STINESPRING'S THEOREM FOR HILBERT C*-MODULES

MOHAMMAD B. ASADI

Communicated by William Arveson

Abstract. We provide an analogue of Stinespring's theorem for Hilbert C^{*} modules.

Keywords: Hilbert C*-modules.
MSC (2000): 46L99.

Let E and F be Hilbert C^{*}-modules over C^{*}-algebras \mathcal{A} and \mathcal{B}, respectively, and $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ be a linear map. A map $\Phi: E \rightarrow F$ is said to be a φ-map if $\langle\Phi(x), \Phi(y)\rangle=\varphi(\langle x, y\rangle)$ is satisfied for all $x, y \in V$. If φ is a morphism of $C^{*}-$ algebras, then Φ is called a φ-morphism of Hilbert C^{*}-modules. A φ-morphism $\Phi: E \rightarrow B\left(H_{1}, H_{2}\right)$, where H_{1}, H_{2} are Hilbert spaces and $\varphi: \mathcal{A} \rightarrow B\left(H_{1}\right)$ is a representation of \mathcal{A}, is called a representation of E. The representation Φ is said to be a faithful representation of E if Φ is injective.

It is well known that for every Hilbert C^{*}-module there is a (faithful) representation to $B\left(H_{1}, H_{2}\right)$ for some Hilbert spaces H_{1}, H_{2}. It is easy to check that each φ-morphism Φ is necessarily a linear operator and a module map in the sense $\Phi(x a)=\Phi(x) \varphi(a)$ for all $a \in \mathcal{A}, x \in E$.

We recall that the Hilbert C^{*}-module E, together with norm $\|\cdot\|_{n}$ on $M_{n}(E)$ given by $\left\|\left[x_{i j}\right]\right\|_{n}=\left\|\left[\sum_{k=1}^{n}\left\langle x_{k i}, x_{k j}\right\rangle\right]\right\|^{1 / 2}$, is an operator space. By a direct calculation, we have:

Proposition. Let E, F be Hilbert C^{*}-modules over unital C^{*}-algebras \mathcal{A} and \mathcal{B}, respectively, and $\varphi: \mathcal{A} \rightarrow \mathcal{B}$ be a completely bounded map. Then every φ-map $\Phi: E \rightarrow F$ is completely bounded. If E is full and φ is completely positive, then

$$
\|\Phi\|_{\mathrm{cb}}=\|\Phi\|=\|\varphi\|^{1 / 2}=\|\varphi(1)\|^{1 / 2}
$$

Complete positivity and its related concepts form an interesting and useful part of the theory of operator algebras. Stinespring's theorem is an essential result in complete positivity which is a natural generalization of the Gelfand-NaimarkSegal theorem to operator-valued mappings.

Now, we are going to provide an analogue of Stinespring's theorem for Hilbert C^{*}-modules.

MAIN THEOREM. If E is a Hilbert C^{*}-module over the unital C^{*}-algebra \mathcal{A}, and $\varphi: \mathcal{A} \rightarrow B\left(H_{1}\right)$ is a completely positive map with $\varphi(1)=1$ and $\Phi: E \rightarrow B\left(H_{1}, H_{2}\right)$ is a φ-map with the additional property $\Phi\left(x_{0}\right) \Phi\left(x_{0}\right)^{*}=1_{B\left(H_{2}\right)}$ for some $x_{0} \in E$, where H_{1}, H_{2} are Hilbert spaces, then there exist Hilbert spaces K_{1}, K_{2} and isometries $V: H_{1} \rightarrow$ K_{1} and $W: H_{2} \rightarrow K_{2}$ and $a *$-homomorphism $\rho: \mathcal{A} \rightarrow B\left(K_{1}\right)$ and a ρ-representation $\Psi: E \rightarrow B\left(K_{1}, K_{2}\right)$ such that

$$
\varphi(a)=V^{*} \rho(a) V \quad \Phi(x)=W^{*} \Psi(x) V
$$

for all $x \in E, a \in \mathcal{A}$.
Proof. As in the proof of Stinespring's theorem, we consider the algebraic tensor product $\mathcal{A} \otimes H_{1}$ consisting of all formal sums $\sum_{j} a_{j} \otimes h_{j}$. Define a form $\langle\cdot, \cdot\rangle$ on $\mathcal{A} \otimes H_{1}$ by

$$
\left\langle\sum_{j} a_{j} \otimes h_{j}, \sum_{j} b_{j} \otimes g_{j}\right\rangle=\sum_{i j}\left\langle\varphi\left(b_{i}^{*} a_{j}\right) h_{j}, g_{i}\right\rangle .
$$

It can be checked that this is a sesquilinear form on $\mathcal{A} \otimes H_{1}$. The positivity of the sesquilinear form is a consequence of the complete positivity of φ.

Let $\mathcal{N}=\left\{v \in \mathcal{A} \otimes H_{1}:\langle v, v\rangle=0\right\}$, and consider the quotient space $K_{0}=$ $\left(\mathcal{A} \otimes H_{1}\right) / \mathcal{N}$. As usual, $\langle x+\mathcal{N}, y+\mathcal{N}\rangle=\langle x, y\rangle$ is a well-defined inner product on K_{0}. Let K_{1} be the completion of K_{0} with respect to the norm defined by this inner product and define $\rho: \mathcal{A} \rightarrow B\left(K_{1}\right)$ by

$$
\rho(a)\left(\sum_{j} a_{j} \otimes h_{j}+\mathcal{N}\right)=\sum_{j} a a_{j} \otimes h_{j}+\mathcal{N}
$$

It can be shown that $\rho: \mathcal{A} \rightarrow B\left(K_{1}\right)$ is a unital $*$-homomorphism. Now define an operator $V: H_{1} \rightarrow K_{1}$ by $V\left(h_{1}\right)=1 \otimes h_{1}+\mathcal{N}$. A direct calculation shows that V is an isometry and $\varphi(a)=V^{*} \rho(a) V$.

Now, we consider the algebraic tensor product $E \otimes H_{2}$ consisting of all formal sums $\sum_{j} x_{j} \otimes h_{j}$. Define a form $\langle\cdot, \cdot\rangle$ on $E \otimes H_{2}$ by

$$
\left\langle\sum_{j} x_{j} \otimes h_{j}, \sum_{j} y_{j} \otimes g_{j}\right\rangle=\sum_{i j}\left\langle\Phi\left(x_{i}\right) \Phi\left(y_{j}\right)^{*} h_{i}, g_{j}\right\rangle
$$

for all $i, j=1, \ldots, n$ and $x_{i} \in E, h_{i} \in H_{2}$.
It can be checked that this is a sesquilinear form on $E \otimes H$. The positivity of the sesquilinear form is a consequence of the fact that the matrix $\left[\Phi\left(x_{i}\right) \Phi\left(x_{j}\right)^{*}\right]$ is positive in $B\left(H_{2}^{(n)}\right)$.

In a similar way, we can let $\mathcal{N}^{\prime}=\left\{x \in E \otimes H_{2}:\langle x, x\rangle=0\right\}$, and consider the quotient space $K_{0}^{\prime}=\left(E \otimes H_{2}\right) / \mathcal{N}^{\prime}$. As usual, $\left\langle x+\mathcal{N}^{\prime}, y+\mathcal{N}^{\prime}\right\rangle=\langle x, y\rangle$, for $x, y \in E \otimes H_{2}$, is a well-defined inner product on K_{0}^{\prime}. Let K_{2} be the completion of
K_{0}^{\prime} with respect to the norm defined by this inner product. Now define $\Psi: E \rightarrow$ $B\left(K_{1}, K_{2}\right)$ by

$$
\Psi(x)\left(\sum_{j} a_{j} \otimes h_{j}+\mathcal{N}\right)=\sum_{j} x_{0} \otimes \Phi\left(x a_{j}\right) h_{j}+\mathcal{N}^{\prime}
$$

Also, we define an operator $W: H_{2} \rightarrow K_{2}$ by $W\left(h_{2}\right)=x_{0} \otimes h_{2}+\mathcal{N}^{\prime}$ for $h_{2} \in H_{2}$. Note that

$$
\left\|W\left(h_{2}\right)\right\|^{2}=\left\langle x_{0} \otimes h_{2}, x_{0} \otimes h_{2}\right\rangle=\left\langle\Phi\left(x_{0}\right) \Phi\left(x_{0}\right)^{*} h_{2}, h_{2}\right\rangle=\left\langle h_{2}, h_{2}\right\rangle=\left\|h_{2}\right\|^{2}
$$

Thus W is an isometry. Now we show that $\Phi(x)=W^{*} \Psi(x) V$, for all $x \in E$. For this, let $h_{1} \in H_{1}, h_{2} \in H_{2}$ and $x \in E$. Then we have

$$
\begin{aligned}
\left\langle W^{*} \Psi(x) V\left(h_{1}\right), h_{2}\right\rangle & =\left\langle\Psi(x)\left(1 \otimes h_{1}+\mathcal{N}\right), x_{0} \otimes h_{2}+\mathcal{N}^{\prime}\right\rangle \\
& =\left\langle x_{0} \otimes \Phi(x) h_{1}+\mathcal{N}^{\prime}, x_{0} \otimes h_{2}+\mathcal{N}^{\prime}\right\rangle \\
& =\left\langle\Phi\left(x_{0}\right) \Phi\left(x_{0}\right)^{*} \Phi(x) h_{1}, h_{2}\right\rangle=\left\langle\Phi(x) h_{1}, h_{2}\right\rangle
\end{aligned}
$$

Finally, it must be shown that Ψ is a ρ-morphism. In fact, it must be checked that $\Psi(x)^{*} \Psi(y)=\rho(\langle x, y\rangle)$ is satisfied for all $x, y \in E$. For this, let $a, b \in \mathcal{A}, x, y \in E$ and $h_{1}, h_{1}^{\prime} \in H_{1}$, then we have

$$
\begin{aligned}
\left\langle\Psi(x)^{*} \Psi(y)\left(a \otimes h_{1}+\mathcal{N}\right), b \otimes h_{1}^{\prime}+\mathcal{N}\right\rangle & =\left\langle\Psi(y)\left(a \otimes h_{1}+\mathcal{N}\right), \Psi(x)\left(b \otimes h_{1}^{\prime}+\mathcal{N}\right)\right\rangle \\
& =\left\langle x_{0} \otimes \Phi(y a) h_{1}, x_{0} \otimes \Phi(x b) h_{1}^{\prime}\right\rangle \\
& =\left\langle\Phi\left(x_{0}\right) \Phi\left(x_{0}\right)^{*} \Phi(y a) h_{1}, \Phi(x b) h_{1}^{\prime}\right\rangle \\
& =\left\langle\Phi(x b)^{*} \Phi(y a) h_{1}, h_{1}^{\prime}\right\rangle \\
& =\left\langle\varphi(\langle x b, y a\rangle) h_{1}, h_{1}^{\prime}\right\rangle \\
& =\left\langle V^{*} \rho\left(b^{*}\langle x, y\rangle a\right) V h_{1}, h_{1}^{\prime}\right\rangle \\
& =\left\langle\rho(\langle x, y\rangle) \rho(a)\left(1 \otimes h_{1}+\mathcal{N}\right), \rho(b)\left(1 \otimes h_{1}^{\prime}+\mathcal{N}\right)\right\rangle \\
& =\left\langle\rho(\langle x, y\rangle)\left(a \otimes h_{1}+\mathcal{N}\right),\left(b \otimes h_{1}^{\prime}+\mathcal{N}\right)\right\rangle .
\end{aligned}
$$

Since $\Psi(x)^{*} \Psi(y)$ and $\rho(\langle x, y\rangle)$ are bounded linear operators, then we have $\Psi(x)^{*} \Psi(y)=\rho(\langle x, y\rangle)$ on the whole K_{1}.

REFERENCES

[1] L. ARAMBAŠIĆ, Irreducible representations of Hilbert C*-modules, Math. Proc. Roy. Irish Acad. 105A(2005), 11-24.
[2] D.P. Blecher, C. Le Merdy, Operator Algebras and their Modules - An Operator Space Approach, London Math. Soc. Monographs (N.S.), vol. 30, Oxford Sci. Publ., The Clarendon Press, Oxford Univ. Press, Oxford 2004.
[3] J.B. Conway, A course in Operator Theory, Grad. Stud. Math., vol. 21, Amer. Math. Soc., Providence, R.I. 2000.
[4] G. Kasparov, Hilbert C^{*}-modules: theorems of Stinespring and Voiculescu, J. Operator Theory 4(1980), 133-150.
[5] E.C. LANCE, Hilbert C*-Modules - A Toolkit for Operator Algebraists, London Math. Soc. Lecture Note Ser., vol. 210, Cambridge Univ. Press, Cambridge 1995.
[6] G.J. Murphy, Positive definite kernels and Hilbert C*-modules, Proc. Edinburgh Math. Soc. 40(1997), 367-374.

MOHAMMAD B. ASADI, School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran

E-mail address: mb.asadi@gmail.com

Received December 11, 2006.

