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ABSTRACT. In this paper, we prove that every completely contractive dual
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1. INTRODUCTION

A Banach algebra A which is a dual Banach space is called a dual Banach
algebra if the multiplication on A is separately w∗-continuous. All von Neumann
algebras are dual Banach algebras, but so are all measure algebras M(G), where
G is a locally compact group, and all algebras B(E), where E is a reflexive Banach
space. Of course, every w∗-closed subalgebra of B(E) for a reflexive Banach space
E is then also a dual Banach algebra. Surprisingly, as proven recently by Daws
[4], every dual Banach algebra arises in this fashion.

A completely contractive dual Banach algebra is a Banach algebra which is
a dual operator space in the sense of [5] such that multiplication is completely
contractive and separately w∗-continuous. Then von Neumann algebras are ex-
amples of completely contractive dual Banach algebras. Also, whenever A is a
dual Banach algebra, then max A [5] is a completely contractive dual Banach al-
gebra. If G is a locally compact group, then the Fourier–Stieltjes algebra B(G)
[6] is a completely contractive dual Banach algebra which, in general, is neither
a von Neumann algebra nor of the form max B(G). In the present paper, we
prove an operator space analog of Daws’ representation theorem: if A is a com-
pletely contractive dual Banach algebra, then there is a reflexive operator space
E and a w∗-w∗-continuous, completely isometric algebra homomorphism from A

to CB(E), where CB(E) stands for the completely bounded operators on E (see
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[5]). We would like to stress that even when A is of the form max A for some dual
Banach algebra A, our result is not just a straightforward consequence of Daws’
result, but requires a careful adaptation of his techniques to the operator space
setting. The construction of such a reflexive operator space heavily relies on the
theory of real and complex interpolation of operator spaces defined by Xu [15]
and Pisier ([10] and [11]), respectively.

This representation theorem is somewhat related in spirit to results by Gha-
hramani [7] and Neufang, Ruan, and Spronk [9]: in [7], M(G) is (completely)
isometrically represented on B(L2(G)), and in [9], a similar representation is
constructed for the completely contractive dual Banach algebra Mcb(A(G)) con-
sisting of the completely bounded multipliers of the Fourier algebra A(G) . We
would like to emphasize, however, that our representation theorem neither im-
plies nor is implied by those results: B(L2(G)) is a dual operator space, but not
reflexive.

2. PRELIMINARIES

2.1. DUAL BANACH ALGEBRAS AND OPERATOR SPACES.

DEFINITION 2.1. A Banach algebra A is called a dual Banach algebra if it is a
dual Banach space and the multiplication on A is separately w∗-continuous.

EXAMPLES 2.2. (i) Every von Neumann algebra is a dual Banach algebra.
(ii) If E is a reflexive Banach space, then B(E) is a dual Banach algebra with

the predual E∗⊗γ E, where⊗γ represents the projective tensor product of Banach
spaces.

(iii) If G is a locally compact group, then the measure algebra M(G) and the
Fourier–Stieltjes algebra B(G) are dual Banach algebras with preduals C0(G) and
C∗(G), respectively.

DEFINITION 2.3. An operator space is a linear space E with a complete norm
‖ · ‖n on Mn(E) for each n ∈ N such that∥∥∥∥ x 0

0 y

∥∥∥∥
n+m

= max{‖x‖n, ‖y‖m} (n, m ∈ N, x ∈ Mn(E), y ∈ Mm(E)),(R 1)

‖αxβ‖n 6 ‖α‖‖x‖n‖β‖ (n ∈ N, x ∈ Mn(E), α, β ∈ Mn).(R 2)

EXAMPLES 2.4. (i) Every closed subspace of B(H), where H is a Hilbert
space, is an operator space.

(ii) If G is a locally compact group, then the group algebra L1(G), the measure
algebra M(G), the Fourier algebra A(G), and the Fourier–Stieltjes algebra B(G)
are operator spaces.
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DEFINITION 2.5. Let E1, E2, and F be operator spaces. A bilinear map T :
E1 × E2 → F is called completely contractive if

‖T‖cb := sup
n1,n2∈N

‖T(n1,n2)‖ 6 1,

where

T(n1,n2) : Mn1(E1)×Mn2(E2)→ Mn1n2(F), ((xi,j), (yk,l)) 7→ (T(xi,j, yk,l)).

DEFINITION 2.6. A completely contractive Banach algebra is a Banach algebra
which is also an operator space such that multiplication is a completely contrac-
tive bilinear map.

EXAMPLES 2.7. (i) Every closed subalgebra of B(H), where H is a Hilbert
space, is a completely contractive Banach algebra.

(ii) If G is a locally compact group, then the group algebra L1(G), the measure
algebra M(G), the Fourier algebra A(G) and the Fourier–Stieltjes algebra B(G)
are completely contractive Banach algebras.

DEFINITION 2.8. Let E and F be operator spaces, and let T ∈ B(E, F). Then:
(i) T is completely bounded if

‖T‖cb := sup
n∈N
‖T(n)‖B(Mn(E),Mn(F)) < ∞.

(ii) T is a complete contraction if ‖T‖cb 6 1.
(iii) T is a complete isometry if T(n) is an isometry for each n ∈ N.

The set of completely bounded operators from E to F is denoted by CB(E, F).

DEFINITION 2.9. A completely contractive dual Banach algebra is a Banach al-
gebra which is a dual operator space such that multiplication is completely con-
tractive and separately w∗-continuous.

Note that there are operator spaces for which there exist predual Banach
spaces, but not predual operator spaces ([3], Lemma 2.7.15).

EXAMPLES 2.10. (i) Every w∗-closed subalgebra of CB(E), where E is a re-
flexive operator space, is a completely contractive dual Banach algebra.

(ii) If G is a locally compact group, then the measure algebra M(G), the Fourier–
Stieltjes algebra B(G) and the reduced Fourier–Stieltjes algebra Br(G) are com-
pletely contractive dual Banach algebras.

(iii) If K is a Kac algebra, then M0 A(K), completely bounded multipliers of the
Fourier algebra of K, is a completely contractive dual Banach algebra [8].

2.2. COMPLEX INTERPOLATION OF BANACH SPACES. Let X0, X1 be two complex
Banach spaces. The couple (X0, X1) is called compatible (in the sense of interpo-
lation theory) if there is a Hausdorff complex topological vector space X and
C-linear continuous inclusions X0 ↪→ X and X1 ↪→ X .



330 FARUK UYGUL

Now let X0 and X1 be two compatible normed spaces. Then we define a
norm on the set X0 + X1 by ‖x‖ := inf{‖x0‖X0 + ‖x1‖X1 : x = x0 + x1}. We
denote this space by X0 +1 X1. For 0 < θ < 1, let

X[θ] = (X0, X1)θ := {x ∈ X0 +1 X1 : x = f (θ) for some f satisfying (2.1)}

where

(2.1) f : C→ X0 +1 X1

is a function which satisfies the following conditions:

(i) f is bounded and continuous on the strip S := {z ∈ C : 0 6 Re(z) 6 1};
(ii) f is analytic on S0, the interior of S;

(iii) f (it) ∈ X0 and f (1 + it) ∈ X1 (t ∈ R).

Define a norm on X[θ] via

‖x‖[θ] := inf{‖ f ‖ : x = f (θ), f satisfying (2.1)}

where the norm of f is defined to be

‖ f ‖ := max{sup{‖ f (it)‖X0}, sup{‖ f (1 + it)‖X1} : t ∈ R}.

By this construction, X[θ] becomes an interpolation space between X0 and
X1. For more information on interpolation of Banach spaces, we refer the reader
to [2].

2.3. INTERPOLATION OF OPERATOR SPACES. Suppose that E0, E1 are operator
spaces such that (E0, E1) is a compatible couple of Banach spaces. Note that for
each n ∈ N, we have continuous inclusions Mn(E0) ↪→ Mn(X ) and Mn(E1) ↪→
Mn(X ) where Mn(X ) is identified with X n2

. Thus (Mn(E0), Mn(E1)) is a com-
patible couple of Banach spaces. Clearly E0 ⊕∞ E1 is an operator space by setting

Mn(E0 ⊕∞ E1) = Mn(E0)⊕∞ Mn(E1).

Then E0 ⊕1 E1 becomes an operator space with the embedding E0 ⊕1 E1 ↪→ (E∗0
⊕∞E∗1 )∗. Now, for each 1 < p < ∞, E0 ⊕p E1 becomes an operator space via

Mn(E0 ⊕p E1) = (Mn(E0 ⊕1 E1), Mn(E0 ⊕∞ E1))θ ,
1
p

= 1− θ.

The complex and real interpolation of operator spaces are defined by
G. Pisier in [10] and by Q. Xu in [15], respectively. The construction of the lat-
ter heavily uses the first one.

2.4. COMPLEX INTERPOLATION OF OPERATOR SPACES. Let 0 < θ < 1 and E0,
E1 be operator spaces such that (E0, E1) is a compatible couple of Banach spaces.
Then, for each n ∈ N, the couple (Mn(E0), Mn(E1)) is also compatible. Now
define

(2.2) Mn(Eθ) := (Mn(E0), Mn(E1))θ
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in the sense of complex interpolation [2]. By this definition, Eθ = (E0, E1)θ be-
comes an operator space. This is called the complex interpolation of operator
spaces E0 and E1 (see [10] and [11] for more information).

2.5. REAL INTERPOLATION OF OPERATOR SPACES. The construction of the inter-
polation of operator spaces by the real method is more complicated than by the
complex method. This is because definition (2.2) does not work for the real inter-
polation (E0, E1)θ,p if p < ∞. Now we introduce real interpolation of operator
spaces by the discrete K-method as defined by Xu in [15].

Note that if E is an operator space and t > 0, then tE denotes the operator
space obtained by multiplying the norm on each matrix level by t. Now let µ
denote a weighted counting measure on Z (That is: For E ⊆ Z, µ(E) is defined by
µ(E) := ∑

n∈E
an, where {an}n∈Z is a sequence of non-negative reals) and {Ek}k∈Z

a sequence of operator spaces. Then for 1 6 p 6 ∞, we define

lp({Ek}k∈Z; µ) := {(xk)k∈Z : xk ∈ Ek and (‖xk‖)k∈Z ∈ lp(µ)}.
Clearly l∞({Ek}k∈Z; µ) is an operator space with its natural operator space struc-
ture. Then l1({Ek}k∈Z; µ) becomes an operator space when it is considered as a
subspace of (l∞({E∗k}k∈Z; µ))∗. Finally lp({Ek}k∈Z; µ) becomes an operator space
by complex interpolation:

lp({Ek}k∈Z; µ) = (l1({Ek}k∈Z; µ), l∞({Ek}k∈Z; µ))θ ,
1
p

= 1− θ.

Let (E0, E1) be a compatible couple of operator spaces. For 1 6 p 6 ∞, we define
Np(E0, E1) := {(x,−x) : x ∈ E0 ∩ E1} regarded as a subspace of E0 ⊕p E1. Then
we define

E0 +p E1 :=
E0 ⊕p E1

Np(E0, E1)
.

Kp(t; E0, E1) denotes the operator space E0 +p tE1; for any x ∈ E0 + E1, we let
Kp(x, t; E0, E1) := ‖x‖E0+ptE1 . Now we may give the definition of Eθ,p;K, the real
interpolation of the compatible couple (E0, E1) with the discrete K-method, as
follows:

Eθ,p;K = (E0, E1)θ,p;K

=
{

x ∈ E0+E1 : ‖x‖θ,p;K :=
[

∑
k∈Z

(2−kθKp(x, 2k; E0, E1))p
]1/p

<∞
}

.

Then Eθ,p;K is a Banach space.
If α ∈ R, then lp(2kα) is the weighted space

lp(2kα) :=
{

x = (xk)k∈Z : ‖x‖lp(2kα) =
(

∑
k∈Z
|2kαxk|p

)1/p
< ∞

}
.

If E is an operator space, then we similarly define lp(E) and lp(E; 2kα) of se-
quences with values in E. Then lp(E) and lp(E; 2kα) are operator spaces.
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For each k ∈ Z, let Fk := Kp(2k; E0, E1). Then we define Eθ,p;K, the operator
space interpolation of the couple (E0, E1) by the discrete K-method, as a subspace of
lp({Fk}k∈Z; 2−kθ) consisting of the constant sequences. More explicitly, let x =
(xi,j) ∈ Mn((E0, E1)θ,p;K) for some n ∈ N. Then

‖x‖Mn((E0,E1)θ,p;K) := inf{‖(u, v)‖Mn(lp(E0;2−kθ)⊕p lp(E1;2k(1−θ))) : (u, v) satisfying (2.3)}.

(2.3) u = (ui,j) ∈ Mn(lp(E0; 2−kθ)), v = (vi,j) ∈ Mn(lp(E1; 2k(1−θ)))

where each

ui,j = (uk
i,j)k∈Z and vi,j = (vk

i,j)k∈Z

such that

xi,j = uk
i,j + vk

i,j, for each k ∈ Z, i, j = 1, . . . , n.

3. MAIN THEOREM

3.1. NOTATION. 1. Let (Eα)α∈I be a family of operator spaces where I is some
index set. Then l2-

⊕
α Eα and l2(I, Eα) will denote the l2- direct sum of Eα’s and

the complex interpolation operator space (l∞(I, Eφ), l1(I, Eφ))1/2, respectively.
2. Let A be a completely contractive Banach algebra and X be an opera-

tor (bi- or) left A-module. For a = (ai,j) and x = (xi,j) in Mn(A) and Mm(X),
respectively, for some n, m ∈ N, x ? y will represent the matrix

(3.1) x ? y = (xi,j · yk,l)

where “·” represents the module action of A on X.

DEFINITION 3.1. Let A be a completely contractive dual Banach algebra,
φ ∈ Mn(A∗) for some n > 1. Suppose that for each m > 1, there is a matricial
norm ‖ · ‖φ,m on Mm(A · φ). Let Eφ denote the completion of (A · φ, ‖ · ‖φ,1).
Suppose that

‖a ? b‖φ,mk 6 ‖a‖m‖b‖φ,k,(3.2)

‖a ? φ‖mn 6 ‖a ? φ‖φ,m 6 ‖a‖m‖φ‖n,(3.3)

for all a ∈ Mm(A) and b ∈ Mk(Eφ), m, k ∈ N.
Furthermore, suppose that Eφ is reflexive and the inclusion ιφ : Eφ →

Mn(A∗) injective. Then (‖ · ‖φ,m)∞
m=1 is called an admissible operator norm for φ.

Note that in the previous definition, the inequality (3.2) means that Eφ is an
operator left A-module.

EXAMPLE 3.2. Let Gd be a discrete group and φ = (φi,j) ∈ Mn(C∗(Gd))
with ‖φ‖n = 1 for some n > 1, where C∗(Gd) is the group C∗-algebra of Gd.
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Then each φi,j is a finite sum of the form

φi,j = ∑
g∈Gd

λ
i,j
g δg,

where each λ
i,j
g ∈ C and δg is the Dirac function. Consider Eφ with the usual

norm on Mn(C∗(Gd)). Clearly Eφ is a closed subspace of Mn(C∗(Gd)). Hence, it
is an operator space. Clearly Eφ is reflexive. Since Eφ is an operator A-module,
(3.2) is satisfied. Since B(Gd) is a completely contractive Banach algebra, (3.3) is
also satisfied. Therefore, the usual norm on Mn(C∗(Gd)) defines an admissible
operator norm for φ.

THEOREM 3.3. Let A be a completely contractive dual Banach algebra and let
φ = (φi,j) ∈ Mn(A∗) have an admissible operator norm for some n > 1. Then there is a
w∗-continuous, completely contractive representation of A on CB(Eφ).

Proof. It is easy to see that Eφ is a left A-module. Moreover, ι∗φ has dense
range if and only if ι∗∗φ : E∗∗φ → Mn(A∗) is injective. Since Eφ is reflexive, ι∗∗φ = ιφ.
Hence, ι∗φ has dense range. Note that

ι∗φ : Tn(A)→ E∗φ

where Tn(A) is as defined in [5]. Now we define

Sφ : E∗φ⊗̂Eφ → Mn2(A∗), ι∗φ(b)⊗ a · φ 7→ a · φ ? b,

where ⊗̂ represents the projective tensor product of operator spaces.
Due to Definition 3.1, this map is well-defined. Then the map defined by

Tφ := S∗φ : Tn2(A)→ CB(Eφ)

is w∗-continuous. Since A is completely isometrically isomorphic to a closed sub-
space of Tn2(A) by the map

(3.4) A→ Tn2(A), a 7→ (ai,j)

where

ai,j =
{

a if (i, j) = (1, 1),
0 otherwise,

Tφ induces a multiplicative representation from A into CB(Eφ). For simplicity, we
will denote this representation again by Tφ. In order to see that Tφ is multiplica-
tive on A, let a, b ∈ A, c = (ci,j) ∈ Tn(A). Consider a as an element of Tn2(A) via
(3.4). Then

〈Tφ(a)(b · φ), ι∗φ(c)〉 = 〈Tφ(a), ι∗φ(c)⊗ b · φ〉 = 〈a, Sφ(ι∗φ(c)⊗ b · φ)〉
= 〈a, b · φ ? c〉 = 〈a, b · φ1,1 · c1,1〉.

Hence 〈Tφ(a), b · φ〉 = (xi,j) ∈ Mn(A∗) where

xi,j =
{

ab · φ1,1 if (i, j) = (1, 1),
0 otherwise.
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Now let a, b, d ∈ A. Then

(Tφ(d)Tφ(a))(b · φ)=Tφ(d)(Tφ(a)(b · φ))=Tφ(d)((xi,j))=(yi,j)=Tφ(da)(b · φ)∈Eφ

where

yi,j =
{

dab · φ1,1 if (i, j) = (1, 1),
0 otherwise.

Hence Tφ is multiplicative on A.
By using Effros and Ruan ([5], Proposition 7.1.2), Sφ is a complete contrac-

tion if and only if the induced map S̃φ ∈ B(E∗φ × Eφ, Mn2(A∗)) is a completely
contractive bilinear mapping. Now

‖S̃φ‖cb =sup{‖S̃(m,m)
φ (x, y)‖ : x=(xi,j) ∈ Mm(E∗φ), y=(yi,j) ∈ Mm(Eφ), ‖x‖φ,m,

‖y‖φ,m 6 1, m ∈ N}

=sup{|〈〈S̃(m,m)
φ (x, y), z〉〉| : x = (xi,j) ∈ Mm(E∗φ), y = (yi,j) ∈ Mm(Eφ),

z = (zi,j) ∈ Mm2(Mn2(A)), ‖x‖φ,m, ‖y‖φ,m, ‖z‖m2n2 6 1, m ∈ N}.

By the density of the range of ι∗φ, for each i, j = 1, . . . , m, without loss of generality
we may suppose that

xi,j = ι∗φ(Ai,j), yi,j = bi,j · φ,

where
Ai,j = (ak,l

i,j ) ∈ Tn(A) and bi,j ∈ A.

Then we have

〈〈S̃(m,m)
φ (x, y), z〉〉 = (〈S̃φ(xi,j, yk,l), zs,t〉) = (〈bk,l · φ ? Ai,j, zs,t〉).

Since
〈bk,l · φo,p · aq,r

i,j , zs,t〉 = 〈φo,p · aq,r
i,j , zs,tbk,l〉 = 〈aq,r

i,j , zs,tbk,l · φo,p〉

for all indices i, j, k, l, m, n, o, p, q and r where

i, j, k, l = 1, . . . , m, o, p, q, r = 1, . . . , n, and s, t = 1, . . . , m2n2,

we conclude that

|〈〈S̃(m,m)
φ (x, y), z〉〉| = |〈ι∗φ(Ai,j), zm,nbk,l .φ〉| = |〈〈(ι∗φ(Ai,j)), z ? y〉〉|.

On the other hand,

‖z ? y‖φ,m3n2 6 ‖z‖m2n2‖y‖φ,m 6 1.

Therefore,
|〈〈S̃m,m(x, y), z〉〉| 6 ‖(ι∗φ(Ai,j))‖φ,m = ‖x‖φ,m 6 1.

Thus, S̃φ is a complete contraction.
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Let (Eα)α∈I be a family of operator spaces and let E = l2(I, Eα). We will need an
approximation for the norm of an arbitrary element on each matrix level of E. To
manage this, we will need the following two propositions.

PROPOSITION 3.4. If (Eα)α∈I is a family of operator spaces, then:
(i) l∞(I, Mn(Eα)) ∼= Mn(l∞(I, Eα)) for every n ∈ N.

(ii) If A = (ai,j) ∈ Mn(l1(I, Eα)) where ai,j = (aα
i,j)α, aα

i,j ∈ Eα for each i and j,
then

‖A‖Mn(l1(I,Eα)) 6 ∑
α

‖(aα
i,j)‖Mn(Eα) for every n ∈ N.

Proof. The first identity is obvious. Hence, we will prove only the second
one. Let A be as in the claim. Then we have

‖A‖Mn(l1(I,Eα)) = sup{|〈〈A, F〉〉| : F ∈ Mn(l∞(I, E∗α)), ‖F‖Mn(l∞(I,E∗α)) 6 1}
= sup{|(〈ai,j, fk,l〉)| : F ∈ Mn(l∞(I, E∗α)), ‖F‖Mn(l∞(I,E∗α)) 6 1}

= sup
{∣∣∣(∑

α

〈 f α
k,l , aα

i,j〉
)∣∣∣ : F ∈ Mn(l∞(I, E∗α)), ‖F‖Mn(l∞(I,E∗α)) 6 1

}
6 sup

{
∑
α

|(〈 f α
k,l , aα

i,j〉)| : F ∈ Mn(l∞(I, E∗α)), ‖F‖Mn(l∞(I,E∗α)) 6 1
}

6 ∑
α

‖(aα
i,j)‖Mn(Eα).

Next proposition will be needed to prove Lemma 3.6 and Theorem 3.9.

PROPOSITION 3.5. Let (X, Z) be a compatible couple of Banach spaces in the sense
of Banach space interpolation. Suppose that there is a contractive embedding from a
Banach space Y into Z. Let E1 := (X, Y)θ and E2 := (X, Z)θ for some 0 < θ < 1. Then
for every a ∈ E1, we have ‖a‖E1 > ‖a‖E2 .

Proof. Clearly, any function f : C → X +1 Y satisfying (2.1) can be viewed
as a function from C to X +1 Z, and it will satisfy analogous properties. To dis-
tinguish these two functions, we will denote them by fX,Y and fX,Z, respectively.
Recall that

‖ fX,Y‖ = max{sup{‖ f (it)‖X}, sup{‖ f (1 + it)‖Y} : t ∈ R},
‖ fX,Z‖ = max{sup{‖ f (it)‖X}, sup{‖ f (1 + it)‖Z} : t ∈ R}.

This shows that E1 ⊂ E2.
Now let a ∈ E1. Recall that

‖a‖E1 := inf{‖ fX,Y‖ : a = f (θ), f satisfying (2.1) }.
(‖a‖E2 is defined in a similar fashion). Since for each f satisfying (2.1) we have,
‖ fX,Y‖ > ‖ fX,Z‖, we conclude that ‖a‖E1 > ‖a‖E2 .

Proposition 3.4 and Proposition 3.5 show that:
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LEMMA 3.6. Let (Eα)α∈I be a family of operator spaces and let A = (ai,j) be in
Mn(E) where E = l2(I, Eα), for some n ∈ N. If each ai,j is of the form ai,j = (aα

i,j)α,

then ‖A‖Mn(E) 6
√

∑
α
‖Aα‖2

Mn(Eα) where each Aα = (aα
i,j) ∈ Mn(Eα). That is, the

canonical inclusion from l2(I, Mn(Eα)) into Mn(l2(I, Eα)) is a contraction.

THEOREM 3.7. Let A be a completely contractive dual Banach algebra. Then for
each n ∈ N, every non-zero element in the unit ball of Mn(A∗) has an admissible operator
norm.

Proof. Suppose that A is a completely contractive dual Banach algebra and
φ ∈ Mn(A∗), φ 6= 0, ‖φ‖n 6 1, for some n > 1. The map

Rφ : A→ A · φ, a 7→ a · φ,

is a complete contraction. Then the induced map π : A/ ker Rφ → A · φ is a
complete isometry. For each m > 1, define a norm ‖ · ‖A.φ,m on Mm(A · φ) via

‖x‖A·φ,m := inf{‖a‖m : x = a ? φ, a ∈ Mm(A)}.

Then A · φ becomes an operator space with this matricial norm.
Clearly (A · φ, Mn(A∗)) is a compatible couple of operator spaces. Now

define Eφ to be the space of constant sequences in l2({Fk}k∈N; 2−k/2), where Fk =
K2(2k; A · φ, Mn(A∗)) for each k ∈ N. By Section 2.3, Proposition 1 of [1], we know
that

(A · φ,Mn(A∗))1/2,2;K is reflexive

⇐⇒ the inclusion A · φ→ Mn(A∗) is weakly compact

⇐⇒ the map Rφ : A→ Mn(A∗), a 7→ a · φ is weakly compact.

However, Im(Rφ) ⊆ Mn(A∗) and Mn(A∗) ⊆ WAP(Mn(A∗)), by [14]. (Re-
call that, if A is a Banach algebra, then WAP(A∗) denotes the space of weakly
almost periodic functionals on A). Hence Rφ is weakly compact. Therefore, as a
closed subspace of E = (A · φ, Mn(A∗))1/2,2;K, Eφ is reflexive too.

Let ‖ · ‖φ,m denote the norm on Mm(Eφ), for every m ∈ N. If f ∈ Eφ, then

‖ f ‖φ,1 =
[

∑
k∈N

2−k‖ f ‖2
Fk

]1/2
=
[

∑
k∈N

2−k inf
b∈A

{√
‖b · φ‖2

A·φ,1+22k‖ f−b · φ‖2
n

}2]1/2

=
[

∑
k∈N

2−k inf
b∈A
{‖b · φ‖2

A·φ,1 + 22k‖ f − b · φ‖2
n}
]1/2

=
[

∑
k∈N

inf
b∈A
{2−k‖b · φ‖2

A·φ,1 + 2k‖ f − b · φ‖2
n}
]1/2

.

Hence,

f ∈ Eφ ⇐⇒ ∑
k∈N

inf{2−k‖b · φ‖2
A·φ,1 + 2k‖ f − b · φ‖2

n : b ∈ A} < ∞.
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Thus there exists a sequence (bk)k in A such that 22k‖ f − bk · φ‖2
n → 0. Hence

A · φ is dense in Eφ. This shows that ‖a · φ‖n 6 ‖a · φ‖φ,1. Now to prove (3.3), we
will use the following claim.

CLAIM 3.8. If A · φ is dense in Eφ, then Mm(A · φ) is dense in Mm(Eφ) for every
m > 1.

Proof. Let ε > 0 and F = ( fi,j) ∈ Mm(Eφ) for some m > 1. Then for each
i, j = 1, . . . , m, there exists a sequence (bk

i,j)k in A such that bk
i,j · φ→ f k

i,j in ‖ · ‖n.

Consider the sequence (Fk)k in Mm(A · φ) where each Fk = (bk
i,j)k. Then we have

‖F− fk‖mn 6
m

∑
i,j=1
‖ fi,j − bk

i,j · φ‖n → 0 as k→ ∞.

Hence, by Claim 3.8, we have ‖a ? φ‖mn 6 ‖a ? φ‖φ,m for all a ∈ Mm(A) and
m ∈ N.

Let a ∈ Mm(A) for some m > 1. Then by the definition of ‖ · ‖A·φ,m, it is
clear that ‖a ? φ‖A·φ,m 6 ‖a‖m. Since A is a completely contractive dual Banach
algebra, we also have ‖a ? φ‖mn 6 ‖a‖m‖φ‖n 6 ‖a‖m. By Lemma 3.6, we have

‖a ? φ‖Fk 6 inf{[‖b ? φ‖2
A·φ,m + 22k‖a ? φ− b ? φ‖2

mn]1/2 : b ∈ Mm(A)}.

By choosing b = a, we see that

‖a ? φ‖Fk 6 ‖a ? φ‖A·φ,m for each k.

Then we have

‖a ? φ‖φ,m6
[

∑
k∈N

2−k‖a ? φ‖2
Fk

]1/2
6‖a ? φ‖A·φ,m

[
∑

k∈N
2−k
]1/2

=‖a ? φ‖A·φ,m6‖a‖m.

Now let a ∈ Mm(A), b ∈ Mt(A) for some m, t > 1. Since the map π is a
complete isometry, we have

‖b ? (a ? φ)‖A·φ,mt =‖b ? a+Mmt(ker Rφ)‖= inf{‖b ? a+x‖mt : x∈Mmt(ker Rφ)}
6 inf{‖b ? a + b ? x‖mt : x ∈ Mm(ker Rφ)}
6‖b‖t inf{‖a + x‖m : x ∈ Mm(ker Rφ)}
=‖b‖t‖a + ker Rφ‖ = ‖b‖t‖a ? φ‖A·φ,m.

This shows that A · φ is an operator left A-module. Since Mn(A∗) is also an oper-
ator left A-module, so is Eφ. Therefore,

‖b ? d‖φ,mt 6 ‖b‖t‖d‖φ,m for every d ∈ Mm(Eφ), b ∈ Mm(A), m, t ∈ N.

THEOREM 3.9. Let A be a completely contractive dual Banach algebra. Then there
is a w∗-continuous complete isometric representation of A on CB(E) for some reflexive
operator space E.
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Proof. Let Ė := l2 −⊕φ∈I Eφ. For n > 1, equip Mn(Ė) with

‖A‖Mn(Ė) =
(

∑
φ

‖(aφ
i,j)‖

2
φ,n

)1/2

where A = (ai,j) ∈ Mn(Ė), ai,j = (aφ
i,j)φ, aφ

i,j ∈ Eφ. Note that Ė is not an operator
space. There is a natural map

S : A→ B(Ė) defined by S(a)((xφ)) := (Tφ(a)(xφ)),

where Tφ : A→ CB(Eφ) is the w∗-continuous complete contraction as defined in
Theorem 3.3.

Note that Daws ([4], Theorem 4.5) proved that S : A→ B(Ė) is an isometry.
For an arbitrary n > 1, any element (ai,j) of Mn(A) can be viewed as a map

Sn : Ė→ Mn(Ė).

We claim that Sn is a contraction. Let ‖(ai,j)‖n 6 1 and (xφ) ∈ Ė. Then

‖Sn(xφ)‖Mn(Ė) = ‖(S(ai,j)((xφ)))‖Mn(Ė) = ‖((Tφ(ai,j)(xφ)))‖Mn(Ė)

=
[
∑
φ

‖((Tφ(ai,j)(xφ)))‖2
φ,n

]1/2
6
[
∑
φ

‖(ai,j)‖2
n‖xφ‖2

φ,1

]1/2

= ‖(ai,j)‖n

[
∑
φ

‖xφ‖2
φ,1

]1/2
= ‖(ai,j)‖n‖(xφ)‖Ė 6 ‖(xφ)‖Ė.

Thus, Sn is a contraction.
Now let E = l2(I, Eφ). We define

(3.5) T : A→ CB(E) by T(a)((xφ)) = (Tφ(a)(xφ)).

Since Tφ is a representation for each φ ∈ I, so is T. For each n, we have T(n) :
Mn(A)→ CB(E, Mn(E)). On the other hand, by its definition

Mn(E)=
(

Mn(l∞(I, Eφ)), Mn(l1(I, Eφ))
)

1/2 =
(
l∞(I, Mn(Eφ)), Mn(l1(I, Eφ))

)
1/2.

Each (ai,j) ∈ Mn(A) defines a map from E into(
l∞(I, Mn(Eφ)), l1(I, Mn(Eφ))

)
1/2 = l2−

⊕
φ∈I

Mn(Eφ) (on the Banach space level).

Hence, we have a natural map (which we will denote by T̃n)

T̃n : Mn(A)→ B(E, l2 −
⊕

φ∈I
Mn(Eφ)).

However, this map is a contraction for every n > 1. On the other hand, by Propo-
sition 3.5 we have ‖T̃n‖ > ‖T(n)‖. Hence, T(n) is a contraction for every n > 1.
Thus T is a complete contraction.

Note that without loss of generality we may suppose that A is unital; let e
denote its identity. For each n > 1, we have

T(n) : Mn(A)→ Mn(CB(E)) = Mn((E∗⊗̂E)∗) = CB(E∗⊗̂E, Mn).
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Let a = (ai,j) ∈ Mn(A). Then for every ε > 0, there is φ = (φi,j) ∈ Mn(A∗) such
that

‖φ‖n 6 1 and |〈〈a, φ〉〉| > (1− ε)‖a‖n.

For simplicity, set T := T(n)(a) ∈ CB(E∗⊗̂E, Mn). Define x = (xi,j) ∈ Mn(E∗⊗̂E)
by

xi,j =
{

(. . . , ι∗φ(B), . . .)⊗ (. . . , e · φ, . . .) if (i, j) = (1, 1),
0 otherwise,

where

B = (bi,j) ∈ Tn(A) is defined by bi,j =
{

e if (i, j) = (1, 1),
0 otherwise.

Now we have

‖x‖Mn(E∗⊗̂E) = ‖x1‖E∗⊗̂E 6 ‖(. . . , ι∗φ(B), . . .)‖E∗‖(. . . , e · φ, . . .)‖E.

On the other hand,

‖(. . . , ι∗φ(B), . . .)‖E∗ 6 1 since ‖B‖Tn(A) 6 1 and ι∗φ is a contraction.

Clearly
‖(. . . , e · φ, . . .)‖E 6 ‖φ‖n 6 1.

Then

|T(n)(x)| = |(T(x1,1))| = |(T(ai,j)(xk,l))| = |〈〈a, φ〉〉| > (1− ε)‖a‖n.
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