THE C*-ALGEBRA OF SYMMETRIC WORDS IN TWO UNIVERSAL UNITARIES

MAN-DUEN CHOI and FRÉDÉRIC LATRÉMOLIÈRE

Communicated by William Arveson

Abstract

We compute the K-theory of the C^{*}-algebra of symmetric words in two universal unitaries. This algebra is the fixed point C^{*}-algebra for the order-two automorphism of the full C^{*}-algebra of the free group on two generators which switches the generators. Our calculations relate the K-theory of this C^{*}-algebra to the K-theory of the associated C^{*}-crossed-product by \mathbb{Z}_{2}.

Keywords: C^{*}-algebra, C^{*}-crossed-product, fixed point C^{*}-algebra, action of finite groups, free group C^{*}-algebras, symmetric algebras, K-theory of C^{*}-algebras.

MSC (2000): Primary 46L55; Secondary 46L80.

1. INTRODUCTION

This paper investigates an example of a C^{*}-algebra of symmetric words in noncommutative variables. Our specific interest is in the C^{*}-algebra of symmetric words in the two universal unitaries generating the full C^{*}-algebra $C^{*}\left(\mathbb{F}_{2}\right)$ of the free group on two generators. Our main result is the computation of the K-theory [1] of this algebra.

The two canonical unitary generators of $C^{*}\left(\mathbb{F}_{2}\right)$ are denoted by U and V. The C^{*}-algebra of symmetric words in two universal unitaries U, V is precisely defined as the fixed point C^{*}-algebra $C^{*}\left(\mathbb{F}_{2}\right)_{1}$ for the order-2 automorphism σ which maps U to V and V to U. Our strategy to compute the K-theory of $C^{*}\left(\mathbb{F}_{2}\right)_{1}$ relies upon the work of Rieffel ([6], Proposition 3.4]) about Morita equivalence between fixed point C^{*}-algebras and C^{*}-crossed-products.

The first part of this paper describes the two algebras of interest: the fixed point C^{*}-algebra $C^{*}\left(\mathbb{F}_{2}\right)_{1}$ and the crossed-product $C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$ [8], [5]. We also exhibit an ideal \mathcal{J} in $C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$ which is strongly Morita equivalent to $C^{*}\left(\mathbb{F}_{2}\right)_{1}$ and can be easily described as the kernel of an very simple $*$-morphism. We thus reduce the problem to the calculation of the K-theory of $C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$.

The second part of this paper starts with this calculation. We use a standard result from Cuntz [4] to calculate the K-theory of $C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$. We then deduce
the K-theory of $C^{*}\left(\mathbb{F}_{2}\right)_{1}$, using the ideal \mathcal{J} and the six-terms exact sequence in K-theory.

We conclude the paper by looking a little closer at the obstruction to the existence of unitaries of nontrivial K-theory in $C^{*}\left(\mathbb{F}_{2}\right)_{1}$. This amounts to comparing the structure of the ideal \mathcal{J} and an ideal in $C^{*}\left(\mathbb{F}_{2}\right)_{1}$ related to the same representation as \mathcal{J}.

We also should mention that, in principle, using the results in [3], one could derive information on the representation theory of $C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$ from the representations of $C^{*}\left(\mathbb{F}_{2}\right)$.

2. THE FIXED POINT C^{*}-ALGEBRA

Let $C^{*}\left(\mathbb{F}_{2}\right)=C^{*}(U, V)$ be the universal C^{*}-algebra generated by two unitaries U and V. We consider the order-2 automorphism σ of $C^{*}\left(\mathbb{F}_{2}\right)$ uniquely defined by $\sigma(U)=V$ and $\sigma(V)=U$. These relations indeed define an automorphism by universality of $C^{*}\left(\mathbb{F}_{2}\right)$. The automorphism σ will be called the flip automorphism in this paper.

Our main object of interest is the fixed point C^{*}-algebra $C^{*}\left(\mathbb{F}_{2}\right)_{1}$ defined by

$$
C^{*}\left(\mathbb{F}_{2}\right)_{1}=\left\{a \in C^{*}\left(\mathbb{F}_{2}\right): \sigma(a)=a\right\}
$$

which can be seen as the C^{*}-algebra of symmetric words in two universal unitaries. The C^{*}-algebra $C^{*}\left(\mathbb{F}_{2}\right)_{1}$ is related [6] to the C^{*}-crossed-product $C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma}$ \mathbb{Z}_{2}, which we will consider in our calculations. By definition, $C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$ is the universal C^{*}-algebra generated by three unitaries U, V and W subjects to the relations $W^{2}=1$ and $W U W^{*}=V$. Our objective is to gain some understanding of the structure of the unitaries and projections in $C^{*}\left(\mathbb{F}_{2}\right)_{1}$.

The first step in our work is to describe concretely the two C^{*}-algebras $C^{*}\left(\mathbb{F}_{2}\right)_{1}$ and $C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$. Using Proposition 3.4 of [6], we also exhibit an ideal in the crossed-product $C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$ which is Morita equivalent to $C^{*}\left(\mathbb{F}_{2}\right)_{1}$.

The following easy lemma will be useful in our work:
Lemma 2.1. Let A be a unital C^{*}-algebra and σ an order-two automorphism of A. The fixed-point C^{*}-algebra of A for σ is the set $A_{1}=\{a+\sigma(a): a \in A\}$. Set $A_{-1}=\{a-\sigma(a): a \in A\}$. Then $A=A_{1}+A_{-1}$ and $A_{1} \cap A_{-1}=\{0\}$.

Proof. Let $\omega \in A$. Since $\sigma^{2}=1$ we have $\sigma(\omega+\sigma(\omega))=\sigma(\omega)+\omega \in A_{1}$. On the other hand, if $a \in A$ then $a=\frac{1}{2}(a+\sigma(a))+\frac{1}{2}(a-\sigma(a))$. Hence if $a \in A_{1}$ then $a-\sigma(a)=0$ and $a \in\{\omega+\sigma(\omega): \omega \in A\}$. Moreover this proves that $A=A_{1}+A_{-1}$. Last, if $a \in A_{1} \cap A_{-1}$ then $a=\sigma(a)=-\sigma(a)=0$.

We can use Lemma 2.1 to obtain a more concrete description of the fixedpoint C^{*}-algebra $C^{*}\left(\mathbb{F}_{2}\right)_{1}$ of symmetric words in two unitaries:

THEOREM 2.2. Let σ be the automorphism of $C^{*}\left(\mathbb{F}_{2}\right)=C^{*}(U, V)$ defined by $\sigma(U)=V$ and $\sigma(V)=U$. Then the fixed point C^{*}-algebra of σ is $C^{*}\left(\mathbb{F}_{2}\right)_{1}=C^{*}\left(U^{n}+\right.$ $\left.V^{n}: n \in \mathbb{N}\right)$.

Proof. Obviously $\sigma\left(U^{n}+V^{n}\right)=U^{n}+V^{n}$ for all $n \in \mathbb{Z}$. Hence

$$
C^{*}\left(\left\{U^{n}+V^{n}: n \in \mathbb{Z}\right\}\right) \subseteq C^{*}\left(\mathbb{F}_{2}\right)_{1} .
$$

Conversely, $C^{*}\left(\mathbb{F}_{2}\right)_{1}=\left\{\omega+\sigma(\omega): \omega \in C^{*}\left(\mathbb{F}_{2}\right)\right\}$ by Lemma 2.1. So $C^{*}\left(\mathbb{F}_{2}\right)_{1}$ is generated by elements of the form $\omega+\sigma(\omega)$ where ω is a word in $C^{*}\left(\mathbb{F}_{2}\right)$, since $C^{*}\left(\mathbb{F}_{2}\right)$ is generated by words in U and V, i.e. by monomials of the form $U^{a_{0}} V^{a_{1}} \cdots U^{a_{n}}$ with $n \in \mathbb{N}, a_{0}, \ldots, a_{n} \in \mathbb{Z}$. It is thus enough to show that for any word $\omega \in C^{*}\left(\mathbb{F}_{2}\right)$ we have

$$
\omega+\sigma(\omega) \in S \quad \text { where } S=C^{*}\left(U^{n}+V^{n}: n \in \mathbb{Z}\right)
$$

Since, if ω starts with a power of V then $\sigma(\omega)$ starts with a power of U, we may as well assume that ω always starts with a power of U by symmetry. Since the result is trivial for $\omega=1$ we assume that ω starts with a nontrivial power of U. Such a word is of the form

$$
\omega=U^{a_{0}} V^{a_{1}} \cdots U^{a_{n-1}} V^{a_{n}} \quad \text { with } a_{0}, \ldots, a_{n-1} \in \mathbb{Z} \backslash\{0\} \text { and } a_{n} \in \mathbb{Z}
$$

We define the order of such a word ω as the integer $o(\omega)=n$ if $a_{n} \neq 0$ and $o(\omega)=n-1$ otherwise. In other words, $o(\omega)$ is the number of times we go from U to V or V to U in ω. The proof of our result follows from the following induction on $o(\omega)$.

By definition, if ω is a word such that $o(\omega)=0$ then $\omega+\sigma(\omega) \in S$. Let us now assume that for some $m \geqslant 1$ we have shown that for all words ω starting in U such that $o(\omega) \leqslant m-1$ we have $\omega+\sigma(\omega) \in S$. Let ω be a word of order m and let us write $\omega=U^{a_{0}} \omega_{1}$ with ω_{1} a word starting in a power of V. By construction, ω_{1} is of order $m-1$. Let $\omega_{2}=V^{a_{0}} \omega_{1}$. By construction, $o\left(\omega_{2}\right)=$ $m-1$ or $m-2$. Either way, by our induction hypothesis, we have $\omega_{1}+\sigma\left(\omega_{1}\right) \in S$ and $\omega_{2}+\sigma\left(\omega_{2}\right) \in S$. Now:

$$
\omega+\sigma(\omega)=U^{a_{0}} \omega_{1}+V^{a_{0}} \sigma\left(\omega_{1}\right)=\left(U^{a_{0}}+V^{a_{0}}\right)\left(\omega_{1}+\sigma\left(\omega_{1}\right)\right)-\left(\omega_{2}+\sigma\left(\omega_{2}\right)\right)
$$

hence $\omega+\sigma(\omega) \in S$ and our induction is complete. Hence $C^{*}\left(\mathbb{F}_{2}\right)_{1}=S$ as desired.

We wish to understand more of the structure of the fixed point C^{*}-algebra $C^{*}\left(\mathbb{F}_{2}\right)_{1}$. Using Morita equivalence, we can derive its K-theory. According to Proposition 3.4 of [6], $C^{*}\left(\mathbb{F}_{2}\right)_{1}$ is strongly Morita equivalent to the ideal \mathcal{J} generated in the crossed-product $C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$ by the spectral projection $p=\frac{1}{2}(1+W)$ of the canonical unitary W in $C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$ such that $W U W=V$. We first provide a simple yet useful description of $C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$ in term of unitary generators, before providing a description of the ideal \mathcal{J} which will ease the calculation of its K-theory.

Lemma 2.3. Let σ be the flip automorphism on the universal C^{*}-algebra $C^{*}\left(\mathbb{F}_{2}\right)$ generated by two universal unitaries U and V. The C^{*}-crossed-product $C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$ is the universal C^{*}-algebra generated by two unitaries U and W with the relation $W^{2}=1$, or equivalently $C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$ is $*$-isomorphic to $C^{*}\left(\mathbb{Z} * \mathbb{Z}_{2}\right)$. In particular, the C^{*} subalgebra of $C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$ generated by U and the canonical unitary W implementing σ is actually equal to $C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$.

Proof. Let W be the canonical unitary $C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$ implementing σ. The C^{*}-subalgebra $C^{*}(U, W)$ of $C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$ contains $W U W=V$ and thus equals $C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$.

Let us now prove that the C^{*}-subalgebra $C^{*}(U, W)$ is universal for the given relations. Let u, w be two arbitrary unitaries in some arbitrary C^{*}-algebra such that $w^{2}=1$. Let $v=w u w \in C^{*}(u, w)$. By universality of the crossed-product $C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$ there exists a unique $*$-morphism $\varphi: C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2} \longrightarrow C^{*}(u, w)$ such that $\varphi(U)=u, \varphi(V)=v$ and $\varphi(W)=w$. Thus $C^{*}(U, W)$ is universal for the proposed relations. In particular, it is $*$-isomorphic (by uniqueness of the universal C^{*}-algebra for the given relations) to $C^{*}\left(\mathbb{Z} * \mathbb{Z}_{2}\right)$.

Now, the ideal \mathcal{J} can be described as the kernel of a particularly explicit *-morphism of $C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$ to $C(\mathbb{T})$.

Proposition 2.4. Let σ be the flip automorphism of the universal C^{*}-algebra $C^{*}\left(\mathbb{F}_{2}\right)$ generated by two universal unitaries U and V. Let W be the canonical unitary of the crossed-product $C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$ such that WUW $=V$. The fixed point C^{*} algebra $C^{*}\left(\mathbb{F}_{2}\right)_{1}$ is strongly Morita equivalent to the kernel \mathcal{J} in $C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$ of the $*$-morphism $\varphi: C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2} \longrightarrow C(\mathbb{T})$ defined by $\varphi(W)=-1$ and $\varphi(U)(z)=$ $\varphi(V)(z)=z$ for all $z \in \mathbb{T}$.

Proof. Let φ be the unique $*$-morphism from $C^{*}(U, W)$ into $C(\mathbb{T})$ defined using the universal property of Lemma 2.3 by: $\varphi(W)(z)=-1$ and $\varphi(U)(z)=z$ for all $z \in \mathbb{T}$. Since $\varphi(p)=0$ by construction, $\mathcal{J} \subseteq \operatorname{ker} \varphi$.

On the other hand, if π is the canonical surjection $C^{*}(U, W) \rightarrow C^{*}(U, W) / \mathcal{J}$ then $\pi(W)=-1$, so

$$
\pi(V)=\pi(W U W)=\pi(W) \pi(U) \pi(W)=\pi(U)
$$

Hence any representation ψ of $C^{*}(U, W) / \mathcal{J}$ lifts to $C^{*}(U, V)$ as a representation of the form $\psi=\eta \circ \varphi$ for some representation η of $C(\mathbb{T})$. Hence $\operatorname{ker} \varphi \subseteq \mathcal{J}=$ $\operatorname{ker} \pi$.

Our goal now is to compute the K-theory of the fixed point C^{*}-algebra $C^{*}\left(\mathbb{F}_{2}\right)_{1}$. Since $C^{*}\left(\mathbb{F}_{2}\right)_{1}$ and the ideal \mathcal{J} are Morita equivalent, they have the same K-theory. By Proposition 2.4, we have the short exact sequence $0 \rightarrow \mathcal{J} \rightarrow$ $C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2} \xrightarrow{\varphi} C(\mathbb{T}) \rightarrow 0$, and it seems quite reasonable to use the six-term exact sequence of K-theory to deduce the K-groups of \mathcal{J} from the K-groups of $C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$, as long as the later can be computed. The next section precisely
follows this path, starting by computing the K-theory of the crossed-product $C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$.

3. K-THEORY OF THE C^{*}-CROSSED PRODUCT AND THE FIXED POINT C^{*}-ALGEBRA

We use the homotopy-based result in [4] to compute the K-theory of the crossed-product $C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$.

Proposition 3.1. Let $C^{*}\left(\mathbb{F}_{2}\right)=C^{*}(U, V)$ be the universal C^{*}-algebra generated by two unitaries U and V and let σ be the order-2 automorphism of $C^{*}\left(\mathbb{F}_{2}\right)$ defined by $\sigma(U)=V$ and $\sigma(V)=U$. Then $K_{0}\left(C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2}\right)=\mathbb{Z}^{2}$ is generated by the classes of the spectral projections of W and $K_{1}\left(C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2}\right)=\mathbb{Z}$ is generated by the class of U.

Proof. By Lemma 2.3, the crossed-product $C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$ is $*$-isomorphic to

$$
C^{*}\left(\mathbb{Z} * \mathbb{Z}_{2}\right)=C^{*}(\mathbb{Z}) * \mathbb{C} C^{*}\left(\mathbb{Z}^{2}\right)=C(\mathbb{T}) * \mathbb{C} \mathbb{C}^{2}
$$

where the free product is amalgamated over the C^{*}-algebra generated by the respective units in each C^{*}-algebra. More precisely, we embed \mathbb{C} via, respectively, $i_{1}: \lambda \in \mathbb{C} \mapsto \lambda 1 \in \mathcal{C}(\mathbb{T})$ and $i_{2}: \lambda \in \mathbb{C} \mapsto(\lambda, \lambda) \in \mathbb{C}^{2}$. There are natural $*$-morphisms from $C(\mathbb{T})$ and from \mathbb{C}^{2} onto \mathbb{C} defined respectively by $r_{1}: f \in C(\mathbb{T}) \mapsto f(1)$ and $r_{2}: \lambda \oplus \mu \mapsto \lambda$. Now, $r_{1} \circ i_{1}=r_{2} \circ i_{2}$ is the identity on \mathbb{C}. By [4], we conclude that the following sequences for $\varepsilon=0,1$ are exact:

$$
0 \rightarrow K_{\varepsilon}(\mathbb{C}) \xrightarrow{j_{\varepsilon}} K_{\varepsilon}\left(C(\mathbb{T}) \oplus \mathbb{C}^{2}\right) \xrightarrow{k_{\varepsilon}} K_{\varepsilon}\left(C(\mathbb{T}) * \mathbb{C} \mathbb{C}^{2}\right) \rightarrow 0
$$

where $j_{\varepsilon}=K_{\varepsilon}\left(i_{1}\right) \oplus K_{\varepsilon}\left(-i_{2}\right)$ and $k_{\varepsilon}=K_{\varepsilon}\left(k_{1}+k_{2}\right)$ where k_{1} is the canonical embedding of $C(\mathbb{T})$ into $C(\mathbb{T}) * \mathbb{C} \mathbb{C}^{2}$ and k_{2} is the canonical embedding of \mathbb{C}^{2} into $C(\mathbb{T}) * \mathbb{C} \mathbb{C}^{2}$.

Now, $K_{1}\left(C(\mathbb{T}) \oplus \mathbb{C}^{2}\right)=\mathbb{Z}$ generated by the identity map $\operatorname{Id}_{\mathbb{T}} \in C(\mathbb{T})$. Since $K_{1}(\mathbb{C})=0$ we conclude that $K_{1}\left(C(\mathbb{T}) *_{\mathbb{C}} \mathbb{C}^{2}\right)=\mathbb{Z}$ generated by the canonical unitary generator of $C(\mathbb{T})$. On the other hand, $K_{0}\left(C(\mathbb{T}) \oplus \mathbb{C}^{2}\right)=\mathbb{Z}^{3}$ (where the first copy of \mathbb{Z} is generated by the unit $1_{C(\mathbb{T})}$ of $C(\mathbb{T})$ and the two other copies are generated by each of the projections $(1,0)$ and $(0,1)$ in $\left.\mathbb{C}^{2}\right)$. Now, the range of j_{0} is the subgroup of \mathbb{Z}^{3} generated by the class of $1_{C(\mathbb{T})} \oplus-1_{\mathbb{C}^{2}}$ where $1_{\mathbb{C}^{2}}$ is the unit of \mathbb{C}^{2}. This class is $(1,-1,-1)$, so we conclude easily that $K_{0}\left(C(\mathbb{T}) * \mathbb{C} \mathbb{C}^{2}\right)=\mathbb{Z}^{2}$ is generated by the two projections in \mathbb{C}^{2} (whose classes are $(0,1,0)$ and $(0,0,1)$).

Using the $*$-isomorphism between $C(\mathbb{T}) *_{\mathbb{C}} \mathbb{C}^{2}$ and $C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$ we conclude that $K_{0}\left(C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2}\right)=\mathbb{Z}^{2}$ is generated by the spectral projections of W while $K_{1}\left(C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2}\right)=\mathbb{Z}$ is generated by the class of U (or V as these are equal by construction).

REMARK 3.2. It is interesting to compare our results with the K-theory of the C^{*}-crossed-product by \mathbb{Z} instead of \mathbb{Z}_{2}. One could proceed with the standard six-terms exact sequence ([1], Theorem 10.2.1), but it is even simpler to observe
the following similar result to Lemma 2.3: the C^{*}-crossed-product $C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}$ is $*$-isomorphic to $C^{*}\left(\mathbb{F}_{2}\right)$. If $C^{*}\left(\mathbb{F}_{2}\right)$ is generated by the two universal unitaries U, V and W is the canonical unitary in $C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}$ such that $W U W=V$ then once again $C^{*}(U, V, W)=C^{*}(U, W)$ and, following a similar argument as for Lemma 2.3 we observe that $C^{*}(U, W)$ is the C^{*}-algebra universal for two arbitrary unitaries.

Hence, $K_{0}\left(C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}\right)=\mathbb{Z}$ is generated by the identity, while the classes of U and W generate $K_{1}\left(C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}\right)=\mathbb{Z}^{2}$.

We can now deduce the K-theory of $C^{*}\left(\mathbb{F}_{2}\right)_{1}$ from Proposition 2.4 and Theorem 3.1.

THEOREM 3.3. Let $C^{*}\left(\mathbb{F}_{2}\right)=C^{*}(U, V)$ be the universal C^{*}-algebra generated by two unitaries U and V and let σ be the order-2 automorphism of $C^{*}\left(\mathbb{F}_{2}\right)$ defined by $\sigma(U)=V$ and $\sigma(V)=U$. Let $C^{*}\left(\mathbb{F}_{2}\right)_{1}=\left\{a \in C^{*}\left(\mathbb{F}_{2}\right): \sigma(a)=a\right\}$ be the fixed point C^{*}-algebra for σ. Then $K_{0}\left(C^{*}\left(\mathbb{F}_{2}\right)_{1}\right)=\mathbb{Z}$ is generated by the identity in $C^{*}\left(\mathbb{F}_{2}\right)_{1}$ and $K_{1}\left(C^{*}\left(\mathbb{F}_{2}\right)_{1}\right)=0$.

Proof. By Proposition 3.4 of [6], $C^{*}\left(\mathbb{F}_{2}\right)_{1}$ is strongly Morita equivalent to the ideal \mathcal{J} generated in $C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$ by the projection $p=\frac{1}{2}(1+W)$. Using Proposition 2.4, we can apply the six-terms exact sequence to the short exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathcal{J} \xrightarrow{i} C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2} \xrightarrow{\varphi} C(\mathbb{T}) \longrightarrow 0 \tag{3.1}
\end{equation*}
$$

where i is the canonical injection and φ is the $*$-morphism of Proposition 2.4. Since we know the K-theory of $C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2}$ by Theorem 3.1, including a set of generators of the K-groups, and the K-theory of $C(\mathbb{T})$, we can easily deduce the K-theory of \mathcal{J}. Indeed, using the six-term exact sequence Theorem 9.3 of [1] applied to (3.1), the following six-terms cyclic sequence is exact:

$$
\begin{array}{ccccc}
K_{0}(\mathcal{J}) & \stackrel{K_{0}(i)}{\longrightarrow} & K_{0}\left(C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2}\right)=\mathbb{Z}^{2} & \stackrel{K_{0}(\varphi)}{\longrightarrow} & K_{0}(C(\mathbb{T})) \tag{3.2}\\
\delta \uparrow & & & & \\
K_{1}(C(\mathbb{T})) & \stackrel{K_{1}(\varphi)}{\longleftrightarrow} & K_{1}\left(C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2}\right)=\mathbb{Z} & \stackrel{K_{1}(i)}{\longleftrightarrow} & K_{1}(\mathcal{J})
\end{array}
$$

Each statement in the following argument follows from the exactness of (3.2). Trivially, $K_{0}(\varphi)$ is a surjection, so $\beta=0$. Hence $K_{1}(i)$ is injective. Yet, as $\varphi(U)$: $z \in \mathbb{T} \mapsto z$, we conclude that $K_{1}(\varphi)$ is an isomorphism (since it maps a generator to a generator), and thus $K_{1}(i)=0$. Now $K_{1}(i)=0$ and $\beta=0$ implies that $K_{1}(\mathcal{J})=0$. Since $K_{1}(\varphi)$ is surjective, $\delta=0$ and thus $K_{0}(i)$ is injective. Its image is thus isomorphic to $K_{0}(\mathcal{J})$ and coincide with $\operatorname{ker} K_{0}(\varphi)$. Now, $K_{0}(\varphi)(p)=0$ and $K_{0}(\varphi)(1-p)=1$ (by Theorem 3.1, p and $1-p$ generate $\left.K_{0}\left(C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2}\right)\right)$. Hence the image of $K_{0}(i)$ is isomorphic to the copy of \mathbb{Z} generated by p in $K_{0}\left(C^{*}\left(\mathbb{F}_{2}\right) \rtimes_{\sigma} \mathbb{Z}_{2}\right)$.

We go a little deeper in the structure of the fixed point C^{*}-algebra $C^{*}\left(\mathbb{F}_{2}\right)_{1}$. Of interest is to compare the ideal \mathcal{J} and its natural restrictions to $C^{*}\left(\mathbb{F}_{2}\right)$ and
$C^{*}\left(\mathbb{F}_{2}\right)_{1}$. The motivation for this comparison is to understand the obstruction to the existence of any nontrivial unitary in $C^{*}\left(\mathbb{F}_{2}\right)_{1}$ in the sense of K-theory.

THEOREM 3.4. Let θ be the $*$-epimorphism $C^{*}(U, V) \rightarrow C(\mathbb{T})$ defined by $\theta(U)=$ $\theta(V): z \in \mathbb{T} \mapsto z$. Let $\mathcal{I}=\operatorname{ker} \theta$. Then $K_{0}(\mathcal{I})=0$ and $K_{1}(\mathcal{I})=\mathbb{Z}$ where the generating unitary in the smallest unitization \mathcal{I}^{+}of \mathcal{I} of the K_{1} group is $U V^{*}$.

Let $\mathcal{I}_{1}=C^{*}\left(\mathbb{F}_{2}\right)_{1} \cap \mathcal{I}$. We then have $C^{*}\left(\mathbb{F}_{2}\right)_{1} / \mathcal{I}_{1}=C(\mathbb{T})$. Then $K_{1}\left(\mathcal{I}_{1}\right)=0$ while $K_{0}\left(\mathcal{I}_{1}\right)=\mathbb{Z}$.

Proof. The K-theory of the ideal \mathcal{I} is based upon the simple six-term exact sequence:

$$
\begin{array}{ccccc}
K_{0}(\mathcal{I})=0 & \xrightarrow{K_{0}(i)} & K_{0}\left(C^{*}\left(\mathbb{F}_{2}\right)\right)=\mathbb{Z} & \xrightarrow{K_{0}(\theta)} & K_{0}(C(\mathbb{T}))=\mathbb{Z} \\
\delta=0 \uparrow & & & & \downarrow \beta=0 \\
K_{1}(C(\mathbb{T}))=\mathbb{Z} & \stackrel{K_{1}(\theta)}{\longleftrightarrow} & K_{1}\left(C^{*}\left(\mathbb{F}_{2}\right)\right)=\mathbb{Z}^{2} & \stackrel{K_{1}(i)}{\longleftrightarrow} & K_{1}(\mathcal{I})=\mathbb{Z}
\end{array}
$$

corresponding to the defining exact sequence $\mathcal{I} \stackrel{i}{\hookrightarrow} C^{*}\left(\mathbb{F}_{2}\right) \xrightarrow{\theta} C(\mathbb{T})$ with i the canonical injection. Now, $K_{0}\left(C^{*}\left(\mathbb{F}_{2}\right)\right)$ is generated by 1 , and as $\theta(1)=1$ we see that $K_{0}(\theta)$ is the identity. Hence $\beta=0$ and $K_{0}(i)=0$ so $K_{0}(\mathcal{I})=\delta(\mathbb{Z})$. On the other hand, $K_{1}\left(C^{*}\left(\mathbb{F}_{2}\right)\right)$ is generated by U and V, respectively identified with $(1,0)$ and $(0,1)$ in \mathbb{Z}^{2}. We have $\theta(U)=\theta(V): z \mapsto z$ which is the generator of $K_{1}(C(\mathbb{T}))$, so $K_{1}(\theta)$ is surjective and thus $\delta=0$. Hence $K_{0}(\mathcal{I})=0$. On the other hand, $\operatorname{ker} K_{1}(\theta)$ is the group generated by $(1,-1)$, the class of $U V^{*}$. Thus $K_{1}(i)$, which is an injection, is in fact a bijection from $K_{1}(\mathcal{I})$ onto its range $\operatorname{ker} K_{1}(\theta)$ and thus $K_{1}(\mathcal{I})=\mathbb{Z}$ generated by $U V^{*}$, as indeed $\theta\left(U V^{*}-1\right)=0$ and thus $U V^{*}-1 \in \mathcal{I}$.

Now, we turn to the ideal \mathcal{I}_{1}. We recall from Lemma 2.1 the notation $C^{*}\left(\mathbb{F}_{2}\right)_{-1}$ $=\left\{a-\sigma(a): a \in C^{*}\left(\mathbb{F}_{2}\right)\right\}$. Our first observation is that $C^{*}\left(\mathbb{F}_{2}\right)_{-1} \subseteq \mathcal{I}$. Indeed, since $\theta(U)=\theta(V)$ we have $\theta \circ \sigma=\theta$ and thus $\theta(a-\sigma(a))=0$ for all $a \in C^{*}\left(\mathbb{F}_{2}\right)$. Therefore, $C^{*}\left(\mathbb{F}_{2}\right) / \mathcal{I}=C^{*}\left(\mathbb{F}_{2}\right)_{1} /\left(\mathcal{I} \cap C^{*}\left(\mathbb{F}_{2}\right)_{1}\right)$ since $C^{*}\left(\mathbb{F}_{2}\right)=$ $C^{*}\left(\mathbb{F}_{2}\right)_{1} \oplus C^{*}\left(\mathbb{F}_{2}\right)_{-1}$ as vector spaces by Lemma 2.1.

Using the six-terms exact sequence and Theorem 3.3, we can compute the K-theory of the ideal \mathcal{I}_{1} :

$$
\begin{array}{ccccc}
K_{0}\left(\mathcal{I}_{1}\right) & \xrightarrow{K_{0}(i)} & K_{0}\left(C^{*}\left(\mathbb{F}_{2}\right)_{1}\right)=\mathbb{Z} & \xrightarrow{K_{0}(\theta)} & K_{0}(C(\mathbb{T}))=\mathbb{Z} \\
\delta \uparrow & & & \downarrow \beta \\
K_{1}(C(\mathbb{T}))=\mathbb{Z} & \stackrel{K_{1}(\theta)}{\longleftrightarrow} & K_{1}\left(C^{*}\left(\mathbb{F}_{2}\right)_{1}\right)=0 & \stackrel{K_{1}(i)}{\longleftrightarrow} & K_{1}\left(\mathcal{I}_{1}\right)
\end{array}
$$

where i is again the canonical injection and we denote the restriction of θ to $C^{*}\left(\mathbb{F}_{2}\right)_{1}$ by θ again. Note that θ thus restricted is still an epimorphism. Each subsequent argument follows from the exactness of the six-terms sequence. Since $K_{0}\left(C^{*}\left(\mathbb{F}_{2}\right)_{1}\right)$ is generated by the class of the unit in $C^{*}\left(\mathbb{F}_{2}\right)_{1}$ and $\theta(1)=1$ generated $K_{0}(C(\mathbb{T}))$, we conclude that $K_{0}(\theta)$ is the identity, so $K_{0}(i)=0$ and $\beta=0$. Hence $K_{0}\left(\mathcal{I}_{1}\right)=\delta(\mathbb{Z})$ and $K_{1}(i)$ is injective. Since $K_{1}\left(C^{*}\left(\mathbb{F}_{2}\right)_{1}\right)=0$ and $\beta=0$
we conclude that $K_{1}\left(\mathcal{I}_{1}\right)=0$. Therefore $K_{1}(\theta)=0$, so δ is injective and we get $K_{0}\left(\mathcal{I}_{1}\right)=\mathbb{Z}$.

It is not too surprising that $K_{1}\left(\mathcal{I}_{1}\right)=0$ since $K_{1}(\mathcal{I})=\mathbb{Z}$ is generated by $U V^{*}(-1)$ which is an element in $C^{*}\left(\mathbb{F}_{2}\right)_{-1}$ of class $(1,-1)$ in $K_{1}\left(C^{*}\left(\mathbb{F}_{2}\right)\right)$, so it is not connected to any unitary in $C^{*}\left(\mathbb{F}_{2}\right)_{1}$. Of course, this is not a direct proof of this fact, as homotopy in $M_{n}\left(\mathcal{I}_{1}\right)+1_{n}(n \in \mathbb{N})$ is a more restrictive notion than in $M_{n}\left(C^{*}\left(\mathbb{F}_{2}\right)_{1}\right)(n \in \mathbb{N})$. But more remarkable is the fact that $K_{0}\left(\mathcal{I}_{1}\right)$ contains some nontrivial element. Of course, \mathcal{I}_{1} is projectionless since $C^{*}\left(\mathbb{F}_{2}\right)$ is by [2], so the projection generating $K_{0}\left(\mathcal{I}_{1}\right)$ is at least (and in fact, exactly in) $M_{2}\left(\mathcal{I}_{1}\right)+1_{2}$. We now turn to an explicit description of the generator of $K_{0}\left(\mathcal{I}_{1}\right)$ and we investigate why this projection is trivial in both $K_{0}\left(C^{*}\left(\mathbb{F}_{2}\right)_{1}\right)$ and $K_{0}(\mathcal{I})$ but not in $K_{0}\left(\mathcal{I}_{1}\right)$. By exactness of the six-terms exact sequence, this projection is exactly the obstruction to the nontriviality of $K_{1}\left(C^{*}\left(\mathbb{F}_{2}\right)_{1}\right)$.

For any C^{*}-algebra A, we denote by $[q]_{A}$ the K_{0}-class of any projection $q \in$ $M_{n}(A)+1_{n}$ for any $n \in \mathbb{N}$.

THEOREM 3.5. Let $\theta: C^{*}\left(\mathbb{F}_{2}\right) \longrightarrow C(\mathbb{T})$ be the $*$-homomorphism defined by $\theta(U)=\theta(V): z \in \mathbb{T} \mapsto z$ and let $\mathcal{I}=\operatorname{ker} \theta$. Let $\mathcal{I}_{1}=\mathcal{I} \cap C^{*}\left(\mathbb{F}_{2}\right)_{1}$. Let $Z=$ $\frac{1}{2}(U+V) \in C^{*}\left(\mathbb{F}_{2}\right)_{1}$. Let β be the projection in $M_{2}\left(\mathcal{I}_{1}\right)+1_{2}$ defined by:

$$
\beta=\left[\begin{array}{cc}
Z^{*} Z & Z^{*}\left(\sqrt[2]{1-Z Z^{*}}\right) \\
\left(\sqrt[2]{1-Z Z^{*}}\right) Z & 1-Z Z^{*}
\end{array}\right] .
$$

Then the generator of $K_{0}\left(\mathcal{I}_{1}\right)$ is $[\beta]_{\mathcal{I}_{1}}-\left[p_{2}\right]_{\mathcal{I}_{1}}$ where $p_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$. On the other hand, the projection β is homotopic to p_{2} in $M_{2}(\mathcal{I})+1_{2}$ and in $M_{2}\left(C^{*}\left(\mathbb{F}_{2}\right)_{1}\right)$. Thus $[\beta]_{\mathcal{I}}=0$ in $K_{0}(\mathcal{I})$ and $[\beta]_{C^{*}\left(\mathbb{F}_{2}\right)_{1}}=\left[p_{2}\right]_{C^{*}\left(\mathbb{F}_{2}\right)_{1}}=[1]_{C^{*}\left(\mathbb{F}_{2}\right)_{1}}$ in $K_{0}\left(C^{*}\left(\mathbb{F}_{2}\right)_{1}\right)$.

A simple calculation shows that β is a projection. We organize the proof of Theorem 3.5 in several lemmas. We start with the two quick observations that β is homotopic to p_{2} in $M_{2}\left(C^{*}\left(\mathbb{F}_{2}\right)_{1}\right)$ and in $M_{2}(\mathcal{I})+1_{2}$, and then we prove that $[\beta]_{\mathcal{I}_{1}} \neq\left[p_{2}\right]_{\mathcal{I}_{1}}$ in $K_{0}\left(\mathcal{I}_{1}\right)$.

Lemma 3.6. The projections β and $1-p_{2}$ are homotopic in $M_{2}\left(C^{*}\left(\mathbb{F}_{2}\right)_{1}\right)$. Thus $[\beta]_{C^{*}\left(\mathbb{F}_{2}\right)_{1}}=[1]_{C^{*}\left(\mathbb{F}_{2}\right)_{1}}$.

Proof. For all $t \in[0,1]$ we set:

$$
\beta_{t}=\left[\begin{array}{cc}
t^{2} Z^{*} Z & t Z^{*} \sqrt[2]{1-t Z Z^{*}} \\
\left(\sqrt[2]{1-t Z Z^{*}}\right) t Z & 1-t Z Z^{*}
\end{array}\right]
$$

Then $\left(\beta_{t}\right)_{t \in[0,1]}$ is by construction an homotopy in $M_{2}\left(C^{*}\left(\mathbb{F}_{2}\right)_{1}\right)$ between $\beta_{1}=$ β and $\beta_{0}=1-p_{2}$. Trivially $1-p_{2}$ and p_{2} are homotopic, and $\left[p_{2}\right]_{C^{*}\left(\mathbb{F}_{2}\right)_{1}}=$ $[1]_{C^{*}\left(\mathbb{F}_{2}\right)_{1}}$, hence our result.

The important observation in the proof of Lemma 3.6 is that although $\beta_{t} \in$ $M_{2}\left(C^{*}\left(\mathbb{F}_{2}\right)_{1}\right)$ for all $t \in[0,1]$, we have

$$
\theta\left(t Z \sqrt[2]{1-t Z Z^{*}}\right)(z)=t z \sqrt[2]{1-t} \neq 0
$$

for $t \in(0,1)$ and $z \in \mathbb{T}$, so β_{t} does not belong to the ideals \mathcal{I} and \mathcal{I}_{1}.
Since $K_{0}(\mathcal{I})=0$, it is trivial that the class of β in $K_{0}(\mathcal{I})$ is null. It is however interesting to look for a concrete homotopy between β and the projection p_{2} in $M_{2}(\mathcal{I})+1_{2}$, in parallel to the construction of Lemma 3.6.

Lemma 3.7. In $M_{2}(\mathcal{I})+1_{2}$ the projection β is homotopic to p_{2}. Hence in $K_{0}(\mathcal{I})$ we verify that we have indeed $[\beta]_{\mathcal{I}}=0$.

Proof. The unitary equivalence in Lemma 3.8 does not carry over to the unitization of the ideal \mathcal{I}, but we can check that β is homotopic to p_{2} in $M_{2}(\mathcal{I})+1_{2}$. Set $Z_{t}=t U+(1-t) V$ and set:

$$
\beta_{t}=\left[\begin{array}{cc}
Z_{t}^{*} Z_{t} & Z_{t}^{*}\left(\sqrt[2]{1-Z_{t} Z_{t}^{*}}\right) \\
\left(\sqrt[2]{1-Z_{t} Z_{t}^{*}}\right) Z_{t} & 1-Z_{t} Z_{t}^{*}
\end{array}\right]
$$

for all $t \in[0,1]$. As before, β_{t} is a projection for all $t \in[0,1]$ since $\left\|Z_{t}\right\|=1$ for all $t \in[0,1]$. Now, $\beta_{0}=\beta_{1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ while $\beta_{1 / 2}=\beta$. Of course, $t \in\left[0, \frac{1}{2}\right] \mapsto \beta_{t}$ is continuous. Moreover:

$$
(t U+(1-t) V)(t U+(1-t) V)^{*}=1-2\left(t-t^{2}\right)+\left(t-t^{2}\right)\left(U V^{*}+V U^{*}\right)
$$

so $\theta\left(1-Z_{t} Z_{t}^{*}\right)=0$. Hence, $\beta_{t} \in M_{2}(\mathcal{I})+1_{2}$ for all $t \in[0,1]$. Hence β is homotopic to p_{2} in $M_{2}(\mathcal{I})+1_{2}$.

Unlike in the case of Lemma 3.6, the homotopy used in the proof of Lemma 3.8 is in $M_{2}(\mathcal{I})$, but it is not in $M_{2}\left(C^{*}\left(\mathbb{F}_{2}\right)_{1}\right)$ and hence not in $M_{2}\left(\mathcal{I}_{1}\right)$.

The crux of this matter is that β is the obstruction to the existence of a nontrivial element in $K_{1}\left(C^{*}\left(\mathbb{F}_{2}\right)_{1}\right)$. In view of Lemmas 3.6 and 3.7 , we wish to see a concrete reason why β can not have the same class as p_{2} in $K_{0}\left(\mathcal{I}_{1}\right)$. We start with a useful calculation: since β and p_{2} are homotopic in $C^{*}\left(\mathbb{F}_{2}\right)_{1}$, they are unitarily equivalent as well, and we now make explicit a unitary implementing this equivalence:

Lemma 3.8. Let $Y=\left[\begin{array}{cc}Z^{*} & \sqrt[2]{1-Z^{*} Z} \\ \sqrt[2]{1-Z Z^{*}} & -Z\end{array}\right]$. Then Y is a unitary in $M_{2}\left(C^{*}\left(\mathbb{F}_{2}\right)_{1}\right)$ such that $Y p_{2} Y^{*}=\beta$.

Proof. Observe that $Z^{*}\left(1-Z Z^{*}\right)=Z^{*}-Z^{*} Z Z^{*}=\left(1-Z^{*} Z\right) Z^{*}$. Thus, for any $n \in \mathbb{N}$ we get by a trivial induction that $Z^{*}\left(1-Z Z^{*}\right)^{n}=\left(1-Z^{*} Z\right)^{n} Z^{*}$. Hence, for any polynomial p, we have $Z^{*}\left(p\left(1-Z Z^{*}\right)\right)=\left(p\left(1-Z^{*} Z\right)\right) Z^{*}$. By Stone-Weierstrass, we deduce that $Z^{*} f\left(1-Z Z^{*}\right)=f\left(1-Z^{*} Z\right) Z^{*}$ for any continuous function f on the spectrum of $1-Z Z^{*}$ and $1-Z^{*} Z$ which is the compact
space $[0,1]$, and in particular for the square root. Therefore:

$$
\begin{equation*}
Z^{*} \sqrt[2]{1-Z^{*}}=\left(\sqrt[2]{1-Z^{*} Z}\right) Z^{*} \tag{3.3}
\end{equation*}
$$

Now, we have:

$$
\begin{aligned}
Y Y^{*} & =\left[\begin{array}{cc}
Z^{*} & \sqrt[2]{1-Z^{*} Z} \\
\sqrt[2]{1-Z Z^{*}} & -Z
\end{array}\right]\left[\begin{array}{cc}
Z & \sqrt[2]{1-Z^{*}} \\
\sqrt[2]{1-Z^{*} Z} & -Z^{*}
\end{array}\right] \\
& =\left[\begin{array}{cc}
Z^{*} Z+1-Z^{*} Z & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

using (3.3) since $Z^{*} \sqrt[2]{1-Z Z^{*}}-\left(\sqrt[2]{1-Z^{*} Z}\right) Z^{*}=0$. Similarly, we get $Y^{*} Y=1_{2}$.
Now, we compute $Y p_{2} Y^{*}$:

$$
\begin{aligned}
{\left[\begin{array}{cc}
Z^{*} & \begin{array}{c}
2 \\
\sqrt[2]{1-Z^{*} Z} \\
-Z
\end{array}
\end{array}\right] } & {\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
Z & \sqrt[2]{1-Z^{*}} \\
\sqrt[2]{1-Z^{*} Z} & -Z^{*}
\end{array}\right] } \\
& =\left[\begin{array}{cc}
Z^{*} & \sqrt[2]{1-Z^{*} Z} \\
\sqrt[2]{1-Z^{*}} & -Z
\end{array}\right]\left[\begin{array}{cc}
Z & \sqrt[2]{1-Z Z^{*}} \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
Z^{*} Z & Z^{*} \sqrt[2]{1-Z Z^{*}} \\
\left(\sqrt[2]{1-Z Z^{*}}\right) Z & 1-Z Z^{*}
\end{array}\right]=\beta
\end{aligned}
$$

Last, we observe that $\sigma(Z)=\mathrm{Z}$ by construction and thus $\sigma(Y)=Y$ as well: in other words, $Y \in M_{2}\left(C^{*}\left(\mathbb{F}_{2}\right)_{1}\right)$ (and we recover that β is unitarily equivalent in $M_{2}\left(C^{*}\left(\mathbb{F}_{2}\right)_{1}\right)$ to $\left.p_{2}\right)$.

Note that $Z-\lambda 1 \notin \mathcal{I}$ for all $\lambda \in \mathbb{C}$ and so Y does not belong to $M_{2}(\mathcal{I})+1_{2}$. Indeed, the following lemma shows that β and p_{2} do not have the same K_{0}-class in \mathcal{I}_{1}, precisely because the conjunction of the conditions of symmetry and being in the kernel of θ make it impossible to deform one into the other, even though each condition alone does not create any obstruction.

Lemma 3.9. We have $[\beta]_{\mathcal{I}_{1}}-\left[p_{2}\right]_{\mathcal{I}_{1}} \neq 0$ in $K_{0}\left(\mathcal{I}_{1}\right)$.
Proof. We shall prove that in fact $[\beta]_{\mathcal{I}_{1}}-\left[p_{2}\right]_{\mathcal{I}_{1}}$ is a generator for $K_{0}\left(\mathcal{I}_{1}\right)$. Let $\delta: K_{1}(C(\mathbb{T})) \longrightarrow K_{0}\left(\mathcal{I}_{1}\right)$ be the exponential map in the six-term exact sequence in K-theory induced by the exact sequence $0 \rightarrow \mathcal{I}_{1} \rightarrow C^{*}\left(\mathbb{F}_{2}\right)_{1} \xrightarrow{\theta} C(\mathbb{T}) \rightarrow 0$. Let us denote by z the canonical unitary $z: \omega \in \mathbb{T} \mapsto \omega$ in $C(\mathbb{T})$. Let us also denote by θ_{2} the map induced by θ on $M_{2}\left(C^{*}\left(\mathbb{F}_{2}\right)\right)$. By Proposition 9.2.3 of [7], if u is any unitary in $M_{2}\left(C^{*}\left(\mathbb{F}_{2}\right)_{1}\right)$ such that $\theta_{2}(u)=\left[\begin{array}{cc}z & 0 \\ 0 & z^{*}\end{array}\right]$, then $\delta\left([z]_{C(\mathbb{T})}\right)=$ $\left[u p_{2} u^{*}\right]_{\mathcal{I}_{1}}-\left[p_{2}\right]_{\mathcal{I}_{1}}$. In particular, $\theta_{2}(Y)=\left[\begin{array}{cc}z & 0 \\ 0 & z^{*}\end{array}\right]$ so $\delta\left([z]_{C(\mathbb{T})}\right)=\left[Y p_{2} Y^{*}\right]_{\mathcal{I}_{1}}-$ $\left[p_{2}\right]_{\mathcal{I}_{1}}=[\beta]_{\mathcal{I}_{1}}-\left[p_{2}\right]_{\mathcal{I}_{1}}$.

On the other hand, by Theorem 3.4, δ is an isomorphism of group. Since $[z]_{C(\mathbb{T})}$ is a generator of $K_{1}(C(\mathbb{T}))$ we conclude that $[\beta]_{\mathcal{I}_{1}}-\left[p_{2}\right]_{\mathcal{I}_{1}}$ is a generator of $K_{0}\left(\mathcal{I}_{1}\right)$.

We have thus proven Lemma 3.9 and completed our proof of Theorem 3.5 by identifying $[\beta]_{\mathcal{I}_{1}}-\left[p_{2}\right]_{\mathcal{I}_{1}}$ as the generator of $K_{0}\left(\mathcal{I}_{1}\right)$ and verifying that without the conjoint conditions of symmetry via σ and θ, the difference of the classes of β and p_{2} is null in both $K_{0}\left(C^{*}\left(\mathbb{F}_{2}\right)_{1}\right)$ and in $K_{0}(\mathcal{I})$.

REFERENCES

[1] B. Blackadar, K-Theory for Operator Algebras, Math. Sci. Res. Inst. Publ., vol. 5, Cambridge Univ. Press, Cambridge 1998.
[2] M.-D. Choi, The full C*-algebra of the free group on two generators, Pacific J. Math. 87(1980), 41-48.
[3] M.-D. Choi, F. Latrémolière, C^{*}-crossed-products by an order-two automorphism, math.OA/0610468.
[4] J. Cuntz, The K-groups for free products of C^{*}-algebras, Proc. Sympos. Pure Math. 38(1982), 81-84.
[5] K.R. Davidson, C*-Algebras by Example, Fields Inst. Monogr., vol. 6, Amer. Math. Soc., Providence, RI 1996.
[6] M. Rieffel, Actions of finite groups on C*-algebras, Math. Scand. 47(1980), 157-176.
[7] M. RøRDAM, F. Larsen, N. J. Laustsen, An Introduction to K-Theory for C*-Algebras, London Math. Soc. Stud. Texts, vol. 49, Cambridge Univ. Press, Cambridge 2000.
[8] G. Zeller-Meier, Produits croisés d'une C*-algèbre par un groupe d'automorphismes, J. Math. Pures Appl. 47(1968), 101-239.

MAN-DUEN CHOI, Department of Mathematics, University of Toronto, Toronto, M5S 2E4, CANADA

E-mail address: choi@math.toronto.edu
FRÉDÉRIC LATRÉMOLIÈRE, Department of MATHEmatics, University of Denver, Denver, 80208, U.S.A.

E-mail address: frederic@math.du.edu

