STINESPRING'S THEOREM FOR HILBERT C*-MODULES

MOHAMMAD B. ASADI

Communicated by William Arveson

ABSTRACT. We provide an analogue of Stinespring's theorem for Hilbert C^* -modules.

KEYWORDS: Hilbert C*-modules.

MSC (2000): 46L99.

Let *E* and *F* be Hilbert *C*^{*}-modules over *C*^{*}-algebras *A* and *B*, respectively, and $\varphi : A \to B$ be a linear map. A map $\Phi : E \to F$ is said to be a φ -map if $\langle \Phi(x), \Phi(y) \rangle = \varphi(\langle x, y \rangle)$ is satisfied for all $x, y \in V$. If φ is a morphism of *C*^{*}algebras, then Φ is called a φ -morphism of Hilbert *C*^{*}-modules. A φ -morphism $\Phi : E \to B(H_1, H_2)$, where H_1, H_2 are Hilbert spaces and $\varphi : A \to B(H_1)$ is a representation of *A*, is called a *representation* of *E*. The representation Φ is said to be a *faithful representation* of *E* if Φ is injective.

It is well known that for every Hilbert C^* -module there is a (faithful) representation to $B(H_1, H_2)$ for some Hilbert spaces H_1, H_2 . It is easy to check that each φ -morphism Φ is necessarily a linear operator and a module map in the sense $\Phi(xa) = \Phi(x)\varphi(a)$ for all $a \in \mathcal{A}, x \in E$.

We recall that the Hilbert C*-module *E*, together with norm $\|\cdot\|_n$ on $M_n(E)$ given by $\|[x_{ij}]\|_n = \left\|\left[\sum_{k=1}^n \langle x_{ki}, x_{kj} \rangle\right]\right\|^{1/2}$, is an operator space. By a direct calculation, we have:

PROPOSITION. Let E, F be Hilbert C^{*}-modules over unital C^{*}-algebras A and B, respectively, and $\varphi : A \to B$ be a completely bounded map. Then every φ -map $\Phi : E \to F$ is completely bounded. If E is full and φ is completely positive, then

$$\|\Phi\|_{\rm cb} = \|\Phi\| = \|\varphi\|^{1/2} = \|\varphi(1)\|^{1/2}.$$

Complete positivity and its related concepts form an interesting and useful part of the theory of operator algebras. Stinespring's theorem is an essential result in complete positivity which is a natural generalization of the Gelfand–Naimark–Segal theorem to operator-valued mappings.

Now, we are going to provide an analogue of Stinespring's theorem for Hilbert *C**-modules.

MAIN THEOREM. If *E* is a Hilbert *C*^{*}-module over the unital *C*^{*}-algebra *A*, and $\varphi : \mathcal{A} \to B(H_1)$ is a completely positive map with $\varphi(1) = 1$ and $\Phi : E \to B(H_1, H_2)$ is a φ -map with the additional property $\Phi(x_0)\Phi(x_0)^* = 1_{B(H_2)}$ for some $x_0 \in E$, where H_1, H_2 are Hilbert spaces, then there exist Hilbert spaces K_1, K_2 and isometries $V : H_1 \to K_1$ and $W : H_2 \to K_2$ and a *-homomorphism $\rho : \mathcal{A} \to B(K_1)$ and a ρ -representation $\Psi : E \to B(K_1, K_2)$ such that

$$\varphi(a) = V^* \rho(a) V \quad \Phi(x) = W^* \Psi(x) V$$

for all $x \in E$, $a \in A$.

Proof. As in the proof of Stinespring's theorem, we consider the algebraic tensor product $\mathcal{A} \otimes H_1$ consisting of all formal sums $\sum_j a_j \otimes h_j$. Define a form $\langle \cdot, \cdot \rangle$ on $\mathcal{A} \otimes H_1$ by

$$\left\langle \sum_{j} a_{j} \otimes h_{j}, \sum_{j} b_{j} \otimes g_{j} \right\rangle = \sum_{ij} \langle \varphi(b_{i}^{*}a_{j})h_{j}, g_{i} \rangle.$$

It can be checked that this is a sesquilinear form on $\mathcal{A} \otimes H_1$. The positivity of the sesquilinear form is a consequence of the complete positivity of φ .

Let $\mathcal{N} = \{v \in \mathcal{A} \otimes H_1 : \langle v, v \rangle = 0\}$, and consider the quotient space $K_0 = (\mathcal{A} \otimes H_1)/\mathcal{N}$. As usual, $\langle x + \mathcal{N}, y + \mathcal{N} \rangle = \langle x, y \rangle$ is a well-defined inner product on K_0 . Let K_1 be the completion of K_0 with respect to the norm defined by this inner product and define $\rho : \mathcal{A} \to B(K_1)$ by

$$\rho(a)\Big(\sum_j a_j \otimes h_j + \mathcal{N}\Big) = \sum_j aa_j \otimes h_j + \mathcal{N}.$$

It can be shown that $\rho : A \to B(K_1)$ is a unital *-homomorphism. Now define an operator $V : H_1 \to K_1$ by $V(h_1) = 1 \otimes h_1 + N$. A direct calculation shows that V is an isometry and $\varphi(a) = V^* \rho(a) V$.

Now, we consider the algebraic tensor product $E \otimes H_2$ consisting of all formal sums $\sum_i x_j \otimes h_j$. Define a form $\langle \cdot, \cdot \rangle$ on $E \otimes H_2$ by

$$\left\langle \sum_{j} x_{j} \otimes h_{j}, \sum_{j} y_{j} \otimes g_{j} \right\rangle = \sum_{ij} \langle \Phi(x_{i}) \Phi(y_{j})^{*} h_{i}, g_{j} \rangle.$$

for all $i, j = 1, \ldots, n$ and $x_i \in E, h_i \in H_2$.

It can be checked that this is a sesquilinear form on $E \otimes H$. The positivity of the sesquilinear form is a consequence of the fact that the matrix $[\Phi(x_i)\Phi(x_j)^*]$ is positive in $B(H_2^{(n)})$.

In a similar way, we can let $\mathcal{N}' = \{x \in E \otimes H_2 : \langle x, x \rangle = 0\}$, and consider the quotient space $K'_0 = (E \otimes H_2)/\mathcal{N}'$. As usual, $\langle x + \mathcal{N}', y + \mathcal{N}' \rangle = \langle x, y \rangle$, for $x, y \in E \otimes H_2$, is a well-defined inner product on K'_0 . Let K_2 be the completion of K'_0 with respect to the norm defined by this inner product. Now define $\Psi : E \to B(K_1, K_2)$ by

$$\Psi(x)\Big(\sum_j a_j \otimes h_j + \mathcal{N}\Big) = \sum_j x_0 \otimes \Phi(xa_j)h_j + \mathcal{N}'.$$

Also, we define an operator $W : H_2 \to K_2$ by $W(h_2) = x_0 \otimes h_2 + \mathcal{N}'$ for $h_2 \in H_2$. Note that

$$||W(h_2)||^2 = \langle x_0 \otimes h_2, x_0 \otimes h_2 \rangle = \langle \Phi(x_0) \Phi(x_0)^* h_2, h_2 \rangle = \langle h_2, h_2 \rangle = ||h_2||^2.$$

Thus *W* is an isometry. Now we show that $\Phi(x) = W^* \Psi(x) V$, for all $x \in E$. For this, let $h_1 \in H_1$, $h_2 \in H_2$ and $x \in E$. Then we have

$$\langle W^* \Psi(x) V(h_1), h_2 \rangle = \langle \Psi(x) (1 \otimes h_1 + \mathcal{N}), x_0 \otimes h_2 + \mathcal{N}' \rangle = \langle x_0 \otimes \Phi(x) h_1 + \mathcal{N}', x_0 \otimes h_2 + \mathcal{N}' \rangle = \langle \Phi(x_0) \Phi(x_0)^* \Phi(x) h_1, h_2 \rangle = \langle \Phi(x) h_1, h_2 \rangle.$$

Finally, it must be shown that Ψ is a ρ -morphism. In fact, it must be checked that $\Psi(x)^*\Psi(y) = \rho(\langle x, y \rangle)$ is satisfied for all $x, y \in E$. For this, let $a, b \in A$, $x, y \in E$ and $h_1, h'_1 \in H_1$, then we have

$$\begin{split} \langle \Psi(x)^*\Psi(y)(a\otimes h_1+\mathcal{N}), b\otimes h_1'+\mathcal{N}\rangle &= \langle \Psi(y)(a\otimes h_1+\mathcal{N}), \Psi(x)(b\otimes h_1'+\mathcal{N})\rangle \\ &= \langle x_0 \otimes \Phi(ya)h_1, x_0 \otimes \Phi(xb)h_1'\rangle \\ &= \langle \Phi(x_0)\Phi(x_0)^*\Phi(ya)h_1, \Phi(xb)h_1'\rangle \\ &= \langle \Phi(xb)^*\Phi(ya)h_1, h_1'\rangle \\ &= \langle \varphi(\langle xb, ya\rangle)h_1, h_1'\rangle \\ &= \langle V^*\rho(b^*\langle x, y\rangle a)Vh_1, h_1'\rangle \\ &= \langle \rho(\langle x, y\rangle)\rho(a)(1\otimes h_1+\mathcal{N}), \rho(b)(1\otimes h_1'+\mathcal{N})\rangle \\ &= \langle \rho(\langle x, y\rangle)(a\otimes h_1+\mathcal{N}), (b\otimes h_1'+\mathcal{N})\rangle. \end{split}$$

Since $\Psi(x)^*\Psi(y)$ and $\rho(\langle x, y \rangle)$ are bounded linear operators, then we have $\Psi(x)^*\Psi(y) = \rho(\langle x, y \rangle)$ on the whole K_1 .

REFERENCES

- L. ARAMBAŠIĆ, Irreducible representations of Hilbert C*-modules, *Math. Proc. Roy. Irish Acad.* 105A(2005), 11–24.
- [2] D.P. BLECHER, C. LE MERDY, Operator Algebras and their Modules An Operator Space Approach, London Math. Soc. Monographs (N.S.), vol. 30, Oxford Sci. Publ., The Clarendon Press, Oxford Univ. Press, Oxford 2004.
- [3] J.B. CONWAY, A course in Operator Theory, Grad. Stud. Math., vol. 21, Amer. Math. Soc., Providence, R.I. 2000.

- [4] G. KASPAROV, Hilbert C^{*} -modules: theorems of Stinespring and Voiculescu, J. Operator Theory 4(1980), 133–150.
- [5] E.C. LANCE, Hilbert C*-Modules A Toolkit for Operator Algebraists, London Math. Soc. Lecture Note Ser., vol. 210, Cambridge Univ. Press, Cambridge 1995.
- [6] G.J. MURPHY, Positive definite kernels and Hilbert C*-modules, Proc. Edinburgh Math. Soc. 40(1997), 367–374.

MOHAMMAD B. ASADI, SCHOOL OF MATHEMATICS, STATISTICS AND COM-PUTER SCIENCE, COLLEGE OF SCIENCE, UNIVERSITY OF TEHRAN, TEHRAN, IRAN *E-mail address*: mb.asadi@gmail.com

Received December 11, 2006.