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projections with respect to certain relations. Moreover, these generators and
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1. INTRODUCTION

Generating sets and relations for C∗-algebras play an important role in the
classification program of amenable C∗-algebras (to show the existence of cer-
tain ∗-homomorphisms from building block C∗-algebras to either other building
blocks or more general (even simple) C∗-algebras, see, for example, [2] and [5]),
and it has been studied extensively by several authors (see the monograph [4] of
T. Loring, for example).

Splitting tree algebras (first considered by H. Su in [6]) are certain unital sub-
C∗-algebras of homogeneous C∗-algebras with 1-dimensional spectra. More pre-
cisely, let T be a tree (as a topological space) with finitely many vertices {vi}n

i=1,
k be a natural number, and {{ki1, . . . , kiji}}

n
i=1 be n partitions of k; then a splitting

tree algebra A is defined to be

A := { f ∈ Mk(C(T)) : f (vi) ∈ Mki1
(C)⊕ · · · ⊕ Mkiji

(C) for all i}.

We call the vertices {vi} the singular points of A. In the case T only consists of
two vertices, we also call A a splitting interval algebra. (The most special case of
this — beyond just an ordinary interval algebras — is well known as the universal
unital C∗-algebra generated by two projections.)

Certain classes of inductive limits of splitting tree algebras were shown to
be classified by their K-theory information by Su in [6], and X. Jiang and Su in [3].
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Splitting tree algebras also play an important role in the present author’s Ph.D.
Dissertation [5], in which a certain class of tracially approximated splitting tree
algebras is classified by the Elliott invariant.

In [1], the authors studied a large class of sub-homogeneous C∗-algebras,
including splitting tree algebras, and showed that they are finitely presented with
respect to stable relations without giving concrete descriptions of generators and
relations. In this paper, based on the universal unital C∗-algebra generated by
two projections, we give explicit sets of generators and relations for the splitting
tree algebras which have direct sums of C at their singular points, i.e. kij = 1
for all i and j, and moreover, the generating sets are shown to consist of minimal
projections. These sets of generators and relations has been used in [5] to prove
the existence theorem for the homomorphisms from splitting interval algebras to
certain abstract algebras. (Another approach to the existence theorem, which is
more direct, was found when the author was finishing writing the thesis.)

2. GENERATORS AND RELATIONS FOR CERTAIN SPLITTING TREE ALGEBRAS

Let us start with the elementary case when the tree T only consists two
vertices and the functions split into two copies of C at these two vertices. It is
well known that this C∗-algebra is the universal unital C∗-algebra generated by
two projections. For the convenience of readers, a proof is given below.

LEMMA 2.1. The C∗-algebra S2 = { f ∈ M2(C[0, 1]) : f (0) ∈ C⊕ C, f (1) ∈
C⊕C} is the universal unital C∗-algebra generated by two projections.

Proof. Set

p′ =
(

1 0
0 0

)
and q′ =

(
t

√
t(1− t)√

t(1− t) 1− t

)
.

Then p′ and q′ are projections in S2. It is easy to see that, together with the identity,
p′ and q′ generate S2.

Let us consider the universal unital C∗-algebra A generated by two projec-
tions p and q. Let us prove that A is isomorphic to S2 by calculating the irre-
ducible representations of A, and showing that any irreducible representation of
A factors through the concrete C∗-algebra S2.

Let π be an irreducible representation ofA. To save notation, still denote by
p and q the images of the two generators respectively. One can verify that (p− q)2

belongs to the center of the image of A under π, and therefore we get

(p− q)2 = (1− t)I

for some t ∈ [0, 1].
In the case t 6= 0, 1, consider the operator v′ = (pq − pqp). A calcu-

lation shows that v′v′∗ = t(1 − t)p and v′∗v′ = t(1 − t)(I − p). Therefore,
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v := v′/
√

t(1− t) is a partial isometry with

vv∗ = p, v∗v = I − p.

So, the C∗-algebra generated by {p, v} is isomorphic to the 2× 2 matrix algebra.
Moreover, we also have

tp+(1−t)(I−p)+
√

t(1−t)v+
√

t(1−t)v∗= pq−pqp+qp−pqp+tp+(1−t)(I−p)

= pq+qp−2pqp+(p−q)2−2(p−q)2p=q.

Therefore, we conclude that π is a 2-dimensional representation, which maps p

to
(

1 0
0 0

)
and q to

(
t

√
t(1− t)√

t(1− t) 1− t

)
. It agrees with the point eval-

uation of S2 at the point t.
In the case t = 1, we have that (p− q)2 = 0. Therefore, p = q, and p and q

are in the center of the image of the algebra. Hence p = q = 0 or 1. It agrees with
the point evaluation of S2 at 0 and projection onto the lower-right corner or the
upper-left corner, respectively.

A similar argument shows that the case t = 0 gives us the point evalua-
tion of S2 at 1 and projection onto the lower-right corner or the upper-left corner.
Therefore, the irreducible representations of the quotient S2 ofA exhaust the irre-
ducible representations of A. Hence the canonical surjective map from A to S2 is
an isomorphism. This shows that S2 is the universal unital C∗-algebra generated
by two projections.

REMARK 2.2. From the proof of the previous lemma, one has that if two
projections p and q satisfy the relation

(p− q)2 = (1− t)I,

then the unital C∗-algebra generated by p and q is isomorphic to M2(C) via the
map

p 7→
(

1 0
0 0

)
, q 7→

(
t

√
t(1− t)√

t(1− t) 1− t

)
.

Using the elementary splitting interval algebra above, we have the gener-
ators and relations for a the splitting interval algebras which split into several
copies of C at the singular points.

LEMMA 2.3. The C∗-algebra

Sn = { f ∈ Mn(C[0, 1]) : f (0) ∈ C⊕ · · · ⊕C︸ ︷︷ ︸
n copies

, f (1) ∈ C⊕ · · · ⊕C︸ ︷︷ ︸
n copies

}
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is the universal C∗-algebra generated by the projections {pi}n
i=1 and {p1i}n

i=2 with the
following relations

p1 + · · ·+ pn = I,
p1i(p1 + pi) = p1i for any 2 6 i 6 n,
p1 p1i p1 = p1 p1j p1 for any 2 6 i, j 6 n.

Proof. Set

pi = diag{0, · · · 0, 1︸ ︷︷ ︸
i

, 0, · · · , 0}

and

p1i =



t 0 · · · 0
√

t(1− t) 0 · · · 0
0 0 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · 0√

t(1− t) 0 · · · 0 1− t 0 · · · 0
0 0 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · 0


.

Then one can verify that these projections satisfy the relations of the lemma, and
also generate Sn.

On the other hand, let A denote the universal unital C∗-algebra generated
by these elements subject to the relations of the lemma. Let us verify that the sum

c := (p1 − p12)2 +
n

∑
i=3

pi p1i pi

belongs to the center of A. Indeed, it is easy to verify that c commutes with
{pi} and p12. For any projection p1k with k = 3, . . . , n, in order to show that it
commutes with c, it is enough to verify that p1k commutes with (p1 − p12)2 +
pk p1k pk. Using the identity p1 p12 p1 = p1 p1k p1, one can conclude

p1(p1 − p12)2 p1 = p1(p1 − p1k)2 p1.

Together with the observation that pk(= (p1 + pk) − p1) commutes with (p1 −
p1k)2, we have

(p1 − p12)2 + pk p1k pk = p1(p1 − p12)2 p1 + p2(p1 − p12)2 p2 + pk p1k pk

= p1(p1 − p1k)2 p1 + p2(p1 − p12)2 p2 + pk(p1 − p1k)2 pk

= (p1 − p1k)2 + p2 p12 p2.

It is clear that p1k commutes with (p1 − p1k)2 + p2 p12 p2. In particular, p1k com-
mutes with (p1 − p12)2 + pk p1k pk and hence commutes with c.
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Since c is a sum of mutually orthogonal elements with norm at most one,
the norm of c is at most one. Therefore, for any irreducible representation π of A,
we have

π(c) = π
(
(p1 − p12)2 +

n

∑
i=3

pi p1i pi

)
= (1− t)I

for some t ∈ [0, 1]. For simplicity, let us use the same notation for the images of
the generators under π.

In the case t = 1, we have that pi p1i pi = 0 for i > 3, and p1 = p12. It follows
that the image of A is a commutative C∗-algebra. Therefore, π is a 1-dimensional
representation, and only one of the pi’s, say pm, is non-zero. This projection must
be the unit of the image. If m = 1, then we have

p1 p1i = p1i, p1 p1i p1 = p1 p1j p1,

and hence p1i = p1j. In particular, p1i = p12 = p1 = 1. If m 6= 1, then we have
that p1m = pm p1m = 0 and p1i = p1i(p1 + pi) = 0 if i 6= m. Therefore, π agrees
with the point evaluation of Sn at t = 1 and projection onto the mth coordinate.

In the case t = 0, we have

(p1 − p12)2 +
n

∑
i=3

pi p1i pi = 1.

Therefore, one concludes that

p1 =
(
(p1 − p12)2 +

n

∑
n=3

pi p1i pi

)
p1 = (p1 − p12)2 p1 = p1 + p1 p1i p1, 1 6 i 6 n,

which implies p1 p1i p1 = 0. Hence the projections p1 and p1i are orthogonal.
Moreover, the projections p1i and p1j are also orthogonal if i 6= j. The image of
A is then a commutative C∗-algebra, and only one of {p1, . . . , pm} is non-zero
(and hence to be the identity). Denote this non-zero projection by pm. Using an
argument similar to the case of t = 1, we can show that π agrees with the point
evaluation of Sn at t = 0 and projection onto the mth coordinate.

If t 6= 0, 1, consider the element v′i := p1 p1i − p1 p1i p1. A calculation shows
that v′iv

′
i
∗ = t(1− t)p1 and v′i

∗v′i = t(1− t)pi. Then by setting e1i = v′i/
√

t(1− t),
one gets a system of matrix units {eij : i, j = 1, . . . , m} such that p1 = e1ie∗1i = e11,
pi = e∗1ie1i = eii and

p1i = te11 + (1− t)eii +
√

t(1− t)e1i +
√

t(1− t)e∗1i.

Therefore, the representation π is n-dimensional, and we have

pi 7→ diag{0, . . . 0, 1︸ ︷︷ ︸
i

, 0, . . . , 0}
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and

p1i 7→



t 0 · · · 0
√

t(1− t) 0 · · · 0
0 0 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · 0√

t(1− t) 0 · · · 0 1− t 0 · · · 0
0 0 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · 0


in this system of matrix units. It agrees with the point evaluation of Sn at the
point t. Hence, the irreducible representations of the quotient Sn of A exhaust
the irreducible representations of A, and therefore the concrete C∗-algebra Sn is
isomorphic to A. In other words, Sn is the universal C∗-algebra of the generators
and relations of the lemma.

In the following, let us consider certain splitting tree algebras with more
than two singular points. Let us first consider the special case when the tree is
the interval [0, n] with integers i, 0 6 i 6 n, as vertices. For a natural number n,
denote by An the C∗-algebra

An := { f ∈ M2(C[0, n]) : f (i) ∈ C⊕C for all i ∈ Z, 0 6 i 6 n}.

Then we have the following lemma.

LEMMA 2.4. The C∗-algebra An defined above is the universal C∗-algebra gener-
ated by the projections {p, q, pi : i = 0, . . . , n− 1} with the relations

p + q = 1,
(p− pi)(q− pj) = 0 for any j > i.

Proof. Let p denote the projection in An which is the constant function

p =
(

1 0
0 0

)
,

and let q denote its complement. Denote by pi the projection in An which takes

the constant
(

0 0
0 1

)
between 0 and i, takes value(

t− i
√

(t− i)(i + 1− t)√
(t− i)(i + 1− t) i + 1− t

)

at the point t between i and i + 1 and takes
(

1 0
0 0

)
between i + 1 and n. Then

p, q, p0, . . . , pn−1 generate An and satisfy the relations of the lemma.
On the other hand, denote by An the universal C∗-algebra generated by the

generators and relations of the lemma. For each i = 0, . . . , n− 1, let us show that
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(p− pi)2 commutes with {p, q, pj : j = 0, . . . , n− 1}. For any projection pj with
j > i, since (p− pi)(q− pj) = 0, we have

(p− pi)q = (p− pi)pj.

Therefore
(p− pi)2 pj = (p− pi)2q = q(p− pi)2 = pj(p− pi)2,

and hence the projection pj commutes with (p− pi)2. For any projection pj with
j < i, a similar argument shows pj commutes with (q− pi)2. Since (p− pi)2 =
1− (q − pi)2, we have that pj commutes with (p − pi)2. Therefore, the element
(p− pi)2 is a central element of A.

Consider the central elements {(p− pi)2(1− (p− pi)2) : i = 0, . . . , n− 1}.
Let us first show that they are orthogonal to each other. In fact, for any pair of
elements (p − pi)2(1− (p − pi)2) and (p − pj)2(1− (p − pj)2) with i < j, since
1− (p− pj)2 = (q− pj)2 and (p− pi)(q− pj) = 0, we have

(p− pi)2(1− (p− pi)2) · (p− pj)2(1− (p− pj)2)

= (1− (p− pi)2)(p− pi)2(q− pj)2(p− pj)2 = 0.

Let π be a irreducible representation of An. For simplicity of notation, let
us use the same notation for the images of the generators under π. Since π is
irreducible, any central element must be a scalar multiple of 1. Moreover, since
{(p− pi)2(1− (p− pi)2) : i = 0, . . . , n− 1} are mutually orthogonal central ele-
ments, at most one of them, say (p− pk)2(1− (p− pk)2), is non-zero. Note that
if (p − pi)2(1 − (p − pi)2) = 0, then (p − pi)2 is a projection. Moreover, since
(p − pi)2 is a scalar multiple of 1, it must be the trivial projection, i.e., (p − pi)2

must be 0 or 1.
If (p− pk)2 = (1− t)1 with t ∈ (0, 1), since (p− pi)(q− pj) = 0 for any pair

i, j with j > i and (p − pk)2 = 1− (q − pk)2, we have that (p − pi)2 = 0 for all
i < k, and (q− pi)2 = 0 for all i > k. Therefore, we have that pi = p if i < k, and
pi = 1− p = q if i > k. The image of An is then generated by the projections p
and pk with the relation (p− pk)2 = (1− t)1. By Remark 2.2, the image of An is
isomorphic to M2(C) with the map

p 7→
(

1 0
0 0

)
, pk 7→

(
t

√
t(1− t)√

t(1− t) 1− t

)
.

Hence π agrees with the point evaluation of the concrete algebra An at the point
i + t.

If (p− pi)2(1− (p− pi)2) = 0 for any i = 0, . . . , n− 1, then (p− pi)2 = 0 or
1. Set

k = min{i : (p− pi)2 = 1},

and set k = n if (p − pi)2 = 0 for any i = 0, . . . , n − 1. Then we assert that
(q− pi)2 = 0 for any i > k. Indeed, since (p− pk)2 = 1 by the choice of k, for any
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i > k, we have
(q− pi)2 = (q− pi)2(p− pk)2 = 0.

Also by the choice of k, we have that (p− pi)2 = 0 for any i < k. Hence, one has
that pi = p for any i < k, and pi = q for all i > k. Therefore, the image of An is
generated by p and q. Since π is irreducible and p and q are orthogonal, one of
the projections p and q must be 0 under π, and π is one-dimensional. Therefore
the irreducible representation π of An coincides with the point evaluations of An
at k and projection onto the coordinate corresponding to the non-zero projection
of {p, q}.

This shows that the irreducible representations of An exhaust the irreducible
representations ofAn which implies thatAn is isomorphic to the concrete algebra
An.

Based on the argument above, we have the generators and relations for the
splitting tree algebra An,m defined as follows:

An,m := { f ∈ Mm(C[0, n]) : f (i) ∈ C⊕ · · · ⊕C︸ ︷︷ ︸
m copies

for all i ∈ Z, 0 6 i 6 n}.

THEOREM 2.5. The C∗-algebra An,m is the universal algebra generated by the
projections {pk}m

k=1 and {pij}, where 0 6 i 6 n− 1 and 2 6 j 6 m, with the relations:

p1 + · · ·+ pm = 1,
pij(p1 + pj) = pij, for any i, j,
p1 pij1 p1 = p1 pij2 p1 for any i, j1, j2, and
(p1 − pi1 j1)(pj2 − pi2 j2) = 0 for any i1 < i2.

Proof. We only sketch the proof here. Denote by pk the constant-valued
function

diag{0, . . . , 0, 1︸ ︷︷ ︸
k

, 0, . . . , 0}.

Let pij denote the function which takes the constant value

diag{0, . . . , 0, 1︸ ︷︷ ︸
j

, 0, . . . , 0}

between 0 and i, takes the value

t− i 0 · · · 0
√

(t− i)(i + 1− t) 0 · · · 0
0 0 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · 0√

(t− i)(i + 1− t) 0 · · · 0 i + 1− t 0 · · · 0
0 0 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · 0


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at the point t between i and i + 1, and takes the constant value

diag{1, . . . , 0, 0, 0, . . . , 0}
between i + 1 and n. These projections generate the C∗-algebra An,m and satisfy
the relations of the theorem.

On the other hand, consider the universal algebra An,m generated by the
generators and relations of the theorem. For each 0 6 i 6 n− 1, set

bi = (p1 − pi2)2 +
m

∑
j=3

pj pij pj,

and let us verify that bi is a central element. Indeed, it is clear that bi commutes
with {pk} and pi2. In order to show the projection pjk commutes with bi, it is
enough to verify that pjk commutes with (p1 − pi2)2 + pk pij pk.

The same argument as Lemma 2.3 shows

(p1 − pi2)2 + pk pij pk = (p1 − pik)2 + p2 pi2 p2.

Therefore, the projections {pij : j = 2, . . . , m} commutes with bi. For any projec-
tion pjk with j > i, since (p1 − pik)(pk − pjk) = 0, we have

(p1 − pik)pk = (p1 − pik)pjk.

Hence

pjk(p1 − pik)2 = pk(p1 − pik)2 = (p1 − pik)2 pk = (p1 − pik)2 pjk.

Therefore pjk commutes with bi. A similar argument shows that pjk commutes
with bi for any j < i. Therefore, bi is a central element. Moreover, if we set
ci = bi(1− bi), then {ci} are mutually orthogonal.

Let π be an irreducible representation of An,m, and let us still use the same
notation for the image under π. Since π is irreducible, each bi and ci must be a
scale multiple of 1, and at most one of {ci}, say ck, is non-zero. Note that if ci = 0,
then bi = 0 or bi = 1. In each case, similar arguments as of Lemma 2.3 show that
pij is in the C∗-algebra generated by {p1, . . . , pm}.

If bk = (pi − pk2)2 +
m
∑

j=3
pj pkj pj = (1− t)1 for some t ∈ (0, 1), a calculation

as that of Lemma 2.3 shows that π agrees with the point evaluation map of An,m
at k + t.

If bi = 0 or bi = 1 for any i = 0, . . . , n− 1, then set

k := min{i : bi = 1},

and set k = n if bi = 0 for any i = 0, . . . , n − 1. Similar arguments as those of
Lemma 2.3 and Lemma 2.4 show that π agrees with the point evaluation map
of An,m at k and projection onto the coordinate corresponding to the non-zero
projection of {p1, . . . , pm}.

Therefore, the C∗-algebra An,m is the universal C∗-algebra of the generators
and relations of the theorem.
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Let us study the generating sets for certain splitting tree algebras over a
general tree. Let T be a rooted tree, and denote by {vi}n

i=1 its vertices. Then there
is a natural partial order on the vertices defined as the following.

Fix one vertex, say v1, as the root of the tree. Then, for any two vertices vi
and vj, we define vi > vj if the the minimal path between vj and v1 contains the
minimal path between vi and v1. We say vj is a child of vi, or vi is an ancestor of
vj. It is clear that v1 is the maximal element, and any finite subset of {vi}n

i=1 has a
unique minimal upper bound.

On the other hand, for any partial order on a finite set {vi}n
i=1 with a maxi-

mal element v1, if it has the property that the minimal upper bound of any subset
is unique, then there is a canonical way to construct a rooted tree T which has
{vi}n

i=1 as its vertices and the partial order induced by T is the given order. It
can be described as follows. To construct such a tree with vertices {vi}n

i=1, it is
enough to determine edges connecting the vertices. For a vertex vi, define the set
Ei to be

Ei = {vj : vj < vi and there does not exist a vertex vk such that vj < vk < vi}.

In other words, Ei is the set of the closest children of vi. Then one can put an edge
between vi and each point of Ei. Starting with the maximal element v1, one can
get a graph which is determined by Ei and therefore by the given partial order.
This graph is actually a tree, since the minimal upper bound of any subset is
unique. Denote by [vi, vj] the edge connecting vi and vj if there exists one.

LEMMA 2.6. Let {v1, v2, . . . , vn} be a partially ordered set with the partial order
induced by a rooted tree T, i.e., there exists a maximal element, say v1, and the minimal
upper bound of any subset is unique. Then the C∗-algebra

A := { f ∈ M2(C(T)) : f (vi) ∈ C⊕C, i = 1, . . . , n}

is the universal C∗-algebra generated by the projections {p, q, pi : i = 2, . . . , n} with
respect to the following relations:

p + q = 1,
(p− pi)(p− pj) = 0 if vj and vi can not be compared,
(p− pi)(q− pj) = 0 if vi < vj.

Proof. The proof goes along the same line as that of Lemma 2.4 by calcu-
lating the irreducible representations. Let p be the projection in A which is the
constant function

p =
(

1 0
0 0

)
,

and let q be its complement.
For each vertex vi, i = 2, . . . , n, denote by v′i the closest ancestor of vi. De-

note by Ei the set consisting of vi itself and all the children of vi, and denote by
Di the set of the vertices which are not in Ei. (Note that the only edge connecting
Di and Ei is the edge [v′i, vi].) Let us define the projection pi in A piecewisely. The
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projection pi takes the constant value
(

1 0
0 0

)
on the edges connecting vertices

in Di, takes the value
(

1− t
√

t(1− t)√
t(1− t) t

)
at the point t on edges con-

necting v′i and vi (regarding the edge [v′i, vi] as the interval [0, 1]), and takes the

constant value
(

0 0
0 1

)
on the remaining edges. In the construction of pi, the

values of pi agree with each other on the vertex v′i (which corresponds to t = 0)
and the vertex vi (which corresponds to t = 1), therefore pi is a continuous pro-
jection valued function on T. Moreover, the set of projections {p, q, p2, . . . , pn}
generates A and satisfies the relations of the lemma.

On the other hand, let A be the universal C∗-algebra generated by

{p, q, pi : i = 2, . . . , n}

with respect to the relations of the lemma. We shall show that (p− pi)2 is a central
element of A for all i.

Fix (p − pi)2. It is clear that (p − pi)2 commutes with the projections p, q,
and pi. For any vj > vi, we have (p− pi)(q− pj) = 0. Therefore,

(p− pi)q = (p− pi)pj.

Hence we have

(p− pi)2 pj = (p− pi)2q = q(p− pi)2 = pj(p− pi)2,

and therefore the projection pj commutes with (p − pi)2. Interchanging pi with
pj, the same argument shows that any projection pj with vj < vi commutes with
(q − pi)2. Since (p − pi)2 = 1 − (q − pi)2, we have that (p − pi)2 commutes
with pj for any child vj of vi. If vi and vj are not comparable, then we have
(p− pi)(p− pj) = 0, and hence

(p− pi)p = (p− pi)pj.

A direct calculation also shows that (p− pi)2 commutes with pj. Thus the element
(p− pi)2 commutes with all projections {p, q, pi : i = 2, . . . , n}, and it is a central
element of A.

Consider any pair of elements (p − pi)2(1 − (p − pi)2) and (p − pj)2(1 −
(p− pj)2). Note that (p− pj)2 = 1− (q− pj)2. If vj < vi or vi < vj, we then have

(p− pi)2(1− (p− pi)2) · (p− pj)2(1− (p− pj)2)

= (1− (p− pi)2)(p− pi)2(q− pj)2(p− pj)2 = 0.

If vi and vj can not be compared, we then have

(p− pi)2(1− (p− pi)2) · (p− pj)2(1− (p− pj)2)

= (1− (p− pi)2)(p− pi)2(p− pj)2(1− (p− pj)2) = 0.
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Therefore, the positive elements (p− pi)2(1− (p− pi)2), i = 1, . . . , n are orthog-
onal to each other.

We shall show that the irreducible representations of A can be parameter-
ized by the tree T (with splitting at the vertices.). Let π be an irreducible repre-
sentation of A, and let us use the same notation for the image of {p, q, pi}. Since
π is irreducible and (p− pi)2(1− (p− pi)2), i = 1, . . . , n are mutually orthogonal
central elements, we have that at most one of them, say (p−pk)2(1−(p−pk)2),
is non-zero. Note that if (p−pi)2(1−(p−pi)2) = 0 for some i, then the central
element (p−pi)2 is a projection, and hence must be 0 or 1 by the irreducibility
of π.

If (p − pk)2 = t1 with t ∈ (0, 1), since (p − pi)(q − pk) = 0 for all vk >
vi, and (p − pi)(p − pk) = 0 if vi and vk can not be compared, we have that
(p− pi)2 = 0 for any vi that is not comparable to vk or is an ancestor of vk, and
(q − pi)2 = 0 for any child vi of vk. Therefore, we get pi = p for any vi that is
not comparable to vk or is an ancestor of vk, and pi = 1− p = q for any child vi
of vk. Hence the image of A is generated by the projections p and pk. with the
relation (p− pk)2 = t1. By Remark 2.2, the representation π agrees with the point
evaluation of A at the point t between v′k and vk (recall that we regard the edge
[v′k, vk] as [0, 1]).

If (p− pi)2 = 0, 1 for all vi, denote by

S := {vi : (p− pi)2 = 1}.

We assert that if vk ∈ S, then any ancestor of vk belongs to S, and (p− pi)2 = 0
for any vi which is not comparable to vk. Indeed, if vk ∈ S, then (p− pk)2 = 1.
One has

(p− pi)2 = 1− (q− pi)2 = 1− (q− pi)2(p− pk)2 = 1

for all vi > vk, and

(p− pi)2 = (p− pi)2(p− pk)2 = 0

for all vi which can not be compared with vk. Therefore, if the set S is non-empty,
the minimal element of the set S exists and is unique. Let us denote by vk this
minimal element if it exists, and set vk = v1 if S is empty. Then one has

(p− pi)2 = 0

for any vi a child of vk or vi is not comparable to vk, and

(q− pi)2 = 1− (p− pi)2 = 0

otherwise. Therefore, we have that pi = p if vi is a child of vk or vi is not com-
parable to vk, and pi = q otherwise. Hence the image of A under π is generated
by the orthogonal projections p and q. Since π is irreducible, one of the projec-
tions p and q must be sent to zero. Then the irreducible representation π of A
coincides with the point evaluation of A at vk and projection onto the coordinate
corresponding to the non-zero projection of {p, q}.
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Therefore the irreducible representations of A exhaust the irreducible rep-
resentation of A, and hence A is isomorphic to A, as desired.

Based on the lemma above, we have the following description of the gener-
ators and relations for a splitting tree algebra which splits into copies of C at the
singular points.

THEOREM 2.7. Let {v1, v2, . . . , vn} be a partially ordered set with the partial or-
der induced by a rooted tree T, i.e., there exists a maximal element, say v1, and the mini-
mal upper bound of any subset is unique. Let m be a natural number. Then the C∗-algebra

A := { f ∈ Mm(C(T)) : f (vi) ∈ C⊕ · · · ⊕C︸ ︷︷ ︸
m copies

, i = 1, . . . , n}

is the universal C∗-algebra generated by the projections {pk}m
k=1 and {pij}, where 2 6

i 6 n and 2 6 j 6 m, with respect to the following relations:

p1 + · · ·+ pm = 1,
pij(p1 + pj) = pij, for any i, j,
p1 pij1 p1 = p1 pij2 p1 for any i, j1, j2,
(p1 − pi1 j1)(p1 − pi2 j2) = 0 if vi1 and vi2 can not be compared,
(p1 − pi1 j1)(pj2 − pi2 j2) = 0 if vi1 < vi2 .

Proof. The proof is the routine calculation of the irreducible representations.
We only sketch it here.

Set pk to be the projection of A which is the constant function

pk = diag{0, . . . , 0, 1︸ ︷︷ ︸
k

, 0, . . . , 0}.

For each vertex vi, i = 2, . . . , n, denote by v′i be the closest ancestor of vi. Denote
by Ei the set consisting of vi itself and all the children of vi, and denote by Di the
set of the vertices which are not in Ei. (Note that the only edge connecting Di
and Ei is the edge [v′i, vi].) Let us define the projection pij in A piecewisely. The
projection pij takes the constant value

diag(1, 0, . . . , 0)

on the edges connecting vertices in Di, takes the value

1− t 0 · · · 0
√

t(1− t) 0 · · · 0
0 0 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · 0√

t(1− t) 0 · · · 0 t 0 · · · 0
0 0 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · 0


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at the point t between v′i and vi (regarding the edge [v′i, vi] as the interval [0, 1]),
and takes the constant value

diag{0, . . . , 0, 1︸ ︷︷ ︸
j

, 0, . . . , 0}

on the remaining edges. Since the values of pij agree with each other on the vertex
v′i (which corresponds to t = 0) and the vertex vi (which corresponds to t = 1),
pij is a well defined continuous projection valued function on T. A direct cal-
culation together with the Stone–Weierstrass theorem show that the projections
{pk, pij}i,j,k satisfy the relations of the theorem and generate A.

On the other hand, denote by A the universal C∗-algebra of the generators
and relations of the theorem. Let us show that the element

bi := (p1 − pi2)2 +
m

∑
j=3

pj pij pj

is a central element of A for each 2 6 i 6 n. It is clear that bi commutes with pi2
and each pk, k = 1, . . . , m. For any 2 6 k 6 m and 2 6 j 6 n, in order to show
that the projection pjk commutes with bi, it is enough to verify that pjk commutes
with (p1 − pi2)2 + pk pik pk.

With a similar argument as that of Lemma 2.3, we have

(p1 − pi2)2 + pk pik pk = (p1 − pik)2 + p2 pi2 p2.

If j = i, it is clear that pjk commutes with (p1 − pik)2 + p2 pi2 p2, and hence com-
mutes with bi. If vj is not comparable to vi, since (p1 − pjk)(p1 − pik) = 0, we
have

p1(p1 − pik) = pjk(p1 − pik).

Therefore, pjk commutes with (p1 − pik)2 and hence commutes with bi. A similar
argument also shows that pjk commutes with bi if vj is a child of vi or vi is a child
of vj. Therefore, the elements {bi : i = 2, . . . , n} are central in A.

Moreover, it can be verified that the elements ci := bi(1− bi), i = 2, . . . , n,
are mutually orthogonal. Thus, for any irreducible representation π of A, the
images of {ci : i = 2, . . . , n} are scalar multiples, and we have at most one of
them is non-zero.

If ck is non-zero, then bk = t1 for some t ∈ (0, 1). Arguments similar to those
of Lemma 2.3 and Lemma 2.6 show that π coincides with the point evaluation of
A at the point t in [v′k, vk] (recall we regard the edge [v′k, vk] as the unit interval
[0, 1]).

If ck is zero for any k = 2, . . . , n, denote by

S = {vi : bi = 1}.

An argument similar to that of Lemma 2.6 shows that S has a unique minimal el-
ement if S is non-empty. Set vk to be the minimal element of S if it exists, and set
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vk = v1 if S is empty. Then it can be verified that the image of A under π is gener-
ated by {p1, . . . , pm}, and π agrees with the evaluation of A at vk and projection
onto the coordinate corresponding to the non-zero projection of {p1, . . . , pm}.

Therefore, the irreducible representations of A exhaust all the irreducible
representations of A, and hence A is isomorphic to A, as desired.
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