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ABSTRACT. The stable locally finite dimensional (SLF) property is the “oppo-
site” of the tracial rank zero (TR0) property (defined by Lin). We conjecture
that for unital separable simple C∗-algebras, SLF is equivalent to nuclearity
and TR0. We prove the following:

THEOREM. Let A be a unital simple separable C∗-algebra.
(i) If A is nuclear and has TR0 then A is SLF.

(ii) If A is SLF then A is nuclear, quasidiagonal, and has real rank zero, stable
rank one and weakly unperforated K0 group.

We also show that ifA is a unital simple separable C∗-algebra with the SLF
property, then every embedding of a commutative C∗-algebra into A has a
TR0 type property.
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1. INTRODUCTION

In the K-theoretic classification program for simple nuclear stably finite C∗-
algebras, greatest progress has been made in the case where the C∗-algebras have
real rank zero (plus other properties!). Among other things, Elliott and Gong
have classified all simple unital AH-algebras with bounded dimension growth
and real rank zero [11]. This class of C∗-algebras is currently the class of model
algebras for the real rank zero stably finite case (since it exhausts the current range
of the invariant for the aforementioned case [11]) and much work has been done
to show that various classes of stably finite nuclear real rank zero C∗-algebras
are subclasses of this class. (For example, Elliott and Evans showed that all irra-
tional rotation algebras are in the class of Elliott and Gong [10]. This answered a
longstanding question of Effros [9].)
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An interesting advance in this direction is Lin’s tracial rank zero (TR0) prop-
erty which is an abstract characterization of the class of Elliott and Gong.

DEFINITION 1.1. Let A be a unital separable simple C∗-algebra. Then A is
said to have the tracial rank zero (TR0) property if for every ε > 0, for every finite
subset F ⊆ A and for every nonzero positive element a ∈ A, there is a projection
p ∈ A such that the following hold:

(i) p is Murray–von Neumann equivalent to a projection in Her(a) (the hered-
itary sub-C∗-algebra of A generated by a);

(ii) p f is within ε of f p for all f ∈ F ; and
(iii) there is a finite dimensional sub-C∗-algebra D ⊆ A with 1D = 1A − p such

that (1A − p) f (1A − p) is within ε of an element of D for all f ∈ F .

Lin showed that the class of Elliott and Gong (i.e., the class of all simple
unital AH-algebras with bounded dimension growth and real rank zero) is ex-
actly the class of all unital simple separable nuclear TR0 C∗-algebras that satisfy
the universal coefficient theorem [16]. This abstract characterization of Elliott and
Gong’s class has turned out to be rather useful. (For instance, Phillips used Lin’s
characterization to show that every (higher dimensional) simple noncommuta-
tive torus is in the class of Elliott and Gong [20]. This solved a longstanding
question. Furthermore, Lin’s characterization has also been used to show that
many simple C∗-algebras coming from minimal dynamical systems are in the
class of Elliott and Gong [18].)

Another interesting point of view is that, under appropriate hypotheses,
Lin’s TR0 property is similar to Popa’s characterization of quasidiagonality. A
unital C∗-algebra A is said to be quasidiagonal if there exists a faithful ∗-represen-
tation π : A → B(H) such that π(A) is a set of quasidiagonal operators in B(H)
— i.e., there exists an increasing sequence {pn}∞

n=1 of finite rank projections in
B(H) such that:

(i) pn converges to 1B(H) in the strong operator topology; and
(ii) for each b ∈ π(A), ‖bpn − pnb‖ → 0 as n → ∞.

Note that statements (i) and (ii) in the previous paragraph are equivalent to
saying that π(A) is a set of (simultaneously) block diagonal operators in B(H),
modulo the compacts. (The blocks are finite dimensional.)

Notions around quasidiagonality play an interesting role in many places
(see, for example, the survey paper [5] and the references therein). Among other
things, it is an open problem (in classification theory) whether for simple unital
separable nuclear C∗-algebras, stable finiteness is equivalent to quasidiagonality.
Note that quasidiagonal C∗-algebras are automatically stably finite (see Proposi-
tion 3.19 of [5]). A recent discussion concerning the (interesting) converse (under
appropriate hypotheses) can be found in 6.6 of Brown’s paper [6].

Moreover, we point out that all present examples of simple stably finite nu-
clear C∗-algebras that have been classified are quasidiagonal. (See, for example,
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[6], [17] and [23]; we also point out that unital simple separable TR0 C∗-algebras
are quasidiagonal ([5], Theorem 12.1).) Hence, it is interesting to better under-
stand the notion of quasidiagonality (especially in the presence of nuclearity!).

Popa gave a characterization of a large class of quasidiagonal C∗-algebras.

DEFINITION 1.2. Let A be a unital separable simple C∗-algebra. Then A is
said to have the Popa property if for every ε > 0 and for every finite subsetF ⊆ A,
there is a projection p ∈ A such that p is not equal to 1A and the following hold:

(i) p f is within ε of f p for all f ∈ F ; and
(ii) there is a (nonzero) finite dimensional sub-C∗-algebra D ⊆ A with 1D =

1A − p such that (1A − p) f (1A − p) is within ε of an element of D for all f ∈ F .

Popa showed that a unital separable simple real rank zero C∗-algebra is
quasidiagonal if-and-only-if it has the Popa property [21]. One of the reasons
why Lin’s TR0 property is so fascinating is because of its similarity to the Popa
property. (Basically, the TR0 property is the Popa property together with the
additional constraint that the projection p can be chosen to be “arbitrarily small”.)

Finally, in view of the interesting difficulties with proving TR0 for nonnu-
clear simple quasidiagonal real rank zero C∗-algebras satisfying all the (remain-
ing) desirable properties (see [6] and [7]), it seems timely to comment on the com-
bination of nuclearity and quasidiagonality. In this paper, we make a modest con-
tribution to the discussion by looking at simple concepts which contain both of
these properties.

We first define a property (which we call the weak stable locally finite dimen-
sional (weak SLF) property) which is, in a sense, the “dual” or “opposite” of the
Popa property (Definition 2.1). It turns out that for simple unital separable C∗-
algebras, the weak SLF property is equivalent to nuclearity and quasidiagonality.

Next, motivated by the weak SLF property, we define a property (which we
call the stable locally finite dimensional (SLF) property) which is, in a sense (similar
to the previous paragraph) the “dual” or “opposite” of the TR0 property of Lin.
Moreover, the relationship between the SLF property and the weak SLF property
is similar to the relationship between the TR0 property and the Popa property (a
certain projection is allowed to be “arbitrarily small”; Definition 3.1). We conjec-
ture that for unital simple separable C∗-algebras, the SLF property is equivalent
to nuclearity and TR0. We prove the following:

THEOREM 1.3. Let A be a unital separable simple C∗-algebra.
(i) If A is nuclear and has TR0, then A has the SLF property.

(ii) If A has the SLF property, then A is nuclear, quasidiagonal, and has real rank
zero, stable rank one and weakly unperforated K0 group.

Finally, for simple unital separable C∗-algebras A with the SLF property,
we show that every embedding of a commutative C∗-algebra into A has a TR0
type property. This implies that for self-adjoint finite subsets of A consisting of
commuting elements, the TR0 property holds.
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2. THE WEAK STABLE LOCALLY FINITE DIMENSIONAL PROPERTY

Roughly speaking the Popa property (see Definition 1.2) says that given a
finite subset, one can “remove” a possibly “big piece” (though not as big as the
unit) such that the remainder is close to a (nonzero) finite dimensional C∗-algebra.
The weak stable locally finite dimensional (weak SLF) property is (roughly) the oppo-
site of the Popa property. Roughly speaking, the weak SLF property says that
given a finite subset, one can “add” a possibly “big piece” to get close to a finite
dimensional C∗-algebra.

To get to the precise definition of weak SLF, we first introduce the following
terminology: Let A, B be C∗-algebras. Let ε > 0 and let a finite subset F ⊆ A
be given. A linear map ψ : A → B is said to be F -ε-multiplicative if ‖ψ(ab) −
ψ(a)ψ(b)‖ < ε for all a, b ∈ F .

Here is the precise definition of weak SLF:

DEFINITION 2.1. Let A be a unital separable C∗-algebra. Then A is said to
have the weak stable locally finite dimensional property (weak SLF) if for every ε > 0
and for every finite subset F ⊆ A, there are an integer n and completely positive
contractive maps φ : A → Mn(A) and Φ : A → Mn+1(A) with the range of Φ
contained in a finite dimensional sub-C∗-algebra D of Mn+1(A) such that:

(i) φ and Φ are both F -ε-multiplicative; and
(ii) a⊕ φ(a) is within ε of Φ(a) for all a ∈ F .

The next lemma allows us to assume that all the maps in Definition 2.1 bring
the unit to a projection (projection depending on the map) in the codomain alge-
bra.

LEMMA 2.2. Let A be a unital C∗-algebra and let F be a finite subset of A con-
taining the identity of A. For every positive real number ε > 0, there exists a positive
real number δ > 0 such that the following holds: If B is a C∗-algebra and φ : A → B
is a F -δ-multiplicative, completely positive contractive map, then there exists a F -ε-
multiplicative, completely positive contractive map ψ : A → B such that ψ(1A) is a
projection in B and

‖φ(a)− ψ(a)‖ < ε, ∀a ∈ F .

Sketch of proof. Since φ is almost multiplicative, φ(1A) is close to φ(1A)2.
Hence, the spectrum of (the positive element) φ(1A) is concentrated near 0 and
1. Hence, choose a continuous function f > 0 on [0, 1] such that f (φ(1A))φ(1A)
is a projection and such that f (φ(1A)), φ(1A) and f (φ(1A))φ(1A) are all close to
each other. Take h := f (φ(1A))1/2 and let ψ : A → B be given by ψ(a) := hφ(a)h
for all a ∈ A.

For the proof of the next result, we will need the following terminology: Say
that A and B are C∗-algebras. Let ε > 0 and a finite subset F ⊆ A be given. We
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say that a linear map φ : A → B is F -ε-isometric if |‖φ(a)‖ − ‖a‖| < ε for all
a ∈ F .

THEOREM 2.3. Let A be a unital separable simple C∗-algebra. Then the following
conditions are equivalent:

(i) A is nuclear and quasidiagonal.
(ii) A has the weak SLF property.

Proof. We first show that (ii) implies (i). Let ε > 0 and a finite subset F ⊆ A
be given.

Since A has the weak SLF property, choose maps Φ and φ, and a finite di-
mensional sub-C∗-algebraD that satisfy the statements in Definition 2.1. Now let
ψ : Mn+1(A) → A be the completely positive contractive map given by taking
the cut down to the 1 by 1 entry. Since D is a sub-C∗-algebra of Mn+1(A), we get
the restricted map ψ : D → A (which we also denote by “ψ”). Moreover, ψ ◦Φ( f )
is within ε of f for all f ∈ F .

Also, note that the map Φ is a completely positive contractive F -ε-multi-
plicative map that is also F -ε-isometric.

SinceF and ε are arbitrary, it follows from the equivalence of nuclearity and
the completely positive approximation property, and from Voiculescu’s abstract
characterization of quasidiagonality (see Theorem 4.2 of [22]) that A is nuclear
and quasidiagonal.

The proof that (i) implies (ii) follows from Proposition 2 of [8] and Proposi-
tion 6.1.6 of [3].

3. NUCLEAR TR0 C∗-ALGEBRAS HAVE THE SLF PROPERTY

Just as the weak SLF property is the opposite of the Popa property, the SLF
property is the opposite of the tracial rank zero (TR0) property of Lin. Recall that
the TR0 property roughly says the following (see Definition 1.1): Given a finite
subset, one can “remove” an arbitrarily “small piece” such that the remainder is
close to a finite dimensional C∗-algebra. The “dual” or opposite property, which
is the SLF property, roughly says the following: Given a finite subset, one can
“add” an arbitrarily “small piece” such that the result is close to a finite dimen-
sional C∗-algebra.

From still another point of view: The TR0 property is the Popa property
with the additional constraint that the projection p (the “piece” that is “removed”)
is arbitrarily small. Similarly, the SLF property is the weak SLF property with
the additional constraint that the projection p (the “piece” that is “added”) is
arbitrarily small.

DEFINITION 3.1. Let A be a unital separable simple C∗-algebra. Then A is
said to have the stable locally finite dimensional property (SLF) if for every ε > 0,
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for any finite subset F of A and for every nonzero positive element a ∈ A, there
exists a projection p ∈ A and completely positive contractive maps φ : A → pAp
and Φ : A → (1A ⊕ p)M2(A)(1A ⊕ p) with the range of Φ contained in a finite
dimensional sub-C∗-algebra of (1A ⊕ p)M2(A)(1A ⊕ p) such that:

(i) φ and Φ are F -ε-multiplicative;
(ii) a⊕ φ(a) is within ε of Φ(a) for all a ∈ F ; and

(iii) p is Murray–von Neumann equivalent to a projection in Her(a).

Once more using Lemma 2.2, all the maps in Definition 3.1 can be chosen to
bring the unit to a projection (projection depending on the map) in the codomain
algebra.

We also need the following perturbation result for projections, which is
Lemma 2.5.1 in [15]:

LEMMA 3.2. Let D be a unital C∗-algebra. Suppose that p, q are projections in D
such that ‖p − q‖ < 1. Then there exists a unitary u ∈ D such that upu∗ = q and
‖u− 1D‖ 6

√
2‖p− q‖.

THEOREM 3.3. Let A be a unital separable simple C∗-algebra. If A is nuclear and
has TR0 then A has the SLF property.

Proof. Since A has the TR0 property, it is quasidiagonal ([5], Theorem 12.1).
Hence, A is nuclear and quasidiagonal. Hence, by Theorem 2.3, A has the weak
SLF property.

Let ε > 0 and a finite subset F ⊆ A be given. For simplicity, we may
assume that all the elements of F have norm less than or equal to one. We may
also assume that 1A ∈ F . We start with a positive number δ0 > 0. Plug F and δ0
into Lemma 2.2 to get a number δ′0 > 0 with δ′0 < δ0. Let δ1 > 0 be a number such

that δ1 <
δ′0
10 . Since A has the weak SLF property, plug δ1 and F into Definition

2.1 to get an integer n, maps φ, Φ, and a finite dimensional C∗-algebra D (all the
notation as in Definition 2.1 except that ε is replaced by δ1).

Note that D is both a semiprojective C∗-algebra and an injective von Neu-
mann algebra. Also, if C is a C∗-algebra and if ρ : A → C is a linear map
that is almost multiplicative then the induced maps ρ(n) : Mn(A) → Mn(C)
and ρ(n+1) : Mn+1(A) → Mn+1(C) are also almost multiplicative (though with
different finite sets and estimates). Moreover, since φ : A → Mn(A) is al-
ready F -δ1-multiplicative, if ρ is sufficiently multiplicative (large enough finite
set and small enough positive constant for the estimate), then ρ(n) ◦ φ is also F -
δ1-multiplicative. Hence, let G ⊆ A be a finite subset with F ⊆ G and let δ2 > 0
with δ2 < δ1 be such that if C is a unital C∗-algebra and if ρ : A → C is a com-
pletely positive contractive G-δ2-multiplicative map then:

(i.) ρ(n) ◦ φ : A → Mn(C) is F -δ1-multiplicative;
(ii.) there exists a finite dimensional sub-C∗-algebra D′ ⊆ Mn+1(C) and there

exists a completely positive contractive F -δ1-multiplicative map Φ′ : A → D′
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such that Φ′(a) is within δ1 of ρ(n+1) ◦Φ(a) for all a ∈ F ; hence, Φ′(a) is within
2δ1 of ρ(a) ⊕ ρ(n) ◦ φ(a) for all a ∈ F . (Here D′ is obtained by considering the
image of D under ρ(n+1) and using semiprojectivity. Φ′ is obtained by using,
among other things, injectivity of D′.)

Let us collectively denote the above conditions by “(∗)”. In the above, for
each m, ρ(m) : Mm(A) → Mm(C) is the natural completely positive contractive
map induced by ρ : A → C.

Now since A has the TR0 property, let q be a projection in A such that the
following hold:

(a) τ(q) < ε
10n for all τ ∈ T(A);

(b) the map A → qAq given by a 7→ qaq is G-δ2-multiplicative;
(c) there is a finite dimensional sub-C∗-algebra E of A with unit 1E = 1A − q

and there is a completely positive contractive G-δ2-multiplicative map ξ : A → E
such that (1A− q)a(1A− q) and a are within δ2 of ξ(a) and qaq + ξ(a) respectively
for all a ∈ G.

We collectively denote the above conditions by “(∗∗)”.
By statement (b) of (∗∗), we can apply (∗) to the completely positive contrac-

tive map ρ : A → qAq : a 7→ qaq (take C to be qAq). We thus get the following:

(1) ρ(n) ◦ φ : A → Mn(qAq) is an F -δ1-multiplicative, completely positive
contractive map.

(2) There is a finite dimensional sub-C∗-algebra D′ ⊆ Mn+1(qAq).
(3) There is an F -δ1-multiplicative, completely positive contractive map Φ′ :

A → D′ such that Φ′(a) is within 2δ1 of qaq⊕ ρ(n) ◦ φ(a) for all a ∈ F .
We collectively denote the above conditions by “(∗ ∗ ∗)”.
Applying Lemma 2.2 to the maps in (∗ ∗ ∗), we obtain the following:

(i.) There is an F -δ0-multiplicative, completely positive contractive map φ′ :
A → Mn(qAq) such that φ′(a) is within δ0 of ρ(n) ◦ φ(a) for all a ∈ F .

(ii.) There exists an F -δ0-multiplicative, completely positive contractive map
Φ′′ : A → D′ such that Φ′′(a) is within δ0 of Φ′(a) for all a ∈ F .

(iii.) Both φ′(1A) and Φ′′(1A) are projections.
We collectively denote the above conditions by “(∗ ∗ ∗∗)”.
From (∗ ∗ ∗∗) (i.), (ii.) and (∗ ∗ ∗) (3), we get that Φ′′(a) is within 2δ0 + 2δ1 of

qaq⊕ φ′(a) for all a ∈ F . In particular, Φ′′(1A) is within 2δ0 + 2δ1 of q⊕ φ′(1A)
(and both are, by (∗ ∗ ∗∗) (iii.), projections). Hence, by Lemma 3.2, there exists
a unitary u ∈ M(A ⊗ K) (where M(A ⊗ K) is the multiplier algebra of the
stabilization of A) such that ‖u− 1M(A⊗K)‖ 6 2

√
2(δ0 + δ1) and uΦ′′(1A)u∗ =

q⊕ φ′(1A). Note that (since the elements of F all have norm less than or equal
to one) uΦ′′(a)u∗ is within 4

√
2(δ0 + δ1) of Φ′′(a) for all a ∈ F . Hence, uΦ′′(a)u∗

is within (2 + 4
√

2)(δ0 + δ1) of qaq⊕ φ′(a) for all a ∈ F . Let us denote this last
statement by “(+)”.
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Let r1 be the projection in A⊗K given by r1 := φ′(1A). Let D1 be the finite
dimensional unital sub-C∗-algebra of (1A ⊕ r1)(A⊗K)(1A ⊕ r1) that is given by

D1 := E ⊕ (q⊕ r1)(uD′u∗)(q⊕ r1).

Let φ1 := φ′ : A → r1(A ⊗ K)r1 which is a completely positive unital F -δ1-
multiplicative map. Finally, let Φ1 : A → D1 be given by

Φ1(a) := ξ(a)⊕ uΦ′′(a)u∗

for all a ∈ A. Then Φ1 is a completely positive unital F -δ0-multiplicative map.
By (∗∗) statement (c), for all a ∈ F , a ⊕ φ1(a) = a ⊕ φ′(a) is within δ2

of ξ(a) ⊕ qaq ⊕ φ′(a). By (+), the latter is within (2 + 4
√

2)(δ0 + δ1) of ξ(a) ⊕
uΦ′′(a)u∗ = Φ1(a). Hence, a⊕ φ1(a) is within δ2 + (2 + 4

√
2)(δ0 + δ1) < 21δ0 of

Φ1(a) for all a ∈ F . We denote this last statement by “(++)”.
For a unital trace τ on A, let “τ” also denote the extension to a semifinite

trace on A⊗K. Recall that r1 = φ′(1A) ∈ Mn(qAq). Hence, by (∗∗) statement
(a), we must have that τ(r1) < ε

10 for all τ ∈ T(A). From this and (++), if we
choose δ0 > 0 to be such that 21δ0 < ε, then we would almost have the required
result except that statement (iii) in Definition 3.1 is replaced by the statement that
the projection is small in trace. But unital simple separable TR0 C∗-algebras have
both real rank zero and comparison of projections. Hence, we have that A has
the SLF property as required.

4. C∗-ALGEBRAS WITH THE SLF PROPERTY

In this section, we show that unital simple separable SLF C∗-algebras have
stable rank one, real rank zero and weakly unperforated K0 group. It is clear from
the definition that every unital separable simple C∗-algebra A with the stable lo-
cal finite dimensional property has the (SP) property, i.e. every nonzero heredi-
tary sub-C∗-algebra of A has a nonzero projection.

We first show that (under appropriate hypotheses) SLF is preserved by hered-
itary subalgebras.

LEMMA 4.1. Suppose that A is a unital simple separable C∗-algebra with the SLF
property. Then every unital hereditary sub-C∗-algebra of A has the SLF property.

Proof. We will only give a sketch of the proof. Suppose e is a nonzero pro-
jection of A. Let F be any finite subset of eAe and let a be any nonzero pos-
itive element of eAe. Let G be the union of F and {e}. Then, there exist a
projection p such that p is Murray–von Neumann equivalent to a projection in
Her(a) and almost multiplicative (on G) completely positive contractive maps
ϕ : A → pAp and Φ : A → (1A ⊕ p)M2(A)(1A ⊕ p) such that id⊕ϕ is close to
Φ on G and the range of Φ is contained in a finite dimensional sub-C∗-algebra of
(1A ⊕ p)M2(A)(1A ⊕ p).
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Restricting ϕ and Φ to eAe and using Lemma 2.2, we get a projection p0
in eAe with p0 Murray–von Neumann equivalent to a projection in Her(a) and
completely positive contractive maps ϕ0 : eAe → p0Ap0 and Φ0 : eAe → (e ⊕
p0)M2(eAe)(e⊕ p0) which are close to ϕ and Φ. Hence, y⊕ ϕ0(y) is close to Φ0(y)
for all y in F and ϕ0 and Φ0 are almost multiplicative on F .

If p is a projection in a C∗-algebra A and n is a positive integer, then np will

denote the projection
n⊕

k=1
p in Mn(A). The next lemma shows that SLF is a “stable

property” for C∗-algebras.

LEMMA 4.2. Let A be a unital separable simple C∗-algebra. Then A has the SLF
property if and only if for all positive integers n, the C∗-algebra of n by n matrices with
entries in A has the SLF property.

Proof. The only if direction is trivial: Just take n = 1. We now prove the if
direction. Suppose thatA has the SLF property. LetF be a finite subset of Mn(A),
let a be a positive element of Mn(A), and let ε be a positive number. Since A is a
simple C∗-algebra with the (SP) property, there exists a nonzero projection e in A
such that ne is Murray–von Neumann equivalent to a projection in Her(a). (See,
for example, Definition 3.5.2, Proposition 3.5.3 and Lemma 3.5.7 of [15].)

Let G be a finite subset of A such that every entry of elements in F is
in G. Since A has the SLF property, there exist a projection p in A and G- ε

n2 -
multiplicative completely positive contractive maps ϕ : A → pAp and Φ : A →
(1A ⊕ p)M2(A)(1A ⊕ p) such that p is Murray–von Neumann equivalent to a
subprojection of e, the range of Φ is contained in a finite dimensional sub-C∗-
algebra of (1A ⊕ p)M2(A)(1A ⊕ p), and

‖x⊕ ϕ(x)−Φ(x)‖ <
ε

n2

for all x in G.
Let v be a partial isometry in M2n(A) such that v∗v = n(1A ⊕ p) and vv∗ =

(n1A) ⊕ (np). Define ψ : Mn(A) → (np)Mn(A)(np) by ψ = ϕ(n) and define
Ψ : Mn(A) → [(n1A)⊕ (np)]M2n(A)[(n1A)⊕ (np)] by Ad(v) ◦Φ(n). It is easy to
check that ψ and Ψ are F -ε-multiplicative completely positive contractive maps
with the range of Ψ contained in a finite dimensional sub-C∗-algebra of [(n1A)⊕
(np)]M2n(A)[(n1A)⊕ (np)] and

‖x⊕ ψ(x)−Ψ(x)‖ < ε

for all x in F . Since p is Murray–von Neumann equivalent to a subprojection of e
and ne is Murray–von Neumann equivalent to a subprojection of a, we have that
np is Murray–von Neumann equivalent to a subprojection of a.

THEOREM 4.3. Let A be a unital separable simple C∗-algebra with the SLF prop-
erty. Then A has real rank zero, i.e. the self-adjoint invertible elements in A are dense in
the self-adjoint elements in A.
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Proof. By Theorem 2.6 in [4], to show that A has real rank zero, it suffices to
prove the following (equivalent statement): for every positive number ε > 0 and
for all positive orthogonal elements a and b of A, there exists a projection e in A
such that

‖(1− e)b‖ < ε and ‖ea‖ < ε.
Let us assume that ε < 1. Suppose that a and b are positive orthogonal

elements of A. The case a or b is zero is trivial. So we may assume a and b are
nonzero elements of A with norm less than or equal to one. In particular, zero is
in the spectrum of b (else if b is invertible then a = 0).

First assume that zero is an isolated point of the spectrum of b. In this case,
e = χ(0,‖b‖](b) is a projection such that eb = b and ea = 0, where χ(0,‖b‖] is the
characteristic function of (0, ‖b‖]. Now assume that zero is not an isolated point
of the spectrum of b. Therefore, there exists a positive number δ such that δ < 3ε

20
and any interval in [0, δ) with left endpoint zero has nonempty intersection with
the spectrum of b.

Define g1, g2, g3 in C([0, 1]) (all of which take the value zero at zero) as fol-
lows:

g1(t) =


0 if 0 6 t 6 δ

2 ,
linear if δ

2 6 t 6 δ ,
t otherwise;

g2(t) =


linear if 0 6 t 6 δ

8 ,
1 if δ

8 6 t 6 δ
4 ,

linear if δ
4 6 t 6 δ

2 ,
0 otherwise;

g3(t) =



0 if 0 6 t 6 δ
8 ,

linear if δ
8 6 t 6 δ

6 ,
1 if δ

6 6 t 6 5δ
24 ,

linear if 5δ
24 6 t 6 δ

4 ,
0 otherwise.

By construction, g2g3 = g3, g2g1 = 0, and g1, g2, g3 are nonzero continuous func-
tions on the spectrum of b. Set bi = gi(b). Then b1, b2, b3 are nonzero positive
elements of A, b2b3 = b3, and b2b1 = 0. Also, ‖b− b1‖ < δ < 3ε

20 .
Let F = {b1, a1/2, b1/2

2 }. Since A has the SLF property, there exist a projec-
tion p in A, a completely positive unital map ϕ : A → pAp, and a completely
positive unital map Φ : A → (1A ⊕ p)M2(A)(1A ⊕ p) with range contained in a
finite dimensional sub-C∗-algebra D of (1A ⊕ p)M2(A)(1A ⊕ p) such that:

(1) ϕ and Φ are F -ε-multiplicative;
(2) ‖x⊕ ϕ(x)−Φ(x)‖ <

(
ε

20
√

2

)2 for all x in F ; and

(3) p is Murray–von Neumann equivalent to a projection q in Her(b3).

Since b1 is orthogonal to a1/2 and b1/2
2 , it is easy to check that

‖Φ(b1)Φ(a1/2 + b1/2
2 )‖ <

( ε

20

)2
.
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Since D is a finite dimensional C∗-algebra, D has real rank zero. Hence, by Theo-
rem 2.6 in [4], there exists a projection e0 in D such that

‖e0Φ(b1)−Φ(b1)‖ <
ε

20
and ‖e0Φ(a1/2 + b1/2

2 )‖ <
ε

20
.

An easy computation shows that

‖e0(b1 ⊕ ϕ(b1))− (b1 ⊕ ϕ(b1))‖ <
ε

20
+ 2

( ε

20
√

2

)2
<

ε

10
,

‖e0[(a1/2 + b1/2
2 )⊕ ϕ(a1/2 + b1/2

2 )]‖ <
ε

20
+ 2

( ε

20
√

2

)2
<

ε

10
.

Therefore, we have that

‖e0(b1 ⊕ 0)− b1 ⊕ 0‖ <
ε

10
, ‖e0(a⊕ 0)‖ <

ε

10
, and ‖e0(b2 ⊕ 0)‖ <

ε

10
.

Since p is Murray–von Neumann equivalent to a projection q in Her(b3),
there exists a partial isometry v in A such that v∗v = p and vv∗ = q. Set w =(

1A − q v
0 0

)
. Then

w∗w = (1A − q)⊕ p and ww∗ = 1A ⊕ 0.

Choose a positive element b3xb3 in Her(b3) such that ‖b3xb3‖ 6 2 and ‖q −
b3xb3‖ < ε

10 . Then

‖w∗we0 − e0‖ = ‖(q⊕ 0)e0‖ 6 ‖q⊕ 0− (b3xb3)⊕ 0‖+ ‖b3xb3‖‖(b2 ⊕ 0)e0‖

<
ε

10
+

2ε

10
=

3ε

10
.

Also, ‖e0w∗w− e0‖ < 3ε
10 . Therefore,

‖(we0w∗)2 − we0w∗‖ <
3ε

10
.

By Lemma 2.5.5 in [15], there exists a projection e in the sub-C∗-algebra generated
by we0w∗ such that ‖e− we0w∗‖ < 2‖e0w∗w− e0‖< 3ε

5 . Note that e is in (1A ⊕
0)M2(A)(1A ⊕ 0)=A.

Since v∗(1A − q) = 0, qb1 = 0, and qa = 0, it is easy to check that w∗[(1A −
q) ⊕ 0] = (1A − q) ⊕ 0, w[(1A − q) ⊕ 0] = (1A − q) ⊕ 0, (1A − q)b1 = b1, and
(1A − q)a = a. Therefore,

‖e(a⊕ 0)‖ 6 ‖e− we0w∗‖+ ‖we0w∗[(1A − q)⊕ 0](a⊕ 0)‖ <
3ε

5
+ ‖we0(a⊕ 0)‖

<
7ε

10
< ε
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and

‖e(b⊕ 0)− b⊕ 0‖ 6 2‖b− b1‖+ ‖e(b1 ⊕ 0)− (b1 ⊕ 0)‖

<
3ε

10
+ ‖(e− we0w∗)‖+ ‖we0w∗(b1 ⊕ 0)− (b1 ⊕ 0)‖

<
9ε

10
+ ‖we0(b1 ⊕ 0)− w(b1 ⊕ 0)‖ < ε.

Hence, A has real rank zero.

PROPOSITION 4.4. IfA is a unital separable simple C∗-algebra with the SLF prop-
erty, then A is a stably finite C∗-algebra and the tracial state space of A is nonempty.

Proof. Since A has the SLF property, it has the weak SLF property. Hence,
by Theorem 2.3,A is nuclear and quasidiagonal. Hence,A is stably finite and has
a tracial state.

LEMMA 4.5. Let A be a unital C∗-algebra. Let p and q be projections in Mk(A)
and let e be a projection in M`(A) such that np⊕ e is Murray-von Neumann equivalent
to a sub-projection of nq⊕ e. Then for any positive number ε, there exist a finite subset
F of A and a positive number δ such that the following holds: If ψ : A → B is a F -δ-
multiplicative completely positive contractive map, then there exist projections p0 and q0
in Mk(B) and a projection e0 in M`(B) such that:

(i) ‖p0 − ψ(k)(p)‖ < ε;
(ii) ‖q0 − ψ(k)(q)‖ < ε;
(ii) ‖e0 − ψ(`)(e)‖ < ε; and

(iii) np0 ⊕ e0 is Murray–von Neumann equivalent to a sub-projection of nq0 ⊕ e0,
where ψ(k) is the map from Mk(A) to Mk(B) defined by ψ(k)({aij}) = {ψ(aij)}.

Proof. Let ε be a positive number less than 1
12 and let δ be a positive number

less than min
{

ε
2(nk`)2 , 1

12(nk`)2

}
. By assumption, there exists a partial isometry v

in Mnk+`(A) such that v∗v = np⊕ e and vv∗ 6 nq⊕ e. Let F be a finite subset of
A such that every entry of p, q, e, and v is in F . Therefore,

(1) ‖ψ(k)(p)2 − ψ(k)(p)‖ < ε
2 ;

(2) ‖ψ(k)(q)2 − ψ(k)(q)‖ < ε
2 ;

(3) ‖ψ(`)(e)2 − ψ(`)(e)‖ < ε
2 ;

(4) ‖ψ(kn+`)(v)∗ψ(kn+`)(v)− ψ(kn+`)(v∗v)‖ < 1
12 ;

(5) ‖ψ(kn+`)(v)ψ(kn+`)(v)∗ − ψ(kn+`)(vv∗)‖ < 1
12 ;

(6) ‖ψ(kn+`)(vv∗)ψ(kn+`)(nq⊕ e)− ψ(kn+`)(vv∗)‖ < 1
12 ;

(7) ‖ψ(kn+`)(vv∗)2 − ψ(kn+`)(vv∗)‖ < 1
12 .

By Lemma 2.5.5 in [15], there exist projections p0, q0 in Mk(B), e0 in M`(B),
and r in Mnk+`(B) such that:

(1) ‖p0 − ψ(k)(p)‖ < ε and ‖q0 − ψ(k)(q)‖ < ε;
(2) ‖e0 − ψ(`)(e)‖ < ε and ‖r− ψ(kn+`)(vv∗)‖ < 2

12 .
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Set y = rψ(kn+`)(v)(np0 ⊕ e0). Then an easy computation shows that

‖y∗y− np0 ⊕ e0‖ < 1 and ‖yy∗ − r‖ < 1.

Thus, np0 ⊕ e0 is Murray–von Neumann equivalent to r.
Another easy computation shows that

‖r(nq0 ⊕ e0)− r‖ < 1.

Hence, by Lemma 2.5.2 of [15], r is Murray–von Neumann equivalent to a sub-
projection of nq0 ⊕ e0.

THEOREM 4.6. Let A be a unital separable simple C∗-algebra with the SLF prop-
erty. For every positive integer k and for all projections p and q in Mk(A), if τ(p) < τ(q)
for all tracial states of A, then p is Murray–von Neumann equivalent to a subprojection
of q.

Consequently, K0(A) is weakly unperforated, i.e. if nx > 0 for some positive inte-
ger n, then x > 0 in K0(A).

Proof. If p is zero, then we are done. Therefore, we may assume p is a
nonzero projection. Let α = inf{τ(q)− τ(p) : τ ∈ T(A)}. Since T(A) is compact,
α is a nonzero positive number. Since Mk(A) has real rank zero (cf. Theorem 4.3),
there exists a nonzero projection r in qMk(A)q such that τ(r) < α for all τ in T(A).
Thus τ(p) < τ(q− r) for all τ in T(A). We now use a result of Goodearl and Han-
delman (Corollary 4.3 in [14]) and Theorem 4.1 to get positive integers n, ` and a
projection e in M`(A) such that np⊕ e is Murray–von Neumann equivalent to a
subprojection of n(q− r)⊕ e.

Let δ be the positive number and let F be the finite subset of A provided by
Lemma 4.5 corresponding to p, q− r, e, and ε = 1

3 . Let δ0 be a positive number less
than min{δ, 1

36k2 } and let r0 be a nonzero projection in A such that kr0 is Murray–
von Neumann equivalent to a subprojection of r. Since A has the SLF property,
there exist unital F -δ0-multiplicative completely positive contractive maps

(1) ϕ : A → r0 Ar0,
(2) Φ : A → (1A ⊕ r0)M2(A)(1A ⊕ r0),

such that the range of Φ is contained in a finite dimensional sub-C∗-algebra D of
(1A ⊕ r0)M2(A)(1A ⊕ r0) and

‖x⊕ ϕ(x)−Φ(x)‖ < δ0

for all x in F .
By Lemma 4.5, there exist projections p0, q0 in Mk(D) and e0 in M`(D) such

that

(1) ‖p0 −Φ(k)(p)‖ < 1
3 ,

(2) ‖q0 −Φ(k)(q− r)‖ < 1
3 ,

(3) ‖e0 −Φ(`)(e)‖ < 1
3 ,
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such that np0 ⊕ e0 is Murray–von Neumann equivalent to a subprojection of
nq0 ⊕ e0. Since D is a finite dimensional C∗-algebra, p0 is Murray–von Neumann
equivalent to a subprojection of q0.

Since ‖ϕ(k)(p)2 − ϕ(k)(p)‖ < 1
6 and ‖ϕ(k)(q− r)2 − ϕ(k)(q− r)‖ < 1

6 , there
exist projections p1 and q1 in (kr0)Mk(A)(kr0) such that

‖p1 − ϕ(k)(p)‖ <
1
3

and ‖q1 − ϕ(k)(q− r)‖ <
1
3

.

Note that

‖p⊕ p1−p0‖6‖p⊕p1−p⊕ϕ(k)(p)‖+‖p⊕ϕ(k)(p)−Φ(k)(p)‖+‖Φ(k)(p)−p0‖<1.

Similarly, ‖(q− r)⊕ q1 − q0‖ < 1. Hence, p⊕ p1 is Murray–von Neumann equiv-
alent to p0 and (q− r)⊕ q1 is Murray–von Neumann equivalent to q0.

Since kr0 is Murray–von Neumann equivalent to a subprojection of r, and
since q1 is in (kr0)Mk(A)(kr0), we have that q1 is Murray–von Neumann equiv-
alent to a subprojection of r. Therefore, (q − r) ⊕ q1 is Murray–von Neumann
equivalent to a subprojection of (q − r) ⊕ r. Since (q − r) ⊕ r is Murray–von
Neumann equivalent to q and p is Murray–von Neumann equivalent to a sub-
projection of p ⊕ p1, we have that p is Murray–von Neumann equivalent to a
subprojection of q.

The proof of the next theorem is contained in the proof of Theorem 4.3.12 of
[1]. We will include the proof for the convenience of the reader.

THEOREM 4.7. Let A be a unital simple separable stably finite C∗-algebra with
real rank zero. Suppose for all k and for all projections p and q in Mk(A), we have that
p is Murray–von Neumann equivalent to a subprojection of q if τ(p) < τ(q) for all
quasi-traces τ of A. Then every unital hereditary sub-C∗-algebra of A has stable rank
less than or equal to two and K0(A) is weakly unperforated.

Proof. Suppose n([q] − [p]) > 0 for some positive integer n. Then τ(q) >
τ(p) for all quasi-trace τ of A. Hence, p is Murray–von Neumann equivalent to
a subprojection of q. Therefore, [q]− [p] > 0 in K0(A).

We will now show that every unital hereditary sub-C∗-algebra of A has
stable rank less than or equal to two. Since the properties of A in the hypothesis
are all inherited by unital hereditary sub-C∗-algebras of A (by the definitions of
those properties), it is enough to show that the stable rank of A is less than or
equal to two.

Let a1 and a2 be elements of A and let ε be a positive number. Let

a =
(

a1 0
a2 0

)
.
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Since the real rank of A is zero, by Proposition 4.3.4 in [1], there exist a projection
p in M2(A) and

b =
(

b1 0
b2 0

)
such that bp = b, b∗b is invertible in pM2(A)p, and

‖a− b‖ <
ε

2
.

Let u = b(b∗b)−1/2. Then b = u(b∗b)1/2 and u∗u = p.
Note that b∗b is an element of (1A⊕ 0)M2(A)(1A⊕ 0). Thus, p = diag(p0, 0)

for some projection p0 in A. Since τ(p) = τ(uu∗) and τ((1A − p0) ⊕ 0) <
τ(1M2(A) − uu∗) for all quasi-traces τ of A, there exists a partial isometry v =(

v1 0
v2 0

)
such that

v∗v = p and vv∗ 6 1M2(A) − uu∗.

Set yi = bi + ε
2 vi. Then y∗1y1 + y∗2y2 is invertible in A and ‖yi − ai‖ < ε.

COROLLARY 4.8. Let A be a unital separable simple C∗-algebra with the SLF
property. Then the stable rank of A is one.

Proof. By Theorem 4.3, Proposition 4.4, and Theorem 4.6, A satisfies all the
assumption in Theorem 4.7. Therefore, by Theorem 4.2.2 in [1],A has cancellation
of projections. By Corollary 4.3.7 in [1], A has stable rank one.

5. COMMUTATIVE SUB-C∗-ALGEBRAS OF SLF C∗-ALGEBRAS

In this section, we will show that separable simple unital SLF C∗-algebras
have the TR0 property for commutative sub-C∗-algebras; in other words, we will
show that any commutative sub-C∗-algebra of a separable simple unital SLF C∗-
algebra can be tracially approximated by finite dimensional sub-C∗-algebras.

The following is Lemma 6.2.7 of [15].

LEMMA 5.1 (Lin). Let X be a compact metric space. For any finite subset F ⊂
C(X) and any ε > 0, there exist a finite subset G ⊂ C(X) and δ > 0 such that for
any full matrix algebra D and any completely positive unital map φ : C(X) → D
which is G-δ-multiplicative, there exist a projection p ∈ D, a completely positive unital
map ψ : C(X) → pDp which is F -δ-multiplicative, and a unital ∗-homomorphism
h : C(X) → (1− p)D(1− p) such that

‖φ( f )− (ψ⊕ h)( f )‖ < ε for any f ∈ F ,

and tr(p) < ε where tr is the canonical normalized trace of D.

The next lemma follows from Lemma 2.9 of [11] and [13] (see also [8]):
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LEMMA 5.2. Let X be a connected finite CW complex. For any ε > 0, and any
finite subset F ⊆ C(X), there exist integers N and n, a unital ∗-homomorphism ψ :
C(X) → MN(C(X)), xi ∈ X, and pairwise orthogonal projections pi ∈ MN+1(C(X)),
i = 1, . . . , n such that, for any f ∈ F ,∥∥∥(id⊕ψ)( f )−

n

∑
i=1

f (xi)pi

∥∥∥ < ε.

Finally, we need the following perturbation result which can be found in
Lemma 14.1.5 and Theorem 14.2.2 of [19]:

LEMMA 5.3. Let D be a finite dimensional C∗-algebra. Then for every ε > 0 and
for every finite subset F ⊂ D, there exists δ > 0 and a finite subset G ⊂ D such that the
following holds:

If A is a unital C∗-algebra and if φ : D → A is a completely positive unital G-δ-
multiplicative map, then there exists a unital ∗-homomorphism ψ : D → A such that,
for all a ∈ F ,

‖φ(a)− ψ(a)‖ < ε.

THEOREM 5.4. Let A be a separable simple unital SLF C∗-algebra and let X be a
finite CW complex. Let φ be a unital injective ∗-homomorphism from C(X) to A. For
any finite subsetF ⊂ C(X) and any ε > 0, there exists a commutative finite dimensional
sub-C∗-algebra D of A such that for any f ∈ F , one has that:

(i) ‖1Dφ( f )− φ( f )1D‖ < ε;
(ii) 1Dφ( f )1D is within ε of an element of D; and

(iii) τ(1A − 1D) < ε for any tracial state τ of A.

Proof. Since φ is injective, we may consider C(X) as a unital sub-C∗-algebra
of A. We may also assume that F is in the unit ball of C(X) and that F contains
the unit 1C(X).

Plug ε
100 and F into Lemma 5.2 to get integers N, m, a unital ∗-homo-

morphism ψ′ : C(X) → MN(C(X)), points yj ∈ X and pairwise orthogonal
projections q′j ∈ MN+1(C(X)), j = 1, 2, . . . , m. Let D00 be the commutative sub-
C∗-algebra of MN+1(C(X)) that is generated by the q′js. Also, let Ψ : C(X) → D00

be the unital ∗-homomorphism given by Ψ : f 7→
m
∑

j=1
f (yj)q′j.

Now plug ε
100 , D00 and the set {q′j : 1 6 j 6 m} ∪

{ m
∑

j=1
f (yj)q′j : f ∈ F

}
into Lemma 5.3 to get a finite subset G ′00 ⊂ D00 ⊂ MN+1(C(X)) and a positive
real number δ′00 > 0. Also, let G00 be a finite subset of C(X) and let δ00 > 0 be
a positive real number such that for any unital C∗-algebra C, if γ : C(X) → C
is a completely positive unital G00-δ00-multiplicative map then the induced map
γ(N+1) = γ⊗ id : MN+1(C(X)) → MN+1(C) is G ′00-δ′00-multiplicative. Contract-
ing δ00 if necessary, we may assume that the elements of G00 all have norm less
than or equal to one and that δ00 < ε

10 .
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Since F is a finite subset of C(X), there exists δ0 > 0 such that | f (x) −
f (y)| < ε

100 whenever d(x, y) < δ0 for any f ∈ F and for every x, y ∈ X. (Here,
d(·, ·) is a metric on X which induces the topology.) Contracting δ0 if necessary,
we may assume that δ0 < ε

10 . Pick a finite δ0-dense subset {x1, . . . , xn} of X (i.e.,
every point in X is within a d-distance δ0 of a point in {x1, . . . , xn}). For simplicity,
we may assume that any two points in {x1, . . . , xn} are at least a d-distance 2 δ0

3
apart. For each xi, choose a continuous function gi ∈ C(X) such that 0 6 gi 6 1
and

gi(x) =

{
1 if d(x, xi) < δ0

8 ,
0 if d(x, xi) > δ0

4 .

Let F ′ be the set consisting of all the gis. Since A is simple and unital, there is a
positive real number δ′ > 0 such that for all i,

τ(gi) > δ′ for any τ ∈ T(A).

(Here, we view C(X) as a sub-C∗-algebra of A, since the ∗-homomorphism φ is
injective.)

Applying Lemma 5.1 to C(X), F ∪F ′ ∪ G00 and min{ δ0
10 , δ′

10 , δ00
10 }, there exist

a finite subset G ⊂ C(X) and a positive real number δ > 0 satisfying the statement
of Lemma 5.1. Decreasing δ > 0 if necessary, we may assume δ < min{ δ0

10 , δ′
10 , δ00

10 }
and that G is contained in the unit ball of C(X). We may also assume that G con-
tains F ∪ F ′ ∪ G00. By [21], since A is unital simple separable real rank zero and
quasidiagonal, A has the Popa property. Hence, there is a nonzero finite dimen-
sional sub-C∗-algebra D0 of A such that for any f ∈ G, the following statements
hold:

(1) ‖1D0 f − f 1D0‖ < δ
10 ; and

(2) 1D0 f 1D0 is within a distance δ
10 of an element in D0. (We will abbreviate

this by writing 1D0 f 1D0 ∈δ/10 D0.)

By Arveson’s extension theorem, there is a completely positive unital lin-
ear map η : 1D0A1D0 → D0 extending the identity map of D0. Define unital
completely positive maps

ψ0 : C(X)3g 7→η(1D0 φ(g)1D0)∈D0, ψ1 : C(X)3g 7→ (1A−1D0)φ(g)(1A−1D0)∈A.

One can verify that both ψ0 and ψ1 are G-δ-multiplicative. Applying Lem-
ma 5.1 to each simple summand of D0, there are a ∗-homomorphism h : C(X) →
D0 and a F ∪ F ′-δ-multiplicative completely positive contractive map ψ′0 : C(X)
→ D0 such that r(ψ′0(1C(X))) < min{ δ0

10 , δ′
10 , δ00

10 } for every normalized trace r on
D0 and

‖ψ0( f )− (ψ′0 ⊕ h)( f )‖ < min
{ δ0

10
,

δ′

10
,

δ00

10

}
for any f ∈ F ∪ F ′.
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The ∗-homomorphism h has the form

h( f ) =
k

∑
i=1

f (zi)pi

where zi ∈ X and pi are pairwise orthogonal projections in D0.
We claim that we can choose D0, ψ′0 and the finite dimensional ∗-homo-

morphism h in such a way that h(gj) > 0 (i.e., strictly positive) holds for any
1 6 j 6 n; that is, for any xj there is zi such that d(zi, xj) < δ0

4 . We denote this
claim by “(∗)”. We now prove claim (∗). Proof is by contradiction.

Since A is separable, there is an increasing sequence {Fi}∞
i=1 of finite sub-

sets of A with dense union. Let {εi}∞
i=1 be a sequence of strictly positive real

numbers decreasing to 0. For each i, let Mi be the positive real number given
by Mi := max{1 + ‖a‖+ ‖a‖2 : a ∈ Fi}. Note that since the sequence {Fi}∞

i=1
is increasing (as sets), the sequence {Mi}∞

i=1 is also increasing (as real numbers).
Since A has the Popa property, we get a sequence {Di}∞

i=1 of finite dimensional
sub-C∗-algebras of A such that for every i and for all a ∈ Fi,

(1) ‖1Di a− a1Di‖ < εi
10+Mi

, and
(2) 1Di a1Di ∈εi/(10+Mi) Di.

Thus, by the same argument as above, we get the following:

(i.) There are completely positive unital maps ψi : A → Di such that we have
the following as i → ∞, for all a, b ∈ A:

‖ψi(ab)− ψi(a)ψi(b)‖ → 0.

(ii.) As i → ∞ for all a ∈ A we have the following:

‖1Di a1Di − ψi(a)‖ → 0.

(iii.) There are completely positive contractive maps ψ′i : C(X) → Di such that,
as i → ∞ for all f , g ∈ C(X),

‖ψ′i( f g)− ψ′i( f )ψ′i(g)‖ → 0.

(iv.) There are ∗-homomorphisms hi : C(X) → Di with range orthogonal to ψ′i
such that

‖ψi( f )− (ψ′i( f )⊕ hi( f ))‖ → ∞

as i → ∞ for all f ∈ C(X). (We view C(X) as a sub-C∗-algebra of A.)
(v.) sup

r∈T(Di)
r(ψ′i(1C(X))) → 0 as i → ∞.

If the claim is not true, then there is gj and a subsequence {ik}∞
k=1 of the

positive integers such that for any k, we have that hik (gj) = 0. Let ri be any
normalized trace of Di, and let τi denote the state ri ◦ ψi of A. It is clear that
τik (gj) → 0 as k → ∞. Now let τ be a cluster point of {τik} in the compact convex
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set of states of A with the weak*-topology. It is easy to see that τ is a tracial state
of A. But we then have that

τ(gj) 6 lim sup
k

τik (gj) = 0

which contradicts the simplicity of A. Thus the claim (∗) holds.
Let us return to the proof of the theorem. Let q := 1A − 1D0 = ψ1(1C(X)).

By the definitions of D0, ψ0, ψ′0, h and ψ1 (and viewing C(X) as a sub-C∗-algebra
of A), we have that

‖ f − (ψ1 ⊕ ψ′0 ⊕ h)( f )| < δ + min
{ δ0

10
,

δ′

10
,

δ00

10

}
for any f ∈ F .

We denote the above statement by “(∗∗)”.
Since qAq is SLF, there is a projection q′ ∈ qAq, a G-min{ δ0

10 , δ′
10 , δ00

10 }-multi-
plicative completely positive unital map ι : C(X) → q′Aq′, and a finite dimen-
sional sub-C*-algebra E ⊂ (q′ ⊕ q)M2(A)(q′ ⊕ q) such that for any f ∈ G,

(1) ι( f )⊕ ψ1( f ) is within min{ δ0
10 , δ′

10 , δ00
10 } of an element of E ;

(2) q′ ⊕ q = ι(1C(X))⊕ ψ1(1C(X)) = 1E ; and
(3) (N + 1)τ(q′) < min{ ε

100 , τ(pi) : 1 6 i 6 k} for any tracial state τ of A.
We have an induced map

ι(N+1) := ι⊗ id : MN+1(C(X)) → MN+1(q′Aq′).

Since ι is G-min{ δ0
10 , δ′

10 , δ00
10 }-multiplicative, it follows by the definition of G that

ι is G00-δ00-multiplicative. Hence, by the definitions of G00 and δ00, the induced
map ι(N+1) = ι⊗ id is G ′00-δ′00-multiplicative. Hence, by the definition of G ′00 and
δ′00 and by Lemma 5.3, there is a unital ∗-homomorphism ρ : D00 → MN+1(q′Aq′)

such that for all a ∈ {q′j : 1 6 j 6 m} ∪
{ m

∑
j=1

f (yj)q′j : f ∈ F
}

,

‖ρ(a)− ι(N+1)(a)‖ <
ε

100
.

Hence, for all f ∈ F , we must have that

‖ρ ◦Ψ( f )− ι(N+1) ◦ (ψ′( f )⊕ f )‖ <
ε

50
.

Note that for all f ∈ C(X), ψ′( f )⊕ f = (ψ′ ⊕ id)( f ). Also, ι(N+1) ◦ (ψ′ ⊕ id) =
(ι(N) ◦ ψ′) ⊕ ι. Let us collectively denote the equations and inequalities in this
paragraph by “(∗ ∗ ∗)”.

Now suppose that there are points {wi}L
i=1 in X and pairwise orthogonal

projections {q′′i }L
i=1 in MN+1(q′Aq′) such that the finite dimensional ∗-homo-

morphism ρ ◦ Ψ : C(X) → MN+1(q′Aq′) has the form ρ ◦ Ψ : f 7→
L
∑

i=1
f (wi)q′′i .

Since {x1, x2, . . . , xn} is δ0-dense in X, for each i with 1 6 i 6 L, let ji be an integer
with 1 6 ji 6 n such that d(wi, xji ) < δ0. Let ρ̃ : C(X) → MN+1(q′Aq′) be the



166 P.W. NG, Z. NIU AND E. RUIZ

finite dimensional ∗-homomorphism given by ρ̃ : f 7→
L
∑

i=1
f (xji )q′′i . Then by the

definition of δ0 we must have that

‖ρ̃( f )− ρ ◦Ψ( f )‖ <
ε

100
for all f ∈ F . We denote the above statement by “(∗ ∗ ∗∗)”.

Also, by the claim (∗), we have that for each i with 1 6 i 6 n there is an
integer j′i such that d(zj′i

, xi) < δ0
4 . Moreover, since the xis are at least a d-distance

2 δ0
3 apart, we must have that the map i 7→ j′i is injective. In particular, this implies

that k > n. For simplicity, let us assume that for 1 6 i 6 n, j′i = i. Consider

the ∗-homomorphism h̃ : C(X) → D0 that is given by h̃ : f 7→
n
∑

i=1
f (xi)pi +

k
∑

i=n+1
f (zi)pi. By the definition of δ0, we must have that

‖h( f )− h̃( f )‖ <
ε

100
for all f ∈ F . We denote the above statement by “(∗ ∗ ∗ ∗ ∗)”.

Since
(N + 1)τ(q′) < min{τ(pi) : 1 6 i 6 k}

for any tracial state τ of A and since A has stable rank one and weak unperfora-
tion (proven in the previous section), we must have that

(N + 1)q′ ¹ pi

for 1 6 i 6 k, where “¹” means Murray–von Neumann equivalent to a subpro-
jection. So we must have that

L

∑
j=1

q′′j ¹ pi

for all i. Note that the sum on the left-hand-side is a projection since the projec-
tions q′′j are pairwise orthogonal. Hence, let v be a partial isometry inA⊗K with

initial projection
L
∑

i=1
q′′i and range projection contained in

n
∑

i=1
pi such that for all i,

there is an integer l(i) (with 1 6 l(i) 6 n) with vq′′i v∗ 6 pl(i) and with xl(i) = xji .

Let ˜̃ρ : C(X) → 1D0A1D0 be the finite dimensional ∗-homomorphism given
by ˜̃ρ( f ) = vρ̃( f )v∗ for all f ∈ C(X). Then it is clear that ˜̃ρ(1C(X)) is a projec-

tion contained in 1D0 and that h̃− ˜̃ρ is a finite dimensional ∗-homomorphism. In
particular, there is a finite dimensional ∗-homomorphism h′′ : C(X) → 1D0A1D0

which is orthogonal to ˜̃ρ such that h′′ + ˜̃ρ = h̃. (h′′ = h̃− ˜̃ρ.) Also, by (∗∗) and
(∗ ∗ ∗ ∗ ∗), we have that

‖ f − (ψ1 ⊕ ψ′0 ⊕ h′′ ⊕ ˜̃ρ)( f )‖ < δ + min
{ δ0

10
,

δ′

10
,

δ00

10

}
+

ε

100
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for all f ∈ F . We denote this inequality by “(∗ ∗ ∗ ∗ ∗∗)”.
By appropriate shifting of coordinates if necessary, we may assume that

v(q′ ⊕ 0) is a partial isometry with initial projection q′ ⊕ 0 and that v(0⊕ 1A) =
0, where the first and second coordinates are the first and second coordinates
(respectively) in the definition of E . Hence, v(q′ ⊕ 0) and 0 ⊕ q are orthogo-
nal in A ⊗ K and, by the definitions of ι and E , we must have that (v + (0 ⊕
q))E(v∗ + (0⊕ q)) = (v(q′ ⊕ 0) + (0⊕ q))E((q′ ⊕ 0)v∗ + (0⊕ q)) is a finite di-
mensional sub-C∗-algebra ofA such that (v(q′⊕ 0)+ (0⊕ q))(ι( f )⊕ψ1( f ))((q′⊕
0)v∗ + (0 ⊕ q)) = vι( f )v∗ + ψ1( f ) is within min{ δ0

10 , δ′
10 , δ00

10 } of an element of
(v + (0⊕ q))E(v∗ + (0⊕ q)) for every f ∈ F . (Recall that 1E = q′ ⊕ q.) Also,
vι(1C(X))v∗ + ψ1(1C(X)) = 1(v+(0⊕q))E(v∗+(0⊕q)). We denote the contents of this
paragraph by “(∗ ∗ ∗ ∗ ∗ ∗ ∗)”.

But by (∗ ∗ ∗), (∗ ∗ ∗∗) and the definition of ˜̃ρ, we must have that

‖v(ι(N) ◦ ψ′)( f )v∗ + vι( f )v∗ − ˜̃ρ( f )‖ <
ε

50
+

ε

100
= 3

ε

100
for every f ∈ F . Note that the first sum is a sum of orthogonal elements inA⊗K;
and also, v(ι(N) ◦ ψ′)(1C(X))v∗ and vι(1C(X))v∗ are orthogonal projections which

sum up to ˜̃ρ(1C(X)). Hence, from this and (∗ ∗ ∗ ∗ ∗∗), we have that

‖ f − (ψ1 ⊕ ψ′0 ⊕ h′′ ⊕ v(ι(N) ◦ ψ′)v∗ ⊕ vιv∗)( f )‖<δ + min
{ δ0

10
,

δ′

10
,

δ00

10

}
+ 4

ε

100

<6
ε

100
for all f ∈ F . Now note that h′′ is a finite dimensional ∗-homomorphism. Also, it
follows from (∗ ∗ ∗ ∗ ∗ ∗ ∗) that ψ1( f )⊕ vι( f )v∗ is within ε

100 of an element of the
finite dimensional C∗-algebra (v + (0⊕ q))E(v∗ + (0⊕ q)) for all f ∈ F .

Next, from the definition of ψ′0, we have that τ(ψ′0(1C(X))) < ε
100 for every

tracial state τ of A. Finally, from the definitions of ι and q′, we have that

τ(v(ι(N) ◦ ψ′)(1C(X))v∗) = τ((ι(N) ◦ ψ′)(1C(X))) 6 (N + 1)τ(q′) <
ε

100
for every tracial state τ of A.

Since ε > 0 is arbitrary, this finishes the proof.
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