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1. INTRODUCTION

Suppose H is a separable complex Hilbert space and B(H) is the algebra
of bounded linear operators on H. In this paper, we explore the common cyclic
vectors for certain classes of unitary operators on H. An operator U ∈ B(H) is
cyclic if there is an x0 ∈ H such that∨

{Unx0 : n ∈ N0} = H.

In the above equation,
∨

is the closed linear span in H and N0 = N ∪ {0}. The
vector x0 is called a cyclic vector for U. If U is unitary and cyclic with σ(U) = T,
where T := {eiθ : 0 6 θ < 2π}, the spectral theorem assigns to each ψ ∈ C(T)
(the complex-valued continuous functions on T), an operator ψ(U) ∈ C∗(U) (the
C∗-algebra generated by U). Furthermore, if µ is the scalar-valued spectral mea-
sure for U, the map ψ(U) 7→ (Mψ, L2(µ)) is a spatial isomorphism of C∗(U) onto
{(Mψ, L2(µ)) : ψ ∈ C(T)}. We will use the notation (Mψ, L2(µ)) for the multipli-
cation operator Mψ : L2(µ)→ L2(µ) defined by

Mψ f = ψ f , f ∈ L2(µ).

Recall that two sets of operators S1 ⊂ B(H1) and S2 ⊂ B(H2) are spatially iso-
morphic if there is a unitary operator U : H1 → H2 such that US1U−1 = S2.
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The restriction of the map ψ(U) 7→ (Mψ, L2(µ)) to the class of cyclic unitary
operators in C∗(U) establishes a spatial isomorphism between this class and

(1.1) {(Mψ, L2(µ)) : ψ ∈ H(T)},

where H(T) are the homeomorphisms of T. We refer the reader to [5] for the
details of the above discussion.

In this paper we ask whether the class of multiplication operators in equa-
tion (1.1) has a common cyclic vector. In other words, is there one function
f ∈ L2(µ) that is a cyclic vector for every Mψ, ψ ∈ H(T)? The answer, a com-
bination of Proposition 2.3 in [11], and Theorem 4.1, is contained in the following
theorem.

THEOREM 1.1. Let µ be a finite positive Borel measure on T whose support is T.
If µ is discrete, then the class in equation (1.1) has a common cyclic vector while if µ is
continuous, the class in equation (1.1) does not have a common cyclic vector.

When the measure µ is discrete, the existence of a common cyclic vector for
the class in equation (1.1) was shown by Sibilev [11] (see also [9]). When µ is
continuous, the current authors in [9] proved that the larger class of multiplica-
tion operators on L2(µ) whose symbols are univalent µ-almost everywhere does
not have a common cyclic vector. In fact, the papers [9], [11] deal with the more
general problem of determining if the cyclic operators in W∗(N), the von Neu-
mann algebra generated by a cyclic normal operator N ∈ B(H) have a common
cyclic vector. When the scalar-valued spectral measure for N is continuous, the
current authors in [9] show that the cyclic operators in W∗(N) do not have a
common cyclic vector. They do this by first proving the result when N is the op-
erator N0 := (Mz, L2(m)), where m is normalized Lebesgue measure on T. Then,
by means of Lebesgue spaces [6], they prove the result for W∗(N) by establish-
ing a spatial isomorphism between the cyclic operators inW∗(N) and the cyclic
operators inW∗(N0).

Using standard techniques (see Proposition 2.3 and the final remark at the
end of the paper), we reduce our common cyclic vector problem to the case where
µ = m. In this case (see Theorem 4.1, Theorem 5.1, and Theorem 5.2 below), we
have the following theorem.

THEOREM 1.2. Let B denote the homeomorphisms h of [0, 2π] such that h is abso-
lutely continuous with h′ 6= 0 almost everywhere and B1 denote the h ∈ B such that h−1

is Lipschitz in some interval Ih.
(i) The class {(Meih , L2(m)) : h ∈ B} does not have a common cyclic vector.

(ii) The class {(Meih , L2(m)) : h ∈ B1} does have a common cyclic vector and in
fact, φ ∈ L2(m) is a common cyclic vector for this class if and only if |φ| > 0 almost
everywhere and log |φ| is not integrable on any arc of T.

As an aside, we point out that {Meih : h ∈ B} are precisely the cyclic unitary
operators in C∗(N0) which are unitarily equivalent to N0.
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We also address the following question. For a given set A of φ∈L2(m) such
that |φ| > 0 almost everywhere, what are the multiplication operators Mψ, ψ ∈
H(T), which have A as common cyclic vectors? Reversing this question, we ask,
for a given set A⊂{Mψ : ψ∈H(T)}, what are the common cyclic vectors for A?

The study of common cyclic vectors is not new. For example, the papers
[1], [12] study common cyclic vectors for adjoints of multiplication operators on
various Banach spaces of analytic functions.

2. BASIC FACTS ABOUT CYCLIC OPERATORS

Let us mention a few facts about cyclic multiplication operators and then
establish a spatial isomorphism between the classes

{(Mψ, L2(µ)) : ψ ∈ H(T)} and {(Mψ, L2(m)) : ψ ∈ H(T)}
when µ is a continuous probability measure on T whose support is all of T. We
start with two results for general positive, finite, compactly supported, Borel mea-
sures µ on the plane. The first result is trivial.

PROPOSITION 2.1. If ψ∈L∞(µ) and φ∈L2(µ) is a cyclic vector for (Mψ, L2(µ)),
then |φ| > 0 µ-a.e.

This next result is a bit more complicated.

PROPOSITION 2.2. The operator (Mψ, L2(µ)) is cyclic if and only if ψ is injective
on a set of full µ-measure.

Proof. When ψ is injective on a set of full µ-measure, the change of variables
formula on p. 180 in [7] shows that the operator

(2.1) V : L2(µ)→ L2(µ ◦ ψ−1), V f := f ◦ ψ−1,

is unitary and
V(Mψ, L2(µ)) = (Mz, L2(µ ◦ ψ−1))V.

Thus to show that (Mψ, L2(µ)) is cyclic, it is enough to show that the operator
(Mz, L2(µ ◦ ψ−1)) is cyclic. This last fact is a beautiful result of Bram ([2], Theo-
rem 6). The other direction of the proof is a bit more delicate ([10], Lemma 3.1).

We now show that we can focus our attention on the class

{(Mψ, L2(m)) : ψ ∈ H(T)}.

PROPOSITION 2.3. For a continuous probability measure µ on T whose support
is all of T, the C∗-algebras C∗(Mz, L2(µ)) and C∗(Mz, L2(m)) are spatially isomorphic.
Moreover, the classes

{(Mψ, L2(µ)) : ψ ∈ H(T)} and {(Mψ, L2(m)) : ψ ∈ H(T)}
are spatially isomorphic.
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Proof. The measure µ1 on [0, 2π] defined by

µ1(E) := µ({eiθ : θ ∈ E}), E ⊂ [0, 2π],

is a continuous probability measure on [0, 2π] whose support is all of [0, 2π]. Con-
sequently, the distribution function

h(θ) := 2πµ1([0, θ]), θ ∈ [0, 2π],

is continuous and strictly increasing with h(0) = 0 and h(2π) = 2π. That is to
say, h is a homeomorphism of [0, 2π] and hence

ψ(eiθ) := eih(θ) ∈ H(T).

Since

µ1([a, b]) =
1

2π
(h(b)− h(a)),

the pull-back measure µ1 ◦ h−1 is m1/2π, where m1 is Lebesgue measure on
[0, 2π]. Thus µ ◦ ψ−1 = m. Hence the operator V : L2(µ)→ L2(m) from equation
(2.1) is unitary and, for ϕ ∈ H(T),

V(Mϕ, L2(µ)) = (Mϕ◦ψ−1 , L2(m))V.

It follows from the spectral theorem that the map

(Mϕ, L2(µ)) 7→ (Mϕ◦ψ−1 , L2(m))

is the desired spatial isomorphism.

Thus, in order to study cyclic vector questions for

{(Mψ, L2(µ)) : ψ ∈ H(T)},

it suffices to consider the class

{(Mψ, L2(m)) : ψ ∈ H(T)}.

REMARK 2.4. The notation (Mψ, L2(m)) is somewhat cumbersome and is
unnecessary beyond this point since, for the rest of the paper, we will be restrict-
ing our discussion to multiplication operators on L2(m). Thus we will use Mψ to
denote (Mψ, L2(m)).

This next result is known. However, for the benefit of the reader, we include
a short proof.

PROPOSITION 2.5. Let ψ ∈ H(T). A function φ ∈ L2(m) is cyclic for Mψ if and
only if the following two conditions are satisfied:

|φ| > 0 almost everywhere;(2.2)

inf
p

∫
T

|p(ψ)φ− ψφ|2dm = 0.(2.3)
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REMARK 2.6. In equation (2.3) and throughout this paper, the expression

inf
p

will mean the infimum over all analytic polynomials p with complex coefficients.

Proof. If φ is cyclic for Mψ, then, using Proposition 2.1, the two conditions
hold. Now suppose that the conditions in equation (2.2) and equation (2.3) hold.
Then there is a sequence of polynomials (pn)n>1 such that pn(ψ)φ → ψφ in the
norm of L2(m) as n → ∞. For any analytic polynomial q, notice that q(ψ)pn(ψ)φ

→ q(ψ)ψφ in L2(m). From here it follows that∨
{ψnψ

m
φ : m, n ∈ N0} ⊂

∨
{ψnφ : n ∈ N0}.

Since ψ is a homeomorphism of T, the Stone–Weierstrass theorem says that the
complex, uniformly closed, ∗-algebra generated by ψ is equal to C(T). This, to-
gether with the fact that |φ| > 0 almost everywhere, will show that

L2(m) =
∨
{ψnψ

m
φ : m, n ∈ N0} ⊂

∨
{ψnφ : n ∈ N0}.

This proves that φ is cyclic for Mψ.

A famous theorem of Szegö gives a formula for the infimum on the left-hand
side of equation (2.3) when ψ(eiθ) = eiθ and thus gives a complete characteriza-
tion of the cyclic vectors for Meiθ . The general form of Szegö’s theorem is the
following ([5], p. 143).

THEOREM 2.7 (Szegö). For a positive finite Borel measure µ on T,

(2.4) inf
p

∫
T

|p− z|2dµ = exp
( ∫

T

log
( dµ

dm

)
dm
)

.

COROLLARY 2.8. A function φ ∈ L2(m) is cyclic for Meiθ if and only if |φ| > 0
almost everywhere and log |φ| is not integrable on T.

Proof. Apply Proposition 2.5 and Szegö’s theorem to the measure dµ =
|φ|2dm.

3. AN EXTENSION OF SZEGÖ’S FORMULA

To discuss cyclic and common cyclic vectors, we need the following two
extensions of Szegö’s formula. These two extensions are basically two changes of
variables and a use of the classical Szegö’s theorem. Let us recall the following
version of the change of variable formula ([7], p. 344).
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PROPOSITION 3.1. Suppose τ is an absolutely continuous homeomorphism of
[0, 2π] and f ∈ L1[0, 2π]. Then we have ( f ◦ τ)|τ′| ∈ L1[0, 2π] and

2π∫
0

f (t)dt =
2π∫
0

f ◦ τ(x)|τ′(x)|dx.

If ψ ∈ H(T), then ψ = eiceih, where h is a homeomorphism of [0, 2π] and
c is a real constant. Since multiplication by the complex constant eic preserves
cyclicity, we assume henceforth that c = 0. Note that h and h−1 are strictly mono-
tone and hence are of bounded variation. Thus their derivatives exist and are
finite almost everywhere, they can be written uniquely (up to additive constants)
as the sum of an absolutely continuous and a singular function, etc. (see [7], [8]).

THEOREM 3.2. Suppose ψ = eih ∈ H(T). Then for φ ∈ L2(m) we have

inf
p

∫
T

|p(ψ)φ− ψφ|2dm = exp
( 2π∫

0

log(|φ(eih−1(θ))|2|(h−1)′(θ)|) dθ

2π

)
.

Proof. Without loss of generality, assume that h−1 is increasing. By the
Lebesgue decomposition theorem,

h−1 = (h−1)a + (h−1)s

where (h−1)a and (h−1)s are the absolutely continuous and singular parts of h−1.
Notice also that

(3.1)
d(m1 ◦ h−1)

dm1
= ((h−1)a)′ = (h−1)′ a.e.

Then we have

inf
p

∫
T

|p(ψ)φ− ψφ|2dm

= inf
p

∫
T

|p(ψ)− ψ|2|φ|2dm

= inf
p

2π∫
0

|p(eih(θ))− e−ih(θ)|2|φ(eiθ)|2 dθ

2π

= inf
p

2π∫
0

|p(eiθ)− e−iθ |2|φ(eih−1(θ))|2d
(m1

2π
◦ h−1

)

= exp
( 2π∫

0

log
(
|φ(eih−1(θ))|2 d(m1 ◦ h−1)

dm1

) dθ

2π

)
(Theorem 2.7)
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= exp
( 2π∫

0

log(|φ(eih−1(θ))|2(h−1)′(θ))
dθ

2π

)
(equation (3.1)).

Recall from the introduction that B denotes the class of absolutely continu-
ous homeomorphisms h of [0, 2π] such that h′ 6= 0 almost everywhere.

THEOREM 3.3. Suppose ψ = eih, where h ∈ B. Then for any φ ∈ L2(m), we
have

inf
p

∫
T

|p(ψ)φ− ψφ|2dm = exp
( 2π∫

0

log
( |φ(eiθ)|2
|h′(θ)|

)
|h′(θ)| dθ

2π

)
.

To prove this theorem, apply the change of variable θ = h(t) in Theorem 3.2
along with Proposition 3.1 and the following lemma.

LEMMA 3.4. If h ∈ B, then for almost every θ ∈ [0, 2π],

(3.2) (h−1)′(h(θ)) =
1

h′(θ)
.

Proof. The definition of the derivative shows that whenever θ ∈ [0, 2π] and
h′(θ) is finite and non-zero, then equation (3.2) holds.

The result now follows since h ∈ B and so h′ is both finite and non-zero
almost everywhere.

REMARK 3.5. (i) There are homeomorphisms of [0, 2π] whose derivative
vanishes almost everywhere ([7], p. 278). There are also absolutely continuous
homeomorphisms h of [0, 2π] such that h′ = 0 on a set of positive measure.

(ii) It is routine to check that h ∈ B if and only if h−1 ∈ B.

The following triviality will be used several times in this paper.

LEMMA 3.6. If f ∈ L1[0, 2π] and | f | > 0 almost everywhere, then
2π∫
0

| f | log | f |dθ ∈ (−∞, ∞].

4. LACK OF COMMON CYCLIC VECTORS

In a previous paper [9] the current authors showed that the class of multipli-
cation operators on L2(m) with bounded almost injective symbols does not have
a common cyclic vector, even though each operator individually is cyclic. The
following says that a much smaller class does not have a common cyclic vector.

THEOREM 4.1. The class {Mψ : ψ = eih, h ∈ B} does not have a common cyclic
vector.

This follows immediately from the following.
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THEOREM 4.2. Suppose φ ∈ L2(m) and |φ| > 0 almost everywhere. Then there
is an h ∈ B such that φ is not cyclic for Meih .

Proof. Without loss of generality, suppose that
2π∫
0

|φ(eit)|2dt = 2π.

Define the function

h(θ) :=
θ∫

0

|φ(eit)|2dt, θ ∈ [0, 2π].

Since |φ| > 0 almost everywhere, h is a strictly increasing absolutely continuous
function from the interval [0, 2π] onto itself and moreover, from the Lebesgue
differentiation theorem,

(4.1) h′(θ) = |φ(eiθ)|2 > 0 a.e.

Thus h ∈ B. We will now prove that φ is not a cyclic vector for Meih . Indeed, by
Theorem 3.3,

inf
p

∫
T

|p(ψ)φ− ψφ|2dm = exp
( 2π∫

0

log
(
|φ(eiθ)|2 1

h′(θ)

)
h′(θ)

dθ

2π

)

= exp
(

log 1
2π∫
0

|φ(eiθ)|2 dθ

2π

)
(equation (4.1)) = 1.

Now apply Proposition 2.5.

5. A POSITIVE RESULT

We know from Theorem 4.1 that the class {Mψ : ψ = eih, h ∈ B} does not
have a common cyclic vector. However, a slightly smaller subclass does have a
common cyclic vector.

THEOREM 5.1. Let B1 denote the subclass of B consisting of the h ∈ B such that
h−1 is Lipschitz in some interval Ih. Then, the following class of multiplication operators
has a common cyclic vector:

V := {Mψ : ψ = eih, h ∈ B1}.
Proof. Suppose 0 < |φ| 6 1 almost everywhere and not log-integrable on

any arc (see Remark 5.3 below for an example of such a function). We will now
show that φ is a common cyclic vector for the class V.

Fix ψ = eih ∈ V and assume, without loss of generality, that h′ > 0 almost
everywhere. The hypothesis implies there is an interval I ⊂ [0, 2π] (depending
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on h) and some δ > 0 so that h′ > δ almost everywhere on I. Theorem 3.3 says
that

(5.1) inf
p

∫
T

|p(ψ)φ− ψφ|2dm = exp
( 2π∫

0

log
(
|φ(eiθ)|2 1

h′(θ)

)
h′(θ)

dθ

2π

)
.

Notice that log |φ|2 6 0 and so

(5.2)
∫
I

h′ log |φ|2dθ 6 δ
∫
I

log |φ|2dθ = −∞.

Again, using the inequality log |φ|2 6 0, we have

(5.3)
∫

[0,2π]\I

h′ log |φ|2dθ ∈ [−∞, 0].

Finally, observe from Lemma 3.6 that

(5.4)
2π∫
0

h′ log h′dθ ∈ (−∞, ∞].

From equation (5.2), equation (5.3), and equation (5.4), it follows that
2π∫
0

log
(
|φ|2 1

h′
)

h′dθ =
∫
I

h′ log |φ|2dθ+
∫

[0,2π]\I

h′ log |φ|2dθ−
2π∫
0

h′ log h′dθ =−∞.

Thus, from equation (5.1), Theorem 3.3, and Proposition 2.5, φ is a cyclic vector
for Mψ.

The proof of Theorem 5.1 provides a collection of common cyclic vectors for
V. We now generalize Theorem 5.1 by describing all common cyclic vectors for V.

THEOREM 5.2. A function φ ∈ L2(m) is a common cyclic vector for the class V if
and only if |φ| > 0 almost everywhere and log |φ| is not integrable on any arc of T.

Proof. Let us first prove the result for bounded φ. Indeed, the proof of The-
orem 5.1 shows that any bounded φ for which |φ| > 0 almost everywhere and
log |φ| is not integrable on any arc of T, is a cyclic vector for V.

Now suppose that φ is bounded and is a common cyclic vector for the class
V. From Proposition 2.1 we know that |φ| > 0 almost everywhere. Let I be an
interval in [0, 2π] and define

(5.5) h(θ) := c
θ∫

0

k(t)dt, θ ∈ [0, 2π],

where

k(t) :=
{
|φ(eit)|2 t 6∈ I,
1 t ∈ I,



74 WILLIAM T. ROSS AND WARREN R. WOGEN

and the positive constant c guarantees that h maps [0, 2π] onto itself. One can
check that Mψ := Meih ∈ V (i.e., h ∈ B1) and moreover, using the fact that φ is
cyclic for Mψ, along with Proposition 2.5 and Theorem 3.3, we get

(5.6) 0 = inf
p

∫
T

|p(ψ)φ− ψφ|2dm = exp
( 2π∫

0

log
(
|φ|2 1

h′
)

h′
dθ

2π

)
.

We now examine the integral in the exponential in the above formula. No-
tice that

(5.7)
∫
I

h′ log |φ|2dθ = c
∫
I

log |φ|2dθ.

From the definition of h in equation (5.5),

(5.8)
∫

[0,2π]\I

h′ log |φ|2dθ =
∫

[0,2π]\I

c|φ|2 log |φ|2dθ = c1 ∈ (−∞, ∞),

since φ is bounded and Lemma 3.6. We also see, since h′ is bounded, that

(5.9)
2π∫
0

h′ log h′dθ = c2 ∈ (−∞, ∞).

From equation (5.7), equation (5.8), and equation (5.9), it follows that
2π∫
0

log
(
|φ|2 1

h′
)

h′dθ =
∫
I

h′ log |φ|2dθ +
∫

[0,2π]\I

h′ log |φ|2dθ −
2π∫
0

h′ log h′dθ

= c
∫
I

log |φ|2dθ + c1 + c2 ∈ [−∞, ∞).

Since, from equation (5.6),

0 = exp
(

c
∫
I

log |φ|2dθ + c1 + c2

)
,

and c > 0, this forces the condition∫
I

log |φ|2dθ = −∞.

Hence |φ|>0 almost everywhere and log |φ| is not log-integrable on any arc of T.
Thus far, we have established the result for bounded φ. Let us now prove

the result for general φ ∈ L2(m).
Suppose that φ is a common cyclic vector for V. Let φ1 = min(1, |φ|) and

observe that for any Mψ ∈ V, and any analytic polynomial p,∫
T

|p(ψ)φ− ψφ|2dm =
∫
T

|p(ψ)− ψ|2|φ|2dm >
∫
T

|p(ψ)φ1 − ψφ1|2dm.
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It follows from Proposition 2.5 that φ1 is a common cyclic vector for V. Since we
already know the result is true for bounded functions, we see that φ1 > 0 almost
everywhere and log φ1 is not integrable on any arc of T. Let I be any arc of T and
note, since φ ∈ L1(m), that ∫

T

log+ |φ|dm < ∞.

Thus

(5.10)
∫
I

log |φ|dm =
∫
I

log+ |φ|dm +
∫
I

log φ1dm = −∞.

Hence we have shown that if φ ∈ L2(m) is a common cyclic vector for V, then
|φ| > 0 almost everywhere and log |φ| is not integrable on any arc of T.

We will now prove the other direction. Assume φ ∈ L2(m), |φ| > 0 almost
everywhere, and log |φ| is not integrable on any arc of T. Since φ and φ1 share
the same zeros, we see that φ1 > 0 almost everywhere. From equation (5.10) we
conclude that log φ1 is not integrable on any arc of T.

By Theorem 3.3, it suffices to show, assuming without loss of generality that
h′ > 0 almost everywhere, that for fixed Meih ∈ V,

2π∫
0

(h′ log |φ|2 − h′ log h′)dθ = −∞.

The above integral appears as the quantity in the exp in Theorem 3.3 and so it
assumes a value in [−∞, ∞). Thus the above integral over any subset E ⊂ [0, 2π]
also has its value in [−∞, ∞). Thus to finish, we will show there is some E ⊂
[0, 2π] of positive measure such that

(5.11)
∫
E

(h′ log |φ|2 − h′ log h′)dθ = −∞.

By our assumptions on h, we know there is some interval I ⊂ [0, 2π] and some
δ > 0 such that h′ > δ on I. Since log |φ| is not integrable on I, we see that the set

E := I ∩ {|φ| 6 1}

has positive measure. Observe that

(5.12) −
∫
E

h′ log h′dθ ∈ [−∞, ∞)

since ∫
E

h′ log h′dθ > log δ
∫
E

h′dθ
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and h′ is integrable. Finally, since log |φ|2 6 0 on E, we see that∫
E

h′ log |φ|2dθ 6 δ
∫
E

log |φ|2dθ = δ
∫
E

log φ2
1dθ.

But this last integral is equal to ∫
I

log φ2
1dθ

since φ > 1 on I \ E and so φ1 = 1 on I \ E. However, log φ1 is not integrable on I
and so, combining this with equation (5.12), we have shown equation (5.11) and
the proof is now complete.

REMARK 5.3. (i) An example of a bounded φ such that φ > 0 almost every-
where and such that log |φ| is not integrable on any arc of T is

φ(eiθ) := exp
(
−

∞

∑
n=1

2−n

|θ − an|

)
,

where (an)n>1 is a dense sequence in [0, 2π]. It is routine to see that log |φ| is not
integrable on any arc of T. To see that φ > 0 almost everywhere, it suffices to
show that the quantity

∞

∑
n=1

2−n

|θ − an|

is finite almost everywhere. Let

g(θ) :=
∞

∑
n=1

2−n/2

|θ − an|1/2

and note that a simple integral computation shows that g ∈ L1[0, 2π]. Thus g(θ)
and hence g(θ)2 is finite almost everywhere. Moreover,

∞

∑
n=1

2−n

|θ − an|
6 g(θ)2.

(ii) As a consequence of Szegö’s theorem, we know that φ ∈ L2(m) is a cyclic
vector for Meiθ if and only if its truncation φ1 is cyclic for Meiθ . The proof of
Theorem 5.2 shows that φ is a cyclic for Mψ, ψ ∈ V if and only if φ1 is cyclic for
Mψ. The same is no longer true when V is replaced by the larger class {Mψ : ψ =
eih, h ∈ B}. For example, let h ∈ B be defined by

h′(θ) =

{
1

θ(log θ)2 θ ∈ [0, 1
2 ],

1 θ ∈ [0, 2π] \ [0, 1
2 ].
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Notice that h′ ∈ L1[0, 2π] and h′ > 1 but h′ log h′ 6∈ L1[0, 2π]. Let φ(eiθ) =
√

h′(θ)
and observe that φ > 1 and so φ1 ≡ 1. Thus

2π∫
0

(h′ log φ2
1 − h′ log h′)dθ = −

2π∫
0

h′ log h′ = −∞

and so φ1 ≡ 1 is cyclic for Meih (Theorem 3.3). But

2π∫
0

(h′ log φ2 − h′ log h′)dθ = 0

and so φ is not cyclic for Meih .
(iii) Using Theorem 3.3 we also observe that φ ≡ 1 is a common cyclic vector

for the class of Meih , h ∈ B, for which

2π∫
0

|h′| log |h′|dθ = ∞.

Note from Lemma 3.6 that the above integral cannot evaluate to −∞.

6. CLASSES OF CYCLIC OPERATORS AND COMMON CYCLIC VECTORS

Let
Q := {φ ∈ L2(m) : |φ| > 0 a.e.}.

We know from Proposition 2.5 that every cyclic vector for some Mψ, ψ ∈ H(T),
must belong to Q. For certain symbols, this is the only requirement for cyclicity
(see below). Other symbols, ψ(eiθ) = eiθ for example, require more than the
condition φ ∈ Q to be cyclic for Mψ (see Corollary 2.8).

On the other hand, let us consider the class of operators

R := {Meih : eih ∈ H(T), m1({(h−1)′ = 0}) > 0}.

An application of Proposition 2.5 along with Theorem 3.2 and the hypothesis that
(h−1)′ = 0 on some set of positive measure, shows that every φ ∈ Q is a common
cyclic vector for R.

For a set
A ⊂ {Mψ : ψ ∈ H(T)},

consider the set C(A) of common cyclic vectors for A. By Proposition 2.1, we
know that

(6.1) C(A) ⊂ Q.

Given a non-empty set A ⊂ Q, consider the set

L(A) := {Mψ, ψ ∈ H(T) : every φ ∈ A is a cyclic vector for Mψ.}.
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Since every φ ∈ Q is a common cyclic vector for R, we see that

R ⊂ L(A).

Using this terminology, we collect our previous results in the following
proposition.

PROPOSITION 6.1. (i) (Theorem 3.2) For each homeomorphism h of [0, 2π],

C({Meih}) =
{

φ ∈ Q :
2π∫
0

log(|φ(eih−1(θ))|2|(h−1)′(θ)|)dθ = −∞
}

.

(ii) (Theorem 4.1) C({Meih : h ∈ B}) = ∅.
(iii) (Theorem 5.2) C(V) = {φ ∈ Q : log |φ| is not integrable on any arc of T}.
(iv) (Theorem 3.2 and equation (6.1)) For each Meih ∈ R,

(6.2) C({Meih}) = Q.

Thus C(R) = Q.
(v) (Theorem 3.2) For each φ ∈ Q,

L({φ}) =
{

Meih :
2π∫
0

log(|φ(eih−1(θ))|2|(h−1)′(θ)|)dθ = −∞
}

.

THEOREM 6.2. L(Q) = R.

Proof. Suppose Meih ∈ R. An application of Proposition 2.5 along with The-
orem 3.2 and the hypothesis that (h−1)′ = 0 on some set of positive measure,
shows that every φ ∈ Q is a cyclic vector for Meih . Hence Meih ∈ L(Q).

Now suppose that Meih 6∈ R. Without loss of generality, let us assume that
(h−1)′ > 0 almost everywhere. This says that h′ > 0 almost everywhere. The
proof of Lemma 3.4 shows that whenever (h−1)′(θ) is both finite and non-zero,
the formula

(6.3) h′(h−1(θ))(h−1)′(θ) = 1

holds. Since (h−1)′(θ) is both finite and non-zero for almost all θ, equation (6.3)
holds for almost all θ.

Let

φ(eiθ) :=
{ √

h′(θ) if h′(θ) > 0,
1 if h′(θ) = 0.

Then φ ∈ Q and from Theorem 3.2 we have

inf
p

∫
T

|p(ψ)φ− ψφ|2dm = exp
( 2π∫

0

log(|φ(eih−1(θ))|2(h−1)′(θ))
dθ

2π

)
.

Observe that

log(|φ(eih−1(θ))|2(h−1)′(θ)) = log(h′(h−1(θ))(h−1)′(θ)) = 0
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whenever h′(h−1(θ)) 6= 0. But by equation (6.3), this holds for almost every θ.
Thus

inf
p

∫
T

|p(ψ)φ− ψφ|2dm > 0

and, by Proposition 2.5, φ is non-cyclic for Meih . Hence Meih 6∈ L(Q).

Next, we wish to explore the sets

C(L(A)) and L(C(A)).

Clearly we have the containments,

A ⊂ C(L(A)) and A ⊂ L(C(A)).

Let us say that C(L(A)) is the cyclic closure of A andL(C(A)) is the cyclic closure of
A. Note that the cyclic closure is actually cyclic closed. Indeed, if A1 = C(L(A)),
then C(L(A1)) = A1. Similarly, if A1 = L(C(A)), then L(C(A1)) = A1. These
definitions set up a certain “duality” between subsets of Q and subsets of {Mψ :
ψ ∈ H(T)}.

This “duality” extends to more general settings. For example, for any sub-
algebra B of B(H), let K denote the cyclic operators in B and let Q be the x ∈ H
such that x is cyclic for some T ∈ K. As before, given A ⊂ K and A ⊂ Q, we
form

C(A) := {x ∈ Q : x is cyclic for every T ∈ A},
L(A) := {T ∈ K : every x ∈ A is cyclic for T}.

For example, let B be the algebra of co-analytic Toeplitz operators on the Hardy
space H2 and A be the set of co-analytic Toeplitz operators with non-constant
symbols. The main result of [12] says that C(A) 6= ∅. It then follows that A
is cyclic closed. The above duality can be compared with the familiar duality
between subspace lattices and operator algebras ([5], Chapter 4).

We now return to the case of multiplication operators considered in this
paper. First note that Proposition 6.1 says that the sets of functions: ∅, {φ ∈ Q :
log |φ| is not integrable on any arc of T}, and Q are cyclic closed. (When A = ∅,
we have L(A) = {Mψ : ψ ∈ H(T)} by “default”.) Secondly, Theorem 6.2 shows
that R is a cyclic closed family of operators, and of course {Mψ : ψ ∈ H(T)} is
cyclic closed.

Finally, it may be of interest to compute the cyclic closures, L(C(A)) and
C(L(A)), for other choices of A ⊂ {Mψ : ψ ∈ H(T)} and A ⊂ Q. We conclude
with two sample open questions.

QUESTION 6.3. If ψ ∈ H(T), what is the cyclic closure of {Mψ}? In other
words, what is L(C({Mψ}))?

We can answer this question in a very special case.

COROLLARY 6.4. If Meih ∈ R, then L(C({Meih})) = R.
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Proof. Combine equation (6.2) with Theorem 6.2.

The corollary actually shows that R is the cyclic closure of each nonempty
subset of R.

QUESTION 6.5. If φ ∈ Q, what is the cyclic closure of {φ}? In other words,
what is C(L({φ}))?

Routine arguments show that

C(L({φ})) ⊃ {ρφ : ρ ∈ L∞(m) ∩Q}.

We believe that the above inclusion is proper for all choices of φ ∈ Q. For exam-
ple, we can show that the inclusion is proper when φ ≡ 1 by explicitly exhibiting
an unbounded function in C(L({1})).

7. FINAL REMARK

The alert reader might wonder why we only consider continuous measures
whose support is all of T. If µ is any measure whose support is a proper subset
K of T, then a classical theorem of Lavrentiev ([3], p. 232) says that the the sup-
norm closure on K of the analytic polynomials is C(K) and it follows easily that
for every homeomorphism ψ of K, the set of cyclic vectors for Mψ is the set of all
f ∈ L2(µ) such that | f | > 0 µ-a.e. So now suppose that

µ = µc + µd,

where µc is a continuous measure with support T and µd is a discrete measure on
T. Then the unitary operator (Mz, L2(µ)) can be written as

(Mz, L2(µ)) = (Mz, L2(µc))⊕ (Mz, L2(µd)).

If Lat(A) denotes the lattice of invariant subspaces of an operator A, then Corol-
lary 2.2 of [4] says that

Lat((Mz, L2(µ))) = Lat((Mz, L2(µc)))⊕ Lat((Mz, L2(µd))).

If follows that f ∈ L2(µ) is cyclic for (Mz, L2(µ)) if and only if f = fc + fd where
fc is cyclic for (Mz, L2(µc)) and fd is cyclic for (Mz, L2(µd)). Since the existence of
a common cyclic vector in the discrete case has been settled by Sibilev, we focus
on continuous measures.

REFERENCES

1. P. BOURDON, J.H. SHAPIRO, Spectral synthesis and common cyclic vectors, Michigan
Math. J. 37(1990), 71–90.

2. J. BRAM, Subnormal operators, Duke Math. J. 22(1955), 75–94.



COMMON CYCLIC VECTORS FOR UNITARY OPERATORS 81

3. J.B. CONWAY, The Theory of Subnormal Operators, Math. Surveys Monographs, vol. 36,
Amer. Math. Soc., Providence, RI 1991.

4. J.B. CONWAY, The direct sum of normal operators, Indiana Univ. Math. J. 26(1977),
277–289.

5. J.B. CONWAY, A Course in Operator Theory, Graduate Stud. Math., vol. 21, Amer. Math.
Soc., Providence, RI 2000.

6. P. HALMOS, J. VON NEUMANN, Operator methods in classical mechanics. II, Ann. of
Math. (2) 43(1942), 332–350.

7. E. HEWITT, K. STROMBERG, Real and Abstract Analysis. A Modern Treatment of the Theory
of Functions of a Real Variable, Springer-Verlag, New York 1965.

8. I.P. NATANSON, Theory of Functions of a Real Variable, Frederick Ungar Publ. Co., New
York 1955.

9. W. ROSS, W. WOGEN, Common cyclic vectors for normal operators, Indiana Univ.
Math. J. 53(2004), 1537–1550.

10. H.A. SEID, Cyclic multiplication operators on Lp-spaces, Pacific J. Math. 51(1974), 542–
562.

11. R.V. SIBILEV, A uniqueness theorem for Wolff–Denjoy series, Algebra i Analiz 7(1995),
170–199.

12. W. WOGEN, On some operators with cyclic vectors, Indiana Univ. Math. J. 27(1978),
163–171.

WILLIAM T. ROSS, DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE,
UNIVERSITY OF RICHMOND, RICHMOND, VI 23173, U.S.A.

E-mail address: wross@richmond.edu

WARREN R. WOGEN, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NORTH

CAROLINA - CHAPEL HILL, CHAPEL HILL, NC 27599, U.S.A.
E-mail address: wrw@email.unc.edu

Received October 17, 2006.


