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1. INTRODUCTION

The Scott Brown technique has been a successful method of constructing
invariant subspaces of Hilbert space contractions and, more generally, of poly-
nomially bounded operators on Banach spaces. On the other hand, the situation
for n-tuples of commuting operators is much more complicated. Even the first
question — whether each von Neumann n-tuple of commuting Hilbert space op-
erators with dominant Taylor spectrum has a nontrivial joint invariant subspace
— has not been solved yet. Note that for n = 1 this was an early result [4] that
started a long development of the technique.

The first results concerning joint invariant subspaces of commuting n-tuples
of operators were obtained by Apostol [2], who studied the left Harte spectrum.
The invariant subspaces for n-tuples possessing a dilation with dominant Harte
spectrum were obtained by Eschmeier [7], [9] and Kosiek-Octavio [12].

Invariant subspaces for von Neumann #n-tuples of Hilbert spaces operators
of class Cpp with dominant essential Taylor spectrum were constructed by Al-
brecht and Chevreau [1]. Didas [6], following ideas of Eschmeier was able to use
some points of the Taylor spectrum which are not in the essential Taylor spec-
trum, in particular all inner points of the Taylor spectrum.
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The aim of this paper is to improve the results of Didas, Eschmeier and
Albrecht-Chevreau and to show that all points of the Taylor spectrum can be used
for the Scott Brown technique. In particular we show that every von Neumann
n-tuple of Hilbert space operators with dominant Taylor spectrum satisfying con-
dition Cyp has a nontrivial joint invariant subspace. Stronger results are true if T
is assumed to have a dilation.

2. TAYLOR SPECTRUM AND SCOTT-BROWN TECHNIQUE

LetT = (Ty,..., T,) be a commuting n-tuple of operators on a Hilbert space
H. Let

89 o} ot
0—A'H) L AYH) L .. 5 AYH) -0
be the (cochain) Koszul complex of T. For p = 0, 1, ..., n we define the cohomol-
ogy space H? (T) = ker 6}./Im 55’51.
In order to simplify the notations we consider the Koszul complex of T

n
"globally". Let A(H) = @ AP(H). We can identify A(H) with HN where N = 2.
p=0

The operators &4 define naturally the operator o1 : A(H) — A(H) by or(xo @
n—1

= Y. 6Fxp. The Taylor spectrum ¢(T) is defined by
p=0

...@xn)

o(T)={A € C":kerdy_) #Imér_,}
and the essential Taylor spectrum o¢(T) by
0e(T) = {A € C" : dimkerdy_, /Iméy_) = oo}.
We start with the following simple lemma:

LEMMA 2.1. Let0 < r <1,k € N, let X be a Banach space and let vy, ..., vx_1 €
X. Then there exists a polynomial function p : C — X of degree < k — 1 satisfying

p(reZT[im/k) = U

forallm=0,...,k—1and

max [|p(p)[| <
lu<1

Proof. Form =0,1,...,k—1set A, = re2mim/k 1 et

<1+r

k-1
) max{oul| 0 < m <k—1}.

k—1 .
p—A
)= ([T—1 )om
m—O(jyém/\m_Af> "

Obviously p(Ay) = vy foreachm =0,..., k— 1.
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Forpye Candm € {0,1,...,k— 1} we have

[Tw=2) = (—=20) - (m—Ap) _ p—r* gt —Af
j#Em ! U—Am 1= Am = Am

= A AR
Thus ‘ T (A — A]-)‘ = kAR = kT,
j#m
It follows that for any u € C with || < 1 we have the estimate

| B P € L
j#m /\m — )\] = k?’kil

and

k—1
1?’) max{|[om]| 0 <m<k—1}.

IpGoll < (

LEMMA 2.2. Let T = (Ty,...,Tu) be an n-tuple of commuting operators on a
Hilbert space H. Let ¢ > 0 and g : D — C"~1 be an analytic function on Dg := {A €
C : |A| < €}. Let k > 1 and suppose that

{(Ag(A),A) = Al < e} € o(T) \ oe(T).
Then the n-tuple S := (Ty, ..., T,_1, TX) satisfies
dim Kerds /Im é5 > k.
Proof. Set ¢(A) := A¥g(A) and ¢ := max ||g(A)||1, where || - ||; denotes the

[Al<e/2
#1-norm in C"*~1. Then
lg(A) Il < c|Aff
for all A with |A| < /2. Let0 < r < min{1,¢/2}. By Lemma 2.1, there exists a
polynomial function p, : C — C"~! of degree < k — 1 such that
p,(rezmm/k) — ¢(rk) _ ¢(re2ﬂim/k)
forallm=0,1,...,k—1and

max [|pr (p)[[1 <

(1 +7r
[nl<1

k-1
) - 2crk < 2ker.
Forz = (z1,...,2zy4) € C"write 2/ = (zq,...,2z,1) € C" L,
Let the function f, : C"* — C" be defined by
£(2) = (2 + pr(zn), 25).
Set w(") := f,(¢(r),r). Then
W = (§(r) + pr(r),7) = (p(r*), 1)
Hence w(") € ¢(T) \ 0e(T) and w") — 0asr — 0.
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For every w € C" with w,, # 0, the equation

fr(z) =w
has exactly k solutions z = (Z/, z,,). Indeed, if

2+ pi(zy) =w and zZk =w,,

then z, can be any of the k roots of order k of wy, and z’ = w’ — p,(z,). In partic-
ular, for w") (= (p(rk),7%)), there exist k vectors z(9),...,z(k=1) ¢ C” satisfying
f(zM) =w (m=0,...,k—1), namely (z")), = re?™/k and

(Z(m))l _ w(r)/ . Pr((z(m))n) _ (P(rk) _ pr(reZHim/k) _ (P(reZnim/k).

n
Hence z" € ¢(T) \ 0(T) for all m. Thus ¥ dim H?(T — z(™)) > 1. Further-
p=0
more, for every p =0,...,n we have an isomorphism

H (f(T) — w") @H” ~z"),

see the proof of Theorem 10.3.13 in [10].
Therefore

ZdlmH’” (T Z Zdlme 2" )) > k.

p=0m=0

For each polynomial mapping g : C — C"~! of degree < k— 1, q(u) =
k—
Z & w with coefficients ag, ..., a;_; € C"~! we have by the Cauchy formulas
j=0

that [|ajfly < max{{lq(p)]l1 : [u] <1} Thus

k=1
1P (Tl < max{[[pr () |1 = [u] <1} ZIITJII 2ker Y |ITall.
j=0

Hence || p/(Ty)||1 — Oand f,(T) — Sasr — 0.
Then, using the upper semicontinuity of the dimensions of the cohomology
space HP( - ), we derive that

n
dimkerds/Imég = ) dim H?(S) > limsup Z dim H? (f,(T) —w) > k.
p=0 r—0  p=0

LEMMA 2.3. Let T = (Ty,...,T,) € B(H)" be a commuting n-tuple of opera-
tors. Letr > Oand f : {u € C : |u| < r} — C"~! be analytic such that f(0) = 0
Suppose that (f(p),u) € o(T) \ 0e(T) for all |u| < r. Let k € N. Then there are
orthonormal vectors x1,...,x; € HN such that (p(T)xj,xj) = p(0) forall j=1,...,k

and all polynomials p in n variables.
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Proof. Write f(u) = p(u) + u*g(u), where p = (p1,...,pn_1) isan (n —1)-
tuple of polynomials (of degree < k —1)and ¢ = (g1,...,8n—1) isan (n — 1)-tuple
of functions analytic in {y : |u| < r}. Clearly p(0) = 0.

Set S = (T" — p(Ty), Tn) where T' = (Ty,...,Ty—1). Thus S = h(T) for h
defined by h(w',wn) = (w’ — p(wn), wn). Hence h(f(pu),p) = (f(1) — p(u), 1)
for |u| < r. It follows, by the spectral mapping theorem, that { (u¥g(u), 1) : u €
C, |yl <r} Co(S).

Suppose on the contrary that there is a y, || < r and (u¥g(u), 1) € e(S).
By the spectral mapping property for the essential Taylor spectrum, there is a
z € 0o(T) such that (u¥g(u), ) = h(z) = (z' — p(zu),zn). Thus z, = u and
z = yFg(u) + p(u) = f(u), a contradiction with the assumption that (f(u), 1) ¢
0e(T). Hence

{8 G), 1) 1 € C,Jul < v} Co(8) \ e(S).

By Lemma 2.2, dim ker ‘S(S/,s’;,) /Im (5(5,,5;;[) > k. It is well known that S acts
in the quotient space ker (5(5,,55) /Im (5(5,,551) as the n-tuple (0,...,0, N) where N is
a nilpotent operator. By Lemma 3.2 in [6], there exist some orthonormal vectors
x1,..., X € HN such that (p(S)xj,xj) = p(0) for j = 1,...,k and all polynomials
p. This means that || x;|| = 1 and (§*xj,x;) = 0 for all « € Z with [a| > 1.

We prove that (T*x;j,x;) = 0fora € Z'{,a # 0.

Write & = (a/, a0, ) where &/ € Z’}:l and &, € Z.. We show by induction on
|a’| that (T""/T,’f”x]-, xj) = 0.

If o/ = 0and a, # 0 then (T;"xj, x;) = (Sy"xj,x;) = 0.

Leta' € Z"1, 2’ # 0, ay € Z. and suppose that <T’5,T,f"x]-, xj) = 0 for all
B eZ", By € Zy with |B'| < |a'|, |B'| + Bn # 0. We have

0= (8", xj) = ((Ty — p1(Tu))** - -+ (Ty—1 = pu—1(Tu)) "1 T x, x))
— (OS2 T T, ;) + <§cﬁ:r’ﬂ T %% ),

where all terms in the last sum satisfy |f/| < |a|. Since p(0) = 0, by the induction
assumption we have (T{'Ty2 - - - T," 7' Ty"xj, xj) = 0.
Hence (p(T)x;j,x;) = p(0) forall j =1,...,k and all polynomials p. &

LEMMA 2.4 ([6], Lemma 3.3). Let H be a separable Hilbert space and let A C H
be a subset which, for each natural number k > 1, contains an orthonormal system of
length k. Then A contains a weak zero sequence of unit vectors.

NOTATION 2.5. Let 0;(T) be the set of those points z € ¢(T) \ 0e(T) for
which there exists a one-dimensional complex-analytic submanifold M of C"
with z € M such that M C ¢(T).

COROLLARY 2.6. Let T € B(H)" be a commuting n-tuple of operators on a com-
plex Hilbert space H. Then for every A € 0,(T) there exists a sequence (xy)x>1 of unit
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vectors x, € HN such that x; — 0 weakly as k — oo and {p(T)xy, x¢) = p(A) for all k
and all polynomials p.

Proof. Without loss of generality we may assume that A = 0. By a permuta-
tion of variables we can use Lemma 2.3 and 2.4. 1

LEMMA 2.7. Let T be a commuting n-tuple of operators and let A be an accumu-
lation point of o(T) \ 0e(T). Then A € o(T).

Proof. As it is known, the set 0(T) \ 0¢(T) is analytic [13], [14], see also [15].
Then, locally around A € ¢(T) \ 0¢(T), say on a small open ball B centered at A,

the set o(T) \ () is a finite union of irreducible varieties V; for j = 1,k with the
property V; ¢ U V;, see Theorem ILE.15 in [11].
j#

We can suppose, for B sufficiently small, that 0e(T) "B = @ and that A € V;
for all j. Therefore we have the equality

There is at least one jj such that the variety V]-O has dimension > 1, for
otherwise o(T) N B would be a discrete set and A an isolated point of ¢(T), see
Lemma III.C.12 in [11].

Moreover, Vj, has a dense subset M C Vj; consisting of regular points, see

II1.A.10 and IIL.C.3 in [11]. By definition, M C ¢;(T). Thus A € ¢,(T). &

3. INVARIANT SUBSPACES

In the following we assume that G is either the unit polydisc
D" = {(z1,...,20) €C": |zi| <1 (i=1,...,n)}
or the unit ball
Bi={(z1,...,20) €C" : |z1> + - - + |za* < 1}.

However, most of the results remain true for more general domains in C”.

Let P(G) be the normed space of all complex polynomials in 7 variables
with the norm ||p||¢ = sup{|p(z)| : z € G}.

Let H®(G) be the space of all bounded analytic functions f = f(z) on G,

endowed with the sup norm || f||g := sup |f(z)|. Asitis known, H*(G) is a dual
z2€G

space. Clearly P(G) is a subspace of H*(G). Thus P(G) inherits the w*-topology
from H®(G).

For any A € G, let £, € P(G)* denote the functional of evaluation at the
point A, namely
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for all p € P(G). It is well known that £, is w*-continuous.
Let T = (Ty,..., T,) be an n-tuple of mutually commuting bounded linear
operators on a complex Hilbert space H. One calls T von Neumann (over G) if

IP(DII < lIplle

forall p € P(G).
Let T be a von Neumann #n-tuple of operators on a Hilbert space. For any
x,y € H,letx @y € P(G)" denote the functional defined by

(x@y) (p) = (p(T)x,y)
for all p € P(G). Clearly x ® y is continuous and ||x ® y|| < ||x] - [|y]l-

Set N = 2" and let HV be the direct sum of N copies of H, endowed with
the norm

N 1/2
RIESYONETD)
j=1
for x = (xj)]-lil € HN.

Forany x = (x;)N and y = (y]) v, in HY, let xOy € P(G)* denote the

=

functional defined by
N
Oy =) x0yj
j=1
that is,
N
(xCy) (p) == }_(p(T)x}, )
j=1

forall p € P(G).

LEMMA 3.1. Let T = (Ty,...,Ty) be a von Neumann n-tuple of operators on a
Hilbert space H. Let A be a non-isolated point in 0(T) N G. Then there exists a sequence
(xx) of unit vectors in HN such that x; — 0 weakly and || xOxy — E,|| — 0.

Proof. The statement was proved in Lemma 1.4 in [1] for points of o¢(T)
(note that the proof works as well for the norm closure P(G), which also has
Gleason’s property).

For points A € 0;(T) the statement was proved in Corollary 2.6.

Let A € (0(T)\ 0e(T)) N G. By Lemma 2.7, there exists a sequence Ay of
points of ¢;(T) such that Ay — A. Note that ||y, — Ex|| — 0. Indeed, let r =
dist{A,0G} and |Ay — A| < r/2. Let p € P(G), ||pllc = 1. By the Cauchy
formula we have

r 2
[P() = pOAQ] < A =Myl -max { [P/ ()] 1= Al < 5} <IA =2l -5
Thus
2
1€, = Eall = sup{lp(A0) = p(A)] : p € P(C), Ipllc = 1} <[4 = Al T =0
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as Ay — A,
(k))

Note also that for any double sequence (x j of unit vectors in HN such
that (x](k)) — 0 weakly as j — oo and x](k)Dx](-k) — &, for each k there exist
j1 < j2 < --- such that x](:() — 0 weakly as k — co and x](f)Dx](:) — & 1
LEMMA 3.2 (see [1]). Let T = (Ty,..., Ty) be a von Neumann n-tuple of opera-
tors on a Hilbert space H. Let € > 0. Let A € G and x = (x]-)]-l\i1 € HN with ||x|| =1

and A € G such that |xOx — E,|| < e. Then there exists j € {1,..., N} such that
[xj@xj =&l <1—-27"+e

N
Proof. We have ¥ ||x;||?> = ||x||> = 1. Fix an index i such that
i=1

1

2
=

||le N

Then for every p € P(G) with ||p|| < 1, we have the estimates:

[(p(T)xi, xi) — p(A)]

N

N N
(D) = (D] + | L (oD ) = p)
= =

< ¥ KpMagxpl+e< X llp(MI- gl +e

Joi#Fi JojFi
N 2 2 2 2 1

<Y lxlP = Nl + e < [lx]12 = ||| +€<1*N+€' 1
=1

LetT = (Ty,..., Tn) be a von Neumann n-tuple of operators on a Hilbert
space H. We say that the n-tuple T is of class Cy. if the polynomial functional cal-
culus p — p(T) from P(G) to L(H) is sequentially w*-SOT continuous. Equiva-
lently, pi(T) — 0 in the strong operator topology for each Montel sequence (py)
of polynomials (i.e., sup ||px|| < coand py(z) — Oforall z € G).

We say that T is of class C.q if T* = (Ty,..., T,;) is of class Cy.. We say that
T is of class Cyy if it is both of class Cy. and C..

Note that in the case of the unit polydisc, the Cy. property reduces to the
well known condition TF — 0 in the strong operator topology forallj = 1,...,n,
see Proposition 1.8 in [2].

It is well known that if T is either of class Cy. or C.( then the functionals
x ® y are w*-continuous for all vectors x,y € H.

Let (xx) be a sequence of vectors in H weakly converging to zero. It is well
known that if T is of class Cy. then a ® x; — O foralla € H. If T is of class C.
then x, ® b — O forallb € H.

We say thataset A C G is dominatingin Gif || f| g = sup{|f(z)] : z € ANG}
forall f € H*(G).
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THEOREM 3.3. Let G denote either the unit ball or the unit polydisc. Let also
T = (Ty,...,Tu) be a von Neumann n-tuple (over G) of operators on a Hilbert space
H. Suppose that T is of class Coy and that the Taylor spectrum o (T) is dominating in G.
Then T has a nontrivial common invariant subspace.

Moreover, if the accumulation points in o(T) are dominating in G, then T is re-
flexive.

Proof. If there is an isolated point in o(T) then the Taylor functional calculus
gives the existence of a common invariant subspace.

Thus we may suppose that the accumulation points in ¢(T) are dominating
in G. Let & = 1 —27". Denote by £(6) the set of all w*-continuous functionals
¢ on P(G) with the property that for each ¢ > 0 and finite families of vectors
ai,...,asand by, ..., bs € H there are x,y € H such that:

D« <1yl <1
Q) llg—xyll <0+¢
B)||la; @y < eand ||[xRb;|| < eforalli=1,...,s.

It is well known that the set £(0) is closed and absolutely convex, see [8] or
[1]. By Lemmas 3.1 and 3.2, £(6) contains the closed absolutely convex hull of
the set {€, : A accumulation point of ¢(T) N G}. It is well known that this set is
equal to {¢ € P(G) : ||¢|| = 1, ¢ is w*-continuous}. By Proposition 0.1 in [1], see
also [3], T has property Ay, and hence it is reflexive. 1

REMARK 3.4. Theorem 3.3 remains true for all domains G C C" satisfying
the Gleason property for the algebra P(G)w ,i.e., for each A € G there is a con-
stant ¢, > 0 such that every function f € P(G)" with f(A) = 0 can be written

n gk
as f = Y (zj — Aj) fj for some f; € P(G)" with Ifillc <cx(j=1,...,n). For
j=1
details see [1].

It is well known that the condition Cyy can be sometimes omitted if we as-
sume that the n-tuple T has a dilation.

We consider the ball case.

We say that an n-tuple T = (Ty, ..., T,) has a spherical dilation if there are
a larger Hilbert space K O H and an n-tuple N = (Njy,...,N;) of commuting
normal operators on K such that ¢(N) C oG and T* = PyN*|H for alla € Z',
where Py denotes the orthogonal projection onto H.

Note that an n-tuple possessing a spherical dilation is automatically von
Neumann over B;,.

THEOREM 3.5. Let T = (Ty,...,Ty) be an n-tuple of commuting operators on
a Hilbert space H. Suppose that T possesses a spherical dilation and that the Taylor
spectrum o (T) is dominating in By,. Then T has a joint invariant subspace.

Moreover, if T is of class C.y over By, and the set of all accumulation points of
o(T) is dominating in By, then T is reflexive.
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Proof. Suppose first that T is of class C.¢ and the set of all accumulation
points of ¢(T) is dominating in By,.

Let § = 1 —27". Denote by £}(T) the set of all w*-continuous functionals
¢ € P(G)* for which there are sequences (xx), (yx) C H such that:

@) lxxll, llyell < 1 for all k;
(2) limsup [|¢ — xx @ yi|| < 6;

B)xy®z —0forallz € H.

Since the set of non-isolated points of ¢(T) is dominating in B, by Lem-
mas 3.1 and 3.2 we have

TEH(T) D T'({&) : A accumulation point of o(T) N G})
= {9 € P(G)* : |l¢|| <1and ¢ is w*-continuous},

where I denotes the closed absolutely convex hull.

By Corollary 4.4.3 in [5], this implies property Aqy,. So T is reflexive.

Let T be a general n-tuple with dominant Taylor spectrum and possessing a
spherical dilation. If there is an isolated point in ¢(T) then the Taylor functional
calculus provides a nontrivial joint invariant subspace. Thus we may assume that
there are no isolated points in o (T).

If T is neither of class Cy. nor C.( then T has a joint invariant subspace by
Theorem 2.3 in [7].

If T is of class C.( then the statement was proved above. If T is of class Cy.
then we can use the same result for the n-tuple T* = (T},...,T;). 1

REMARK 3.6. Theorem 3.5 remains true for all strictly pseudoconvex do-
mains, see Corollary 4.4.3 and Theorem 3.1.1 in [5].
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