]. OPERATOR THEORY © Copyright by THETA, 2009
62:1(2009), 171-198

EXTENSION PROBLEMS FOR REPRESENTATIONS OF
CROSSED-PRODUCT C*-ALGEBRAS

ASTRID AN HUEEF, S. KALISZEWSKI, IAIN RAEBURN, and DANA P. WILLIAMS

Communicated by Kenneth R. Davidson

ABSTRACT. A classical problem in representation theory asks which unitary
representations U of a closed subgroup H of a locally compact group G are the
restrictions V|y of unitary representations V of G. We have recently shown
that this extension problem has a dual formulation involving representations
of crossed products of C*-algebras by coactions, and this dual formulation
raises many interesting test questions for the theory of non-abelian duality. In
this paper, we consider the extension problem in the context of covariant rep-
resentations for actions of G on C*-algebras, and the analogous problem for
coactions. Each of our three main theorems has two main ingredients: a theo-
rem describing some aspect of the duality between induction and restriction of
representations, and an imprimitivity theorem. Some of these ingredients are
available in the literature, but others are new and should be of independent
interest. For example, we prove a version of Green’s imprimitivity theorem for
reduced crossed products, and this seems to be an interesting new application
of non-abelian duality in itself.
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1. INTRODUCTION

We consider the following extension problem for covariant representations
of C*-dynamical systems, and the analogue of this extension problem for the dual
systems involving coactions of non-abelian groups.

PROBLEM 1. Let a be an action of a locally compact group G on a C*-algebra
A, let H be a closed subgroup of G, and let (77, U) be a covariant representation
of the system (A, H,«) on a Hilbert space H. For which closed subgroups K of
G containing H is there a covariant representation (77, V) of (A, K, «) on H such
that U = V|y?
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When A = C, H = Nisnormal and K = G, this is a classical problem which
has been studied using a variety of methods (see [3], [8], [1] and [12], for exam-
ple), and its solution for irreducible representations is a crucial ingredient in the
Mackey machine [17]. In [10], we noted that Problem 1 for C*-dynamical systems
is an interesting test question for the theory of non-abelian duality. In particular,
we showed there is a condition on the induced representation Ind$ (77 x U) of the
crossed product A X, G which is equivalent to the existence of (7, V') ([10], Corol-
lary 4). For fixed K, we can apply this theorem to obtain a criterion involving the
induced representation Indllf,(n x U) of A x, K. This is not a very satisfactory
solution to Problem 1, though, since it requires that we consider all the induced
representations Indg (77 x U) as K varies. In our first main theorem, we describe
a criterion which uses the same induced representation Indlc\;,(n xU) of Ax,G
for every subgroup K (see Theorem 3.1).

Our proof of Theorem 3.1 uses ideas from non-abelian duality for crossed
products of C*-algebras, and hence it is natural to consider also the analogue of
Problem 1 for crossed products by coactions. In stating Problem 1, we made im-
plicit use of our ability to restrict « to actions of the subgroups H and K. Coactions
of G restrict to coactions of quotients of G, and hence the most natural dual ana-
logue of Problem 1 involves a pair of closed normal subgroups of G. A precise
statement of this dual analogue is given in Problem 2 in Section 4.

Our solutions to Problems 1 and 2 follow the same general pattern. Each
proof has two main ingredients: a theorem describing one aspect of the duality
between induction and restriction of representations, of the sort proved in [16],
[6], [5], and an imprimitivity theorem which allows us to recognise induced rep-
resentations. When dealing with duality for crossed products of C*-algebras, we
have to make choices: we can use full crossed products, in which case we need
to use the maximal coactions of [4] and [15], or we can use reduced crossed prod-
ucts, in which case we need to use the Quigg-normal coactions of [19] and [5]. We
prove versions of our solution to Problem 2 for both maximal and Quigg-normal
coactions; the theorems look similar, but pose different technical problems. In
solving these problems, we have proved new results which have independent
interest, including a theorem about the duality of induction and restriction for
maximal coactions, and a version of Green’s imprimitivity theorem for reduced
crossed products.

CONTENTS. We begin with a short section on induction processes and the associ-
ated imprimitivity theorems, which we hope will clarify some issues which arise
in applying concrete Morita equivalences. In Section 3, we present our solution
to Problem 1 when H is normal (see Theorem 3.1). An essential ingredient of the
proof is a construction of a Morita equivalence which yields an induction process
and an imprimitivity theorem for crossed products by dual coactions (Proposi-
tion 3.3). In Proposition 3.5, we prove the duality of induction and restriction for
this induction process.
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In Section 4, we recall some properties of coactions, and give a detailed
statement of Problem 2, which is the analogue of Problem 1 for crossed products
by coactions. In Section 5, we present our solution to Problem 2 for maximal
coactions. Here duality involves full crossed products and Green’s imprimitivity
theorem suffices, but we need to establish the appropriate induction-restriction
result for maximal coactions (Proposition 5.2). At the end of Section 5 we indi-
cate why our attempts to extend our results to crossed products by homogeneous
spaces require that we also consider Quigg-normal coactions.

In Section 6, we solve Problem 2 for Quigg-normal coactions. This time
the necessary induction-restriction result was established in [5], but we need to
prove a new version of Green’s imprimitivity theorem for reduced crossed prod-
ucts (Theorem 6.2). This is in itself an interesting new application of non-abelian
duality: the statement is entirely about crossed products by actions, but the proof
uses crossed products by coactions in a non-trivial way. We discuss an example
which shows that our proof works only for normal subgroups, and observe that
this example should be remembered when trying to establish universal proper-
ties of crossed products by coactions of homogeneous spaces.

In each of Sections 3, 5 and 6, we use a different generalisation of the in-
duction process and imprimitivity theorem of Mansfield for crossed products by
coactions [18]. It is natural to ask to what extent these different generalisations
are compatible, and we discuss this in an appendix.

CONVENTIONS. Let K be a closed subgroup of a locally compact group G. We
use left Haar measures, and denote by Ag and Ak the modular functions on G
and K. If N is a closed normal subgroup of G with N C K, we choose Haar
measure on K/ N such that

/f(s)ds: / /f(sn)dnd(sN)
K

K/N N

for f € Cc(K). We denote by AC and p© the left- and right-regular representations
of G on L?(G). The group G acts on the left of the homogeneous space G/K, and
this induces an action It : G — AutCy(G/K) defined by It;(f)(sK) = f(t'sK).
When N is a closed normal subgroup of G, there is also a right actionrt : G/N —
AutCyo(G/N) given by rt;n(f)(sN) = f(stN).

All homomorphisms and representations of C*-algebras are assumed to be
x-preserving. A homomorphism 7 of a C*-algebra A into the multiplier algebra
M(B) of another C*-algebra is non-degenerate if {rr(a)b : a € A,b € B} is dense
in B. A non-degenerate homomorphism 7 : A — M(B) extends uniquely to
a homomorphism 77 : M(A) — M(B), and 7 is strictly continuous; to avoid
complicating formulas, we often write 7t for 77. All representations of a C*-algebra
A on Hilbert space are assumed to be non-degenerate, and we denote by Rep A
the category of non-degenerate representations of A on Hilbert space.
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If A and B are C*-algebras, a right-Hilbert A-B bimodule is a right Hilbert
B-module X together with a homomorphism ¢ of A into the C*-algebra £(X) of
adjointable operators on X; in practice, we suppress ¢ and write a - x for ¢(a)x.
As in [5], we view a right-Hilbert A-B bimodule X as a morphism from A to B,
and say that the diagram

A —x B
Zl JY
w
C—D
commutes if the right-Hilbert A-D bimodules X ® Y and Z ®c W are isomor-

phic. Such a commuting square induces a commuting square of maps on repre-
sentations:

X-Indj
RepA+—————RepB
Z-]ndéT Ty-mdg
W-Ind$§

RepC <——— Rep D.
When X is an A-B imprimitivity bimodule, so that the map X-Ind has a natural

inverse X-Ind (see Theorem 3.29 of [22]), we write = beside the arrow to empha-
sise that it is invertible.

All tensor products of C*-algebras in this paper are spatial. We consider
only full coactions of locally compact groups on C*-algebras, which are defined
using the full group C*-algebra, and our main reference for material on coactions
and their crossed products is Appendix A in [5]. We assume further that all coac-
tions are non-degenerate in the sense that §(B)(1® C*(G)) = B ® C*(G); see
Section A3 of [5] for detalils.

2. INDUCTION PROCESSES AND IMPRIMITIVITY THEOREMS

We begin by making some general remarks about induction processes and
imprimitivity theorems. Suppose that X is an A-B imprimitivity bimodule and
that ¢ : C — M(A) is a non-degenerate homomorphism of another C*-algebra C
into the multiplier algebra M(A) of A. The left action of A on X induces an iso-
morphism of A onto the algebra K (X) of compact operators on X, which extends
to an isomorphism of M(A) onto the C*-algebra £(X) of adjointable operators.
Thus ¢ gives us a left action of C by adjointable operators on the Hilbert B-module
X, so that we can also view X as a right-Hilbert C-B bimodule. We can now ap-
ply Theorem 3.29 of [22] to both right-Hilbert bimodules 4 X and ¢ Xp, and thus
obtain two different induction processes on representations. We are going to try
to distinguish these two processes using the following convention: we denote by
X#-Ind the functor from Rep B to Rep A given by tensoring with the imprimi-

tivity bimodule 4Xp, and by X-Indg the functor from Rep B to Rep C given by
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tensoring with the right-Hilbert bimodule ¢ Xp. Thus by definition we have
X-Ind§ 7 = (X4-Ind 7) o ¢,

where we have silently used the non-degeneracy of X4-Ind 7 to extend it to
M(A). We may also use abbreviations for the algebras A, B and C to simplify
notation.

We can apply both constructions whenever we have a Morita equivalence
between a crossed product C x, G and another C*-algebra B, when we can take
for ¢ the canonical embedding ic : C — M(C x4 G). The resulting induction
process X-Ind$ then comes with an imprimitivity theorem:

PROPOSITION 2.1. Suppose & : G — AutC is an action of a locally compact
group G on a C*-algebra C and X is a (C x4 G)-B imprimitivity bimodule. Let 7t be a
representation of C on a Hilbert space H . Then there is a representation T of B such that
7t is unitarily equivalent to X—Indg T if and only if there is a unitary representation U of
G on Hy such that (7, U) is a covariant representation of (C, G, ).

Proof. Suppose m : C — B(Hy) is unitarily equivalent to X-Ind§ T for
some representation T of B. The isomorphism of M(C x, G) onto £(Xp) in-
duced by the left action is continuous for the strict topology on M(C x, G) and
the strong-operator topology on £(Xp) ([22], Proposition C.7). Since £(Xp) acts
non-degenerately on X ®p Hr, there is a strongly continuous representation W of
G on X ®p Hr such that

Ws(x®ph) = (ig(s) - x) @gh forx € Xand h € H.

The covariance of (ic, ig) implies that (X-Ind$ T, W) is a covariant representation
of (C,G,a), and moving W over to H gives the required unitary representa-
tion U.

Conversely, if there is such a representation U, we take

7:= X2, o-Ind(7r x U),
where X is the d1~1al of the imprimitivity bimodule X = ngc’ as in page 49 of
[22]. Since X ®p X is isomorphic to ¢y (C %o G)cxa,
X576 Ind T = (X ®p X)-Ind (7t x U)
is equivalent to 7t x U, and hence the following is equivalent to (77 x U) o ic = 7:
X-Ind§ T = (X§*C-Ind ) oic. 1

As a further illustration of this circle of ideas, we discuss Green’s imprim-
itivity theorem. Suppose « is an action of a locally compact group G on a C*-
algebra A, and H is a closed subgroup of G. We write X5 (A) or just X§ for
the ((A® Co(G/H)) Xaei G)-(A x4 H) imprimitivity bimodule constructed by
Green, which is a completion of C.(G, A) ([9], Theorem 6); we use the formulas
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for the actions and inner products on dense subspaces given in equations B.5 of
[5]. The natural embeddings

intA— A®1C M(A®Cy(G/H)) — M((A® Co(G/H)) Xaer G)

and ig : G — UM((A® Cy(G/H)) %41 G) form a covariant representation of
(A, G,«), and hence give a non-degenerate homomorphism

igXig:AxgG— M((A®Co(G/H)) X1 G).
Composing X§-Ind with the homomorphism i4 X i gives an induction process
X-Ind§; = X-Ind4 %% : Rep(A x4 H) — Rep(A x4 G),

which is the usual Takesaki-Green induction process for crossed product C*-
algebras. The ideas of Proposition 2.1 show that a representation 7w x U of A X, G
is induced from a representation T x V of A %, H if and only if there is a represen-
tation y of Co(G/H) on H such that (7 ® u, U) is a covariant representation of
(A® Co(G/H),G,a ®1t); or, equivalently, such that every u(f) commutes with
every 71(a) and (p, U) is a covariant representation of (Co(G/H), G, lt).

One common problem with this general approach to imprimitivity theo-
rems is to find a workable formula for the left action of an appropriate dense
subspace on the right-Hilbert bimodule. In the case of Green’s bimodule XI(;’,,
looking at the first equation in (B.5) of [5] suggests that z € C.(G,A) C A %, G
should act on x € C(G, A) C X according to the formula

@.1) (z-x)(s) = /z(t)oct(x(t_ls))AG(t)l/z dt.

G

However, z is really a multiplier of (A ® Co(G/H)) 41 G, and hence z - x :=
(ia X ig(z))x is defined on elements of the form x =b-ybyz- (b-y) = (zb) - y.
To verify that the left action of z € C.(G, A) is indeed given by (2.1), we proceed
as follows. First, we verify that for b € C.(G x G/H,A) and y € C.(G,A) we
have

22) z-(b-y) = /Z(f)at(b-y(tfls))AG(t)W dt,
G

so that (2.1) works for x of the form b - y. Next we define a pairing (z,x) +— z * x
using the formula on the right-hand side of (2.1), and check that

(2.3) (zxx,Y)axp = (0, 2" *Y)axg forx,y € C(G,A) C X,
where z* denotes the adjoint of z in C.(G, A) C A X, G. Then
((ia xig(2))x, b y) aun = (x, (ia )ic(z")) (b y)) axn
=(x,z"*(b-y))axu (by (22))
=(zxx,b-y)axn (by(2.3)),
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and the density of {b-y : b € Cc(G x G/H, A), y € Cc(G, A)} in X& now implies
that (ig X ig(z))x = z x x for every x € Cc(G, A). Thus the left action is given on
the dense subspaces of compactly supported functions by (2.1), as claimed.

3. THE EXTENSION PROBLEM FOR ACTIONS

Let a be an action of a locally compact group G on a C*-algebra A. When
N is a closed normal subgroup of G, the action id ® rt of G/N on A ® Co(G/N)
commmutes with the action & ® 1t, and hence induces an action of G/N on the
crossed product (A ® Co(G/N)) Xae1t G; we denote this induced action by B.
Our solution to Problem 1 involves this action .

THEOREM 3.1. Suppose that « is an action of a locally compact group G on a
C*-algebra A, and that N and K are closed subgroups of G such that N is normal in G
and N C K. Let (7r,U) be a covariant representation of (A, N,«) on H. Then there
exists a covariant representation (71, V') of (A, K, «) on H with V|x = U if and only if
there is a representation T of K/ N on X$ ® o, H such that (X$-Ind (7t x U), T) is
a covariant representation of ((A ® Co(G/N)) Xue1t G, K/N, B).

REMARK 3.2. If we write X{-Ind (7t x U) as an integrated form (o @ u) x W,
then we can also describe the covariance condition on (X$-Ind(7r x U), T) as
saying that every Ty commutes with every p(a) and every W;, and that (u, T) is
a covariant representation of (Co(G/N),K/N, rt).

As foreshadowed in the introduction, the main ingredients in the proof of
Theorem 3.1 are a commutative diagram relating induction and restriction of rep-
resentations, and an imprimitivity theorem. Recall that (A ® Co(G/N)) Xuei G
is naturally isomorphic to (A X G) Xz (G/N) by Theorem A.64 of [5]. When
G is amenable, so that A x, G = A X, G, and when K = M is normal, so that
it makes sense to restrict the coaction to G/ M, Theorem 5.16 of [5] says that the
following diagram of right-Hilbert bimodules commutes:

X6&
(A Xy G) ¥z (G/N) — = AxuN
yg;ﬁl leaM
X6
(A %y G) X (G/M) —F— Axg M.
From this, we deduce the commutativity of the following diagram relating induc-
tion and restriction of representations:
X§G-Ind
Rep((A ¥y G) x5 (G/N)) «——— Rep(A %y N)
Y-Indng TRes

Rep((A e G) iz (G/M)) ™ Rop(4 xq M).



178 ASTRID AN HUEF, S. KALISZEWSKI, [AIN RAEBURN, AND DANA P. WILLIAMS

When G is not amenable, the diagram in Theorem 5.16 of [5] involves the reduced
crossed product A X, G, and hence is not useful here. So we need an analogue
of Theorem 5.16 in [5] which uses the full crossed product A x, G and allows
M to be non-normal. So suppose that K is a closed subgroup of G with N C K.

Our analogue of Theorem 5.16 in [5] uses in place of Mansfield’s bimodule Yg // 1\1\/1

an imprimitivity bimodule Zg ; IIZ which we now construct using the symmetric
imprimitivity theorem of [21].
PROPOSITION 3.3. Let a be an action of a locally compact group G on a C*-algebra

A, let K be a closed subgroup of G, and let N be a closed normal subgroup of G with
N C K. To simplify the notation, set

(3.1) L:=((A®Co(G/N))xaenG)xgK/N and R:=(A®Co(G/K))¥4e1G.

Then Co(G x G/N, A) completes to give an L-R imprimitivity bimodule Zgﬁ(] .

Proof. This proof is similar to the proof of Proposition 1.1 in [6], so we omit
some details. Define left and right actions of K/N x G and G on G/N x G by

(kN,t) - (sN,r) = (ksN,tr) and (sN,r)-t= (stN,rt)

fork € Kand s, t,r € G. These actions are free and proper and commute. Define
0 :K/Nx G — AutAby oy = at, and take T : G — Aut A to be the trivial
action; clearly ¢ and T commute. There are actions x = c @1t : K/N x G —
Aut(Ind7) and w = T ®rt : G — Aut(Ind o) on the induced algebras Ind T and
Ind ¢ such that, for f € IndTand g € Ind o,

kw0 () (SN, 7) = 01y (F (KN, £) 71 (sN, 7)) = as (f (k™ 'sN, £~ 'r)), and
wi(g)(sN,r) = 1(g((sN,r) - t)) = g(stN, rt).

By the symmetric imprimitivity theorem ([21], Theorem 1.1), C.(G/N x G, A)
completes to an ((Ind 7) X, (K/N x G))-((Ind ) %, G) imprimitivity bimodule.

The isomorphisms © : Cy(G/N,A) — Indtand Q2 : Co(G/K,A) — Indo
given by

O(f)(sN,r) = f(rs"'N), 07 (g)(sN) = g(s'N,e),
Q(f)(sN, ) = ar(f(s'K)), Q71 (g)(sK) = g(s N e),

are suitably equivariant, hence induce isomorphisms

L:= (Co(G/N,A) X4eit G) g K/N = (Ind T) 3, (K/N x G) and
R:=Cyo(G/K, A) Xy G = (Ind o) Xy G.
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At this stage we have an L-R imprimitivity bimodule based on C.(G/N x G, A),
and chasing through the construction and isomorphisms gives the following for-
mulas for the actions and inner products:

c-y(sN, r)= / /c(kN, frs N (y(k 1SN, 1)) A (1 2A (KN )V2dtd (KN,
K/NG

y-b(sN,r) = /V(Stle,rtfl)art,l(b(t, tsfl))AG(t)*lﬂ dt,

L{x,y)(kN,r,sN) :AK/N(kN)*l/zAG(r)*l/2 / x(tN,st)ocr(y(kfltN,rilst)*)dt,
G

(x,y)r(r,sK) = 12 / /oct k1IN, £ Yy (ks 1N, £ 1)) dEd (KN),
K/N G

forc € Co(K/NxGxG/N,A) C L,b € C(GxG/K,A) C R, and x,y €
Cc(G/N x G, A). Following [6], we combine the inner products and actions with
the vector space isomorphism Y : C.(G/N x G) — C¢(G x G/N) defined by
Y(x)(sN,7) = x(r,rs"IN)A¢(r)1/? to obtain our bimodule ZG/N (Note that the
formula for the automorphism Y on the last line of page 156 in [6] should be
Y (x)(r,s) = x(s,57 1) Ag(s)'/2. We apply Y to make our construction compatible
with others, so that, for example, when K = N = {e} and B := (A ® Cy(G)) Xas1t
G we recover the standard bimodule pBg; it is then easier to compare Zg; 112] with
bimodules implementing Manfield imprimitivity.) We end up with an L-R im-
primitivity bimodule based on C.(G x G/N, A) with the formulas

(r,sN) / / (KN, £, sN)ar (x(t~1r, £~ skN)) A/ (KN) /2 dE A (KN),
K/N G
x-b(r,sN) = /x(t,sN)oct(b(tflr,FlsK))dt,
G
L{x, y)(kN,r,sN) = AK/N(kN)_l/Z/x(t,sN)(xr(y(r_lt,r_lskN)*)AG(r_lt) dt,
G

(x, y)r(r,sK) = / / e (e(E0, kN y (4, kN A (£) L de d(KN),
K/N G
forc € C(K/NxGxG/N,A) C L, b e C(GxG/K,A) C Rand x,y €

Co(G x G/N, A). Note that when N = {e} these formulas reduce to those of
Proposition 1.1in [6]. 1

Applying the construction of Section 2 to Zg ;IZX and the canonical embed-
ding ic of

(3.2) C:= (A® Cy(G/N)) Haet G
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in M(L) = M(C xp (K/N)) gives a right-Hilbert C-R bimodule and a corre-

sponding induction process Z-Indgﬁg . Proposition 2.1 provides us with a ready-

made imprimitivity theorem for this induction process:

PROPOSITION 3.4. Suppose 7t is a representation of C on H. Then there is a
representation T of R such that 7 is equivalent to Z—Indg%g T if and only if there is a
unitary representation V of K/ N on H such that (7t, V') is a covariant representation of

(C,K/N, B).

The following commutative diagram is the analogue for Zgﬁg of Theo-
rem 5.16 in [5].

PROPOSITION 3.5. Suppose that « is an action of a locally compact group G on a
C*-algebra A, and N and K are closed subgroups of G such that N is normal in G and
N C K. Then the following diagram commutes:

G

X
(A®Co(G/N)) Xt G —— Axux N
(33) zgﬁjl leaK

G

(A® Co(G/K)) Xaet G —K— Az K.
The inclusion ic of C in M(C xg (K/N)) = M(L) induces a left action of C

on Z(G; ; 112] . For the proof of Proposition 3.5, it is important that we can describe the
left action of the dense subalgebra C.(G x G/N, A) of C on the dense subspace

Ce(G x G/N, A) of the module Z&/y.

LEMMA 3.6. Suppose N and K are closed subgroups of G such that N is normal in
Gand N C K. Let f € Ce(G x G/N, A) C Candletw € Ce(G x G/N, A) € ZZ/¥.
Then ic(f) - w is the element of ZS; ? given by the compactly supported function

(3.4) (ic(f) - w)(r,sN) = / F(t,sN)ar(w(t1r, £ 1sN)) dt.
G

Proof. As in the discussion at the end of Section 2, we first claim that this for-
mula is correct on elements of the formw = [ -z forl € C.(K/N x G x G/N, A)
and z € C.(G x G/N, A). Notice that the right-hand side of (3.4) is the formula
for the convolution product (¢,d) — ¢ *d on the subalgebra C.(G x G/N, A)
of C = (A® Cy(G/N)) xuei G, which we know is associative. The left action
of f is defined by ic(f) - (I - z) = (ic(f)]) - z, where ic(f)I is the product of the
multiplier ic(f) with the element I of C xz (K/N); viewing [ as an element of
Cc(K/N, C), this product is given by the function kN +— f *[(kN) in C.(K/N, C).
Thus

ic(f)-(l-z)(r,sN):/ /(f*l(kN))(t,sN)zxt(z(t_lr,t_lskN))AK/N(kN)l/Zdtd(kN).
K/N G
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By writing rtyn(z) for the function (r,sN) — z(r,skN), and recognising the inte-
gral over G as a convolution, we can deduce that

ic(f)-(I-2)(r,sN) = / ((f < 1(kN)) * rtey (2)) (7, 5N) A/ (kN)T2 A (KN).
K/N
Now applying associativity of * to the right-hand side gives
/ (f * (1(kN)  rtiy(2))) (7, N) A/ (kN) T2 d (KN);
K/N
expanding out the two convolutions, applying Fubini’s theorem, and reinserting
the definition of rtyn(z) converts this to

/f(t, sN)txt</ I(KN, u, t 'sN)ay, (z(u 71y, uflt*lskN))AK/N(kN)l/zdud(kN» dt

which we can recognise as f * (I - z)(r,sN). Thus, as claimed,

(3.5) ic(f)-(I-z) = f+(l-2).
A messy but routine computation shows that
(3.6) (f*w,z)r = (w, f**2z)Rr

for f,w,z € Cc(G x G/N,A), where f* denotes the adjoint of f in C. Now (3.5)
and (3.6) give

@7 (ic(Hlwl-z)r = (w,ic(f)-2))r = (W, f** (- 2))r = (fxw,]- 2)R

Since the elements of the form [ - z are dense in Zg (this is a general property
of imprimitivity bimodules), (3.7) implies that ic(f ) w = f *w, as required. 1

The right action of A x, K on the module X$ extends to an action of the
multiplier algebra M(A x, K), and so the inclusion i of A X, N in M(A x K)
induces a right action of A x, N on X¢. Again, it is important for the proof
of Proposition 3.5 that we can describe the right action of the dense subalgebra
Cc(N, A) of A x4 N on the dense subspace Cc(G, A) of X$.

LEMMA 3.7. Suppose that N and K are closed subgroups of G such that N is a
normal subgroup of K. Letf € Cc(N,A) C AxyNand x € C(G,A) C X§. Then
x - i(f) is the element of X$ given by the compactly supported function on G deﬁned by

(3.8) (x-i(f)(t) = /x(tn)txm(f(nfl))AN(n)*l/zdn.
N
Proof. Letf (N, A). Forg E Cc(K, A),i(f)g is the function in C.(K, A)
given by (i(f = 1{ f(n)a 1k)) dn, and thus

(gi(f)) (k) = (i(f /gknakn n 1)) dn.
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Temporarily denote the right-hand side of equation (3.8) by x ¢ f(t) and
continue to write R for (A ® Co(G/K)) Xyeit G. It suffices to show g(xo f, y -
Q) =r(x-i(f),y-g) forally € C.(G,A) and g € C.(A,K). The first step is to

note that ((y - &) - i(f))(t) = (y- (gi(f)))(t) = (y - g) o f(#); the second equality
follows from routine caculations (it helps to recall at the end that Ax(n) = An(n)

for all n € N since N is normal in K). Next,
r(x-i(f),y-8)(s,tK) = r(x,y - (8i(f"))) (s, tK)
= 86(s) V2 [ x(t)as(y - (gi(F)) (s )" )dk

K
= Ac(s)fl/z/x(tk)“s(((y'g) o f*)(s7'tk))" dk
K
which, using the formula for (y - g) ¢ f* established above and more routine cal-

culations, isjust g(x < f, y - g) (s, tK), as required. 1

Proof of Proposition 3.5. We continue to use the notations L, R and C estab-
lished in (3.1) and (3.2). We will prove that

(3.9) X§ ®any XG = ZG/N

as right-Hilbert C-R bimodules. Given this, we have
(3.10) X§ @axn X§ ®p X§ = 23X @ X§
as right-Hilbert C-(Ax,K) bimodules; since XG® RX$ 2 Ax,K, (3.10) implies that

X§ @ axn (A ¥y K) =2 ZGfK ®(AnCy(G/K)) G XK

as right-Hilbert C-(A x, K) bimodules, which says precisely that (3.3) commutes.
We define ¥ : Cc(G, A) ® Cc(G, A) — Co(G x G/N, A) using the left inner
product on X§, so that

¥(x@7)(r,sN) = c(x, y)(r,sN) = Ag(r)~1/? / x(sn)a, (y(r~tsn)*) dn.
N
We shall show that ¥ extends to an isomorphism implementing (3.9).
We first show that ¥ is isometric. Let x, y,v,w € Cc(G, A). Then

(Y(x®y), ¥(w®0))r(r,sK)
- / / a (F(x @) (1, 7 ISkN) ¥ (w @ 5) (¢ 1, ¢ 1skN))Ag (£) 1 dt d(kN)

K/N G

/ / (e, ) (L kN e (w, o) (7, £ 1SkNY) A (£) 1 dE d (kN)
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:/. /‘//.y(skn)lxt(x(t_lskn)*w(t—lskm))wr(v(r—lskm)*)Ac(r)—l/zdmdndtd(kN)
K/NGNN

which, after an application of Fubini’s theorem and combining one of the inte-
grals over N with the integral over K/ N to get an integral over K, is equal to

///y(skn)txt(x(t_lskn)*w(t_lsk))txr(U(r_lsk)*)Ag(r)_1/2dndtdk.

K G N
We next note that

(x®@Y, wRT)r = (W, X) Axi,N ¥, O)R=(/ - (X, W) g0, N) 7 OIR=R(Y * (X, W) 430, N, V)
so that
(x® 7, wd)r(r,sK) = Ag(r) "2 /(y (%, ) ase,n) (5K)ap (0(r Lsk) ) dik.
K

Now we expand the right action of A x4 N on X¢ using the formula of Lemma 3.7
and evaluate the A x, N-valued inner product on Xl(\;f to get

(x®y, wv)r(r,sK)
= Ag(r)/? / /y(Sk”)“skn«xr W) psa,n (1)) (v(r1sk)*) An (n) "2 dn dk

K N
:AG(r)’l/z///y(skn)askm(x(tfl)*w(tilnfl))zx,(v(r*lsk)*)dtdndk,
KNG

which, by the change of variable sknt — t, is equal to

///y(skn)oc,g(x(Flskn)*w(i&flsk))zxr(v(rflsk)*)AG(1’)*1/2 dn dt dk.
KGN

Comparing the formulas for the two inner products shows that ¥ is isometric.
To see that ¥ has dense range in Zgﬁg = C.(GxG/N,A), we fix z €

Cc(G x G/N,A) and € > 0. Green proved in Lemma 1.2 of [9] that there is an
approximate identity for C consisting of elements c of the form

n

(3.11) c=1Y clxivi),

i=1
where x;,y; € Cc(G, A) and ¢ (-, -) denotes the C-valued inner product on the sub-
space Cc(G, A) C X§ which we used to define ¥. The image of this approximate
identity under ic : C — M(L) converges strictly to 1)), and thus there exists c
of the form (3.11) such that

(3.12) |[z—c-zl|r <e.
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Now we recall from Lemma 3.6 that ¢ - z is given by the convolution product
c*zin C(G x G/N,A) C C, and compute in the imprimitivity bimodule XI‘\;,:
n n
crz=cxz=Y c(x;,y;) *z =Y c(x;,z* - y;). But this says precisely that
i=1 i=1

= 1=

C'Z:i‘f’<xi®<z*~yi> ),

50 (3.12) says that the range of ¥ is dense.

Since ¥ is isometric for the R-valued inner product and has dense range, ¥
is automatically equivariant for the right actions of R. So it remains to check that
¥ is equivariant for the left actions of C. But if f € C.(G x G/N,A) C C and
x,y € Co(G x G/N,A), then

Y(f-(x2y) =¥((f-x)@y) =clf-x,y) = f+clx,y)

which by Lemma 3.6 is precisely f - ¥(x ® y). Thus ¥ extends to the desired

isomorphism (3.9), and we have proved Proposition 3.5. &

Proof of Theorem 3.1. The right-Hilbert bimodules Zg; Ilg and A x4 K appear-

ing in the commutative diagram of Proposition 3.5 induce maps Z—Indgfg and

Res on representations such that the folowing commutes:

XG-Ind
Rep((A ® Co(G/N)) Xagit G) «——— Rep(A x4 N)
(3.13) Z—Indgfﬂ TRes
XE—Ind

Rep((A ® Co(G/K)) Xyt G) e Rep(A x4 K).

We are asking whether 7w x U is in the range of Res : Rep(A X, K) —
Rep(A x4 N); since the horizontal arrows in the commutative diagram (3.13)
are bijections, this happens precisely when X$-Ind(7r x U) is in the range of
Z—Indgﬁg , which by Proposition 3.4 is equivalent to the existence of the repre-
sentation T. 1

4. THE DUAL PROBLEM

Letd : B — M(B ® C*(G)) be a coaction of a locally compact group G on a
C*-algebra B. We denote by u the universal representation of G in UM(C*(G)),
and by wg the unitary element of M(Cy(G) ® C*(G)) given by the strictly con-
tinuous function s — u(s) : G — UM(C*(G)). A covariant homomorphism of
(B,G,9) into a C*-algebra D is a pair (7, i) of homomorphisms 7 : B — M(D)
and y : Cp(G) — M(D) such that, for every b € B,

(m®id)od(b) = (p®id)(we)(m(b) @ 1)(r®@id)(wg)* in M(D ® C*(G));



EXTENSION PROBLEMS FOR REPRESENTATIONS 185

when M(D) = B(H), we call (7, 1) a covariant representation. We denote the
crossed product of (B, G, d) by (B x5 G, B, jg), as in Section A5 of [5]. Then

(jB.jc) = (B,Co(G)) — M(B x5 G)

is universal for covariant homomorphisms on (B, G, ) ([5], Theorem A.41); we
write 71 X y for the homomorphism on B x5 G corresponding to a covariant ho-
momorphism (77, jt).

If N is a normal subgroup of G, we denote by J| the restriction of ¢ to a
coaction of G/ N, as in Example A.28 of [5]. Viewing functions on G/N as func-
tions on G gives a non-degenerate homomorphism of Cy(G/N) into C,(G) =
M(Cy(G)), and hence it makes sense to restrict non-degenerate homomorphisms
u: Co(G) — M(D) to Co(G/N): first form the strictly continuous extension
o M(Co(G)) — M(D), and then define u| to be the composition of 7 with
the inclusion of Cy(G/N) in M(Cp(G)). (As in [5], our notation will ignore the
step of extending to M(Cy(G)).) Restricting the canonical injection jg of Cy(G) in
M(B x5 G) gives a covariant homomorphism (jg, jg|) of (B, G/N, d]); more gen-
erally, if (71, u) is covariant for (B, G,6), then (7, u|) is covariant for (B, G/N, é|),
and T x pt| = (rx p) o (jg X jg|). If N and M are normal subgroups with N C M,
then we can equally well restrict covariant homomorphisms of (B, G/N,d|) to
(B,G/ M, é]), and our dual problem concerns this restriction process.

PROBLEM 2. Suppose § : B — M(B ® C*(G)) is a coaction of a locally
compact group, M is a closed normal subgroup of G and (7, u) is a covariant
representation of (B, Co(G/M),é|). For which closed normal subgroups N of G
with N C M is there a covariant representation (77,v) of (B, G/N, J|) such that
p=vl?

Our solutions of this problem are slightly different when ¢ is a maximal
coaction, in which case we recover the stabilisation B ® K from B x; G as the
full crossed product (B x5 G) x5 G by the dual action, and when ¢ is a Quigg-
normal coaction, in which case the Katayama duality theorem says that B ® K is
isomorphic to the reduced crossed product (B x5 G) x5, G.

The maximal coactions of [4] and [15] are by definition coactions § : B —
M(B ® C*(G)) such that the canonical surjection

(([d®A%)08) x (1@ M)) x (1®p°) : (BxsG) x5G — B® K(L*(G))

is an isomorphism. The main examples of maximal coactions are constructed
from dual coactions on full crossed products, and include the restrictions of dual
coactions to quotients by normal subgroups (see Section 7 of [15]). When J is
maximal and N is a closed normal subgroup of G, we denote by Yg /n(B) or
Ye /n the ((B x5 G) x5 N)-(B x5 (G/N)) imprimitivity bimodule constructed in
Section 5 of [15] using duality. This bimodule is the one used in Section 5.
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A coaction 6 : B — M(B ® C*(G)) is Quigg-normal if the canonical map
jp of B into M(B x5 G) is injective. The main examples of Quigg-normal coac-
tions are dual coactions on reduced crossed products ([19], Proposition 2.3), and
the restrictions of these dual actions to quotients by normal subgroups ([14],
Lemma 3.2). When ¢ is Quigg-normal and N is a closed normal subgroup of G, we
denote by Yg’/N(B) or Yg/N the ((B %5 G) x5, N)-(B %5 (G/N)) imprimitivity
bimodule constructed in [14] (we need to combine Lemma 3.2 and Corollary 3.4
of [14]). We emphasise that this bimodule, which is the one used in Section 6, is
essentially that constructed by Mansfield in [18], adapted for full coactions and
avoiding amenability hypotheses.

5. THE DUAL PROBLEM FOR MAXIMAL COACTIONS

THEOREM 5.1. Suppose that 6 : B — M(B ® C*(G)) is a non-degenerate max-
imal coaction of a locally compact group G on a C*-algebra B, that N and M are closed
normal subgroups of G with N C M, and that (7T, u) is a covariant representation of
(B,G/M,4|) on a Hilbert space H. Denote by (1, U) the covariant representation of
(B x5 G, M, 8) such that y x U = Yg/M—Ind(r( X ). Then there exists a covariant
representation (7t,v) of (B, G/N,d|) on M such that v|c, G/ my = p if and only if there
exists a representation ¢ of Co(M/N) in the commutant of (B x5 G) such that (¢, U)
is a covariant representation of (Co(M/N), M, 1t).

The proof of Theorem 5.1 again has two main ingredients: the following
commutative diagram, which is the analogue for maximal coactions of Corol-
lary 5.14 in [5], and Green’s imprimitivity theorem.

PROPOSITION 5.2. Suppose 6 : B — M(B ® C*(G)) is a non-degenerate max-
imal coaction of a locally compact group G on a C*-algebra B, and N and M are closed
normal subgroups of G with N C M. Then the following diagram of right-Hilbert bi-
modules commutes:

YS, (B
(5.1) BNgGNg‘MLH)BNﬂ(G/M)
X%’(Bx,gG)J le(G/N)
Y&/n(B)

B><1(5G>45|N4)B X ] (G/N)

Proof. We are going to mimic the proof of Corollary 5.14 in [5], and for this
we need some notation. If « : G — Aut A is an action, then there is a canonical
isomorphism of (A ® Co(G/M)) Xue1 G onto (A x4 G) Xz (G/M) ([5], Theo-
rem A.64). Applying this isomorphism to the dual action & allows us to view
the Green bimodule X§;(B x; G) as a (B %5 G x; G X (G/M))-(B x5 G x5 M)
imprimitivity bimodule, where & denotes the double dual coaction of G on (B x4
G) x5 G. We also recall from Proposition 4.2 of [15] that the Katayama bimodule
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K = K(B) is a (B x5 G x5 G)-B imprimitivity bimodule with an -5 compatible
coaction dx of G on K.

As in the proof of Corollary 5.14 in [5], we consider the following diagram
which has (5.1) as its outer square:

G
(5.2) BxsG x5 M Yo (®) B x5 (G/M)

\XAGA(M@ K(B) s, (GTM)
\ /

B X G >45AG ><1€| (G/M)

XM (Bx,G) Bx;Gx;Gx(G/N) Bx;(G/N)

B X G ><1(§G ><1€‘ (G/N)

XG(BNJG)/ %xék‘(cm)
/N S, (B) T~

Bx5GxszN o B x5 (G/N).

It is shown in Corollary 6.4 of [15] that the upper and lower triangles in
(5.2) commute. Since the diagonal arrows are implemented by imprimitivity bi-
modules and therefore invertible, to prove commutativity of the outside square
it suffices to prove that the left and right quadrilaterals commute.

The modules in the left-hand quadrilateral are Green bimodules, so it is
again convenient to work with an arbitrary action « of G on a C*-algebra A, and
later take A = B xsGand a = 5.

In proving Proposition 8 of [9] (which is induction in stages for Takesaki—
Green induction), Green showed that the map defined in terms of the right action
of Cc(M,A) C AxxMon C(G,A) C X§; by x®y — x-y extends an iso-
morphism of right-Hilbert (A x4 G)-(A x4 N) bimodules from X§; ® a5 m XM
to X$. The left action of C¢(G,A) C A x4 G on Cc(G,A) C X, is given by
the formula for the convolution product in A x4 G (see (2.1)), and the action of
Co(G/M) C Cp(G) by pointwise multiplication combines with this left action to
give the left action of

K(X$) = (A® Co(G/M)) et G-

The algebra Co(G/M) also acts on X§; through the inclusion of Co(G/M) in
Cb(G/N) = M(Cy(G/N)), and this action is also by pointwise multiplication.
The map x ® y — x - y preserves these left actions of Cy(G/M), and hence is an
isomorphism of right-Hilbert ((A ® Co(G/M)) Xuz1t G)-(A X4 N) bimodules.
On the other hand, the imprimitivity bimodule isomorphism c®x+c - x of

((A® Co(G/N)) Husie G) ®(Awcy(G/N))xG XN
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onto X also gives an isomorphism of right-Hilbert ((A ® Co(G/M)) X1t G)-
(A x4 N) bimodules. When we identify (A ® Co(G/M)) Xyaon G with (A X,
G) x| (G/M) as in Theorem A.64 of [5], these two isomorphisms give the upper
and lower triangles in a commutative diagram

G
Aty M (A4 G) iz, (G/ M)
XANA(A)J Kl ymcmm/w)
A Xy N}\<G— (A x4 G) ¥z (G/N)
X5 (4)
of right-Hilbert bimodules. Taking (A,a) = (B x5 G, ) gives the left-hand quad-
rilateral of (5.2).

To study the right-hand quadrilateral, we consider the coaction v of G on
the linking algebra L(K) of K = K(B) such that there is a canonical isomor-
phism of L(K) x, G onto L(K x5, G) (see Lemma 3.10 of [5]). Then the natural
map of L(K) %, (G/M) into M(L(K) x,| (G/N)) gives a non-degenerate im-
primitivity bimodule homomorphism of K x;,| (G/M) into M(K x| (G/N))
whose coefficient maps are the natural maps of B x5 G x5 G x| (G/M) into
M(B x5 G x5G %y (G/N)) and B x5 (G/M) into M(B x4 (G/N)). Since these
last two maps give the two vertical arrows in the right-hand quadrilateral of (5.2),
it follows from Lemma 4.10 of [5] that the quadrilateral commutes. 1

Proof of Theorem 5.1. Proposition 5.2 gives a commutative diagram

Yg/M-Ind
Rep((B X G) NSM) T Rep(B >45‘ (G/M))

X-Ind}! T TRes

G
Ygn-In

Rep((B x5 G) x5 N) <Td Rep(B x4 (G/N)).

We deduce that there exists an appropriate representation v if and only if the rep-
resentation 7 x U = Y& s Ind (7T % p) of (B x5 G) x5 M is induced from a repre-
sentation of (B x5 G) x5 N. The theorem now follows from Green’s imprimitivity
theorem (Theorem 6 in [9]) as described in Section 2. 1

THE EXTENSION PROBLEM FOR NON-NORMAL SUBGROUPS. We now discuss pos-
sible reformulations of Theorem 5.1 in which M and N are replaced by non-
normal subgroups K and H, respectively. This discussion will lead us to the
conclusion that in this case we should be considering Quigg-normal coactions,
rather than maximal ones.

Let 6 be a coaction of G on B. When H is a closed subgroup of G which
is not normal, we have to decide how to interpret the crossed product by the
homogeneous space G/H. When G is discrete or J is a dual coaction, there is
some choice here (see [7] and Section 2 of [6]), but in general the only available
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candidate is the reduced crossed product B x5, (G/H) of B by the homogeneous
space G/ H, which is by definition

(53) By, (G/H) :=span{jp(b)jc|(f) : b € B, f € Co(G/H)} € M(B x; G).

It is explained in [6] why this closed span is a C*-algebra, why we think of it as
a crossed product by G/ H, and why this crossed product is called reduced. One
way in which this behaves like a reduced crossed product rather than a full one
is the apparent absence of a universal property: even when N is normal, so that
we already have a crossed product B x4 (G/N), the map jp x jg| of B x5 (G/N)
onto B X5, (G/N) need not be an isomorphism. (We discuss this absence of a
universal property further at the end of Section 6.)

The absence of a universal property means that we cannot construct rep-
resentations of B x5, (G/H) from covariant pairs, and hence we cannot restrict
covariant representations to B x5, (G/H). So when the larger subgroup K is not
normal, we can only restrict representations to B X, (G/K) from a subalgebra C
of M(B x5 G) with B x5, (G/K) C M(C). Fortunately, this applies when C is the
reduced crossed product by another homogeneous space of G:

LEMMA 5.3. Suppose that H and K are closed subgroups of G with H C K. Then
the inclusion of B x5, (G/H) in M(B x5 G) is non-degenerate, and

B x5, (G/K) C M(B x5, (G/H)).

Proof. The inclusion of B x;, (G/H) in the multiplier algebra M(B x5 G)
is non-degenerate because both jp and j;| are non-degenerate homomorphisms.
Hence M(B x5, (G/H)) embeds in M(B x5 G). It is clear that elements jp(c)
multiply B x5, (G/H) on the left, and that if ¢ € C,(G/K) then j;|(g) multiplies
B x5, (G/H) on the right; since taking adjoints shows that the elements of the
form j;|(g)jg(b) also span B x5, (G/H), jg(c) and j;|(g) multiply on the other
side as well. 1

So when the larger subgroup K is not normal, the only extension problem
which makes sense involves two reduced crossed products. There is still the pos-
sibility of an interesting extension problem when the larger subgroup M is nor-
mal and H is not. To pose such a problem, we have to decide how to make sense
of the restriction map

(5.4) Res : Rep(B x5, (G/H)) — Rep(B x5 (G/M)).

If p is a representation of B X, (G/H), then composing with the canonical maps
jB and jc|c,(c/H) gives a pair of representations

(5.5) m=pojg and p=pojclc)c/m)

of B and Cy(G/H), respectively; the restriction of p should be the pair (7, u|),
where y| is the usual restriction of 77 to Co(G/M) C C,(G/H) = M(Co(G/H)).
However, it takes work to see that the pair (77, y|) forms a covariant representa-
tion of (B, G/ M, d|).
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LEMMA 5.4. The homomorphism jgxjc|c,(c/m) of B4 (G/M) — M(Bx;sG)
has range in M(B x5, (G/H)), and if p is a non-degenerate representation of Bx
(G/H), then the representation p o (jg X jc|cy(c/m)) is the integrated form of

(5.6) (Pojs 0o (icleycrm)lcycr/my)-
In particular, (5.6) is a covariant representation of (B, G/ M, J|).

Proof. Since the range of jp % jG|c,(c/m) 18 B X5r (G/M), Lemma 5.3 im-

plies that the range lies in M(B X, (G/H)). We denote by jgN(G/ M) the canon-

ical homomorphism of B into M(B x5 (G/M)) (to distinguish it from jg : B —
M(B 5, (G/H))).

If p is a non-degenerate representation of B x5, (G/H), then T := p o (jp
jcley(G/my) is a non-degenerate representation of B x5 (G/M), and hence is the

integrated form of
x(G/M)

(Tojp ,TOjG/M)-
Now
Tofgx(G/M) =po(jp ¥ jclcyc/m)) O]'gx(G/M) =pojp, and

Tojc/m=po (jB X jcleyc/m)) ©Jo/m =P o jclcy(c/m),
which since jc|c,(c/m) = (clcy(c/m))|co(G/m) 1 the required covariant pair. &

Lemma 5.4 says, first, that we have a well-defined restriction map (5.4)
which is implemented by the homomorphism

¢ = jB X jGlcy(c/my : B Xy (G/M) — M(B x5, (G/H))

and takes a representation to the pair (7, 1) described in (5.5). Since the range
of ¢ is (by definition) B X5, (G/M) and since B X5, (G/M) is a subalgebra of
M(B x5, (G/H)), Lemma 5.4 also implies that this restriction map factorises as

Rep(B %, (G/H)) — Rep(B x5, (G/M)) — Rep(B x4 (G/M)).

Identifying the range of the second map amounts to determining the difference
between B x5 (G/M) and B %, (G/M), which is an interesting problem in its
own right. Modulo solving this problem, we are led once again to the extension
problem for reduced crossed products by homogeneous spaces.

To finish off this discussion, we want to show that this extension problem
for reduced crossed products by homogeneous spaces is effectively a problem
about Quigg-normal coactions. Indeed, Quigg proved that for every coaction ¢
on B, there is a Quigg-normal coaction " on a quotient B” of B such that B x; G
is naturally isomorphic to B" %1 G (see [19] or Section A.7 of [5]). Since B X,
(G/H) is by definition a subalgebra of M(B x G), it is naturally isomorphic to
B" %51, (G/H). Thus the extension problem for reduced crossed products which
we have arrived at is equivalent to the extension problem for the Quigg-normal
coaction 4",
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So the next step is to study the extension problem for a Quigg-normal coac-
tion. As we shall see, even when both subgroups are normal, there are substantial
difficulties to be overcome. The non-normal case then raises several additional
technical problems which are of independent interest, and which we plan to dis-
cuss in a future paper.

6. THE DUAL PROBLEM FOR QUIGG-NORMAL COACTIONS

In this section, 6 : B — M(B ® C*(G)) is a Quigg-normal coaction, and
Yg N = Yg /n(B) denotes the Mansfield bimodule of [14]. Since the crossed prod-
uct in the left coefficient algebra (B x5 G) x5 N is a reduced crossed product, we
need to discuss reduced Green induction before we can proceed.

Let a« be an action of a group G on a C*-algebra A, H a closed subgroup of G,
and I the kernel of the map A x, H — A X, H. A theorem of Quigg and Spiel-
berg [20] implies that the quotient imprimitivity bimodule Xg,r = X%/(X% 1)
implements a Morita equivalence between the reduced crossed products (A ®
Co(G/H)) Xugitr G and A X, H (see [11] or Section B.1 of [5] for further de-
tails). On the other hand, it is shown in Lemma 2.5 of [16], for example, that
X-Indg I is the kernel of the quotient map of A x, G onto A X, G, and hence we
can view Xfl,r as a right-Hilbert (A x4+ G)-(A X4 H) bimodule. Thus there is a

well-defined induction process X-Indg,r from Rep(A X4 H) to Rep(A x4r G).

If (n,V) is a covariant representation of (A, G,«) such that 7 x V factors
through a representation of the reduced crossed product, then we write 57 x, V
for the corresponding representation of A X, G.

THEOREM 6.1. Suppose 6 : B — M(B ® C*(G)) is a non-degenerate Quigg-
normal coaction of a locally compact group G on a C*-algebra B, that N and M are closed
normal subgroups of G with N C M, and that (7T, u) is a covariant representation of
(B,G/M,5|g/m) on a Hilbert space H. Denote by (1, U) the covariant representation
of (B x5 G, M, 8) such that 1 x; U = YS/M—Ind(rc X y). Then there exists a covariant
representation (7t,v) of (B,G/N,d|c/n) on H such that v|c,G,my = p if and only if
there exists a representation ¢ of Co(M/N) in the commutant of (B x5 G) such that
(¢, U) is a covariant representation of (Co(M/N), M, 1t).

From Theorem 3.1 of [16] (or from Corollary 5.14 of [5], which is the same
theorem with a different proof) we obtain a commutative diagram

Yg/M—Ind
Rep((B x5 G) X5, M) «—— Rep(B X (G/M))
(6.1) X-Indﬁ,der TRes
YS, -Ind

G/N

Rep((B x5 G) X5, N) — Rep(B x5 (G/N)).
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From (6.1) we deduce that there exists an appropriate representation v if and
only if the representation Y¢ s Ind(7r % p) of (B x5 G) x5, M is induced from
a representation of (B x5 G) x5 N.

So to complete the proof of Theorem 6.1 we need a version of Green’s im-
primitivity theorem which allows us to recognise representations of A X, M
which have been induced via X—Ind%{r from representations of A x,, N. The-
orem 6.2 below is exactly what we need, and should be of independent interest.
In particular, it is a nice and apparently non-trivial application of non-abelian
duality.

THEOREM 6.2. Suppose that « is an action of a locally compact group G on a
C*-algebra A and N is a closed normal subgroup of G. Let v X U be a representation
of the reduced crossed product A x,r G. Then there is a representation p X, V of the
reduced crossed product A Xgr N such that T . U is equivalent to X—Indf,,r(p Xy V)
if and only if there is a non-degenerate representation ¢ of Co(G/N) in the commutant
of (A) such that (¢, U) is a covariant representation of (Co(G/N), G, 1t).

The Morita equivalence X§; descends to give an equivalence between the
reduced crossed products (A ® Co(G/N)) Xagiy Gand A Xu, N, so if 77 %, U is

equivalent to X-Ind%,r (p ¢ V), then the left action of
Co(G/N) € M((A® Co(G/N)) Xagitr G)

on Xf,,r gives the required representation of Co(G/N) on H(Xf],r—lnd(p X V)) =
X](\;],r ®axN Hp-

Now suppose there is a representation ¢ : Co(G/N) — m(A)" such that
(¢, U) is covariant for (Co(G/N), G,1t); we have to show the existence of a suit-
able representation p x; V. Green’s imprimitivity theorem ([9], Theorem 6) im-
plies that there is a representation p x V of the full crossed product A x, N
such that (T ® ¢) x U ~ X$-Ind(p x V). It suffices to show that p x V fac-
tors through the reduced crossed product, and thus the result follows from the
following proposition.

PROPOSITION 6.3. Suppose « is an action of a locally compact group G on a C*-
algebra A, N is a closed normal subgroup of G, and (p, V') is a covariant representation of
(A,N, ). Let (1t @ ¢, U) be the covariant representation of (A ® Co(G/N), G, a ®1t)
such that X$-Ind(p x V) = (m ® ¢) x U. If 7t x U factors through a representation
7t Xy U of the reduced crossed product A X, G, then p x V factors through a represen-
tation p X V of the reduced crossed product A X N.

Proof. 1t follows from Proposition A.63 of [5] that (77 x U, ¢) is a covariant
representation of (A x4 G, G/N, @), in the sense that

(6.2) ((mxU) ®id) oa|(b) = Ad(¢ ®id(wg,N))((T x U (D)) ®1)

in M(K(Hz) ® C*(G/N)) for every b € A xyG. Letu : G — M(C*(G)) be
the universal representation of G and (%, if.) the canonical maps of (A4, G) into
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M(A Xar G). We now recall from Example A.27 of [5] that if Q is the quotient
map of A X, G onto A X, G, then the integrated form of (i, ® 1,if, ® u) factors
through a coaction & of G on A x,; G which is characterised by

(6.3) Q®@id(a(b)) =a"(Q(b)) forbe A x,G.

Hitting both sides of (6.3) with id ® g, where g : C*(G) — C*(G/N) is the inte-
grated form of the quotient map of G onto G/ N, gives the middle equality in the
identity

(6.4) Qwid(&|(b)) =Q@q(a(b)) = id®q(@"(Q(b))) =a"[(Q(b)) forbe Ax,G.

By hypothesis, we have 7 x U = (7t X U) 0 Q, so we can put b = Q(c) in (6.4),
and then plug (6.4) into (6.2) to obtain

(6.5) (mx:U)®id)or"|(c) =Ad(¢®id(wg,N))(tx:U(c))®1) forc€ Axg,G.
Thus (7 x; U, ¢) is a covariant representation of (A X, G, G/N,"|), and there is

a representation (77 3y U) x ¢ of (A x4 G) Xz (G/N) such that, for c € A x4 G
and f € Cyo(G/N),

(70 %0 U) 2 @) (janc (@) (f)) = 7t U(S)P(f):
Theorem A.65 of [5] says that there is an isomorphism
Q: (A xur G) Xgn| (G/N) — (A® Co(G/N)) Hyeier G
such that
Q0jax,Goia(a) = Yygcyc/n(@@1), Qojaxcoig(s) =ig(s), and
Qo je(f) = iyec, /N1 © f)-
Thus the representation (73, U) x¢)oQ ! of (A®Co(G/N))Xae1.G satisfies
((rr % U) >4(]))OQ_10R: (T®¢)xU,
where R is the quotient map of (A ® Cy(G/N)) Xye1t G onto the reduced crossed
product. So X§-Ind(p x V) = (1 ® ¢) x U factors through the reduced crossed
product.
Since Green’s bimodule X§; descends to give an equivalence between the

reduced crossed products (A®Co(G/N)) X ze1t,G and Ax, N and X$-Ind(px V)
factors through the reduced crossed crossed product, so doesp x V. 1

This completes the proof of Theorem 6.2, and hence also that of Theorem 6.1.

It is tempting to conjecture that Theorem 6.2 holds with N replaced by an
arbitrary closed subgroup H. Certainly, it holds when H is amenable: given ¢, the
usual imprimitivity theorem implies that 7t X U is induced from a representation
of A Xy H = A xu H. However, the following example shows that Proposi-
tion 6.3 cannot be extended to arbitrary subgroups, so that our proof of Theo-
rem 6.2 breaks down. While this does not resolve the question of whether Theo-
rem 6.2 can be extended, the example does suggest that there will be limitations
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on the extent to which a satisfactory representation theory can be developed for
crossed products by homogeneous spaces. Example 6.4 was previously used by
Quigg and Spielberg to provide an example of a dynamical system involving a
commutative algebra which is not hyponormal [20].

EXAMPLE 6.4. Consider the semidirect product G = R? x SL,(R), the sub-
group H = SLy(R), and the quasi-regular representation Ind% 1 on L2(G/H).
The map (x, A) — x induces a homeomorphism of G/H onto R2, and then

((Ind; 1), 4)8) (y) = E(A (y —x)) for & € L2(R?).

Because H is not amenable, the representation 1 does not factor through the re-
duced crossed product C;(H). However, we shall prove that Ind$; 1 does factor
through C;(G).

The usual Fourier transform on L?(R?) implements a unitary equivalence
of Ind%; 1 with the representation U of G given by

(Ui, 4)8)(y) = e VG (AYy)  for & € L2(R?).

The representation M of Cy(IR?) by multiplication operators gives a covariant rep-
resentation (M, U) of the system (Co(R?), G, «) in which ax,a)(f)y) = f(A%y).
Since {(0,0)} has measure zero, L>(R?) = L%(R?\ {(0,0)}), and (M, U) is also
a covariant representation of (Co(R?\ {(0,0)}),G, &) on L?(R?\ {(0,0)}). Let
e1 = (1,0), let

H={AcH:(A) ey =¢} = {C (1)> :CER},
let G; = R? x Hy, and define ¢ : G/G; — R?\ {(0,0)} by ¢((x,A)G;) =
(AY)"le;. Then ¢* : f + fo is an isomorphism of Co(R?\ {(0,0)}) onto
Co(G/Gy) such that ™ (a(x 4)(f)) = lt(x 4)($*(f))- Thus (Mo (p*)~1,U) is a co-
variant representation of (Co(G/Gy), G, 1t), and hence by the usual imprimitivity
theorem, U is induced from a representation of G;. Since H; is isomorphic to R,
G1 = R? x1 Hj is amenable, and every representation of the form Indg1 V factors

through C(G); hence so does U ~ Ind, 1.

To see the relevance of this example to crossed products by homogeneous
spaces, let § be a Quigg-normal coaction of G on B and H a closed subgroup of G,
and consider the reduced crossed product B x5, (G/H) defined in (5.3). When
H = N is normal, Lemma 3.2 of [14] implies that jg % jc|c,(c/n) is an isomor-
phism of the usual coaction crossed product B x5 (G/N) onto B x5, (G/N), and
therefore B x5, (G/N) is universal for covariant representations of (B, G/N, ¢|).

One naturally asks whether B x5, (G/H) has a universal property when
H is not normal, but Example 6.4 suggests that this is unlikely. To see why, we
consider the coaction 6% : Cf(G) — M(C{(G) ® C*(G)), which is the integrated
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form of the representation AC @ u (see Proposition A.61 of [5]). The observation
of the previous paragraph translates into:

LEMMA 6.5. It N is a closed normal subgroup of G then C;(G) X g r (G/N) is

universal for pairs (71, it) consisting of a representation 1t of C} (G) and a representation
1 of Co(G/N) such that (u, 7t 0 AC) is a covariant representation of (Co(G/N), G, 1t).

Proof. Since C}(G) g (G/N) is isomorphic to C; (G) %4 r (G/N), the lat-
ter is universal for covariant representations of (C;(G), G/N, é%t|). But it follows
from the argument in the proof of Proposition A.57 in [5] that a pair (77, ) is a
covariant representation of (C;(G),G/N,6|) if and only if (i, 7w 0 A°) is a co-
variant representation of (Co(G/N),G,1t). 1

Notice that the assertion in Lemma 6.5 makes sense when N is replaced by
a non-normal subgroup H. However, if we take G and H as in Example 6.4, then
the assertion is false. To see this, note that the representation Ind% 1 of C*(G)
has the form 77 0 AS, and the pair (M,Ind$; 1) is a covariant representation of
(Co(G/H),G,1t). Since 1 does not factor through C;(H), the Quigg-Spielberg
theorem (as in Corollary 3 of [11], for example) says that M x (Ind; 1) cannot
factor through a representation 7 of the reduced crossed product Co(G/H) 1y, G.

On the other hand, if p were a representation of C; (G) x S (G/H) such that
pliczc)(2)jc/u(f)) = m(z)M(f), and ¢ is the isomorphism of Co(G/H) »y, G
onto C7 (G) X4 (G/H) from Proposition 2.8 of [6], then T = p o ¢ would give
such a representation 7. So the pair (71, M) satisfies the covariance condition of
Lemma 6.5, but cannot give rise to a representation of C (G) x g » (G/H).

Appendix A. COMPATIBILITY OF MANSFIELD BIMODULES

In each of Sections 3, 5 and 6 we have used different induction processes
for crossed products by coactions. In this appendix, we show that the induction
processes used in Sections 3 and 5 are generalisations of the original induction
process of Mansfield, as adapted to full coactions by Kaliszewski and Quigg in
[14] and used in Section 6. For simplicity, we suppose that there is just one sub-
group N and that this subgroup is normal.

First we consider the bimodule Zg /n used in Section 3. Our current as-
sumption that there is only one subgroup involved means that Zg /N 1s the bi-
module constructed in Proposition 1.1 of [6], and it is shown in Theorem 4.1 of
[6] that when K is normal and amenable, there is an isomorphism of Zg /N onto

the Mansfield bimodule Y /n Which is compatible with the isomorphisms
(A1) ((A®Co(G)) Xaqit G) ¥p N = ((A Xa G) x5 G) 2 N

(A2) (A® Co(G/N)) e G = (A 4 G) i (G/N)
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of coefficient algebras. When N is not amenable, Yg /N 18 a proper quotient of
V4 8 /N Which implements a Morita equivalence between reduced crossed products
(see Theorem 4.1 of [6] for details).

In Section 5, we consider a maximal coaction 6 of G on B and use the bimod-
ule from [15], which we denote in this appendix by DYg /n- In [15], Kaliszewski
and Quigg begin by considering a dual coaction (C, G, ¢), and use the isomor-
phisms (A.1) and (A.2) of coefficent algebras to view ZS/N asa ((C x; G) xgN)-
(C x| (G/N)) imprimitivity bimodule. They then apply this construction with
¢ the double dual coaction of G on C := (B x; G) 3G, and DYS /N is by defi-
nition the ((B x5 G) x5 N)-(B x5 (G/N)) imprimitivity bimodule which makes
the following diagram commute:

DYE)n
(A.3) Bxs5G x5 N ————— Bxy (G/N)
K(B)><1§KG><15KNJ J{K(B)XJK(G/N)
ZG
CxeGxgN ——2 5 Cx, (G/N).

(see the proof of Theorem 5.3 in [15]). They check that, when (B, G, ¢) is a dual
coaction, DYS /N is isomorphic to Zg /N ([15], Proposition 6.5).

It is also possible to apply the construction of [14] to a maximal coaction
(B,G,9), yielding a ((B x5 G) x5 N)-(B s, (G/N)) imprimitivity bimodule
MYGG s~ Which is a direct generalisation of Mansfield’s bimodule. When ¢ is also
Quigg-normal, jg X jg| is an isomorphism of B x5 (G/N) onto B x5, (G/N), and
MYg /n is the Mansfield bimodule we used in Section 6. In general, as we shall
see in the next paragraph, MYg /N is a quotient of DYg /n Which implements an
equivalence between reduced crossed products.

To see that MYg /N can be a proper quotient of DYCG; /N consider again a
dual coaction (C, G, ¢). In Theorem 4.1 of [6], it is shown that the Rieffel corre-
spondence for Z& ,(C) matches up the kernel of the regular representation of
(C x¢ G) xz N with the kernel of jc % jg|, and that the resulting quotient imprim-
itivity bimodule is isomorphic to MYg / ~(C). Since the vertical arrows in (A.3)
also match up the kernels of the regular representations, we deduce that there is
a commutative diagram

(A4) BxsGxg N— N, Bxs (G/N)

K(B)>4‘5KG>45KJNJ
MYE)y(C)

CxeGXgy N——————— Cxer (G/N),

JK(B)WK,,(G/N)

in which the bimodule W on the top arrow is the quotient of DYg /N associated
to the kernel of jp % jg|. On the other hand, we know from the naturality of
MY§ /n that there is a similar diagram in which the top arrow is the Mansfield
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bimodule MYS /n(B); from this and (A.4), we deduce that MY§ /n(B) is isomor-
phic to the quotient bimodule W. (Strictly speaking, naturality is only proved in
Theorem 4.21 of [5] for normal coactions. However, here we only need to apply
naturality to the morphism associated to the Katayama imprimitivity bimodule
K(B), and the first part of the proof of Theorem 4.21 in [5] with B x5 (G/N)
replaced by B x5, (G/N) establishes that this is OK.)
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