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ABSTRACT. The paper introduces a special type of a Drazin-like inverse for
closed linear operators that arises naturally in ergodic theory of operator semi-
groups and cosine operator functions. The Drazin inverse for closed linear op-
erators defined by Nashed and Zhao [30] and in a more general form by Koliha
and Tran [21] is not sufficiently general to be applicable to operator semi-
groups. The a-Drazin inverse is in general a closed, not necessarily bounded,
operator. The paper gives applications of the inverse to partial differential
equations.
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1. INTRODUCTION

In the investigation of ergodic properties of operator semigroups and cosine
operator functions, Butzer and Westphal [7], [8] and later Butzer and Gessinger
[3], [4], [5], [6] defined and used a certain type of an “almost inverse” of the
infinitesimal generator. It has been then employed by other researchers in the
field, notably by Shaw and his collaborators (see [9], [24], [32], [33], [34]). The
concept is implicit in Koliha’s paper [19].

Even though the inverse described by Butzer and Westphal proved its use-
fulness and applicability in the context of operator semigroups and cosine opera-
tor functions, it has not been studied or utilized in the setting of operator theory
as a generalized operator inverse.

We believe that the concept of what we call the "a-Drazin inverse" deserves
a detailed study, which is the aim of this paper. The name is chosen to highlight
the historical background of the inverse, which was born in the Aachen school of
approximation and extensively used by them, thus the "a" in the a-Drazin inverse
refers to Aachen. Our particular concern is to separate the operator-theoretical



298 P.L. BUTZER AND J.J. KOLIHA

properties of the new inverse from the properties derived from its linkage with
cosine operator functions and operator semigroups.

In 1958 Drazin [10] defined a pseudoinverse of an element a of an associative
semigroup as an element b of the semigroup such that

(1.1) b commutes with a, bab = b, ak+1b = ak for some k ∈ N.

In a unital ring R, the last condition in (1.1) is equivalent to a− aba being nilpo-
tent: There exists k ∈ N such that (a(1− ab))k = ak − ak+1b = 0. We will refer to
this pseudoinverse as the conventional Drazin inverse. Harte gave a definition of a
quasinilpotent element a of a unital ring by requiring that 1− xa is invertible for
every x ∈ R commuting with a, and paved the way for a further generalization
of the Drazin inverse in unital rings. A generalized Drazin inverse (see [18], [20]) of
an element a ∈ R is b ∈ R such that

(1.2) b double commutes with a, bab = b, a− aba is quasinilpotent.

The Drazin index of a ∈ R is 0 if a is invertible inR, k ∈ N if a is Drazin invertible
and a− aba is nilpotent of order k, and ∞ if a is Drazin invertible, but a(1− ab) is
not nilpotent.

A bounded linear operator A on a Banach space X has a generalized Drazin
inverse (1.2) if and only if 0 is an isolated (possibly removable) singularity of the
resolvent R(λ; A) = (λI − A)−1 of A ([20], Theorems 4.2 and 5.1). The operator
A has the conventional Drazin inverse if and only if 0 is at most a pole of the
resolvent of A; this occurs if and only if for some m ∈ N,R(Am+1) = R(Am) and
N (Am+1) = N (Am).

The conventional Drazin inverse of a closed linear operator A was defined
by Nashed and Zhao [30] for the case that 0 is a pole of the resolvent of A. The
definition was later extended by Koliha and Tran [21], [22] to include the case
when 0 is an isolated singularity of the resolvent. A special case of the Drazin
inverse is the group inverse, that is, the Drazin inverse of index one. The group
inverse of a closed linear operator A is defined as a bounded linear operator on X:

DEFINITION 1.1. [[21], Definition 2.1 and [30], Definition 2.1] An operator
A ∈ C(X) is group invertible with the group inverse Ad ∈ B(X) if

R(Ad) ∪R(I − AAd) ⊂ D(A)

and, for all x ∈ D(A),

(1.3) AAdx = AdAx, AdAAd = Ad, AAdAx = Ax.

The group inverse is often written as A]. Equivalently, A is group invertible (see
[21]) if and only if

(1.4) X = R(A)⊕N (A);

(1.4) is equivalent to 0 being at most a simple pole of the resolvent of A.
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In the case that A has a nonempty resolvent set, condition (1.4) is equiva-
lent to

(1.5) R(A2) = R(A) and N (A2) = N (A).

The operator Ad is unique if it exists, and is given by

(1.6) Ad = (A + P)−1(I − P),

where P is the spectral projection of A at 0.
The foregoing definition is too restrictive for the generalized inverse of an

infinitesimal generator of an operator semigroup or a cosine operator function.
In this paper we generalize the concept of the group inverse to closed operators
that obey less restrictive conditions than (1.4) and (1.5). The a-Drazin inverse Aad

of a closed linear operator A defined in this paper is in general a closed unbounded
linear operator, which acts on a closed A-invariant subspace X0 given by

X0 = R(A)⊕N (A),

and satisfies milder conditions

R(A2) = R(A) and N (A2) = N (A).

One of the main reasons for our interest in the a-Drazin inverse Aad of the
infinitesimal generator A of an operator semigroup is that, at least in the case of
holomorphic semigroups, Aad acts as the infinitesimal generator for an associated
semigroup (see Theorem 2.2 of [15]).

2. a-DRAZIN INVERSE

For basic concepts of operator theory of closed linear operators we refer the
reader to Taylor and Lay’s monograph [36]. Let X be a complex Banach space
and C(X) the set of all closed linear operators A with the domain D(A) ⊂ X and
the rangeR(A) ⊂ X. We define inductively

Dn+1(A) = { f ∈ Dn(A) : A f ∈ D(A)}, n = 1, 2, . . . ,

with D1(A) = D(A), and

N (An) = { f ∈ Dn(A) : An f = 0}, R(An) = {An f : f ∈ Dn(A)}.

The set of all operators A ∈ C(X) with D(A) = X will be denoted by B(X);
by the closed graph theorem the operators in B(X) are bounded. We say that a
subspace U ⊂ X is invariant under A ∈ C(X) if

A(U ∩D(A)) ⊂ U.

We observe that, for any n ∈ N, the subspaces N (An) and R(An) are invariant
under A. The spaceR(A) is also invariant under A.
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PROPOSITION 2.1. Let A ∈ C(X) be such that R(A) ∩N (A) = {0} and that
the space X0 = R(A) ⊕N (A) is closed in X, and let P be the projection of X0 onto
N (A) alongR(A). Then the following are true:

(i) P ∈ B(X0).
(ii) AP f = PA f = 0 if f ∈ (R(A) ∩D(A))⊕N (A).

(iii) A + P is an injective closed linear operator in X0 with the domain

D(A + P) = (R(A) ∩D(A))⊕N (A)

and the range
R(A + P) = A(R(A) ∩D(A))⊕N (A).

Proof. We observe that (R(A) ∩D(A))⊕N (A) = X0 ∩D(A).
(i) P is defined on all of X0 and closed since both spaces R(A) and N (A)

are closed. Hence P ∈ B(X0).
(ii) The space N (A) is invariant under A. If f ∈ X0 ∩ D(A), then A f ∈

R(A) ⊂ R(A), so thatR(A) is also invariant under A. Hence PA f = AP f ; since
P f ∈ N (A), we have AP f = 0.

(iii) We have D(A + P) = D(P) ∩ D(A) = X0 ∩ D(A) and R(A + P) ⊂
A(R(A) ∩ D(A)) ⊕ N (A). If g = Au + v ∈ A(R(A) ∩ D(A)) ⊕ N (A), then
g = A f for f = u + v ∈ X0 ∩D(A).

Let f ∈ X0 ∩ D(A) satisfy (A + P) f = 0. Then w = A f = −P f . So
w ∈ R(A) ∩ N (A), and hence w = 0. From P f = 0 and A f = 0 we get f ∈
R(A) ∩N (A), which implies f = 0.

CONVENTION 2.2. Let A ∈ C(X) be such that R(A) ∩ N (A) = {0} and
that the spaceR(A)⊕N (A) is closed in X. In this paper we will consistently use
the following notation:

(i) X0 for the spaceR(A)⊕N (A).
(ii) A0 for the restriction of A to the space X0 (note that X0 is invariant un-

der A).
(iii) D(A0) = X0 ∩ D(A) = (R(A) ∩ D(A)) ⊕ N (A), R(A0) = A(R(A) ∩
D(A)), N (A0) = N (A).

(iv) P = PN (A),R(A) for the projection of X0 onto N (A) alongR(A).

PROPOSITION 2.3. Under the hypotheses of Proposition 2.1, define B by

(2.1) B f = (A + P)−1(I − P) f , f ∈ R(A0)⊕N (A0).

Then the following are true:
(i) B is a closed linear operator in X0 with

D(B) = R(A0)⊕N (A0) and R(B) = D(A0) ∩N (P) = R(A) ∩D(A).

(ii) B is completely determined by the following relations:

(2.2) B f = g, where f = Ag + P f , g ∈ X0, Pg = 0.
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(iii) Bn An f = (I − P) f for all f ∈ Dn(A0) and all n ∈ N.
(iv) AnBn f = (I − P) f for all f ∈ Dn(B) and all n ∈ N.
(v) ABA f = A f for all f ∈ D(A0).

(vi) BAB f = B f for all f ∈ D(B).
(vii) IfR(A) ⊂ R(A2), then B is densely defined in X0.

Proof. (i) By Proposition 2.1, the operator A + P is closed and injective with

D(A + P) = D(A0) and R(A + P) = R(A0)⊕N (A0).

Hence B = (A + P)−1(I− P) = (I− P)(A + P)−1 is a closed linear operator with
the domainR(A0)⊕N (A0) and the range (I − P)D(A0) = R(A) ∩D(A).

(ii) Suppose first that f = Ag + P f with Pg = 0. Since Ag exists and Pg = 0,
we have g ∈ D(A) ∩ R(A) and f ∈ R(A0) ⊕ N (A0). Then Ag = f − P f =
(I − P) f , and

(2.3) B f = (A + P)−1(I − P) f = (A + P)−1 Ag = (A + P)−1(A + P)g = g.

Conversely, suppose that f ∈ R(A0)⊕N (A0). Then f = A0h + P f , where
h ∈ D(A0) = (R(A) ∩ D(A)) ⊕N (A). Let g = (I − P)h. Then Ag = A(I −
P)h = Ah− APh = Ah by Proposition 2.1 (ii), and Pg = P(I − P)h = 0. Hence
(2.3) holds.

(iii) Let f ∈ D(A0). Then A f ∈ R(A0) ⊂ D(B), and

BA f = (A + P)−1(I − P)A f = (A + P)−1(A + P)(I − P) f = (I − P) f .

For the induction assume that for some n ∈ N, R(An
0 ) ⊂ Dn(B) and Bn An f =

(I − P) f for all f ∈ Dn(A0). Let f ∈ Dn+1(A0). Then An f ∈ D(A0), An+1 f ∈
R(A0) ⊂ D(B), and

BAn+1 f = BA(An f ) = (I − P)An f = An f .

By the induction hypothesis, An f ∈ Dn(B) and Bn An f = (I − P) f . Hence

Bn+1 An+1 f = Bn(BAn+1 f ) = Bn An f = (I − P) f .

(iv) Let f ∈ D(B). Then B f ∈ R(B) ⊂ D(A0) and

AB f = A(I − P)(A + P)−1 f = (I − P)(A + P)(A + P)−1 f = (I − P) f .

The inductive step is proved similarly as in the preceding paragraph.
(v) and (vi) follow from (iii) and (iv) and from equations AP f = 0 ( f ∈

D(A0)) and BP f = 0 ( f ∈ D(B)).
(vii) We note thatR(A0) ⊂ R(A), andR(A0) ⊂ R(A). Conversely,

R(A2) = A(R(A) ∩D(A)) ⊂ A(R(A) ∩D(A)) = R(A0),

andR(A) = R(A2) ⊂ R(A0). ThusR(A) = R(A0), and

X0 = R(A)⊕N (A) = R(A0)⊕N (A0) = R(A0)⊕N (A0) = D(B).

This completes the proof.
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REMARK 2.4. In the setting of uniformly bounded powers of an operator
A and of operator semigroups Butzer and Westphal [7], [8] defined an inverse
operator B by

B f = g, where f = Ag + P f , Pg = 0

under hypotheses implying those of Proposition 2.1. This definition was later
extended to the setting of cosine operator functions (see, for instance, p. 319 of
[3]). In the preceding proposition we proved that this definition is equivalent to

B f = (A + P)−1(I − P) f .

We are ready to give the definition of the a-Drazin inverse.

DEFINITION 2.5. Let A ∈ C(X). Then A is a-Drazin invertible if
(i)R(A) ∩N (A) = {0} and the space X0 = R(A)⊕N (A) is closed in X,

(ii)R(A) ⊂ R(A2).
The a-Drazin inverse (or a-group inverse) of A is an operator Aad defined by

Aad f = (I − P)(A + P)−1 f ,(2.4)

f ∈ D(Aad) = R(A0)⊕N (A0) = A(R(A) ∩D(A))⊕N (A).(2.5)

We summarize basic properties of Aad.

THEOREM 2.6. Let A ∈ C(X) be a-Drazin invertible. Then:
(i) Aad is a closed linear operator in X0 with the domain D(Aad) = R(A0) ⊕

N (A0) and the rangeR(Aad) = D(A0) ∩N (P) = R(A) ∩D(A).
(ii)R(A2) = R(A) and N (A2) = N (A).

(iii)R(A) = R(A0).
(iv) The a-Drazin inverse Aad is densely defined in X0 = R(A)⊕N (A).
(v) If f ∈ D(Aad) and g ∈ D(A0), then

(2.6) AAadf=(I−P) f , AadAg=(I−P)g, AadAAadf=Aad f , AAadAg=Ag.

Proof. (i) This follows from Proposition 2.3.
(ii) The first equality follows from R(A2) ⊂ R(A) and condition (ii) of

Definition 2.5. For the second equality assume that f ∈ N (A2). Then f ∈ D2(A),
and A(A f ) = 0. Hence A f ∈ R(A) ∩ N (A) = {0}, and A f = 0, that is, f ∈
N (A).

(iii), (iv) and (v) follow from Proposition 2.3 and its proof.

We show that if an operator A ∈ C(X) is group invertible in the sense of
Koliha and Tran [21] and Nashed and Zhao [30], then it is also a-Drazin invertible,
and the two inverses agree.

THEOREM 2.7. If A ∈ C(X) is group invertible in the sense of Definition 1.1,
then A is a-Drazin invertible and Aad = Ad ∈ B(X).
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Proof. Let A be group invertible. Then X = R(A)⊕N (A), R(A) is closed
by Theorem IV.5.10 of [36], 0 is at most a simple pole of the resolvent of A, and
R(A2) = R(A). Hence the conditions of Definition 2.5 are fulfilled, and A is
a-Drazin invertible. Further,

D(Aad) = A(R(A) ∩D(A))⊕N (A) = R(A2)⊕N (A) = R(A)⊕N (A) = X,

which implies Aad ∈ B(X). Finally, from (1.6) and the definition of Aad we con-
clude that Aad = (A + P)−1(I − P) = Ad.

In general, the a-Drazin inverse of a closed operator A is unbounded. If it
is bounded, it agrees with the group inverse previously defined by Koliha and
Tran [21] and Nashed and Zhao [30]; in particular, in this case Aad is defined on
all of X:

THEOREM 2.8. Let A ∈ C(X) be an a-Drazin invertible operator with a nonempty
resolvent set. Then Aad is bounded on D(Aad) if and only if the range of A is closed.
In this case X = R(A)⊕N (A), Aad ∈ B(X) and the a-Drazin inverse Aad coincides
with the group inverse Ad of Definition 1.1.

The proof of the theorem is obtained from the following proposition which
is an important result in its own right:

PROPOSITION 2.9. Under the hypotheses of Theorem 2.8 the following conditions
are equivalent:

(i) Aad is bounded on D(Aad).
(ii) D(Aad) = X0.

(iii)R(A0) is closed.
(iv)R(A) is closed.
(v)R(A2) is closed.

(vi)R(A) = R(A2).
(vii) X = R(A)⊕N (A).

Proof. (i) =⇒ (ii). Let f ∈ X0. Since Aad is densely defined in X0, there
exists a sequence ( fn) in D(Aad) with fn → f . Since Aad is bounded on D(Aad),
the sequence (Aad fn) is Cauchy in X0, and Aad fn → g for some g ∈ X0. By the
closed graph theorem, f ∈ D(Aad) and g = Aad f . Hence D(Aad) = X0.

(ii) =⇒ (iii). Let f ∈ R(A0) = A(X1), where X1 = R(A) ∩ D(A). Since
D(Aad) = X0, Aad f is defined, and belongs to D(A) (Theorem 2.6 (i)). By Theo-
rem 2.6 (v), f = f − P f = (I − P) f = AAad f ∈ A(X1) = R(A0).

(iii) =⇒ (iv). SinceR(A0) is closed, according to Theorem 2.6 (iii) we have

R(A0) ⊂ R(A) ⊂ R(A) = R(A0) = R(A0),

that is,R(A) = R(A0) is closed.
(iv) =⇒ (v). First we show that if the range of A is closed, Aad is bounded

on D(A). From the open maping theorem it follows that there exists a positive
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constant ρ such that for each h ∈ D(A) we can find g ∈ D(A) such that Ag = Ah
and ‖g‖ 6 ρ‖Ah‖. Let f ∈ D(Aad). Then f = Ah + P f , where h ∈ R(A)∩D(A).
Let g ∈ D(A) be such that Ag = Ah and ‖g‖ 6 ρ‖Ah‖. We observe that g− h ∈
N (A) and g = h + (g − h) ∈ R(A) ⊕ N (A) = X0. Then g ∈ D(A0), and
AadAg = (I − P)g by Theorem 2.6 (v). Therefore

‖Aad f ‖ = ‖AadAh + AadP f ‖ = ‖AadAg‖ = ‖(I − P)g‖
6 ρ‖I − P‖‖Ah‖ = ρ‖I − P‖‖(I − P) f ‖ 6 ρ‖I − P‖2‖ f ‖.

Hence Aad is bounded on D(Aad). Note that we have proved the equivalence of
(i)–(iv). ThenR(A2) = A(R(A) ∩D(A)) = R(A0) is closed.

(v) =⇒ (vi). IfR(A2) is closed, then

R(A2) ⊂ R(A) ⊂ R(A) = R(A2) = R(A2),

andR(A) = R(A2).
(vi) =⇒ (vii). Since N (A2) = N (A) by Theorem 2.6 (ii), A has a finite as-

cent and descent (less than or equal to 1). Since the resolvent set of A is nonempty,
Theorem V.6.2 of [36] implies that X = R(A)⊕N (A) withR(A) closed.

(vii) =⇒ (i). Follows from Theorem 2.7.

Observe that the assumption that the resolvent set of A is nonempty is used
only in the proof that (vi) implies (vii).

3. EXAMPLES OF a-DRAZIN INVERSES

We start with an example of a bounded a-Drazin inverse.

EXAMPLE 3.1. We consider the space X = `1 ⊕ `1, `1 being the space of

all complex sequences x = (ξ1, ξ2, . . . ) such that
∞
∑

n=1
|ξn| < ∞. The right shift

operator defined by S(ξ1, ξ2, ξ3, . . . ) = (0, ξ1, ξ2, . . . ) on `1 is injective. Let T be
the algebraic inverse of the restriction of S from `1 to the range of S, and let A =
T ⊕ 0; then A is a closed linear operator in X with the domain D(A) = {(ξi) ∈
`1 : ξ1 = 0} ⊕ `1. We observe that

N (A) = {0} ⊕ `1 and R(A) = `1 ⊕ {0},

which implies X = R(A)⊕N (A).
Then A has the group inverse Ad in the sense of Definition 1.1, and accord-

ing to Theorem 2.7 it has also the a-Drazin inverse Aad. To calculate Aad, we note
that the projection P = PN (A),R(A) is given by P = 0⊕ I. Then

Aad = (I − P)(A + P)−1 = (I ⊕ 0)(T ⊕ I)−1 = (I ⊕ 0)(S⊕ I) = S⊕ 0 ∈ B(X).
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The following example presents an unbounded a-Drazin inverse of a closed
linear operator. It demonstrates that the new inverse is different from previously
defined Drazin type inverses, and that it fills a gap in the theory of generalized
inverses as the operator under consideration is an a-Drazin invertible differential
operator, which has no Drazin type inverse previously defined. For the back-
ground to this example see [3].

EXAMPLE 3.2. The family of all bounded, uniformly continuous complex-
valued functions on an interval I will be denoted by UCB(I). More generally,
UCB

k(I) is the set of all k times differentiable functions in UCB(I) whose deriva-
tives belong to UCB(I). Let X be the space X = UCB(R) equipped with the
uniform norm ‖ f ‖ = sup

x∈R
| f (x)|. We consider the operator A = d2/dx2 on X

with the domain

D(A) = UCB
2(R).

The kernel N (A) of A is the set of all constant functions on R (any such function
belongs to UCB(R)). For any ξ > 0 we define the operator Pξ that assigns to each
f ∈ X the constant function

(3.1) Pξ f :=
1

2ξ

ξ∫
−ξ

f (u)du for ξ > 0.

Then Pξ is linear with ‖Pξ‖ 6 1, and Pξ h = h if and only if h ∈ N (A). We show
that

(3.2) s-lim
ξ→∞

Pξ f = 0 if f ∈ R(A).

Let first f ∈ R(A). Then there exists g ∈ UCB2(R) such that f = g′′ and

‖Pξ f ‖ = ‖Pξ g′′‖ =
∥∥∥ 1

2ξ

ξ∫
−ξ

g′′(u)du
∥∥∥ 6

1
ξ
‖g′‖

in the UCB(R) norm, which implies ‖Pξ f ‖ → 0 as ξ → ∞. Let f ∈ R(A) and let
ε > 0. Then there exists g ∈ R(A) with ‖g− f ‖ < ε, and

‖Pξ f ‖ 6 ‖Pξ g‖+ ‖Pξ‖‖g− f ‖ 6 ‖Pξ g‖+ ε,

so that lim sup
ξ→∞

‖Pξ f ‖ 6 ε. Since ε was arbitrary, lim
ξ→∞
‖Pξ f ‖ = 0.

Suppose that f ∈ R(A) ∩ N (A). Then lim
ξ→∞
‖Pξ f ‖ = 0 while Pξ f = f for

each ξ > 0. Hence R(A) ∩N (A) = {0}. We show that the space X0 = R(A)⊕
N (A) is closed in UCB(R). Since Pξ f converges for all f ∈ X0 and ‖Pξ‖ 6 1 for
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all ξ > 0, we can define an operator P on X0 by

P f = s-lim
ξ→∞

Pξ f = lim
ξ→∞

1
2ξ

ξ∫
−ξ

f (u)du, f ∈ X0.

Then P ∈ B(X0) and ‖P‖ 6 1. Let

f ∈ X0 = R(A)⊕N (A)

and let ε > 0. Then there exists g = u + v ∈ R(A)⊕N (A) such that ‖ f − g‖ <
(1/2)ε. We observe that g− Pg = g− Pu− Pv = g− v = u ∈ R(A), and

‖( f − P f )− (g− Pg)‖ 6 ‖ f − g‖+ ‖P( f − g)‖ 6 2‖ f − g‖ < ε.

Thus f − P f ∈ R(A), and f = ( f − P f ) + P f ∈ R(A)⊕N (A) = X0. It is now
clear that P is the projection of X0 onto N (A) alongR(A).

In order to prove that A = d2/dx2 is a-Drazin invertible, we must show that
R(A) ⊂ R(A2). We will derive this inclusion in the context of operator cosine
functions in Section 5 (see Application 6.2). For the moment we shall assume this
result to derive an explicit formula for Aad.

To find the a-Drazin inverse Aad of the operator A = d2/dx2 on UCB(R)
first assume that

f ∈ D(Aad) = R(A0)⊕N (A0) ⊂ UCB
2(R)⊕N (A).

Hence f = g′′ + P f for some g ∈ UCB2(R) and P f ∈ C. Set w = g− Pg + P f .
Then Aw = Ag = g′′, Pw = Pg− Pg + P f = P f . Hence

(A + P)w = Aw + Pw = g′′ + P f = f

and

(3.3) Aad f = (I − P)(A + P)−1 f = (I − P)w = w− Pw = g− Pg.

Define h : R→ C by

h(x) =
x∫

0

s∫
0

( f (u)− P f )duds.

Then h satisfies h′′(x) = f (x)− P f , and therefore h(x) = g(x) + c1x + c2 for some
c1, c2 ∈ C. Since g ∈ UCB(R), lim

|x|→∞
(g(x)/x) = 0 and lim

|x|→∞
(h(x)/x) = c1. For

brevity let us write

(3.4) Qh := lim
|x|→∞

h(x)
x

whenever the (finite) limit exists for h : R → C. Write w(x) := h(x)− (Qh)x =
g(x)+ c2 ∈ (R(A)∩D(A))⊕N (A). (Observe that h need not belong toUCB(R).)
According to (3.3),

(I − P)w = (I − P)(g + c2) = g + c2 − Pg− Pc2 = g− Pg = Aad f .
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Thus we have an explicit formula for Aad f :

(3.5) Aad f (x) = (I − P)(h(x)− (Qh)x), h(x) =
x∫

0

s∫
0

( f (u)− P f )duds.

We show that the a-Drazin inverse Aad of A = d2/dx2 in UCB(R) is un-
bounded. In Application 6.2 we show that (0, ∞) belongs to the resolvent set of
A. Hence A has a nonempty resolvent set, and if Aad were bounded, the range
of A would be closed and X = R(A)⊕N (A) by Theorem 2.8. This means that
every f ∈ UCB(R) would be of the form f = g′′ + c, where g ∈ UCB

2(R) and
c ∈ C. However, the function f (x) = (1 + x2)−1 is in UCB(R), but has no decom-
position of the form described above. Indeed, any g satisfying f = g′′ + c would
be of the form g(x) = x arctan x − (1/2) log(1 + x2) − (1/2)cx2 + c1x + c2, but
for no choice of the constants c, c1, c2 would g belong to UCB(R).

4. SEMIGROUPS OF OPERATORS

An operator semigroup is associated with the Cauchy problem

(4.1)


d
dt

u(t) = Au(t), t ∈ R+,

u(0) = f ∈ D(A),

where A is a closed linear operator on X.
A function T(·) : R+ → B(X) is an operator semigroup (or C0-semigroup) if

the following conditions are satisfied:

(i) T(t + s) = T(t)T(s) for all t, s ∈ R+.
(ii) T(0) = I.

(iii) For each f ∈ X, t 7→ T(t) f is strongly continuous on R+.

The infinitesimal generator A of an operator semigroup T(·) is defined by

(4.2) A f =
d
dt

∣∣∣
0
T(t) f = s-lim

s→0

T(s) f − f
s

, f ∈ D(A),

where D(A) is the set of all f ∈ X for which the derivative (4.2) exists. We
will often write TA(·) for an operator semigroup with the generator A. The type
ω = ωA of the semigroup TA(·) is defined as

ωA = lim
t→∞

t−1 log ‖TA(t)‖.

The abstract Cauchy problem (4.1) is well posed if and only if A generates
an operator semigroup. In this case the solution is given by

u(t) = T(t) f , t ∈ R+.
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We define the Cesàro means H(t) for an operator semigroup T(·) by

(4.3) H(t) f =
1
t

t∫
0

T(u) f du, f ∈ X, t > 0,

and the Abel means by

(4.4) λ

∞∫
0

e−λtT(t) f dt, f ∈ X, t > 0.

If Reλ > ωA, then the resolvent is given by

(4.5) R(λ; A) f =
∞∫

0

e−λtT(t) f dt, f ∈ X.

We define three families of operator semigroups, T 0, T 1, and T ∞, by specifying

TA(·) ∈ T 0 ⇐⇒ sup
t>0
‖TA(t)‖ < ∞,

TA(·) ∈ T 1 ⇐⇒ ‖TA(t)‖ = o(t), t→ ∞, and sup
t>0
‖H(t)‖ < ∞,

TA(·) ∈ T ∞ ⇐⇒ (0, ∞) ⊂ ρ(A) and sup
λ>0

λ‖R(λ; A)‖ < ∞.

We note the important inclusions

T 0 ⊂ T 1 ⊂ T ∞;

the first relation is clear, the second follows from (4.5) and [26].

THEOREM 4.1. Let T(·) ∈ T 1 be an operator semigroup on X. Then the generator
A of T(·) is a-Drazin invertible and

(4.6) Aad f = s-lim
λ→0+

(λ−1P f − R(λ; A) f ), f ∈ D(Aad).

Proof. It is well known (see, for instance, Section 1.1 of [1]) that if T(·) is an
operator semigroup, then for any f ∈ X and any t > 0, H(t) f ∈ D(A). Also,

(4.7) AH(t) f =
T(t) f − f

t
for t > 0,

and for any f ∈ D(A),

(4.8) H(t) f − f =
t∫

0

AH(u) f du = A
t∫

0

H(u) f du ∈ R(A);

further,

(4.9) AH(t) f = H(t)A f .
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According to [2], if T(·) ∈ T ∞, then N (A) ∩ R(A) = {0} and the space X0 =
R(A)⊕N (A) is closed. Again by [2], if T(·) ∈ T 1,

(4.10) s-lim
t→∞

H(t) f = P f ,

where P is the projection of X0 onto N (A) along R(A) and where the limit on
the left exists if and only if f ∈ X0. Also

(4.11) lim
λ→0+

λR(λ; A) f = P f , f ∈ X0,

where the limit on the left exists if and only if f ∈ X0.
To prove that R(A) ⊂ R(A2), let f ∈ R(A), that is, let f = Ag for some

g ∈ D(A). By (4.8), for each t > 0, g− H(t)g ∈ R(A), say g− H(t)g = Aht with
ht ∈ D(A). Then, using (4.9), we get

f = ( f − H(t) f ) + H(t) f = (Ag− H(t)Ag) + H(t) f

= A(g− H(t)g) + H(t) f = A2ht + H(t) f .

Since f ∈ R(A), s-lim
t→∞

H(t) f = P f = 0. Hence f = s-lim
t→∞

A2ht ∈ R(A2).

Let f ∈ D(Aad); then f = Ag + P f with g ∈ R(A) ∩ D(A). For λ > 0 we
have

λ−1P f = R(λ; A) f = λ−1(P f − λR(λ; A) f )

= R(λ; A)(P f − f ) = −R(λ; A)g = g− λR(λ; A)g.

Equation (4.6) then follows from (4.11).

Using the preceding theorem and Proposition 2.9 we obtain the following
result from which we can recover the well known uniform ergodic theorem of Lin
([26], Theorem) as well as his discrete uniform ergodic theorem ([25], Theorem).

THEOREM 4.2. Let TA(·) ∈ T 1 be an operator semigroup on X. Then the follow-
ing conditions are equivalent:

(i) H(t) converges in the operator norm as t→ ∞.
(ii)R(A) is closed.

(iii)R(A2) is closed.
(iv) X = R(A)⊕N (A).
(v) The a-Drazin inverse Aad of A is bounded (and defined on X).

Proof. The hypothesis T(·) ∈ T 1 guarantees that A is a-Drazin invertible.
The equivalence of (ii)–(v) is delivered by Proposition 2.9. The interesting part is
the equivalence of (i) and (v).

If (i) holds, then ‖H(t)− P‖ → 0 as t → ∞, where P is the projection onto
N (A) along R(A). Fix t > 0 for which ‖H(t)− P‖ < 1; then H(t) − P − I is
invertible in B(X). Let f ∈ D(Aad); then f = Ag + P f for some g ∈ R(A) ∩
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D(A), and Aad f = g. Noting that Pg = 0 and using (4.8), we get

t(H(t)− P− I)g = t
t∫

0

H(u)Agdu =
t∫

0

( u∫
0

T(s)( f − P f )ds
)

du,

and so Aad is bounded in view of

‖Aad f ‖ = ‖g‖ 6 t−1‖(H(t)− P− I)−1‖
( t∫

0

u∫
0

‖T(s)‖‖I − P‖dsdu
)
‖ f ‖.

Conversely, assume that Aad is bounded. By Proposition 2.9, D(Aad) =
X = R(A)⊕N (A). Then any f ∈ X is of the form f = Ag + P f with g ∈ D(A);
observe that g = Aad f . Remembering that H(t)P f = P f and taking into account
(4.7), for any t > 0 we obtain

‖H(t) f − P f ‖ = ‖H(t)( f − P f )‖ = ‖H(t)Ag‖

= t−1‖T(t)g− g‖ = t−1(‖T(t)‖+ 1)‖Aad‖‖ f ‖,

which shows that H(t) converges to P in the operator norm.

We remark that the uniform Cesàro convergence of the semigroup, that is,
condition (i) of the preceding theorem, is equivalent to its uniform Abel conver-
gence:

(4.12)
∥∥∥λ

∞∫
0

e−λtT(t)dt− P
∥∥∥→ 0 as λ→ ∞.

A proof may be found in [26].

5. COSINE OPERATOR FUNCTIONS

Cosine operator functions are associated with the solution of the second
order Cauchy problem

(5.1)


d2

dt2 u(t) = Au(t) t ∈ R,

u(k)(0) = fk ∈ D(A) k = 0, 1,

where A is a closed linear operator on X.
We say that C(·) : R → B(X) is a cosine operator function (see [17], [35]) if it

satisfies the following conditions:

(i) C(t + s) − C(t − s) = 2C(t)C(s) for all t, s ∈ R (d’Alembert functional
equation).

(ii) C(0) = I.
(iii) For each f ∈ X, t 7→ C(t) f is strongly continuous on R.
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The infinitesimal generator A of a cosine operator function C(·) is defined by

(5.2) A f =
d2

dt2

∣∣∣
0
C(t) f = s-lim

s→0

2
s2 (C(s) f − f ), f ∈ D(A),

where D(A) is the set of all f ∈ X for which the second derivative (5.2) exists. It
is often assumed that a cosine operator function C(·) is nondegenerate, that is,

C(t) f = 0 for all t 6= 0 =⇒ f = 0.

We mention that the Cauchy problem (5.1) is well posed if and only if A
generates a cosine operator function C(·), with the solution given by

u(t) = C(t) f0 +
t∫

0

C(u) f1du, t ∈ R.

For a nondegenerate cosine operator function C(·) we define the Cesàro
means E(t) for t 6= 0 by

(5.3) E(t) f =
2
t2

t∫
0

(t− u)C(u) f du =
2
t2

t∫
0

u∫
0

C(v) f dvdu, f ∈ X;

then

(5.4) E(t) f ∈ D(A), AE(t) =
2
t2 (C(t)− I), t 6= 0.

(See Fundamental Lemma 2.14 of [35].) According to Lemma 3.1 of [6],

(5.5) AE(t) f = E(t)A f for all t 6= 0 and all f ∈ D(A).

We also define the Abel means by λ
∞∫
0

e−λuC(u)du as in the case of operator

semigroups. If Reλ > ωA, then

(5.6) R(λ2; A) = λ−1
∞∫

0

e−λuC(u)du.

We define three families of cosine operator functions, C0, C2, and C∞, intro-
duced in [3] by specifying

CA(·) ∈ C0 ⇐⇒ sup
t>0
‖CA(t)‖ < ∞,

CA(·) ∈ C2 ⇐⇒ ‖CA(t)‖ = o(t2), t→ ∞, and sup
t>0
‖E(t)‖ < ∞,

CA(·) ∈ C∞ ⇐⇒ (0, ∞) ⊂ ρ(A) and sup
λ>0

λ‖R(λ; A)‖ < ∞.

We have the inclusions
C0 ⊂ C2 ⊂ C∞;

they follow from the corresponding relations for semigroups and Proposition 5.2.
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The following theorem is our main result on the a-Drazin invertibility of a
generator of a cosine operator function.

THEOREM 5.1. Let C(·) ∈ C2 be a cosine operator function on X. Then the
generator A of C(·) is a-Drazin invertible and

(5.7) Aad f = s-lim
λ→0+

(λ−2P f − R(λ2; A) f ), f ∈ D(Aad).

Proof. According to Lemma 3.1 and 3.2 of [3], N (A) ∩R(A) = {0} and the
space X0 = R(A)⊕N (A) is closed. By Theorem 3.1 of [3],

(5.8) s-lim
t→∞

E(t) f = P f

where P is the projection of X0 ontoN (A) alongR(A) and where the limit of the
left exists if and only if f ∈ X0. Further,

(5.9) lim
λ→0+

λ2R(λ2; A) f = P f , f ∈ X0,

where the limit of the left exists if and only if f ∈ X0.
We need to prove the inclusion R(A) ⊂ R(A2). Let f ∈ R(A), that is,

f = Ag for some g ∈ D(A), and let t > 0. According to Lemma 2.4 of [3],
g− E(t)g ∈ R(A), say g− E(t)g = Aht, where ht ∈ D(A). By (5.5), E(t)Ag =
AE(t)g, and

f = ( f − E(t) f ) + E(t) f = (Ag− E(t)Ag) + E(t) f

= (Ag− AE(t)g) + E(t) f = A2ht + E(t) f .

Since f ∈ R(A), s-lim
t→∞

E(t) f = P f = 0. Then f = s-lim
t→∞

A2ht ∈ R(A2).

The proof of equation (5.7) is similar to the proof of (4.6) (see also Theo-
rem 4.1 of [3]).

Under the hypotheses of the preceding theorem let Aad = (I− P)(A + P)−1

be the a-Drazin inverse of the generator A. Then Aad is a closed linear operator
densely defined in X0 = R(A) ⊕N (A). According to Proposition 2.3, Aad co-
incides with the operator B defined by Butzer and Gessinger in [3] by specifying
relations which we recorded as equation (2.2).

Relations between cosine operator functions and operator C0-semigroups
relevant to the present paper were studied by Fattorini [12], [13], and especially in
Gessinger’s dissertation [14]. We need the following result — for part (a) see p. 92
of [12] and p. 140 of [16], for part (b) see Proposition 2.17 of [14] and Lemma 2.2
of [3]), for part (c) see Satz 3.4 of [14] and p. 481 of [15].

PROPOSITION 5.2. (a) Let CA(·) be a cosine operator function on a Banach space
X with a generator A. Then A generates an operator semigroup TA(·) given by

(5.10) TA(t) f =
1√
πt

∞∫
0

exp(−s2/4t)CA(s) f ds.
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(b) The operator norms of CA(·) and TA(·) are connected by:
(i) If ‖CA(t)‖ = o(t2) as |t| → ∞, then ‖TA(t)‖ = o(t) as t→ ∞.

(ii) If ‖CA(t)‖ = O(t2) as |t| → ∞, then ‖TA(t)‖ = O(t) as t→ ∞.
(c) Let TA(·) ∈ T 0 be an equibounded holomorphic semigroup of type θ, (see p. 33

of [16]) on X. Then the operator B = Aad generates an equicontinuous holomorphic
semigroup on X0 of the same type, given by

(5.11) TB(t) f = f + P f −
√

t
∞∫

0

J1(2
√

tu)TA(u) f
du√

u
( f ∈ X0),

J1(·) being the Bessel function of order 1.

Using this result we can deduce the following counterpart of Theorem 4.2
(see also Theorem 3.3 of [3]).

THEOREM 5.3. Let CA(·) ∈ C2 be a cosine operator function on X. Then the
following conditions are equivalent:

(i) E(t) converges in the operator norm as t→ ∞.
(ii)R(A) is closed.

(iii)R(A2) is closed.
(iv) X = R(A)⊕N (A).
(v) The a-Drazin inverse Aad of A is bounded (and defined on X).

Proof. We prove only the equivalence of conditions (i) and (v).
If (i) holds, then ‖E(t)− P‖ → 0 as t → ∞. Fixing t > 0 with ‖E(t)− P‖ <

1, we have E(t)− P− I invertible in B(X). If f ∈ D(Aad), then f = Ag + P f for
some g ∈ R(A) ∩ D(A), and Aad f = g. According to the proof of Theorem 3.3
of [3],

t2

2
[E(t)− P− I]g =

t∫
0

u∫
0

v∫
0

w∫
0

C(s)( f − P f )dsdwdvdu,

and

‖Aad f ‖ = ‖g‖ 6 ‖(E(t)− P− I)−1‖
t∫

0

u∫
0

v∫
0

w∫
0

C(s)‖ f − P f ‖dsdwdvdu

6 ‖(E(t)− P− I)−1‖ t2

2
{1 + ‖P‖}‖ f ‖.

Thus Aad is bounded.
Conversely, if Aad is bounded, then D(Aad) = D(Aad) = X = R(A) ⊕

N (A). So any f ∈ X is of the form f = Ag + P f with g ∈ D(A), noting that
g = Aad f . Since E(t)P f = P f for all f ∈ X and all t ∈ R (see Lemma 3.2 of [3]),
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we have by (5.4),

‖E(t) f − P f ‖ = ‖E(t)( f − P f )‖ = ‖E(t)Ag‖

=
2
t2 ‖C(t)g− g‖ 6

2
t2 (‖C(t)‖+ 1)‖Aad‖‖ f ‖.

Hence E(t) converges to P in the operator norm as t→ ∞.

The uniform Cesàro convergence of the cosine operator function, that is,
condition (i) of the preceding theorem, is equivalent to its uniform Abel conver-
gence:

(5.12)
∥∥∥λ

∞∫
0

e−λtC(t)dt− P
∥∥∥→ 0 as t→ ∞.

(See Theorem 3.3 of [3].)

6. DIFFERENTIAL EQUATIONS AND THE a-DRAZIN INVERSE

This section is concerned with applications to differential equations involv-
ing operator cosine functions satisfying the conditions of Theorem 5.1, and de-
scribing the a-Drazin inverse of its generator.

APPLICATION 6.1. The wave equation in the space L2
2π (see Section 5.1 of

[3]). Let X = L2
2π = L2

2π(R) be the space of all complex valued 2π-periodic
L2-functions on R equipped with the norm

‖ f ‖ = ‖ f ‖L2
2π

=
( 1

2π

π∫
−π

| f (x)|2dx
)1/2

.

The equation is given by

∂2

∂x2 w(x, t) =
∂2

∂t2 w(x, t),

w(x, 0) = f (x) ∈ L2
2π ,

∂

∂t
w(x, t)

∣∣∣
t=0

= 0.
(6.1)

Its solution is a cosine operator function

(6.2) w(x, t) = C(t) f (x) :=
1
2
[ f (x + t) + f (x− t)] = ∑

k∈Z
cos kt f̂ (k)eikx

where

f̂ (k) =
1

2π

π∫
−π

f (u)e−ikudu, k ∈ Z,
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acting on the space L2
2π . According to [37], C(·) is a cosine operator function

satisfying ‖C(t)‖ = 1 for all x ∈ R with the infinitesimal generator A = d2/dx2

whose domain is

D(A) = { f ∈ L2
2π : f , f ′ ∈ AC2π , f ′′ ∈ L2

2π},

whereAC2π = AC2π(R) is the set of all complex valued absolutely continuous 2π-
periodic functions in R. The null spaceN (A) of A is the set of all complex valued
2π-periodic constant functions in R. The cosine operator function C(·) satisfies
the hypotheses of Theorem 5.1, which means that the space X0 = R(A)⊕N (A)
is closed and R(A) ⊂ R(A2). The operator P = PN (A),R(A) projects each func-
tion f ∈ L2

2π onto the constant function

P f = f̂ (0) =
1

2π

π∫
−π

f (u)du.

Let f ∈ D(Aad). Then Aad f = (I − P)(A + P)−1 f = (I − P)g, where g is a
solution to the equation (A + P)g = f . To solve this equation we expand f and g
in a Fourier series and obtain

(A + P)g(x) = − ∑
k∈Z

k2 ĝ(k)eikx + ĝ(0) = ∑
k∈Z

f̂ (k)eikx = f (x).

From the uniqueness of Fourier coefficients we obtain

g(x) = − ∑
k∈Z\{0}

1
k2 f̂ (k)eikx + ĝ(0),

and

(6.3) Aad f (x) = (I − P)g(x) = g(x)− ĝ(0) = − ∑
k∈Z\{0}

1
k2 f̂ (k)eikx.

Observe that A has the Fourier series representation

(6.4) A f (x) = − ∑
k∈Z

k2 f̂ (k)eikx, f ∈ D(A).

From (6.3) we deduce ‖Aad f ‖ 6 ‖ f ‖, which proves that the a-Drazin inverse of A
is bounded. Consequently, by Theorem 2.8, L2

2π = R(A)⊕N (A). Hence every
f ∈ L2

2π has representation f = g′′ + f̂ (0), where g ∈ D(A).
Utilising p. 343 of [3] we get another explicit representation for Aad:

Aad f (x) =
x∫

0

u∫
0

f (v)dvdu− x2

4π

π∫
−π

f (v)dv− x
2π

π∫
−π

u∫
0

f (v)dvdu

− 1
2π

π∫
−π

x∫
0

u∫
0

f (v)dvdudx +
π

12

π∫
−π

f (v)dv.
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The associated heat equation

∂2

∂x2 w(x, t) =
∂

∂t
w(x, t) (−π < x < π; t > 0),

s-lim
t→0+

w(x, t) = f (x), w(−π, t) = w(π, t),

wx(−π, t) = wx(π, t)

(6.5)

has a classical solution

WA(t) f (x) = ∑
k∈Z

e−tk2
f̂ (k)eikx

with A defined by (6.4). The existence of the semigroup associated with B = Aad

defined by (6.3) follows from Proposition 5.2 (c); it is given by

WB(t) f (x) = f̂ (0) + ∑
k∈Z\{0}

e−t/k2
f̂ (k)eikx

(see p. 487 of [15]), where the k2 in the exponential factor e−tk2
of WA(t) is re-

placed by k−2.
The existence of the cosine operator function associated with the bounded

operator B, thus CB(·), follows from the counterpart of Proposition 5.2 (c) for
CB(·) (see p. 483 of [15]), and is given by

CB(t) f (x) = f (x) + P f −
√

t
∞∫

0

J1(2
√

2u) ∑
k∈Z

cos ku f̂ (k)eikx du√
u

= f (x) + f̂ (0)− ∑
k∈Z

f̂ (k)eikx
∞∫

0

√
t
u

J1(2
√

tu) cos kudu

= f̂ (0) + ∑
k∈Z\{0}

cos(t/k) f̂ (k)eikx.

Here we have made use of the fact that the expression

∞∫
0

√
t
u

J1(2
√

ut) cos kudu

is equal to 1− cos(t/k) for k > 0 and to 1 for k = 0 (see I pp. 54, 110; II p. 20 of
[11]), as well as the fact that the nth partial sum of the Fourier series of f ∈ L2

2π

tends to f in the L2
2π-norm for n→ ∞.

APPLICATION 6.2. The wave equation for UCB(R). Let C(·) be the transla-
tion operator

(6.6) C(t) f (x) =
1
2
( f (x + t) + f (x− t)), x, t ∈ R,
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in the space X = UCB(R) equipped with the uniform norm ‖ f ‖ = sup
x∈R
| f (x)|. It

is known [29] that C(·) is a cosine function satisfying ‖C(t)‖ = 1 for all t ∈ R,
and that C(·) is a solution to the wave equation (6.1) with f ∈ UCB(R).

The infinitesimal generator of C(·) is the differential operator A = d2/dx2

with the domain D(A) = UCB
2(R) which we studied in Example 3.2. Since

the semigroup C(·) satisfies the hypotheses of Theorem 5.1, we conclude that
R(A) ⊂ R(A2). This fills in the gap in Example 3.2, where we derived the ex-
plicit equation (3.5) for the a-Drazin inverse of the generator of our cosine oper-
ator function C(·). Recall that in the same example we also proved that Aad is
unbounded.

Another formula for Aad can be obtained using (5.7). For this we first note
that according to equation (5.10) of [3],

λR(λ2; A) f (x) =
1
2

∞∫
−∞

exp(−λ|x− u|) f (u)du, λ > 0,

so that

(6.7) Aad f (x) = s-lim
λ→0+

( 1
λ2 P f − 1

2λ

∞∫
−∞

exp(−λ|x− u|) f (u)du
)

.

The semigroup TA associated with the operator A is given by

(6.8) TA(t) f (x) =
1√
4πt

∞∫
−∞

exp(−(x− u)2/4t) f (u)du = WA(t) f (x) = w(x, t).

It solves the heat equation

∂2

∂x2 w(x, t) =
∂

∂t
w(x, t) (−∞ < x < ∞, t > 0),

s-lim
t→0+

w(x, t) = f (x).
(6.9)

In the following theorem we give a new description of the operator semi-
group generated by Aad. It is of unusual interest because its proof involves the
interchange of order of two integrals which do not converge absolutely.

First we recall the definition of the generalized hypergeometric function

0F2(a, b; z) :=
∞

∑
k=0

1
(a)k(b)k

zk

k!
,

where (a)k = a(a + 1) · · · (a + k− 1) is the Pochhammer symbol.

THEOREM 6.3. The semigroup TB associated with the a-Drazin inverse B = Aad

of the infinitesimal generator A = d2/dx2 of the cosine operator function C(·) defined
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in (6.6) is of the form

(6.10) TB(t) f (x) := WB(t) f (x) = f (x) + P f −
√

t
4π

∞∫
−∞

f (x− v)H(t, v)dv,

where H is given as the Mellin-type convolution integral

(6.11) H(t, v) :=
∞∫

0

J1(2
√

tu) exp(−v2/4u)
du
u

,

explicitly evaluated in terms of the generalized hypergeometric function as

(6.12) H(t, v) = 2 0F2

(1
2

,
3
2

;
tv2

4

)
− |v|

√
πt 0F2

(3
2

, 2;
tv2

4

)
.

Proof. Starting with (5.11), we have

√
t

∞∫
0

J1(2
√

tu)TA(u) f (x)
du√

u
=
√

t
4π

∞∫
0

J1(2
√

tu)
( ∞∫
−∞

1√
u

exp(−v2/4u) f (x−v)dv
)du√

u

=
√

t
4π

∞∫
−∞

f (x−v)
( ∞∫

0

J1(2
√

tu) exp(−v2/4u)
du
u

)
dv

=
√

t
4π

∞∫
−∞

f (x− v)H(t, v)dv(6.13)

provided the order of integration can be interchanged. This part of the proof is
nontrivial as it involves nonabsolute integration, and is demonstrated in detail in
the Appendix.

Now we evaluate the function H(t, v) in terms of the generalized hyperge-
ometric function:

H(t, v) =
∞∫

0

J1(2
√

tu) exp(−v2/4u)
du
u

=
∞∫

0

J1

(2
√

t
√

y

)
exp(−v2/4y)

dy
y

= L
[
y−1 J1

(2
√

t
√

y

)](v2

4

)
= 2 0F2

(1
2

,
3
2

;
tv2

4

)
− |v|

√
πt 0F2

(3
2

, 2;
tv2

4

)
,(6.14)

where L denotes the Laplace transform (see p. 266, Equation of [31]; the formula
there contains a misprint in the sign, which has been corrected in the derivation
of (6.14)).

The proof that the order of integration in (6.13) may be inverted is relegated
to the Appendix below. The reason is that

∞∫
0

∞∫
−∞

J1(2
√

tu)
u

exp(−v2/4u) f (x− v)dudv
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does not exist as a Lebesgue integral, but only as an improper Lebesgue integral,
which can be viewed as a special case of the non-absolute generalized Riemann
integral [27], also known as the Kurzweil–Henstock integral [23]. This necessi-
tates the use of non-absolute Fubini’s theorem.

REMARK 6.4. Since neither A nor its a-Drazin inverse Aad are bounded, one
cannot determine the cosine operator function CB(·) generated by B = Aad.

7. APPENDIX

We justify the changing of the order of integration in (6.13). For notational
convenience, we shall work with the simplified function

(7.1) G(x; u, v) =
J1(
√

u)
u

exp(−v2/u) f (x− v),

where 0 < u < ∞, −∞ < v < ∞, and f is a uniformly continuous bounded
function on (−∞, ∞). Since exp(−v2/u) is an even function of v, without a loss
of generality we may restrict the interval for v to (0, ∞), and consider G on the
positive quadrant (0, ∞)× (0, ∞).

We observe that for a fixed x, G(x; u, v) is not in general Lebesgue integrable
on (0, ∞)× (0, ∞). Indeed, set f ≡ 1 and calculate the repeated integral

∞∫
0

du
∞∫

0

|G(x; u, v)|dv =
∞∫

0

|J1(
√

u)|
u

du
∞∫

0

exp(−v2/u)dv

=
1
2

∞∫
0

|J1(
√

u)|
u

√
π
√

udu =
√

π

∞∫
0

|J1(s)|ds,

which is infinite. However, the integral
∞∫
0

J1(s)ds exists as an improper Lebesgue

integral
→∞∫
0

J1(s)ds := lim
t→∞

t∫
0

J1(s)ds.

We need a theorem on the existence of the improper Lebesgue integral

(7.2) lim
R1→∞, R2→∞

R1∫
0

R2∫
0

g(u, v)dudv.

By a two dimensional Hake’s theorem [28], the improper Lebesgue integral is
a special case of the generalized Riemann integral, for which Fubini’s theorem
holds ([27], Section 6.4).
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THEOREM 7.1. Let g be a Lebesgue measurable function on (0, ∞)×(0, ∞) such
that

(i) g ∈ L1((0, R1)× (0, ∞)) ∩ L1((0, ∞)× (0, R2)) for all R1, R2 > 0,
(ii) each of the repeated integrals

I1(R1, R2) =
∞∫

R1

du
R2∫
0

g(u, v)dv, I2(R1, R2) =
R1∫
0

du
∞∫

R2

g(u, v)dv,

I3(R1, R2) =
→∞∫
R1

du
∞∫

R2

g(u, v)dv,

converges to 0 as R1, R2 → ∞.
Then g has an improper Lebesgue integral (7.2) on (0, ∞)× (0, ∞).

Proof. Suppose that g satisfies the conditions on the theorem. Using Fubini’s
theorem for the Lebesgue integral, we obtain

→∞∫
0

( ∞∫
0

g(u, v)dv
)

du

=
R1∫
0

( R2∫
0

g(u, v)dv
)

du+
∞∫

R1

( R2∫
0

g(u, v)dv
)

du+
R1∫
0

( ∞∫
R2

g(u, v)dv
)

du+
→∞∫
R1

( ∞∫
R2

g(u, v)dv
)

du

=
R1∫
0

R2∫
0

g(u, v)dudv + I1(R1, R2) + I2(R1, R2) + I3(R1, R2).

Hence by the hypotheses,

R1∫
0

R2∫
0

g(u, v)dudv→
→∞∫
0

( ∞∫
0

g(u, v)dv
)

du

as R1, R2 → ∞, and the improper Lebesgue integral (7.2) of g(u, v) on (0, ∞) ×

(0, ∞) exists and equals
→∞∫
0

( ∞∫
0

g(u, v)dv
)

du.

We verify that our given function G satisfies the conditions of the theorem.
First we show that G ∈ L1((0, ∞)× (0, R2)). For this we have to check that the
integral

∞∫
0

du
R2∫
0

|G(x; u, v)|dv
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is finite for each UCB function f and each R2 > 0. Clearly, G is Lebesgue measur-
able. Write ‖ f ‖ = sup

−∞<t<∞
| f (t)|. Then

∞∫
0

du
R2∫
0

|J1(
√

u)|
u

exp(−v2/u)| f (x−v)|dv6‖ f ‖
∞∫

0

|J1(
√

u)|
u

du
R2∫
0

exp(−v2/u)dv

=
‖ f ‖
√

π

2

∞∫
0

|J1(
√

u)|
u

erf (R2/
√

u)
√

udu

where erf is the error function. The integrand in the last integral satisfies

|J1(u1/2)|
u1/2 erf (R2u−1/2) � 1

2
as u→ 0+,

|J1(u1/2)|
u1/2 erf (R2u−1/2) = O(u−5/4) as u→ ∞;

hence the integral is finite.
Next we show that G ∈ L1((0, R1)× (0, ∞)) for all UCB functions f and all

R1 > 0, that is, we show that the integral

R1∫
0

du
∞∫

0

|G(x; u, v)|dv

is finite:
R1∫
0

du
∞∫

0

|J1(
√

u)|
u

exp(−v2/u)| f (x− v)|dv6‖ f ‖
R1∫
0

|J1(
√

u)|
u

du
∞∫

0

exp(−v2/u)dv

=
‖ f ‖
√

π

2

R1∫
0

|J1(
√

u)|√
u

du < ∞.

This proves that G ∈ L1((0, R1)× (0, ∞)).
We verify that the repeated integral

I3(R1, R2) =
→∞∫
R1

du
∞∫

R2

J1(
√

u)
u

exp(−v2/u) f (x− v)dv

satisfies I3(R1, R2)→ 0 as R1, R2 → ∞.
Substituting u = s2 and writing

(7.3) E(s) =
∞∫

R2

exp(−v2/s2) f (x− v)dv
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we get

I3(R1, R2) = 2
→∞∫
√

R1

J1(s)E(s)
ds
s

.

Writing α = (1/4)π, we obtain

J1(s) =
√

2
π

(cos(s + α)
s1/2 +

∆(s)
s3/2

)
, s > 1,

where ∆(s) is bounded on [1, ∞).
Integrating by parts gives

→∞∫
√

R1

cos(s + α)
E(s)
s3/2 ds = − sin(

√
R1 + α)E(

√
R1)

R3/4
1

−
→∞∫
√

R1

sin(s + α)
d
ds

E(s)
s3/2 ds.

The derivative of E(s) is obtained by differentiating under the integral sign in
(7.3):

d
ds

E(s)
s3/2 =

1
s3/2

∞∫
R2

(2v2

s2 −
3
2

)
exp(−v2/s2) f (x− v)

dv
s

.

Hence
√

π

2
√

2
I3 = − sin(

√
R1 + α)E(

√
R1)

R3/4
1

+
∞∫

√
R1

D(s)
ds

s3/2 ,

where

D(s) =
∞∫

R2

[
− sin(s + α)

(2v2

s2 −
3
2

)
+ ∆(s)

]
exp(−v2/s2) f (x− v)

dv
s

.

Substituting λ = v/s, we get

|E(s)|6‖ f ‖s
∞∫

R2/s

exp(−λ2)dλ, |D(s)|6‖ f ‖
∞∫

R2/s

(
2λ2 + M∆ +

3
2

)
exp(−λ2)dλ,

where M∆ = max
16s<∞

|∆(s)|. Thus

|E(
√

R1)| 6 ‖ f ‖R1/2
1

∞∫
0

exp(−λ2)dλ = O(R1/2
1 ) as R1 → ∞

independently of R2 ∈ (0, ∞), and

|D(s)| 6 ‖ f ‖
∞∫

0

(
2λ2 + M∆ +

3
2

)
exp(−λ2)dλ = O(1) as R1 → ∞
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again independently of R2 ∈ [1, ∞). Therefore

I3(R1, R2)=O(R−1/4
1 )+O

( ∞∫
√

R1

ds
s3/2

)
=O(R−1/4

1 )+O((R1/2
1 )−1/2)=O(R−1/4

1 )

as R1 → ∞ independently of R2 > 1. This proves I3(R1, R2)→ 0 as R1, R2 → ∞.
A straightforward modification of the preceding argument shows that

I1(R1, R2) = O(R−1/4
1 ) as R1 → ∞ independently of R2 > 1, and I1(R1, R2) → 0

as R1, R2 → ∞.
To show that I2(R1, R2) → 0 as R1, R2 → ∞, we estimate |I2(R1, R2)| sep-

arately on the sets
√

R1 6 R1−ε
2 and

√
R1 > R1−ε

2 , where ε > 0 is fixed. For√
R1 6 R1−ε

2 we get

|I2(R1, R2)| = O(R2−3ε
2 exp(−2εR2)) as R2 → ∞

independently of R1 > 1. For
√

R1 > R1−ε
2 we split

1
2

I2 =

R2−2ε
2∫
0

J1(s)E(s)
ds
s

+
R1∫

R2−2ε
2

J1(s)E(s)
ds
s

.

The first integral is O(R2−3ε
2 exp(−2εR2)) as R2 → ∞ independently of R1 > 1.

We split the range of integration yet again in the second integral to obtain

∣∣∣ R1∫
R2−2ε

2

(·)
∣∣∣ 6 ∣∣∣ ∞∫

R2−2ε
2

(·)
∣∣∣+ ∣∣∣ ∞∫

R1

(·)
∣∣∣ = O(R−1/4

1 ) + O(R−(2−2ε)/4)
2 ), R1, R2 → ∞.

Theorem 7.1 is now applicable, and (6.13) holds.
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