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ABSTRACT. Let T be a linear continuous operator acting on a Banach space X
and {λn} a sequence of non-zero complex numbers satisfying λn+1

λn
→ 1. In

this article we look at sequences of operators of the form {λnTn}. In earlier
work we showed that under the assumption that T is hypercyclic, if for some
x ∈ X the set {λnTnx : n ∈ N} is somewhere dense then it is everywhere
dense, a Bourdon–Feldman type theorem. In this article we show that this
result fails to hold if the assumption of hypercyclicity for T is removed. A
condition for the sequence {λn} under which an Ansari type theorem holds,
namely, if {λnTn} is hypercyclic then {λnTkn} is hypercyclic for k = 2, 3, . . .,
is given. We show that if this condition is not satisfied, the result may fail to
hold. Furthermore, we establish equivalences to the hypercyclicity criterion
for this class of operator sequences.
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1. INTRODUCTION

Let X be an infinite dimensional topological vector space either over the
field C or R and Tn : X → X be a sequence of continuous linear operators. We say
that the sequence {Tn} is hypercyclic if there exists x ∈ X such that the sequence
{Tnx : n = 0, 1, 2, . . .} is dense in X. Such a vector x is called hypercyclic for the
sequence {Tn} and the set of hypercyclic vectors for {Tn} is denoted HC({Tn}).
In the case the sequence {Tn} comes from the iterates of a single operator T, i.e.
Tn = Tn for n = 0, 1, 2, . . . we say that T is hypercyclic and the set of hypercyclic
vectors for T is denoted HC(T). We refer the reader to the review articles [20],
[9], [26], [31] and [21] for examples and background theory on hypercyclicity.

From now on when we refer to an operator T, we always assume that T
is linear and continuous. Let {λn} be a sequence of non-zero complex numbers
satisfying λn+1

λn
→ 1. Throughout this article we will be looking at sequences of
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operators of the form {λnTn}. The reason for looking at sequences of this form is
that their dynamics tend to resemble, in a sense, those of a sequence of iterates of
a single operator. As stated in the abstract, we have already shown in [13] that if
T is hypercyclic and for some x ∈ X the set {λnTnx : n ∈ N} is somewhere dense,
then it is everywhere dense, a Bourdon–Feldman type theorem (see [11]). This re-
sult is further explored and examples are given where the theorem fails to hold
when T is not hypercyclic. The crucial element in achieving this is the construc-
tion of a sequence of non-zero complex numbers {λn} such that λn+1

λn
→ 1 and the

set {λn : n ∈ N} is dense in a bounded set with non-empty interior. In another
direction, we give sufficient conditions under which a version of Ansari’s Theo-
rem (see [1]) holds in this setting, namely, if {λnTn} is hypercyclic then {λnTkn}
is hypercyclic for every positive integer k. We stress here that the conditions to
this version of Ansari’s Theorem do not require T to be hypercyclic.

Until very recently it was an open problem whether every hypercyclic op-
erator satisfies the hypercyclicity criterion (see Section 2). In [29] de la Rosa and
Read gave the first example of a hypercyclic operator acting on a certain Banach
space which does not satisfy the hypercyclicity criterion. Subsequently, Bayart
and Matheron in [4], see also [3], showed that this is possible even in classical
Banach or Hilbert spaces, i.e. lp(N) spaces, 1 6 p < +∞. We would like to
point out that for sequences of operators this problem is much easier. It is well
known that for a wide class of Banach spaces X, there exists a sequence {Tn} of
operators on X being hypercyclic which fails the hypercyclicity criterion. In fact
Bernal-González has shown the existence of a hypercyclic sequence {Tn} which
has a hereditarily hypercyclic subsequence {Tnk} and yet fails to satisfy the hy-
percyclicity criterion (see [6]). In the other direction, several equivalent forms to
the hypercyclicity criterion have appeared (see [7], [8], [17], [19], [23], [25], [28],
[16]). In this work we provide equivalent forms to the hypercyclicity criterion for
sequences of operators of the form {λnTn} following the work of Grivaux (see
[19]) and Peris and Saldivia (see [28]). In particular we introduce a new equiva-
lent form, extending the work of Grivaux in [19]. This allows us to establish the
Ansari type theorem for this class of operator sequences.

2. TOPOLOGICAL RESULTS ON HYPERCYCLIC OPERATORS

DEFINITION 2.1. A sequence of complex numbers {λn} with λn+1
λn
→ 1 is

called admissible if one of the following holds:
(i) There exist m, M > 0 and n0 ∈ N such that m < |λn| < M ∀n > n0.

(ii) |λn| → 0 as n→ +∞.
(iii) |λn| → +∞ as n→ +∞.

The next proposition will be used frequently throughout this paper.
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PROPOSITION 2.2. Let {λn} be a sequence in C \ {0} such that λn+1
λn
→ 1 and

T : X → X be an operator. Assume that the sequence {λnTn} is hypercyclic and fix
x ∈ HC({λnTn}).

(i) σp(T∗)∩D = ∅ and σp(T∗)∩ (C\D) = ∅, where D denotes the open unit disc.
Hence, for every λ ∈ D ∪ (C \D) the operator T− λI has dense range. In addition, if P
is a non-zero polynomial of degree q such that P(T) = (T− α1 I)(T− α2 I) · · · (T− αq I)
and |αj| 6= 1 for all j = 1, 2, . . . , q then P(T)x ∈ HC({λnTn}).

(ii) If {λn} is an admissible sequence then the point spectrum σp(T∗) is empty, hence
for every λ ∈ C the operator T − λI has dense range. In addition, for every non-zero
polynomial P, P(T)x ∈ HC({λnTn}).

Proof. If not there exist λ ∈ C and x∗ ∈ X∗ \ {0} such that T∗x∗ = λx∗.
Let x ∈ HC({λnTn}). Then the sequence {〈λnTnx, x∗〉 : n = 1, 2, . . .} is dense in
C. Observe that 〈λnTnx, x∗〉 = λnλ

n〈x, x∗〉. Therefore the sequence {|λn||λ|n} is
dense in [0, +∞). If {λn} is such that m < |λn| < M ∀n > n0 for some m, M > 0
and n0 ∈ N, since {|λ|n} is a geometric sequence, the sequence {|λn||λ|n} can-
not be dense in [0, +∞) which is a contradiction. If {λn} is such that |λn| → 0
we consider the cases |λ| 6 1 and |λ| > 1 separately. If |λ| 6 1 then the se-
quence {λnλn} is a null sequence and so the respective moduli cannot be dense
in [0, +∞). If |λ| > 1 then there exists N ∈ N such that

∣∣ λn+1
λn

∣∣ > 1
|λ| ∀n > N.

Hence, for every m > 1 we get ‖λN+mλN+m| > |λNλN |, which implies that the
sequence {|λn||λ|n} cannot be dense in [0, +∞). In case |λn| → +∞ we consider
the cases |λ| < 1 and |λ| > 1 separately. The details are left to the reader. The
proof follows along the same lines as the corresponding proof for hypercyclic
operators due to Bourdon (see [10]).

PROPOSITION 2.3. There exist sequences {zn}, {λn} of complex numbers such
that:

(i) |zn+1 − zn| → 0 and {zn : n = 1, 2, . . .} = C;
(ii) λn+1

λn
→ 1 and {λn : n = 1, 2, . . .} = C.

Proof. Let us first prove (i). Define recursively the sequences {zn = αn +
iβn}, {ln}, {rn}, {un}, {dn}, {sn} and {hn} by α1 = −1, β1 = −1, l1 = −1,
r1 = 1, d1 = −1, u1 = 1, s1 = 1, h1 = 1

2 and

αi+1 = αi + hi; βi+1 =
{

βi αi+1 6= ri and αi+1 6= li,
βi + si|hi| αi+1 = ri or xi+1 = li;

li+1 = di+1 =
{

li αi+1 6= li + hi or βi+1 6= ui,
li − 1 αi+1 = li + hi and βi+1 = ui;

ri+1 =ui+1 =
{

ri αi+1 6= li or βi+1 6=di,
ri + 1 αi+1 = li and βi+1 =di;

si+1 =


−1 βi+1 =ui,
+1 βi+1 =di,
si otherwise;
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hi+1 =


hi αi+1 6= li+1 and αi+1 6= ri+1,
−hi αi+1 = ri+1,
−hi αi+1 = li+1 and βi+1 6= di+1,
− hi

2 αi+1 = li+1 and βi+1 = di+1.

The sequence {zn} can be seen to trace out all numbers of the form p
2q + i l

2m ,
p, l ∈ Z, q, m ∈ N which is dense in C. Also hn → 0 and so |zn+1 − zn| → 0. To
prove (ii) define λn = ezn for n = 1, 2, . . . where {zn} is the sequence constructed
in (i). It is clear that the sequence {λn} has the desired properties.

PROPOSITION 2.4. Fix an operator S acting on a complex Banach space Y such
that S is hereditarily hypercyclic for the whole sequence of natural numbers, i.e. for every
sequence {nk} of positive integers the sequence {Snk} is hypercyclic. Define the oper-
ator T = IC ⊕ S : C ⊕ Y → C ⊕ Y, where IC denotes the identity operator on C.
Then for every sequence {λn} of non-zero complex numbers such that λn+1

λn
→ 1 and

{λn : n = 1, 2, . . .} = C the following hold:
(i) The sequence {λnTn} is hypercyclic.

(ii) The sequence {λnTn} does not satisfy the hypercyclicity criterion.
(iii) σp(T∗) = {1}.

Proof. Proposition 2.3 implies the existence of a sequence {λn} satisfying
the properties mentioned above. Since S is hypercyclic, σp(S∗) = ∅ and hence it
is obvious that σp(T∗) = {1}.

Fix a countable dense set {xj} in Y and a countable dense set {αl} in C. For
j, l, s ∈ {1, 2, . . .} and n ∈ {0, 1, 2, . . .} define the open sets

A(l, s) =
{

n ∈ N : |λn − αl | <
1
s

}
, V(j, s, n) =

{
x ∈ Y : ‖λnSnx− xj‖ <

1
s

}
.

Set

G =
⋂
j,l,s

⋃
n∈A(l,s)

V(j, s, n).

We shall prove that G is dense in Y. From Baire’s Category Theorem, it suffices
to show that each set

⋃
n∈A(l,s)

V(j, s, n) is dense. Fix j, l, s ∈ {1, 2, . . .}, y ∈ Y and

ε > 0. We seek x ∈ ⋃
n∈A(l,s)

V(j, s, n) such that ‖y − x‖ < ε. There exists an

increasing sequence {nk} of positive integers such that λnk → αl . Since S is
hereditarily hypercyclic for the whole sequence of natural numbers, there exists
x ∈ HC({Snk}) such that ‖y− x‖ < ε. Hence we may find a subsequence {nkp}
of {nk} such that Snkp x → xj. Observe also that λnkp

→ αl . Choosing n = nkp for

p sufficiently large we get |λn − αl | < 1
s and ‖λnSnx− xj‖ < 1

s .
Let us show that {λnTn} is hypercyclic. Take any x ∈ G. Clearly, for every

α ∈ C \ {0}, the vector α⊕ x is hypercyclic for {λnTn}.
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To show (ii) observe that because of the form of the first component of T,
that is, λn IC, it is easy to see that T does not satisfy the hypercyclicity criterion.

Recently, see Proposition 4.2 in [13], we established the following version
of Bourdon and Feldman’s theorem: Let {λn} be a sequence of positive (or complex)
numbers such that λn+1

λn
→ 1. Suppose that T is a hypercyclic operator acting on a

complex Banach space X. If for some vector x ∈ X, the set {λnTnx} is somewhere dense
then it is everywhere dense. In the next proposition we show that this result fails to
hold in general if T is not hypercyclic.

PROPOSITION 2.5. There exist a sequence of complex numbers {λn} for which
λn+1

λn
→ 1, an operator T acting on a complex Banach space X and x ∈ X such that the

sequence {λnTnx} is somewhere dense but not everywhere dense.

Proof. Take the closed unit square R centered at 0 and sides parallel to the
axes in the complex plane C. One may easily construct, under minor modification
to the procedure used for constructing the sequence {zn} in Proposition 2.3, a
sequence {zn} in C such that |zn+1 − zn| → 0 and {zn} = R. Define the sequence
{λn} by λn = ezn . It is plain that λn+1

λn
→ 1 and {λn} = {ez : z ∈ R}. Using the

operator T : C⊕ Y → C⊕ Y as defined in Proposition 2.4 and working as in the
proof of Proposition 2.4 we find x ∈ X = C⊕ Y so that {λnTnx} = {ez : z ∈
R} ⊕Y. Hence, {λnTnx} is somewhere dense but not everywhere dense.

REMARK 2.6. Observe that the sequence {λn} constructed in Proposition 2.5
is also bounded below and above in modulus and so it is an admissible sequence.
However for admissible sequences satisfying either condition (ii) or (iii) of Defi-
nition 2.1 we don’t know if an analogue to Bourdon–Feldman’s Theorem holds.
However an analogue to Ansari’s Theorem for admissible sequences satisfying
condition (ii) or (iii) of Definition 2.1 fails to hold in general (see Proposition 2.10.)

The validity of Herrero’s conjecture for the iterates of a single operator has
been established in [12], [27], see also [11]. Below we show that Herrero’s conjec-
ture fails in general for sequences of operators of the form {λnTn}with λn+1

λn
→ 1.

PROPOSITION 2.7. There exist a sequence {λn} in C with λn+1
λn
→ 1, an operator

T acting on a complex Banach space X and vectors x1, x2 ∈ X such that
2⋃

j=1
{λnTnxj : n = 1, 2, . . .} = X and {λnTnxj : n = 1, 2, . . .} 6= X ∀j = 1, 2.

Proof. By modifying the construction of zn’s in Proposition 2.3 one may con-
struct a sequence {zn} lying in the infinite strip S := {z ∈ C : −π < Im(z) < π}
such that |zn+1 − zn| → 0 and {zn} = S. Define λn = ezn . If exp is the exponen-
tial map, we have exp(S) = {z ∈ C : Re(z) > 0}. It follows that λn+1

λn
→ 1 and

{λn} = {z ∈ C : Re(z) > 0}. Using the operator T as defined in Proposition 2.4,
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we find a vector x = α⊕ y ∈ X = C⊕ Y, Re(α) > 0 so that {λnTnx} = {z ∈ C :
Re(z) > 0} ⊕Y. Taking as x1 = x, x2 = −x we are done.

We next establish an Ansari type theorem under certain conditions. These
conditions turn out to be optimal, see Propositions 2.10 and 2.11. Our proof relies
on a new equivalent form of the hypercyclicity criterion established in the next
section, see Theorem 3.1.

PROPOSITION 2.8. Suppose {λn} is a sequence in C \ {0} such that λn+1
λn
→ 1

and lim
n→∞

λmn
λn

exists and is a non-zero complex number for every m = 1, 2, . . .. Let

T : X → X be an operator. If {λnTn} satisfies the hypercyclicity criterion then {λnTkn}
is hypercyclic for every k = 1, 2, . . ..

Proof. Fix a countable dense set {xj} and k ∈ N. Define the open sets
E(j, s, n) =

{
x ∈ X : ‖λnTknx − xj‖ < 1

s
}

for j, s = 1, 2, . . ., n = 0, 1, 2, . . .. It
is easy to check that HC({λnTkn}) =

⋂
j,s

⋃
n

E(j, s, n). In view of Baire’s category

theorem it suffices to show that the set
⋃
n

E(j, s, n) is dense for every j, s = 1, 2, . . ..

Fix j, s = 1, 2, . . ., y ∈ X and ε > 0. We seek an x ∈ ⋃
n

E(j, s, n) such that

‖x− y‖ < ε. Denote ξk = lim
n→∞

λkn
λn

. Applying Theorem 3.1(iii) for U = 1
ξk

B(y, ε/2)

and V = B(xj, 1
s ), there exists a strictly increasing sequence {nl} such that

(2.1) λnl+iTnl+i(U)
⋂

V 6= ∅ ∀i = 0, 1, . . . , k, ∀l = 1, 2, . . . .

Also, there exists N ∈ N such that

(2.2)
λkn
λn

1
ξk

B(y, ε/2) ⊂ B(y, ε) ∀n > N.

Now choose nl > kN and note that as (2.1) holds for k + 1 consecutive integers,
there exists an integer in {nl , nl + 1, . . . , nl + k} of the form kρ for some integer
ρ > N. Hence, λkρTkρ

( 1
ξk

B(y, ε/2)
)
∩ B(xj, 1/s) 6= ∅ and by (2.2) we get that

∅ 6= λρTkρ
(λkρ

λρ

1
ξk

B(y, ε/2)
)
∩ B(xj, 1/s) ⊂ λρTkρB(y, ε) ∩ B(xj, 1/s).

This completes the proof of the proposition.

REMARK 2.9. The previous proposition applies for a broad family of se-
quences {λn}. In particular, it applies for sequences of the form λn = nα, α ∈ R.
Observe that in this case, the stronger condition λmn = λmλn holds for every
m, n = 1, 2, . . .. It also applies for sequences of the form λn = p(n) where p is a
polynomial, since p(mn)

p(n) → mdeg p where deg p denotes the degree of the poly-
nomial p. Other sequences include those of the form λn = (n + 1)α log(n + 1),
α ∈ R since λmn

λn
→ (m + 1)α.
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We next show that the assumption of the existence of lim
n→∞

λmn
λn

being a non-

zero complex number for every m = 1, 2, . . . in Proposition 2.8 is optimal. We
first recall the notion of topological mixing. A sequence of operators {Tn} where
Tn : X → X is called topologically mixing if for every non-empty open sets U, V in
X, there exists a positive integer N such that Tn(U) ∩V 6= ∅ for every n > N.

PROPOSITION 2.10. There exist a sequence {λn} of non-zero complex numbers
and a unilateral weighted shift T : l2(N)→ l2(N) such that the following hold:

(i) lim
n→+∞

| λn+1
λn
− 1| = 0.

(ii) lim
n→∞

λmn
λn

= +∞ for every m = 2, 3, . . ..

(iii) The sequence {λnTn} satisfies the hypercyclicity criterion.
(iv) The sequence {λnT2n} is not hypercyclic.

Proof. Applying a similar argument as in [14], it follows that if T is a unilat-
eral weighted shift with weight sequence {αn} and {λn} is a sequence in C \ {0}
with λn+1

λn
→ 1 then

{λnTn} is topologically mixing if and only if lim
n→+∞

|λn|
n

∏
i=1

αi = +∞.

Following the work of Salas in [30] and León–Saavedra in [24], it can easily be
shown that

{λnT2n} is hypercyclic if and only if lim sup
n→+∞

|λn|
2n

∏
i=1

αi = +∞.

For every positive integer n, set αn = 1
n1/n , λn =

√
n

∏n
i=1 αi

and let T be the unilateral

weighted shift with weight sequence {αn}. Observe that:

λn+1

λn
=
√

n + 1√
n

1
αn+1

→ 1, and
λn

λmn
=

1√
m

mn

∏
i=n+1

αi 6
1√
m

1
(mn)1−1/m → 0.

Hence (i) and (ii) hold. Observe that λn
n
∏
i=1

αi =
√

n → +∞, therefore {λnTn}

is topologically mixing and so satisfies the hypercyclicity criterion. On the other

hand the quantity λn
2n
∏
i=1

αi is bounded by 1√
2

for every n. Thus {λnT2n} is not

hypercyclic.

We next show, as kindly pointed to us by the referee, that Proposition 2.8
becomes false when the sequence {λnTn} does not satisfy the hypercyclicity cri-
terion.

PROPOSITION 2.11. There exist a sequence {λn} of non-zero complex numbers
and an operator T acting on a Banach space X such that the following hold:

(i) lim
n→+∞

| λn+1
λn
− 1| = 0.
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(ii) The limit lim
n→∞

λmn
λn

exists for every m = 2, 3, . . ..

(iii) The sequence {λnTn} is hypercyclic.
(iv) The sequence {λnT2n} is not hypercyclic.

Proof. If S is as in Proposition 2.4 define T = −I⊕S and consider a sequence
{λn} of complex numbers with positive real part such that λn+1

λn
→ 1, λmn

λn
→ 1

for every m = 1, 2, . . . and {λ2n}, {λ2n+1} are dense in the right half-plane. Then
it is easy to check that {λnTn} is hypercyclic but {λnT2n} is not.

We establish below weak variants of Ansari and Bourdon–Feldman’s theo-
rems.

PROPOSITION 2.12. Let {λn} be a sequence in C \ {0} such that λn+1
λn
→ 1, let

T : X → X be an operator and {λnTn} be hypercyclic.
(i) Suppose that λmn

λn
→ ξm exists and is a non-zero complex number for every m =

1, 2, . . ., {λnTn} satisfies the hypercyclicity criterion and {λnTnx} = X for some x ∈
X. Then {λmλnTknx : n, m = 1, 2, . . .} = X for every k = 1, 2, . . ..

(ii) If {λnTnx}o 6= ∅ for some x ∈ X, then {λmλnTnx : n, m = 1, 2, . . .} = X.

Proof. Throughout, for every y ∈ X and an operator S : X → X we will be
using the sets Fy(S) defined by Fy(S) = {w ∈ X : ∃nk → +∞, λnk Snk y → w}. Fix
k a positive integer. We first show that

X = Fx(T) = Fξkx(Tk) ∪ FT(ξkx)(Tk) ∪ · · · ∪ FTk−1(ξkx)(Tk).

Observe that our hypothesis implies X = Fx(T). Fix a y ∈ Fx(T) and note
that there exists a strictly increasing sequence of positive integers {nl} such that
λnl T

nl x → y. As each term in {nl} can be expressed as nl = kql + jl for inte-
gers ql and jl ∈ {0, 1, . . . , k − 1}, there exists a subsequence {nls} where each
term is of the form nls = kqls + j for j ∈ {0, 1, . . . , k − 1}. So without loss
of generality assume that nl = kql + j for some j ∈ {0, 1, . . . , k − 1}. Hence

λkql+jTkql+jx → y. Since
λkql
λql
→ ξk and

λkql+j
λkql

→ 1, we get that λql T
kql (T jξkx) →

y. Hence y ∈ FT j(ξkx)(Tk) which proves our claim. It now follows that one of

the sets in the union, call it FTr(ξkx)(Tk) for some r ∈ {0, 1, . . . , k− 1}, must have
non-empty interior. From Proposition 2.8 the sequence {λnTkn} is hypercyclic.
Choose z ∈ HC({λnTkn}) ∩ FTr(ξkx)(Tk) 6= ∅. There exists a strictly increasing
sequence {tn} of positive integers such that λtn Tktn(Tr(ξkx)) → z. Since the set
FTr(ξkx)(Tk) is Tk-invariant, λtn Tk(tn+m)(Tr(ξkx)) → Tkmz, ∀m = 1, 2, . . .. There-
fore λmλtn Tk(tn+m)(Tr(ξkx)) → λmTkmz ∀m = 1, 2, . . .. This means that the
sequence {λmλnTkn(Tr(ξkx)) : n, m = 1, 2, . . .} approximates every element of
the sequence {λmTkmz} which is dense in X and since Tr by Proposition 2.2 has
dense range, the result follows.



HYPERCYCLIC SEQUENCES OF OPERATORS 349

Let us prove (ii). Since {λnTnx}o 6= ∅ it follows that Fx(T)o 6= ∅. Fix
z ∈ Fx(T)o ∩ HC({λnTn}). There exists a strictly increasing sequence of positive
integers {nk} such that λnk Tnk x → z. From the T-invariance of Fx(T) and since

λnk
λnk+m

→ 1, m = 1, 2, . . . it follows that λmλnk+mTnk+mx → λmTmz, m = 1, 2, . . ..

Hence the sequence {λmλnTnx : n, m = 1, 2, . . .} approximates every element of
the dense sequence {λnTnz : n = 1, 2, . . .}.

REMARK 2.13. In the above proposition the assumption that the sequence
{λnTn} is hypercyclic cannot be removed. Indeed, consider the sequence {λn},
the operator T : X → X and x ∈ X as defined in Proposition 2.5. We have
{λnTnx}o 6= ∅ and it easily follows that {λmλnTnx : n, m = 1, 2, . . .} 6= X.

We next proceed by showing that for syndetic sequences {nk}, we may have
HC({λnTn}) 6= HC({λnk Tnk}) which extends some results from [26], [28].

THEOREM 2.14. Let {λn} be a sequence in C \ {0} such that λn+1
λn
→ 1 and

let T : X → X be a linear continuous operator. Suppose there exists x ∈ X so that
{λnTnx} = X. Then there exists a syndetic sequence {nk} with nk+1 − nk 6 2 for
every k = 1, 2, . . . such that {λnk Tnk x} 6= X.

Proof. Fix y ∈ X so that Ty 6= y. Take ε > 0 such that B(y, ε) ∩ B(Ty, ε) = ∅.
Let N be the smallest positive integer such that λNTN x ∈ B(y, ε/2) and∣∣∣λn+1

λn
− 1
∣∣∣ <

ε

2‖T‖(‖y‖+ ε)
, ∀n > N.

Define the set U = B(y, ε) ∩ T−1(B(Ty, ε/2)). Observe that U is non-empty since
y ∈ U. Let us now define the following two subsets of N: Λ1 = {n > N :
λnTnx ∈ U} and Λ2 = {n > N : λnTnx /∈ U}. We shall show that if n ∈ Λ1
then n + 1 ∈ Λ2. Indeed, let n ∈ Λ1 which implies that λnTnx ∈ U and hence
‖λnTnx‖ 6 ‖y‖ + ε. Notice that T(U) ⊂ B(Ty, ε/2) and therefore ‖λnTn+1x −
Ty‖ 6 ε

2 . Then we have

‖λn+1Tn+1x−Ty‖6‖λn+1Tn+1x− λnTn+1x‖+ ‖λnTn+1x− Ty‖

6
∣∣∣λn+1

λn
−1
∣∣∣‖T‖‖λnTnx‖+ ε

2
<

ε

2‖T‖(‖y‖+ε)
‖T‖(‖y‖+ε)+

ε

2
= ε.

Since B(y, ε) ∩ B(Ty, ε) = ∅ it follows that λn+1Tn+1x /∈ B(y, ε) which in turn
implies that λn+1Tn+1x /∈ U. Hence n + 1 ∈ Λ2. It is now evident that if we
consider an enumeration nk, k = 1, 2, . . . of the elements of the set Λ2 such that
nk+1 < nk for k = 1, 2, . . ., the sequence {nk} serves our purposes.

We complement the previous result following the work of Peris and Saldivia
in [28].
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THEOREM 2.15. Suppose that {λn} is a sequence in C \ {0} with λn+1
λn
→ 1,

T : X → X is an operator. If {λnTnx} is dense for some x ∈ X, then for every syndetic
sequence {nk} of positive integers, the set {λnk Tnk x} is somewhere dense.

Proof. There exists a positive integer such that nk+1 − nk 6 m for every k =
1, 2, . . .. Consider the sets F = {y ∈ X : ∃ml → +∞ such that λml T

ml x → y}
and Fi = {y ∈ X : ∃{nml} ⊂ {nk} such that λnml

Tnml−ix → y} for all i =

0, 1, . . . , m. It is easy to check that the sets F, Fi are closed, F=X=
m⋃

i=0
Fi and T(Fi)⊂

Fi−1 for i=1, . . . , m. Using the fact that T has dense range by Proposition 2.2, the
rest of the proof is exactly the same with the proof of Lemma 3.1 in [28].

3. THE HYPERCYCLICITY CRITERION

In this section we, on one hand, extend Theorem 3.2 in [19] and, on the other
hand, provide a new equivalent form of the hypercyclicity criterion.

THEOREM 3.1. Suppose that {λn} is a sequence of non-zero complex numbers
such that λn+1

λn
→ 1 and T : X → X is an operator. The following are equivalent:

(i) The sequence {λnTn ⊕ λnTn} is hypercyclic.
(ii) For every non-empty open subsets U, V of X there exists integer n ∈ N such that

λnTn(U) ∩V 6= ∅ and λn+1Tn+1(U) ∩V 6= ∅.
(iii) For every m ∈ N and for every non-empty open subsets U, V of X there exists

n ∈ N such that λn+iTn+i(U) ∩V 6= ∅ ∀i = 0, 1, . . . , m.
(iv) There exists p ∈ N such that for every U, V non-empty open subsets of X there

exists n ∈ N such that λnTn(U) ∩V 6= ∅ and λn+pTn+p(U) ∩V 6= ∅.
(v) For every syndetic sequence {nk} the sequence {λnk Tnk} is hypercyclic.

(vi) For every sequence {nk} such that nk+1 − nk 6 2 for every k = 1, 2, . . ., the
sequence {λnk Tnk} is hypercyclic.

Proof. Let us first prove that (i)⇒ (ii). Consider (U, V) a pair of non-empty
open subsets of X. Since λn+1

λn
→ 1, there exist x ∈ X \ {0}, ε > 0 and n0 ∈ N

such that B(x, ε) ⊂ U, ‖x‖ > ε and B(x, ε/2) ⊂ λn+1
λn

B(x, ε) for all n > n0. Define
U1 = B(x, ε/2), V1 = V, U2 = B(x, ε/2), V2 = T−1(V). Under the hypothesis
that the sequence {λnTn ⊕ λnTn} is hypercyclic, there exists n > n0 such that
λnTn(U1) ∩V1 6= ∅ and λnTn(U2) ∩V2 6= ∅. Since λnTn(B(x, ε/2)) ∩ T−1(V) 6=
∅, applying T we get λn+1Tn+1( λn

λn+1
B(x, ε/2)

)
∩V 6= ∅. From the last we easily

arrive at λn+1Tn+1(U) ∩V 6= ∅ which gives the desired result.
That (ii)⇒ (iv) is trivial.
We show that (iv)⇒ (i). Let U1, U2, V1, V2 be non-empty open subsets of X.

Fix v1 ∈ HC({λnTn})∩V1. There exists r1 ∈ N such that u1 := λr1 Tr1 v1 ∈ U1. By
Proposition 2.2, Tr1 has dense range. It follows that there exists u2 ∈ U2 such that
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u2 = λr1 Tr1 w2 for some w2 ∈ X. Let v2 ∈ V2 and δ > 0 such that B(v2, δ) ⊂ V2
and B(u2, δ) ⊂ U2. Fix any positive number α > 0 with α 6= 1. Then the operator
Tp − αI can be decomposed as

Tp − αI = (T − α1/p I)(T − α1/pe2πi/p I) · · · (T − α1/pe2πi(p−1)/p I).

Since |α1/pe2πij/p| = α1/p 6= 1 for every j = 1, 2, . . . p − 1, Proposition 2.2(i)
implies that (Tp − αI)v1 ∈ HC({λnTn}). Hence there exists q1 ∈ N such that

(3.1) ‖λq1 Tq1(Tp − αI)v1 + (v2 − w2)‖ <
δ

2|λr1 |‖T‖
r1

.

Since v1 ∈ HC({λnTn}), there exists p1 ∈ N such that

(3.2) ‖λp1 Tp1 v1 − (v2 − αλq1 Tq1 v1)‖ < min
{ δ

2|λr1
|‖T‖r1

, δ
}

.

Define the vectors z2 = λp1 Tp1 u1 + λq1 Tq1+pu1, y2 = λp1 Tp1 v1 + αλq1 Tq1 v1 and
by (3.1), (3.2) and the triangle inequality we have ‖z2 − u2‖ < δ, ‖y2 − v2‖ < δ.
From now on, arguing as in Grivaux’s proof of Theorem 3.2 in [19], assertion (i)
follows.

It is obvious that (iii)⇒ (ii).
It remains to show that (ii)⇒ (iii). Since assertions (i), (ii) and (iv) are equiv-

alent, it suffices to prove that (i) ⇒ (iii). Consider m ∈ N and (U, V) a pair of
non-empty open subsets of X. Since λn+1

λn
→ 1, it is immediate that λn+i

λn
→ 1

for every i = 0, 1, . . . , m. Hence there exist x ∈ X \ {0}, ε > 0 and n0 ∈ N such
that B(x, ε) ⊂ U, ‖x‖ > ε and B(x, ε/2) ⊂ λn+i

λn
B(x, ε) for all n > n0, for all

i = 0, 1, . . . , m. Define Ui = B(x, ε/2), Vi = T−(i−1)(V) for i = 1, . . . , m + 1.
Assertion (i) is equivalent to the hypercyclicity criterion. Hence applying The-
orem 2.2 in [7] it follows that the sequence {λnTn ⊕ · · · ⊕ λnTn} (m-fold) is hy-
percyclic in Xm. Therefore there exists n > n0 such that λnTn(Ui) ∩ Vi 6= ∅ for
i = 1, 2, . . . , m. Working as in the proof of (i)⇒ (ii) we obtain the desired result.

Let us now show that (i) ⇒ (v). Let {nk} be a syndetic sequence, that is,
there exists N ∈ N such that nk+1 − nk 6 N for every k = 1, 2, . . .. By Theorem
2.2 in [7] the sequence of direct sums {λnTn ⊕ λnTn ⊕ · · · ⊕ λnTn} of N copies
of λnTn is hypercyclic in XN . Consider U0, V0 any two non-empty open sets of
X. Take x ∈ U0, y ∈ V0 and δ > 0 sufficiently small such that B(x, 2δ) ⊂ U0
and B(y, 2δ) ⊂ V0. Define U = B(x, δ), V = B(y, δ) and Ui = T−(i−1)(U) for
i = 1, . . . , N. Then there exists an integer k > N such that λkTk(Ui) ∩ V 6=
∅ for all i = 1, . . . , N. Hence, λkTk−i+1(U) ∩ V 6= ∅ ∀i = 1, . . . , N. Since
k − (N − 1), k − (N − 2), . . . , k − 1, k are N consecutive integers, it is clear that
inductively we may construct two sequences {kl} and {il} ⊂ {1, . . . , N} such
that {nkl

} ⊂ {nk}, nkl
< nkl+1

for all l = 1, 2, . . . and λnkl
+il−1Tnkl (U) ∩ V 6= ∅

for all l = 1, 2, . . .. By the previous construction we conclude that
λnkl

+il−1

λnkl
→ 1.

Therefore, it is now easy to show that there exists some positive integer l0 such
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that λnkl
Tnkl (B(x, 2δ)) ∩ B(y, 2δ) 6= ∅ for all l > l0, which in turn implies that

λnkl
Tnkl (U0) ∩ V0 6= ∅ for all l > l0. Hence the sequence {λnTn} is hypercyclic.

This proves that (i)⇒ (v).
That (v)⇒ (vi) is trivial.
Observe that Lemma 3.4 in [19] holds for sequences of operators (not only

for iterates of a single operator). Combining the last observation with the fact that
assertions (i)–(iv) are equivalent it readily follows that (vi)⇒ (i). This completes
the proof of the theorem.

REMARK 3.2. In the proof of the above theorem, the choice of α 6= 1 was
necessary since {λn} was not necessarily admissible. In case {λn} is admissible,
a choice of α = 1 will also work as in Grivaux’s proof of Theorem 3.2 in [19].

The next theorem extends Proposition 4.1 in [19].

THEOREM 3.3. Suppose that {λn} is a sequence in C \ {0} such that λn+1
λn
→ 1,

T : X → X is an operator and the sequence {λnTn} is hypercyclic. The following are
equivalent:

(i) The sequence {λnTn ⊕ λnTn} is hypercyclic.
(ii) T ⊕ T is cyclic.

(iii) For every non-empty open sets U1, V1, U2, V2 of X there exists a polynomial p
such that p(T)(U1) ∩V1 6= ∅ and p(T)(U2) ∩V2 6= ∅.

(iv) For every pair U, V of non-empty open subsets of X and every neighborhood W of
zero there is a polynomial p such that p(T)(U) ∩W 6= ∅ and p(T)(W) ∩V 6= ∅.

Proof. That (i)⇒ (ii) and (iii)⇒ (iv) is obvious.
To show (ii)⇒ (iii) it suffices to prove that the set of cyclic vectors for T⊕ T

is dense in X ⊕ X. In view of Theorem 1 in [22] due to Herrero it is enough
to show that σp(T∗ ⊕ T∗)o = ∅. Since {λnTn} is hypercyclic, Proposition 2.2
implies that σp(T∗) ⊂ {z ∈ C : |z| = 1} which has empty interior in C. Hence
σp(T∗ ⊕ T∗)o = ∅. Using similar arguments as in the proof of Proposition 4.1 in
[19], it is easy to show that (iv)⇒ (i).

4. MISCELLANEOUS RESULTS ON TOPOLOGICALLY MIXING WEIGHTED SHIFTS
AND SUMS OF HYPERCYCLIC OPERATORS

Topologically mixing operators have been extensively studied, see for ex-
ample [2], [5],[15] and [16]. In [14] a characterization of topologically mixing uni-
lateral and bilateral weighted shifts was obtained through the weight sequence.
In a similar fashion one can show the following (see also the proof of Proposi-
tion 2.10 for an analogous statement for unilateral shifts).

THEOREM 4.1. Fix a sequence {λn} in C \ {0} with λn+1
λn
→ 1.
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(i) Let T : X → X be an operator. If {λnTn} satisfies the hypercyclicity criterion for
some syndetic sequence {nk} then {λnTn} is topologically mixing.

(ii) Let T : l2(Z)→ l2(Z) be a bilateral backward shift with weight sequence {αi, i ∈
Z}. Then {λnTn} is topologically mixing if and only if

|λn|
n

∏
i=1

αi → +∞ and |λn|
n

∏
i=1

α−i → 0.

S. Grivaux has recently proved the following deep result: Every continuous
linear operator acting on an infinite dimensional separable complex Hilbert space can be
written as a sum of two hypercyclic operators. Following Grivaux’s argument with
minor modifications we obtain the following (the details are left to the reader).

THEOREM 4.2. Let H be a complex separable infinite dimensional Hilbert space.
(i) Let T : H → H be an operator, H+(T) be the vector space spanned by the

kernels ker(T− λI) with |λ| > 1 and H−(T) be the vector space spanned by the kernels
ker(T − λI) with |λ| < 1. If both H+(T), H−(T) are dense then for every sequence
{λn} in C \ {0} so that λn+1

λn
→ 1, the sequence {λnTn} satisfies the hypercyclicity

criterion for the whole sequence of natural numbers.
(ii) Every operator T : H → H can be written as a sum of two operators T1, T2, i.e.

T = T1 + T2, such that for every i = 1, 2 and every sequence of complex numbers {λn}
satisfying λn+1

λn
→ 1 the sequence {λnTn

i } is hypercyclic.
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