.

Then the claim follows from the fact that the diagram

V
PW // W

PZ⊥
��

PY⊥

��
Y⊥

PV

OO

PW

@@

Z⊥PY⊥
oo

commutes up to compact perturbations, together with the associativity property
for the composition of Fredholm operators lifted to the determinant bundles.

9.5. FINAL REMARKS. Let us consider again the case of a Fredholm pair (V, Z)
and of a compact perturbation W of V, and let us make some comments on the
argument following (9.1).

Notice that the compact operator PZ⊥ ◦ (PV − PW)|V vanishes if and only if
PW⊥V ⊂ Z. In this situation, PZ⊥ |V coincides with the composition T, and there
is a natural isomorphism already at the level of determinants,

Det(V, Z) ∼= Det(V, W⊥)⊗Det(W, Z).

This isomorphism is induced by the exact sequence (7.4), which in this case is

0→ V ∩W⊥ → V ∩ Z
PW→ W ∩ Z → W

PWV
PZ⊥→ Z⊥

PZ⊥PWV
→ Z⊥

PZ⊥W
→ 0.

In particular, if X is a finite dimensional subspace such that X ∩ V = (0) and
W = X + V, the above exact sequence reduces to

0→ 0→ V ∩ Z → (X + V) ∩ Z → X + V
V

∼= X → Z⊥

PZ⊥V
→ Z⊥

PZ⊥(X + V)
→ 0.

Since PZ⊥V + Z = V + Z, we have natural isomorphisms

Z⊥

PZ⊥V
∼=

H
V + Z

,
Z⊥

PZ⊥(X + V)
∼=

H
X + V + Z

.

Therefore, the above exact sequence is the one inducing the isomorphism

S(X, (V, W)) : Det(X)⊗Det(V, Z) ∼= Det(X + V, Z).

Hence, the way of inducing orientations presented in this section agrees with the
sum construction of Section 8.
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A. APPENDIX — SECTIONS

A continuous linear surjective map T : E → F between Banach spaces has
a continuous linear global section, that is a continuous linear map S : F → E
such that TS = IF, if and only if the kernel of T has a direct summand in E.
For instance, the quotient projection `∞ → `∞/c0, where `∞ denotes the Banach
space of bounded sequences, and c0 denotes the closed subspace of infinitesimal
sequences, has no continuous linear right inverse. Indeed, c0 does not have a
direct summand in `∞ (see Section 3.1).

However, Bartle and Graves [5] have shown that it is always possible to find
a nonlinear continuous right inverse of T. In general, such a global section will
not be Gateaux differentiable at any point (otherwise its differential would be a
linear global section). The existence of a continuous global section could be seen
as a consequence of more general selection theorems by Michael (see [21] and
references therein, or [23], Theorems 10,11). The aim of this appendix is to show
a direct proof of this fact.

PROPOSITION A.1. Let T : E→ F be a continuous linear surjective map between
Banach spaces. Then there exists a continuous map s : F 7→ E which is a global section
of T.

Proof. Since T is onto, by the open mapping theorem the quotient norm

‖x‖ := inf{‖y‖E : Ty = x}

is equivalent to the norm of F. We will use such a quotient norm to define the
uniform norm ‖ · ‖∞ of a F-valued map. Set S := {x ∈ F : ‖x‖ = 1}.
CLAIM. If Ψ : S→ F is continuous and bounded, there exists Φ : S→ E continu-
ous such that ‖Φ‖∞ 6 ‖Ψ‖∞ and ‖TΦ−Ψ‖∞ 6 (1/2)‖Ψ‖∞.

For every x ∈ S, let U(x) be an open neighborhood of x such that ‖Ψ(x′)−
Ψ(x)‖ 6 ‖Ψ‖∞/4 for every x′ ∈ U(x). Let {Vi}i∈I be a locally finite open re-
finement of {U(x)}x∈S, and let {ϕi}i∈I be a partition of unity subordinated to
it. For every i ∈ I, let xi ∈ Vi, and choose yi ∈ E such that Tyi = (2/3)Ψ(xi),
‖yi‖E 6 ‖Ψ‖∞. Define Φ : S→ E as

Φ(x) = ∑
i∈I

ϕi(x)yi.

Then ‖Φ‖∞ 6 sup
i∈I
‖yi‖E 6 ‖Ψ‖∞, and if x ∈ S,

TΦ(x)−Ψ(x) = ∑
i∈I

ϕi(x)[Tyi −Ψ(x)] =
2
3 ∑

i∈I
ϕi(x)[Ψ(xi)−Ψ(x)]− 1

3
Ψ(x),

hence we have the following proving the claim:

‖TΦ(x)−Ψ(x)‖6 2
3

sup
i∈I

x∈Vi

‖Ψ(xi)−Ψ(x)‖+ 1
3
‖Ψ‖∞ 6

1
6
‖Ψ‖∞+

1
3
‖Ψ‖∞ =

1
2
‖Ψ‖∞.
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Applying the above claim iteratively, starting from the identity map, we
obtain a sequence of continuous maps Φn : S→ E, n > 0, such that

‖Φn‖∞ 6 2−n,
∥∥∥I − T

n−1

∑
k=0

Φk

∥∥∥
∞

6 2−n.

Therefore, the series
∞
∑

n=0
Φn converges uniformly on S to a map which lifts the

identity, and the following map is a global section of T:

s(x) := ‖x‖
∞

∑
n=0

Φn

( x
‖x‖

)
, s(0) = 0.

REMARK A.2. From the existence of the global section s, it follows easily
that every continuous linear surjective map T : E→ F admits a natural structure
of a trivial C0 vector bundle over F, and the map x 7→ ‖x − s(Tx)‖E is a Finsler
structure on such a vector bundle.

B. APPENDIX — ASSOCIATIVITY

Consider the Fredholm operators Ti ∈ Fr(Hi, Hi+1), 1 6 i 6 3. We wish to
prove that the diagram

(B.1)

Det(T1)⊗Det(T2)⊗Det(T3)
id⊗φT2,T3−−−−−→ Det(T1)⊗Det(T3T2)yφT1,T2⊗id

yφT1,T3T2

Det(T2T1)⊗Det(T3)
φT2T1,T3−−−−→ Det(T3T2T1)

commutes.
Given 1 6 i < j 6 4, set Tij = Tj−1 ◦ · · · ◦ Ti ∈ Fr(Hi, Hj). Using the left and

right action of the general linear group, we are reduced to consider the following
situation:

Hi =
⊕

h6i6k

Hhk, Tij =
⊕
h6i
k>j

IHhk ,

where the space Hhk, 1 6 h 6 k 6 4, has finite dimension dhk, except for H14
which is infinite dimensional. Then

ker Tij =
⊕

h∈[1,i]
k∈[i,j−1]

Hhk, coker Tij =
⊕

h∈[i+1,j]
k∈[j,4]

Hhk.
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Fix 1 6 i < j < ` 6 4. The exact sequence associated to the composition Ti` =
Tj` ◦ Tij is

0 // ker Tij // ker Ti` // ker Tj` // coker Tij // coker Ti` // coker Tj` // 0

0 //
⊕

h∈[1,i]
k∈[i,j−1]

Hhk //
⊕

h∈[1,i]
k∈[i,`−1]

Hhk //
⊕

h∈[1,j]
k∈[j,`−1]

Hhk //
⊕

h∈[i+1,j]
k∈[j,4]

Hhk //
⊕

h∈[i+1,`]
k∈[`,4]

Hhk //
⊕

h∈[j+1,`]
k∈[`,4]

Hhk // 0.

Denote by θhk a generator of Det(Hhk), for (h, k) 6= (1, 4), and given two sets of
consecutive integers I, J ⊂ {1, 2, 3, 4}, set

ΘJ
I =

∧
h∈I

∧
k∈J

θhk,

where we are considering the standard order in each wedge product. Let us show
that the composition morphism

φTij ,Tj` : Det(Tij)⊗Det(Tj`)→ Det(Ti`)

equals

(B.2) φTij ,Tj` :Θ[i,j−1]
[1,i] ⊗Θ

[j,4]
[i+1,j]

∗
⊗Θ

[j, −̀1]
[1,j] ⊗Θ

[`,4]
[j+1,`]

∗
7→ (−1)σ(i,j,`) Θ

[i, −̀1]
[1,i] ⊗Θ

[`,4]
[i+1,`]

∗
,

where the coefficient σ(i, j, `) is to be determined. Notice that:

(i) If we want to change the generator Θ
[i,`−1]
[1,i] of Det(ker Ti`) into Θ

[i,j−1]
[1,i] ∧

Θ
[j,`−1]
[1,i] , we have to exchange the position of θhk and θh′k′ if and only if h < h′,

k ∈ [j, `− 1], and k′ ∈ [i, j− 1]. Therefore,

Θ
[i,`−1]
[1,i] = (−1)σ1(i,j,`) Θ

[i,j−1]
[1,i] ∧Θ

[j,`−1]
[1,i] , where σ1(i, j, `) = ∑

16h<h′6i
k∈[j,`−1]
k′∈[i,j−1]

dhkdh′k′ .

(ii) The generator Θ
[j,`−1]
[1,j] of Det(ker Tj`) can be rewritten as Θ

[j,`−1]
[1,i] ∧Θ

[j,`−1]
[i+1,j] .

Therefore,

Θ
[j,`−1]
[1,j] = (−1)σ2(i,j,`) Θ

[j,`−1]
[i+1,j] ∧Θ

[j,`−1]
[1,i] , where σ2(i, j, `) = ∑

h∈[1,i]
h′∈[i+1,j]

k,k′∈[j,`−1]

dhkdh′k′ .

(iii) Arguing as in (i), the generator Θ
[j,4]
[i+1,j] of Det(coker Tij) can be rewritten as

Θ
[j,4]
[i+1,j] = (−1)σ3(i,j,`) Θ

[j,`−1]
[i+1,j] ∧Θ

[`,4]
[i+1,j], where σ3(i, j, `) = ∑

i+16h<h′6j
k∈[`,4]

k′∈[j,`−1]

dhkdh′k′ .
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(iv) As in (ii), the generator Θ
[`,4]
[i+1,`] of Det(coker Ti`) can be rewritten as

Θ
[`,4]
[i+1,`] = (−1)σ4(i,j,`) Θ

[`,4]
[j+1,`] ∧Θ

[`,4]
[i+1,j], where σ4(i, j, `) = ∑

h∈[i+1,j]

h′∈[j+1,`]
k,k′∈[`,4]

dhkdh′k′ .

Then formula (7.5) implies formula (B.2) with

σ(i, j, `) = σ0(i, j, `) + σ1(i, j, `) + σ2(i, j, `) + σ3(i, j, `) + σ4(i, j, `),

where

σ0(i, j, `) := (dim ker Tij + dim ker Ti`)(dim coker Tj` + dim coker Ti`)

= ∑
h∈[1,i]

k∈[j,`−1]
h′∈[i+1,j]

k′∈[`,4]

dhkdh′k′ (mod 2).

Formula (B.2) implies that the diagram (B.1) commutes up to the sign

(−1)σ(1,2,3)+σ(1,2,4)+σ(1,3,4)+σ(2,3,4),

so we have to show that the above exponent vanishes modulo 2. The following
computations are modulo 2. We have

σ0(i, j, `) + σ2(i, j, `) = ∑
h∈[1,i]

k∈[j,`−1],
h′∈[i+1,j],

k′∈[j,4]

dhkdh′k′ ,

and summing over the four possibilities for (i, j, `) we obtain

(σ0 + σ2)(1, 2, 3) + (σ0 + σ2)(1, 2, 4) + (σ0 + σ2)(1, 3, 4) + (σ0 + σ2)(2, 3, 4)
= d13d22 + d23d33 + d23d34.(B.3)

The range of the sum defining σ1(i, j, `) is always empty, except for the case i = 2,
j = 3, ` = 4, so we have

(B.4) σ1(1, 2, 3) + σ1(1, 2, 4) + σ1(1, 3, 4) + σ1(2, 3, 4) = σ1(2, 3, 4) = d13d22.

The range of the sum defining σ3(i, j, `) is always empty, except for the case i = 1,
j = 3, ` = 4, so we have

(B.5) σ3(1, 2, 3) + σ3(1, 2, 4) + σ3(1, 3, 4) + σ3(2, 3, 4) = σ3(1, 3, 4) = d24d33.

Finally, taking the sum of σ4(i, j, `) over the four possibilities for (i, j, `) we obtain

(B.6) σ4(1, 2, 3) + σ4(1, 2, 4) + σ4(1, 3, 4) + σ4(2, 3, 4) = d23d33 + d23d34 + d24d33.

Taking the sum of (B.3), (B.4), (B.5), and (B.6), we find, as wished:

σ(1, 2, 3) + σ(1, 2, 4) + σ(1, 3, 4) + σ(2, 3, 4) = 0,
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