# THE ISOMETRIC REPRESENTATION THEORY OF A PERFORATED SEMIGROUP 

IAIN RAEBURN and SEAN T. VITTADELLO

Communicated by Kenneth R. Davidson


#### Abstract

We consider the additive subsemigroup $\Sigma:=\mathbb{N} \backslash\{1\}$ of $\mathbb{N}$, and study representations of $\Sigma$ by isometries on Hilbert space with commuting range projections. Our main theorem says that each such representation is unitarily equivalent to the direct sum of a unitary representation, a multiple of the Toeplitz representation on $\ell^{2}(\Sigma)$, and a multiple of a representation by shifts on $\ell^{2}(\mathbb{N})$. We consider also the $C^{*}$-algebra $C^{*}(\Sigma)$ generated by a universal isometric representation with commuting range projections, and use our main theorem to identify the faithful representations of $C^{*}(\Sigma)$ and prove a structure theorem for $C^{*}(\Sigma)$.


KEYWORDS: Perforated semigroup, isometric representation, Wold decomposition.
MSC (2000): 47D05, 47B35.

## INTRODUCTION

Coburn proved in 1967 that all C*-algebras generated by non-unitary isometries are canonically isomorphic [1]. Coburn's result can be viewed as a theorem about the isometric representations of the semigroup $\mathbb{N}$, and this theorem has been generalised to other semigroups: to the positive cones of ordered subgroups of $\mathbb{R}$ by Douglas [2], to the positive cones of totally ordered abelian groups by Murphy [5], and to amenable quasi-lattice ordered groups by Nica [6] and LacaRaeburn [4].

On the other hand, Murphy [5] and Jang [3] have proved that this theorem does not hold for the semigroup $\Sigma:=\mathbb{N} \backslash\{1\}$, by writing down explicit isometric representations $S$ on $\ell^{2}(\mathbb{N})$ and $T$ on $\ell^{2}(\Sigma)$ such that $C^{*}(S)$ is not canonically isomorphic to $C^{*}(T)$. Here we explore this phenomenon by analysing the isometric representations of $\Sigma$, and investigating the structure of the $C^{*}$-algebras they generate. Our main result says that every isometric representation of $\Sigma$ with commuting range projections is equivalent to a direct sum of a unitary representation, a multiple of $S$, and a multiple of $T$. The assumption that the range projections
commute is a standard one in the area: it is automatic for the positive cones of total orders, and for quasi-lattice ordered groups it is a consequence of the Nica covariance condition used in [6] and [4].

We begin in Section 1 by describing the class of isometric representations of interest to us. We set up our conventions, particularly concerning the two main examples $S$ and $T$, and establish some basic properties of isometric representations. We prove our main theorem in Section 2. Our main strategy is to analyse how the isometry $V_{3}$ interacts with the Wold decomposition of the isometry $V_{2}$. In Section 3 we consider the $C^{*}$-algebra $C^{*}(\Sigma)$ generated by a universal isometric representation with commuting range projections. We use our main theorem to obtain criteria which ensure that a given representation of $C^{*}(\Sigma)$ is faithful, and describe the structure of $C^{*}(\Sigma)$ in terms of the usual Toeplitz algebra $\mathcal{T}=C^{*}(\mathbb{N})$.

## 1. ISOMETRIC REPRESENTATIONS OF $\Sigma$

Throughout this paper, $\mathbb{N}$ denotes the additive semigroup of non-negative integers (including 0 ), and $\Sigma$ denotes the subsemigroup $\mathbb{N} \backslash\{1\}$. An isometric representation of $\Sigma$ on a Hilbert space $\mathcal{H}$ with commuting range projections is a map $V: \Sigma \rightarrow B(\mathcal{H})$ such that each $V_{n}$ is an isometry, such that $V_{m+n}=V_{m} V_{n}$, and such that the range projections $V_{n} V_{n}^{*}$ commute with each other.

We have two main examples in mind.
EXAMPLE 1.1. Let $\left\{e_{\Sigma, p}: p \in \Sigma\right\}$ be the usual orthonormal basis for $\ell^{2}(\Sigma)$. For each $n \in \Sigma$, the set $\left\{e_{\Sigma, n+p}: p \in \Sigma\right\}$ is also orthonormal, and hence there is an isometry $T_{n}$ on $\ell^{2}(\Sigma)$ such that $T_{n} e_{\Sigma, p}=e_{\Sigma, n+p}$. It is easy to check that $T_{m} T_{n}=T_{m+n}$, and that the range projections commute. We call $T$ the Toeplitz representation of $\Sigma$.

EXAMPLE 1.2. Let $R$ be the unilateral shift on $\ell^{2}(\mathbb{N})$, and define $S: \Sigma \rightarrow$ $B\left(\ell^{2}(\mathbb{N})\right)$ by $S_{n}=R^{n}$. In terms of the usual orthonormal basis $\left\{e_{\mathbb{N}, p}\right\}, S_{n}$ is characterised by $S_{n} e_{\mathbb{N}, p}=e_{\mathbb{N}, n+p}$. Then $S$ is an isometric representation with commuting range projections. (The letter $S$ reminds us that the operators $S_{n}$ are shifts.)

Murphy and Jang observed that these two representations are not unitarily equivalent. To see this, we just need to note that

$$
T_{3}^{*}\left(1-T_{2} T_{2}^{*}\right) T_{3}\left(e_{\Sigma, 0}\right)=e_{\Sigma, 0}
$$

so that $T_{3}^{*}\left(1-T_{2} T_{2}^{*}\right) T_{3}$ is non-zero, whereas $S_{3}^{*}\left(1-S_{2} S_{2}^{*}\right) S_{3}=0$. (In the proof of Theorem 2.1 it will become clear why we looked at this operator.)

We now investigate general properties of an isometric representation $V$ : $\Sigma \rightarrow B(\mathcal{H})$ with commuting range projections. The first and crucial property is that $V_{3}^{2}=V_{2}^{3}$, because both are equal to $V_{6}$.

For $m, n \in \Sigma$ such that $m-n$ is also in $\Sigma$, the relation $V_{m}=V_{n} V_{m-n}$ allows us to cancel $V_{n}^{*} V_{m}=V_{m-n}$ and $V_{m}^{*} V_{n}=V_{m-n}^{*}$. While we cannot expect to cancel expressions like $V_{n}^{*} V_{n+1}$, there are interesting and useful relationships among these elements. We often use the next lemma without comment.

Lemma 1.3. We have $V_{3}^{*} V_{2}^{2}=V_{2}^{*} V_{3}$ and $V_{2}^{* 2} V_{3}=V_{3}^{*} V_{2}$.
Proof. Since the second equation is the adjoint of the first, it suffices to compute

$$
V_{3}^{*} V_{2}^{2}=V_{3}^{*}\left(V_{3}^{*} V_{3}\right) V_{2}^{2}=V_{3}^{* 2} V_{3} V_{2}^{2}=V_{2}^{* 3} V_{2}^{2} V_{3}=V_{2}^{*} V_{3}
$$

The assumption that the range projections commute implies that there are many other commuting projections around. For example:

LEMMA 1.4. For every $k, n \in \Sigma, V_{k}^{*} V_{n} V_{n}^{*} V_{k}$ is a projection which commutes with every range projection $V_{m} V_{m}^{*}$.

Proof. The elements $V_{k}^{*} V_{n} V_{n}^{*} V_{k}$ are certainly self-adjoint, and

$$
\left(V_{k}^{*} V_{n} V_{n}^{*} V_{k}\right)^{2}=V_{k}^{*}\left(V_{n} V_{n}^{*}\right) V_{k} V_{k}^{*} V_{n} V_{n}^{*} V_{k}=V_{k}^{*}\left(V_{k} V_{k}^{*}\right)\left(V_{n} V_{n}^{*}\right)^{2} V_{k}=V_{k}^{*} V_{n} V_{n}^{*} V_{k}
$$

so they are projections. Then

$$
\begin{aligned}
\left(V_{k}^{*} V_{n} V_{n}^{*} V_{k}\right)\left(V_{m} V_{m}^{*}\right) & =V_{k}^{*} V_{n} V_{n}^{*} V_{m+k} V_{m+k}^{*} V_{k}=V_{k}^{*} V_{m+k} V_{m+k}^{*} V_{n} V_{n}^{*} V_{k} \\
& =\left(V_{m} V_{m}^{*}\right)\left(V_{k}^{*} V_{n} V_{n}^{*} V_{k}\right) .
\end{aligned}
$$

Since the semigroup $\Sigma$ is generated by 2 and 3 , it is natural to ask which pairs of isometries $W_{2}$ and $W_{3}$ generate an isometric representation of $\Sigma$.

Proposition 1.5. Suppose that $W_{2}$ and $W_{3}$ are commuting isometries on $\mathcal{H}$ such that $W_{2}^{3}=W_{3}^{2}$ and $W_{2} W_{2}^{*}$ commutes with $W_{3} W_{3}^{*}$. Then there is an isometric representation $V: \Sigma \rightarrow B(\mathcal{H})$ with commuting range projections such that $V_{2}=W_{2}$ and $V_{3}=W_{3}$.

Proof. It is straightforward to check that the formula $V_{2 p+3 j}=W_{2}^{p} W_{3}^{j}$ gives a well-defined map of $\Sigma$ into $B(\mathcal{H})$ such that each $V_{n}$ is an isometry and $V_{m} V_{n}=$ $V_{m+n}$. So we have to prove that the range projections commute. We begin by showing that $V_{4} V_{4}^{*}=V_{2}^{2} V_{2}^{* 2}$ commutes with $V_{3} V_{3}^{*}$ :

$$
\begin{aligned}
\left(V_{2}^{2} V_{2}^{* 2}\right)\left(V_{3} V_{3}^{*}\right) & =V_{2}^{*}\left(V_{2}^{3} V_{2}^{* 3}\right)\left(V_{2} V_{3}\right) V_{3}^{*}=V_{2}^{*}\left(V_{3}^{2} V_{3}^{* 2}\right)\left(V_{3} V_{2}\right) V_{3}^{*} \\
& =V_{2}^{*} V_{3}^{2} V_{3}^{*} V_{2} V_{3}^{*}\left(V_{2}^{*} V_{2}\right)=V_{2}^{*} V_{3}\left(V_{3} V_{3}^{*}\right)\left(V_{2} V_{2}^{*}\right) V_{3}^{*} V_{2} \\
& =V_{2}^{*} V_{3}\left(V_{2} V_{2}^{*}\right)\left(V_{3} V_{3}^{*}\right) V_{3}^{*} V_{2}=\left(V_{2}^{*} V_{2}\right) V_{3} V_{2}^{*} V_{3} V_{3}^{* 2} V_{2} \\
& =V_{3} V_{2}^{*}\left(V_{3}^{*} V_{3}\right) V_{3} V_{3}^{* 2} V_{2}=V_{3}\left(V_{2}^{*} V_{3}^{*}\right) V_{3}^{2} V_{3}^{* 2} V_{2} \\
& =V_{3} V_{3}^{*} V_{2}^{*}\left(V_{3}^{2} V_{3}^{* 2}\right) V_{2}=V_{3} V_{3}^{*} V_{2}^{*}\left(V_{2}^{3} V_{2}^{* 3}\right) V_{2} \\
& =\left(V_{3} V_{3}^{*}\right)\left(V_{2}^{2} V_{2}^{* 2}\right)
\end{aligned}
$$

Now fix $m, n \in \Sigma$, and assume without loss of generality that $m>n>0$. If $m-n$ belongs to $\Sigma$ then ordinary cancellation shows that

$$
\left(V_{m} V_{m}^{*}\right)\left(V_{n} V_{n}^{*}\right)=V_{m} V_{m}^{*}=\left(V_{n} V_{n}^{*}\right)\left(V_{m} V_{m}^{*}\right)
$$

We are left to handle the case where $m=n+1$, and we deal with the cases $n=2 p$ and $n=2 p+1$ separately. For $n=2 p$, we have $m=2 p+1$, and

$$
\begin{aligned}
\left(V_{m} V_{m}^{*}\right)\left(V_{n} V_{n}^{*}\right) & =V_{2 p+1} V_{2 p+1}^{*} V_{2 p} V_{2 p}^{*}=\left(V_{2(p-1)} V_{3}\right)\left(V_{3}^{*} V_{2(p-1)}^{*}\right) V_{2 p} V_{2 p}^{*} \\
& =V_{2(p-1)} V_{3} V_{3}^{*}\left(V_{2(p-1)}^{*} V_{2 p}\right)\left(V_{2}^{*} V_{2(p-1)}^{*}\right) \\
& =V_{2(p-1)}\left(V_{2} V_{2}^{*}\right)\left(V_{3} V_{3}^{*}\right) V_{2(p-1)}^{*} \\
& =V_{2 p} V_{2}^{*} V_{3} V_{2 p+1}^{*}=V_{2 p} V_{2}^{*}\left(V_{2(p-1)}^{*} V_{2(p-1)}\right) V_{3} V_{2 p+1}^{*} \\
& =V_{2 p} V_{2 p}^{*} V_{2 p+1} V_{2 p+1}^{*}=\left(V_{n} V_{n}^{*}\right)\left(V_{m} V_{m}^{*}\right)
\end{aligned}
$$

For $n=2 p+1$, we have $m=2(p+1)$, and we use the result in the first paragraph:

$$
\begin{aligned}
\left(V_{m} V_{m}^{*}\right)\left(V_{n} V_{n}^{*}\right) & =V_{2(p+1)} V_{2(p+1)}^{*} V_{2 p+1} V_{2 p+1}^{*} \\
& =V_{2(p+1)} V_{2(p+1)}^{*}\left(V_{2(p-1)} V_{3}\right)\left(V_{3}^{*} V_{2(p-1)}^{*}\right) \\
& =\left(V_{2(p-1)} V_{2}^{2}\right)\left(V_{2(p+1)}^{*} V_{2(p-1)}\right) V_{3} V_{3}^{*} V_{2(p-1)}^{*} \\
& =V_{2(p-1)}\left(V_{2}^{2} V_{2}^{* 2}\right)\left(V_{3} V_{3}^{*}\right) V_{2(p-1)}^{*} \\
& =V_{2(p-1)}\left(V_{3} V_{3}^{*}\right)\left(V_{2}^{2} V_{2}^{* 2}\right) V_{2(p-1)}^{*} \\
& =V_{2 p+1} V_{3}^{*} V_{2}^{2} V_{2(p+1)}^{*}=V_{2 p+1} V_{3}^{*}\left(V_{2(p-1)}^{*} V_{2(p-1)}\right) V_{2}^{2} V_{2(p+1)}^{*} \\
& =V_{2 p+1} V_{2 p+1}^{*} V_{2(p+1)} V_{2(p+1)}^{*}=\left(V_{n} V_{n}^{*}\right)\left(V_{m} V_{m}^{*}\right)
\end{aligned}
$$

REMARKS 1.6. (i) The subsemigroup $\Sigma$ is the positive cone for the partial order on $\mathbb{Z}$ defined by $m \geqslant n \Longleftrightarrow m-n \in \Sigma$. The pair $(\mathbb{Z}, \Sigma)$, however, is not quasi-lattice ordered in the sense of Nica [6]: while 5 is a common upper bound for 2 and 3, and is the smallest in the usual order on $\mathbb{Z}$, it is not a least upper bound in $(\mathbb{Z}, \Sigma)$ because 6 is a common upper bound which is not $\geqslant 5$ in $(\mathbb{Z}, \Sigma)$. So the general theory of [6] and [4] does not apply.
(ii) Since $\Sigma$ is generated by the two elements 2 and 3, the map $\phi:(p, j) \mapsto$ $2 p+3 j$ is a surjection of $\mathbb{N}^{2}$ onto $\Sigma$. If $V$ is an isometric representation of $\Sigma$ with commuting range projections, then $V \circ \phi$ is also a semigroup homomorphism. One might suspect that our "commuting range projections" hypothesis would imply that $V \circ \phi$ is a Nica covariant representation of $\left(\mathbb{Z}^{2}, \mathbb{N}^{2}\right)$ (which is equivalent to saying that $V_{2}^{*}=(V \circ \phi(1,0))^{*}$ and $V_{3}=V \circ \phi(0,1)$ commute). However, this is not the case: when $V=S$, for example, the operator $S_{2}^{*} S_{3}$ is the unilateral shift, and hence is injective, whereas $S_{3} S_{2}^{*}$ is not (for example, $S_{3} S_{2}^{*}\left(e_{\mathbb{N}, 0}\right)=0$ ). One consequence of our main theorem is that $V \circ \phi$ is only Nica covariant when every $V_{n}$ is unitary (see Corollary 2.8).

## 2. THE DECOMPOSITION THEOREM

Suppose that $V$ and $W$ are isometric representations of a semigroup $P$ on Hilbert spaces $\mathcal{H}_{V}$ and $\mathcal{H}_{W}$. We say that $V$ is a multiple of $W$ if there are a Hilbert space $\mathcal{H}$ and a unitary isomorphism $U: \mathcal{H}_{V} \rightarrow \mathcal{H}_{W} \otimes \mathcal{H}$ such that $U V_{p} U^{*}=$ $W_{p} \otimes 1$ for $p \in P$. For our concrete representations $S$ and $T$ we can identify the tensor products $\ell^{2}(\mathbb{N}) \otimes \mathcal{H}$ and $\ell^{2}(\Sigma) \otimes \mathcal{H}$ with $\ell^{2}(\mathbb{N}, \mathcal{H})$ and $\ell^{2}(\Sigma, \mathcal{H})$, and we move freely from one realisation to the other.

THEOREM 2.1. Suppose that $V: \Sigma \rightarrow B(\mathcal{H})$ is an isometric representation of $\Sigma:=\mathbb{N} \backslash\{1\}$ with commuting range projections. Then there is a unique direct-sum decomposition $\mathcal{H}=\mathcal{H}_{U} \oplus \mathcal{H}_{T} \oplus \mathcal{H}_{S}$ such that $\mathcal{H}_{U}, \mathcal{H}_{T}$ and $\mathcal{H}_{S}$ are reducing for $V$, such that $\left.V\right|_{\mathcal{H}_{U}}$ consists of unitary operators, such that $\left.V\right|_{\mathcal{H}_{T}}$ is a multiple of $T$, and such that $\left.V\right|_{\mathcal{H}_{S}}$ is a multiple of $S$.

Since 2 and 3 generate $\Sigma$, the representation $V$ is determined by the two isometries $V_{2}$ and $V_{3}$. Our strategy is to apply the following version of the Wold decomposition to the single isometry $V_{2}$, and to analyse how $V_{3}$ interacts with this decomposition.

Proposition 2.2 (Wold Decomposition). Let Z be an isometry on a Hilbert space $\mathcal{H}$. Let $\mathcal{H}_{U}:=\bigcap_{n=0}^{\infty} Z^{n}(\mathcal{H})$ and $\mathcal{H}_{0}:=Z(\mathcal{H})^{\perp}$. Then $\mathcal{H}_{U}$ is a reducing subspace of $\mathcal{H}$ for $Z$ with complement $\mathcal{H} \stackrel{\perp}{U}=\overline{\operatorname{span}}\left\{\bigcup_{n=0}^{\infty} Z^{n}\left(\mathcal{H}_{0}\right)\right\},\left.Z\right|_{\mathcal{H}_{U}}$ is unitary, and there is a unitary isomorphism $W: \mathcal{H}_{U}^{\perp} \rightarrow \ell^{2}\left(\mathbb{N}, \mathcal{H}_{0}\right)$ such that $W Z W^{*}\left(\left\{k_{n}\right\}_{n=0}^{\infty}\right)=$ $\left\{0, k_{0}, k_{1}, k_{2}, \ldots\right\}$ for all $\left\{k_{n}\right\}_{n=0}^{\infty} \in \ell^{2}\left(\mathbb{N}, \mathcal{H}_{0}\right)$.

As motivation for our argument, we apply the Wold decomposition to $S_{2}$ and $T_{2}$. For both isometries we have $\mathcal{H}_{U}=\{0\}$, and both

$$
S_{2}\left(\ell^{2}(\mathbb{N})\right)^{\perp}=\operatorname{span}\left\{e_{\mathbb{N}, 0}, e_{\mathbb{N}, 1}\right\} \quad \text { and } \quad T_{2}\left(\ell^{2}(\Sigma)\right)^{\perp}=\operatorname{span}\left\{e_{\Sigma, 0}, e_{\Sigma, 3}\right\}
$$

are 2-dimensional. Sending

$$
e_{\mathbb{N}, i} \mapsto\left\{\begin{array} { l l } 
{ e _ { j 0 } } & { \text { if } i = 2 j , } \\
{ e _ { j 1 } } & { \text { if } i = 2 j + 1 , }
\end{array} \quad \text { and } \quad e _ { \Sigma , i } \mapsto \left\{\begin{array}{ll}
e_{j 0} & \text { if } i=2 j, \\
e_{j 1} & \text { if } i=2 j+3
\end{array}\right.\right.
$$

gives unitary isomorphisms of $\ell^{2}(\mathbb{N})$ and $\ell^{2}(\Sigma)$ onto $\ell^{2}(\mathbb{N} \times\{0,1\})$ which carry $S$ and $T$ into the representations determined on

$$
f:=\left(\begin{array}{lllll}
f_{01} & f_{11} & f_{21} & f_{31} & \cdots \\
f_{00} & f_{10} & f_{20} & f_{30} & \cdots
\end{array}\right)
$$

by

$$
S_{2} f=\left(\begin{array}{ccccc}
0 & f_{01} & f_{11} & f_{21} & \cdots  \tag{2.1}\\
0 & f_{00} & f_{10} & f_{20} & \cdots
\end{array}\right) \quad \text { and } \quad S_{3} f=\left(\begin{array}{ccccc}
0 & f_{00} & f_{10} & f_{20} & \cdots \\
0 & 0 & f_{01} & f_{11} & \cdots
\end{array}\right)
$$

and

$$
T_{2} f=\left(\begin{array}{ccccc}
0 & f_{01} & f_{11} & f_{21} & \cdots  \tag{2.2}\\
0 & f_{00} & f_{10} & f_{20} & \cdots
\end{array}\right) \text { and } T_{3} f=\left(\begin{array}{cccccc}
f_{00} & f_{10} & f_{20} & f_{30} & f_{40} & \cdots \\
0 & 0 & 0 & f_{01} & f_{11} & \cdots
\end{array}\right)
$$

We now turn to the proof of Theorem 2.1. Applying the Wold decomposition to the isometry $V_{2}$ gives a reducing subspace $\mathcal{H}_{U}$ such that $\left.V_{2}\right|_{\mathcal{H}_{U}}$ is unitary, and since $V_{3}^{2}=V_{2}^{3}$ it follows that $V_{3}$ and every other $V_{2 p+3 j}=V_{2}^{p} V_{3}^{j}$ are also unitary on $\mathcal{H}_{U}$. The Wold decomposition also tells us that the complement $\mathcal{H}_{U}^{\perp}$ can be identified with $\ell^{2}\left(\mathbb{N}, \mathcal{H}_{0}\right)$ for $\mathcal{H}_{0}:=V_{2}(\mathcal{H})^{\perp}=\operatorname{ker}\left(V_{2} V_{2}^{*}\right)$. Our goal is to identify the subspaces $\mathcal{H}_{00}$ and $\mathcal{K}_{00}$ of $\mathcal{H}_{0}$ consisting of vectors which behave under $V_{3}$ as the vector $e_{00} \in \ell^{2}(\mathbb{N} \times\{0,1\})$ does under $T_{3}$ and $S_{3}$. The crucial property we isolate is that $T_{3} e_{00}$ belongs to $\mathcal{H}_{0}=\operatorname{ker} T_{2} T_{2}^{*}$, whereas $S_{3} e_{00}$ belongs to $S_{2}(\mathcal{H})$ and is orthogonal to $S_{2}^{2}(\mathcal{H})$.

With this motivation, we define:

$$
\begin{align*}
\mathcal{H}_{00} & :=\left\{h \in \mathcal{H}_{0}: V_{3} h \in \mathcal{H}_{0}\right\}, \text { and }  \tag{2.3}\\
\mathcal{K}_{00} & :=\left\{h \in \mathcal{H}_{0}: V_{3} h \in V_{2}(\mathcal{H}) \ominus V_{2}^{2}(\mathcal{H})\right\} \tag{2.4}
\end{align*}
$$

For the rest of the proof, we write $P_{n}:=V_{2}^{n} V_{2}^{* n}-V_{2}^{n+1} V_{2}^{* n+1}$, which is the projection of $\mathcal{H}$ onto the complement of $V_{2}^{n+1}(\mathcal{H})$ in $V_{2}^{n}(\mathcal{H})$. With this notation,

$$
\mathcal{H}_{00}=\left\{h \in \mathcal{H}_{0}: P_{0}\left(V_{3} h\right)=V_{3} h\right\} \quad \text { and } \quad \mathcal{K}_{00}=\left\{h \in \mathcal{H}_{0}: P_{1}\left(V_{3} h\right)=V_{3} h\right\}
$$

Proposition 2.3. We have a direct-sum decomposition

$$
\begin{equation*}
\mathcal{H}_{0}=V_{2}(\mathcal{H})^{\perp}=\mathcal{H}_{00} \oplus V_{3}\left(\mathcal{H}_{00}\right) \oplus \mathcal{K}_{00} \oplus V_{2}^{*} V_{3}\left(\mathcal{K}_{00}\right) \tag{2.5}
\end{equation*}
$$

in which the orthogonal projections on the summands are given by:
(i) the projection on $\mathcal{H}_{00}$ is $P_{00}:=V_{3}^{*} P_{0} V_{3}=V_{3}^{*} P_{0} V_{3} P_{0}$;
(ii) the projection on $V_{3}\left(\mathcal{H}_{00}\right)$ is $V_{3} P_{00} V_{3}^{*}=V_{3}^{*} P_{3} V_{3} P_{0}$;
(iii) the projection on $\mathcal{K}_{00}$ is $Q_{00}:=V_{3}^{*} P_{1} V_{3} P_{0}$;
(iv) the projection on $V_{2}^{*} V_{3}\left(\mathcal{K}_{00}\right)$ is $V_{2}^{*} V_{3} Q_{00} V_{3}^{*} V_{2}=V_{3}^{*} P_{2} V_{3} P_{0}$.

To compute some of these projections we need the following straightforward lemma.

Lemma 2.4. Suppose that $S \in B(\mathcal{H})$ is a partial isometry and $P$ is the orthogonal projection onto a closed subspace $\mathcal{K}$ of $S^{*} S(\mathcal{H})$. Then SPS* is the orthogonal projection onto $S(\mathcal{K})$.

Proof of Proposition 2.3. For every $h \in \mathcal{H}_{0}$ and $k \in \mathcal{H}$, we have

$$
\left(V_{3} h \mid V_{2}^{4} k\right)=\left(V_{3} h \mid V_{3}^{2} V_{2} k\right)=\left(h \mid V_{3} V_{2} k\right)=\left(h \mid V_{2} V_{3} k\right)=0
$$

and hence $V_{3} h \in V_{2}^{4}(\mathcal{H})^{\perp}=\bigoplus_{n=0}^{3} P_{n} \mathcal{H}$. Thus $V_{3} P_{0}=\sum_{n=0}^{3} P_{n} V_{3} P_{0}$ and $P_{0}=$ $\sum_{n=0}^{3} V_{3}^{*} P_{n} V_{3} P_{0}$. Since $V_{3}^{*} P_{n} V_{3}$ is self adjoint and

$$
\left(V_{3}^{*} P_{n} V_{3}\right)^{2}=V_{3}^{*} P_{n}\left(V_{3} V_{3}^{*}\right) P_{n} V_{3}=V_{3}^{*}\left(V_{3} V_{3}^{*}\right) P_{n}^{2} V_{3}=V_{3}^{*} P_{n} V_{3}
$$

$V_{3}^{*} P_{n} V_{3}$ is a projection; since Lemma 1.4 implies that $P_{0}$ commutes with $V_{3}^{*} P_{n} V_{3}$, each $V_{3}^{*} P_{n} V_{3} P_{0}$ is also a projection. Since their sum $P_{0}$ is also a projection, the projections $V_{3}^{*} P_{n} V_{3} P_{0}$ have orthogonal ranges, and we have a direct-sum decomposition $\mathcal{H}_{0}=\underset{n=0}{\oplus} V_{3}^{*} P_{n} V_{3} P_{0}(\mathcal{H})$. So it remains to check that the ranges of these projections are as claimed.

For $h \in \mathcal{H}_{00}$ we have

$$
V_{3}^{*} P_{0} V_{3} h=V_{3}^{*}\left(P_{0} V_{3} h\right)=V_{3}^{*}\left(V_{3} h\right)=h,
$$

so $V_{3}^{*} P_{0} V_{3}$ is the identity on $\mathcal{H}_{00}$. Next, note that

$$
V_{3}^{*} P_{0} V_{3} P_{0}=V_{3}^{*} P_{0} V_{3}\left(1-V_{2} V_{2}^{*}\right)=V_{3}^{*} P_{0} V_{3}-V_{3}^{*} P_{0} V_{2} V_{3} V_{2}^{*}=V_{3}^{*} P_{0} V_{3}-0
$$

which gives the last equality in (i) and implies that the range of $V_{3}^{*} P_{0} V_{3}$ is contained in $\mathcal{H}_{0}$. For every $h \in \mathcal{H}$ we have

$$
P_{0}\left(V_{3}\left(V_{3}^{*} P_{0} V_{3} h\right)\right)=\left(V_{3} V_{3}^{*}\right)\left(P_{0}^{2} V_{3} h\right)=V_{3}\left(V_{3}^{*} P_{0} V_{3} h\right)
$$

so the range of $V_{3}^{*} P_{0} V_{3}$ is contained in $\mathcal{H}_{00}$. Similar calculations show that $Q_{00}$ is the identity on $\mathcal{K}_{00}$, and that every $k$ of the form $k=Q_{00} h$ satisfies $P_{0} k=k$ and $P_{1}\left(V_{3} k\right)=V_{3} k$, hence is in $\mathcal{K}_{00}$. This gives (iii).

To establish (ii), we use Lemma 2.4 and part (i) to see that the projection on $V_{3}\left(\mathcal{H}_{00}\right)$ is $V_{3}\left(V_{3}^{*} P_{0} V_{3}\right) V_{3}^{*}=V_{3} V_{3}^{*} P_{0}$. Then we compute

$$
\begin{aligned}
V_{3}^{*} P_{3} V_{3} P_{0} & =V_{3}^{*}\left(V_{2}^{3} P_{0} V_{2}^{* 3}\right) V_{3} P_{0}=V_{3}^{*}\left(V_{3}^{2} P_{0} V_{3}^{* 2}\right) V_{3} P_{0}=V_{3} P_{0} V_{3}^{*} P_{0} \\
& =\left(V_{3} V_{3}^{*}-V_{3} V_{2} V_{2}^{*} V_{3}^{*}\right) P_{0}=\left(V_{3} V_{3}^{*}-V_{3} V_{2} V_{3}^{*} V_{2}^{*}\right) P_{0}
\end{aligned}
$$

which reduces to $V_{3} V_{3}^{*} P_{0}$ because $V_{2}^{*} P_{0}=0$.
For (iv), we apply Lemma 2.4, and deduce that the projection on $V_{2}^{*} V_{3}\left(\mathcal{K}_{00}\right)$ is

$$
V_{2}^{*} V_{3} Q_{00} V_{3}^{*} V_{2}=V_{2}^{*} V_{3}\left(V_{3}^{*} P_{1} V_{3} P_{0}\right) V_{3}^{*} V_{2} .
$$

We now compute using Lemma 1.3:

$$
\begin{aligned}
V_{2}^{*} V_{3}\left(V_{3}^{*} P_{1} V_{3} P_{0}\right) V_{3}^{*} V_{2} & =V_{2}^{*} P_{1} V_{3} V_{3}^{*} V_{3} P_{0} V_{3}^{*} V_{2}=P_{0} V_{2}^{*} V_{3} P_{0} V_{3}^{*} V_{2} \\
& =P_{0} V_{3}^{*} V_{2}^{2} P_{0} V_{2}^{* 2} V_{3}=P_{0} V_{3}^{*} P_{2} V_{3}
\end{aligned}
$$

which is $V_{3}^{*} P_{2} V_{3} P_{0}$ because Lemma 1.4 implies that $V_{3}^{*} P_{2} V_{3}$ and $P_{0}$ commute.
Applying the isometry $V_{2}^{n}$ to the decomposition (2.5) of $\mathcal{H}_{0}=P_{0}(\mathcal{H})$ gives decompositions

$$
P_{n}(\mathcal{H})=V_{2}^{n}\left(\mathcal{H}_{0}\right)=V_{2}^{n}\left(\mathcal{H}_{00}\right) \oplus V_{2}^{n} V_{3}\left(\mathcal{H}_{00}\right) \oplus V_{2}^{n}\left(\mathcal{K}_{00}\right) \oplus V_{2}^{n} V_{2}^{*} V_{3}\left(\mathcal{K}_{00}\right)
$$

and since the spaces $P_{n} \mathcal{H}$ themselves give a direct-sum decomposition of $\mathcal{H} \stackrel{\perp}{U}$, we have

$$
\mathcal{H}=\mathcal{H}_{U} \oplus\left(\bigoplus_{n=0}^{\infty}\left(V_{2}^{n}\left(\mathcal{H}_{00}\right) \oplus V_{2}^{n} V_{3}\left(\mathcal{H}_{00}\right) \oplus V_{2}^{n}\left(\mathcal{K}_{00}\right) \oplus V_{2}^{n} V_{2}^{*} V_{3}\left(\mathcal{K}_{00}\right)\right)\right)
$$

So with

$$
\begin{align*}
\mathcal{H}_{T} & :=\bigoplus_{n=0}^{\infty}\left(V_{2}^{n}\left(\mathcal{H}_{00}\right) \oplus V_{2}^{n} V_{3}\left(\mathcal{H}_{00}\right)\right),  \tag{2.6}\\
\mathcal{H}_{S} & :=\bigoplus_{n=0}^{\infty}\left(V_{2}^{n}\left(\mathcal{K}_{00}\right) \oplus V_{2}^{n} V_{2}^{*} V_{3}\left(\mathcal{K}_{00}\right)\right), \tag{2.7}
\end{align*}
$$

we certainly have $\mathcal{H}=\mathcal{H}_{U} \oplus \mathcal{H}_{T} \oplus \mathcal{H}_{S}$. Notice also that if we start with a decomposition $\mathcal{H}=\mathcal{K}_{U} \oplus \mathcal{K}_{S} \oplus \mathcal{K}_{T}$ as in the theorem, then this process will yield $\mathcal{H}_{T}=\mathcal{K}_{T}$ and $\mathcal{H}_{S}=\mathcal{K}_{S}$, so the decomposition is unique.

Proposition 2.5. The subspaces $\mathcal{H}_{U}, \mathcal{H}_{T}$ and $\mathcal{H}_{S}$ are reducing for $V$.
Proof. Since $V_{3}^{*}=V_{3}^{* 2} V_{3}=V_{2}^{* 3} V_{3}$, to prove that a subspace $\mathcal{K}$ is reducing for $V$, it suffices to prove that $\mathcal{K}$ is invariant under $V_{2}, V_{2}^{*}$ and $V_{3}$. It is obvious that each of our subspaces is invariant under $V_{2}$. Since $\mathcal{H}_{U}=\bigcap_{n=0}^{\infty} V_{2}^{n}(\mathcal{H})=$ $\bigcap_{n=1}^{\infty} V_{2}^{n}(\mathcal{H})$, it is invariant under $V_{2}^{*}$, and since $V_{3}\left(V_{2}^{n}(\mathcal{H})\right)=V_{2}^{n}\left(V_{3}(\mathcal{H})\right) \subset V_{2}^{n}(\mathcal{H})$, $n=1$ it is also invariant under $V_{3}$. We have

$$
V_{2}^{*}\left(\bigcup_{n \geqslant 1, j=0,1} V_{2}^{n} V_{3}^{j}\left(\mathcal{H}_{00}\right)\right)=\underset{n \geqslant 0, j=0,1}{\bigcup} V_{2}^{n} V_{3}^{j}\left(\mathcal{H}_{00}\right) \subset \mathcal{H}_{T}
$$

and since $\mathcal{H}_{00}$ and $V_{3}\left(\mathcal{H}_{00}\right)$ are contained in $\mathcal{H}_{0}=V_{2}(\mathcal{H})^{\perp}=\operatorname{ker} V_{2}^{*}$, they are trivially invariant under $V_{2}^{*}$. Thus $\mathcal{H}_{T}$ is invariant under $V_{2}^{*}$, and the same argument shows that $\mathcal{H}_{S}$ is invariant under $V_{2}^{*}$.

It follows from the identity $V_{3}^{2}=V_{2}^{3}$ that $\mathcal{H}_{T}$ is invariant under $V_{3}$. Since $V_{3}\left(\mathcal{K}_{00}\right) \subset V_{2} V_{2}^{*}(\mathcal{H})$, we have $V_{3}\left(V_{2}^{n}\left(\mathcal{K}_{00}\right)\right)=V_{2}^{n}\left(V_{2} V_{2}^{*} V_{3}\left(\mathcal{K}_{00}\right)\right) \subset \mathcal{H}_{S}$, and

$$
\begin{aligned}
V_{3}\left(V_{2}^{n} V_{2}^{*} V_{3}\left(\mathcal{K}_{00}\right)\right) & =\left(V_{2}^{*} V_{2}\right) V_{3} V_{2}^{n} V_{2}^{*} V_{3}\left(\mathcal{K}_{00}\right)=V_{2}^{*} V_{3} V_{2}^{n+1} V_{2}^{*} V_{3}\left(\mathcal{K}_{00}\right) \\
& =V_{2}^{*} V_{3} V_{2}^{n}\left(V_{2} V_{2}^{*} V_{3}\left(\mathcal{K}_{00}\right)\right)=V_{2}^{*} V_{3} V_{2}^{n} V_{3}\left(\mathcal{K}_{00}\right) \\
& =V_{2}^{*} V_{2}^{n} V_{3}^{2}\left(\mathcal{K}_{00}\right)=V_{2}^{*} V_{2}^{n} V_{2}^{3}\left(\mathcal{K}_{00}\right)=V_{2}^{n+2}\left(\mathcal{K}_{00}\right)
\end{aligned}
$$

is also contained in $\mathcal{H}_{S}$.
We next show that $\left.V\right|_{\mathcal{H}_{T}}$ is equivalent to $T \otimes 1_{\mathcal{H}_{00}}$. We identify $\ell^{2}(\mathbb{N}) \otimes \mathcal{H}_{00}$ with $\ell^{2}\left(\mathbb{N} \times\{0,1\}, \mathcal{H}_{00}\right)$, so that on matrices

$$
f:=\left(\begin{array}{lllll}
f_{01} & f_{11} & f_{21} & f_{31} & \cdots \\
f_{00} & f_{10} & f_{20} & f_{30} & \cdots
\end{array}\right)
$$

with $f_{n j} \in \mathcal{H}_{00}, T_{2} \otimes 1$ and $T_{3} \otimes 1$ are defined by the same formulas (2.2) as $T_{2}$ and $T_{3}$. We now recall that the projection $P_{00}$ on $\mathcal{H}_{00}$ is given by $P_{00}=V_{3}^{*} P_{0} V_{3}$,
and define $W_{T}: \mathcal{H}_{T} \rightarrow \ell^{2}\left(\mathbb{N} \times\{0,1\}, \mathcal{H}_{00}\right)$ by

$$
\left(W_{T} h\right)_{n j}=P_{00} V_{3}^{* j} V_{2}^{* n} h
$$

Since $V_{3}^{* j} V_{2}^{* n}$ is an isometry of $V_{2}^{n} V_{3}^{j}\left(\mathcal{H}_{00}\right)$ onto $\mathcal{H}_{00}, W_{T}$ is a unitary isomorphism of $\mathcal{H}_{T}$ onto $\ell^{2}\left(\mathbb{N} \times\{0,1\}, \mathcal{H}_{00}\right)$.

Proposition 2.6. We have $W_{T}\left(\left.V\right|_{\mathcal{H}_{T}}\right) W_{T}^{*}=T \otimes 1$.
Proof. We prove that $\left.W_{T} V_{i}\right|_{\mathcal{H}_{T}}=\left(T_{i} \otimes 1\right) W_{T}$ for $i=2$ and $i=3$. Let $h \in \mathcal{H}_{T}$. Then

$$
W_{T} V_{2} h=\left(\begin{array}{ccccc}
P_{00} V_{3}^{*} V_{2} h & P_{00} V_{3}^{*} V_{2}^{*} V_{2} h & P_{00} V_{3}^{*} V_{2}^{* 2} V_{2} h & P_{00} V_{3}^{*} V_{2}^{* 3} V_{2} h & \cdots  \tag{2.8}\\
P_{00} V_{2} h & P_{00} V_{2}^{*} V_{2} h & P_{00} V_{2}^{* 2} V_{2} h & P_{00} V_{2}^{* 3} V_{2} h & \cdots
\end{array}\right)
$$

and

$$
\left(T_{2} \otimes 1\right) W_{T} h=\left(\begin{array}{ccccc}
0 & P_{00} V_{3}^{*} h & P_{00} V_{3}^{*} V_{2}^{*} h & P_{00} V_{3}^{*} V_{2}^{* 2} h & \ldots  \tag{2.9}\\
0 & P_{00} h & P_{00} V_{2}^{*} h & P_{00} V_{2}^{* 2} h & \ldots
\end{array}\right)
$$

since $P_{00} V_{2}=0$ and

$$
P_{00} V_{3}^{*} V_{2}=\left(V_{3}^{*} P_{0} V_{3}\right) V_{3}^{*} V_{2}=V_{3}^{*}\left(V_{3} V_{3}^{*}\right) P_{0} V_{2}=0
$$

the right-hand sides of (2.8) and (2.9) are the same, and $\left.W_{T} V_{2}\right|_{\mathcal{H}_{T}}=\left(T_{2} \otimes 1\right) W_{T}$. Similarly,

$$
W_{T} V_{3} h=\left(\begin{array}{ccccl}
P_{00} V_{3}^{*} V_{3} h & P_{00} V_{3}^{*} V_{2}^{*} V_{3} h & P_{00} V_{3}^{*} V_{2}^{* 2} V_{3} h & P_{00} V_{3}^{*} V_{2}^{* 3} V_{3} h & \ldots  \tag{2.10}\\
P_{00} V_{3} h & P_{00} V_{2}^{*} V_{3} h & P_{00} V_{2}^{* 2} V_{3} h & P_{00} V_{2}^{* 3} V_{3} h & \cdots
\end{array}\right)
$$

and

$$
\left(T_{3} \otimes 1\right) W_{T} h=\left(\begin{array}{ccccc}
P_{00} h & P_{00} V_{2}^{*} h & P_{00} V_{2}^{* 2} h & P_{00} V_{2}^{* 3} h & \cdots  \tag{2.11}\\
0 & 0 & 0 & P_{00} V_{3}^{*} h & \cdots
\end{array}\right)
$$

Since $V_{3}^{*} V_{2}^{* n} V_{3}=V_{2}^{* n} V_{3}^{*} V_{3}=V_{2}^{* n}$, the top rows of these last two matrices are the same. To see that the bottom rows are also the same, we compute:

$$
\begin{aligned}
P_{00} V_{3} & =\left(V_{3}^{*} P_{0} V_{3}\right) V_{3}=V_{3}^{*} P_{0} V_{2}^{3}=0 \\
P_{00} V_{2}^{*} V_{3} & =P_{00}\left(V_{2}^{*} V_{3}\right)=V_{3}^{*} P_{0} V_{3}\left(V_{3}^{*} V_{2}^{2}\right)=V_{3}^{*} V_{3} V_{3}^{*} P_{0} V_{2}^{2}=0, \text { and } \\
P_{00} V_{2}^{* 2} V_{3} & =\left(V_{3}^{*} P_{0} V_{3}\right)\left(V_{3}^{*} V_{2}\right)=V_{3}^{*} V_{3} V_{3}^{*} P_{0} V_{2}=0
\end{aligned}
$$

and, for $n \geqslant 3$,

$$
P_{00} V_{2}^{* n} V_{3}=P_{00}\left(V_{2}^{*(n-3)} V_{2}^{* 3}\right) V_{3}=P_{00} V_{2}^{*(n-3)} V_{3}^{* 2} V_{3}=P_{00} V_{3}^{*} V_{2}^{*(n-3)}
$$

which tells us that the $n$th entry in the bottom rows of (2.10) and (2.11) agree. Thus $\left.W_{T} V_{3}\right|_{\mathcal{H}_{T}}=\left(T_{3} \otimes 1\right) W_{T}$, and the result follows.

To see that $\left.V\right|_{\mathcal{H}_{S}}$ is a multiple of $S$, define $W_{S}: \mathcal{H}_{S} \rightarrow \ell^{2}\left(\mathbb{N} \times\{0,1\}, \mathcal{K}_{00}\right)$ by

$$
\left(W_{S} h\right)_{n j}=Q_{00} V_{3}^{* j} V_{2}^{j} V_{2}^{* n} h ;
$$

It follows from the direct sum decomposition (2.7) that $W_{S}$ is a unitary isomorphism of $\mathcal{H}_{S}$ onto $\ell^{2}\left(\mathbb{N} \times\{0,1\}, \mathcal{K}_{00}\right)$. On $\ell^{2}\left(\mathbb{N} \times\{0,1\}, \mathcal{K}_{00}\right), S \otimes 1$ is given by the formulas (2.1).

Proposition 2.7. We have $W_{S}\left(\left.V\right|_{\mathcal{H}_{S}}\right) W_{S}^{*}=S \otimes 1$.
Proof. The proof follows the same strategy as that of Proposition 2.6, but some of the calculations are a bit trickier, so we include the details. We prove that $\left.W_{S} V_{i}\right|_{\mathcal{H}_{S}}=\left(S_{i} \otimes 1\right) W_{S}$ for $i=2$ and $i=3$. Let $h \in \mathcal{H}_{S}$. Then

$$
W_{S} V_{2} h=\left(\begin{array}{cccc}
Q_{00} V_{3}^{*} V_{2} V_{2} h & Q_{00} V_{3}^{*} V_{2} V_{2}^{*} V_{2} h & Q_{00} V_{3}^{*} V_{2} V_{2}^{* 2} V_{2} h & \cdots  \tag{2.12}\\
Q_{00} V_{2} h & Q_{00} V_{2}^{*} V_{2} h & Q_{00} V_{2}^{* 2} V_{2} h & \cdots
\end{array}\right)
$$

and

$$
\left(S_{2} \otimes 1\right) W_{S} h=\left(\begin{array}{ccccc}
0 & Q_{00} V_{3}^{*} V_{2} h & Q_{00} V_{3}^{*} V_{2} V_{2}^{*} h & Q_{00} V_{3}^{*} V_{2} V_{2}^{* 2} h & \cdots  \tag{2.13}\\
0 & Q_{00} h & Q_{00} V_{2}^{*} h & Q_{00} V_{2}^{* 2} h & \cdots
\end{array}\right) .
$$

Since $Q_{00} V_{2}=V_{3}^{*} P_{1} V_{3} P_{0} V_{2}=0$ and

$$
Q_{00} V_{3}^{*} V_{2}^{2}=\left(P_{0} V_{3}^{*} P_{1} V_{3}\right) V_{3}^{*} V_{2}^{2}=P_{0} V_{3}^{*}\left(V_{3} V_{3}^{*}\right) P_{1} V_{2}^{2}=0,
$$

the right-hand sides of (2.12) and (2.13) are the same, and $W_{S} V_{2}=\left(S_{2} \otimes 1\right) W_{S}$ on $\mathcal{H}_{S}$. Next we compare

$$
W_{S} V_{3} h=\left(\begin{array}{cccc}
Q_{00} V_{3}^{*} V_{2} V_{3} h & Q_{00} V_{3}^{*} V_{2} V_{2}^{*} V_{3} h & Q_{00} V_{3}^{*} V_{2} V_{2}^{* 2} V_{3} h & \cdots  \tag{2.14}\\
Q_{00} V_{3} h & Q_{00} V_{2}^{*} V_{3} h & Q_{00} V_{2}^{* 2} V_{3} h & \cdots
\end{array}\right)
$$

and

$$
\left(S_{3} \otimes 1\right) W_{S} h=\left(\begin{array}{cccccc}
0 & Q_{00} h & Q_{00} V_{2}^{*} h & Q_{00} V_{2}^{* 2} h & Q_{00} V_{2}^{* 3} h & \cdots  \tag{2.15}\\
0 & 0 & Q_{00} V_{3}^{*} V_{2} h & Q_{00} V_{3}^{*} V_{2} V_{2}^{*} h & Q_{00} V_{3}^{*} V_{2} V_{2}^{* 2} h & \cdots
\end{array}\right) .
$$

The necessary three entries in (2.14) do indeed vanish:

$$
\begin{aligned}
Q_{00} V_{3} & =P_{0} V_{3}^{*} P_{1} V_{3}^{2}=P_{0} V_{3}^{*} P_{1} V_{2}^{3}=0, \\
Q_{00} V_{3}^{*} V_{2} V_{3} & =Q_{00} V_{3}^{*} V_{3} V_{2}=\left(V_{3}^{*} P_{1} V_{3} P_{0}\right) V_{2}=0, \text { and } \\
Q_{00} V_{2}^{*} V_{3} & =\left(P_{0} V_{3}^{*} P_{1} V_{3}\right)\left(V_{3}^{*} V_{2}^{2}\right)=P_{0} V_{3}^{*}\left(V_{3} V_{3}^{*}\right) P_{1} V_{2}^{2}=0 .
\end{aligned}
$$

For $n \geqslant 1$, we expand the $n$th entry in the top row of (2.14) using the identity $P_{1}=P_{1} V_{2} V_{2}^{*}$ :

$$
\begin{aligned}
Q_{00} V_{3}^{*} V_{2} V_{2}^{* n} V_{3} h & =\left(P_{0} V_{3}^{*} P_{1} V_{3}\right) V_{3}^{*} V_{2} V_{2}^{*} V_{2}^{*(n-1)} V_{3} h \\
& =P_{0} V_{3}^{*}\left(V_{3} V_{3}^{*}\right) P_{1} V_{2} V_{2}^{*} V_{2}^{*(n-1)} V_{3} h \\
& =P_{0} V_{3}^{*}\left(V_{3} V_{3}^{*}\right) P_{1} V_{2}^{*(n-1)} V_{3} h=P_{0} V_{3}^{*} P_{1}\left(V_{3} V_{3}^{*}\right) V_{2}^{*(n-1)} V_{3} h \\
& =\left(P_{0} V_{3}^{*} P_{1} V_{3}\right) V_{2}^{*(n-1)} V_{3}^{*} V_{3} h=Q_{00} V_{2}^{*(n-1)} h,
\end{aligned}
$$

which is the $n$th entry in the top row of (2.15). Now we let $n \geqslant 2$, and work on the $n$th entry in the bottom row of (2.14), again using $P_{1}=P_{1} V_{2} V_{2}^{*}$ :

$$
\begin{aligned}
Q_{00} V_{2}^{* n} V_{3} h & =Q_{00} V_{2}^{*(n-2)} V_{2}^{* 2} V_{3} h=Q_{00} V_{2}^{*(n-2)} V_{3}^{*} V_{2} h=Q_{00} V_{3}^{*} V_{2}^{*(n-2)} V_{2} h \\
& =\left(P_{0} V_{3}^{*} P_{1} V_{3}\right) V_{3}^{*} V_{2}^{*(n-2)} V_{2} h=P_{0} V_{3}^{*}\left(V_{3} V_{3}^{*}\right) P_{1} V_{2}^{*(n-2)} V_{2} h \\
& =P_{0} V_{3}^{*}\left(V_{3} V_{3}^{*}\right)\left(P_{1} V_{2} V_{2}^{*}\right) V_{2}^{*(n-2)} V_{2} h \\
& =\left(P_{0} V_{3}^{*} P_{1} V_{3}\right) V_{3}^{*} V_{2} V_{2}^{*(n-1)} V_{2} h=Q_{00} V_{3}^{*} V_{2} V_{2}^{*(n-2)} h,
\end{aligned}
$$

which is the $n$th entry in the bottom row of (2.15). We have now proved that $W_{S} V_{2}=\left(S_{3} \otimes 1\right) W_{S}$ on $\mathcal{H}_{S}$, and the result follows.

Proposition 2.7 completes the proof of Theorem 2.1.
Corollary 2.8. Define $\phi: \mathbb{N}^{2} \rightarrow \Sigma$ by $\phi(p, j)=2 p+3 j$, and suppose $V$ is an isometric representation of $\Sigma$ on $\mathcal{H}$ with commuting range projections. If $V \circ \phi$ is a Nica covariant representation of $\left(\mathbb{Z}^{2}, \mathbb{N}^{2}\right)$, then every $V_{n}$ is unitary.

Proof. For $\left(\mathbb{Z}^{2}, \mathbb{N}^{2}\right)$, Nica covariance says that $V_{2}^{*}=(V \circ \phi(1,0))^{*}$ commutes with $V_{3}=V \circ \phi(0,1)$. For both $V=S$ and $V=T$, we can write down elements of $\mathcal{H}$ which are in the kernel of $V_{3} V_{2}^{*}$ but not in the kernel of $V_{2}^{*} V_{3}$. So for general $V$, if either $\mathcal{H}_{S}$ or $\mathcal{H}_{T}$ were non-zero, we could find elements of $\mathcal{H}_{S}$ or $\mathcal{H}_{T}$ with the same property. Thus $\mathcal{H}=\mathcal{H}_{U}$, and the result follows from Theorem 2.1.

## 3. THE $C^{*}$-ALGEBRA OF $\Sigma$

Modifications of the standard arguments (as in [5], for example) show that there is a unital $C^{*}$-algebra $C^{*}(\Sigma)$ generated by an isometric representation $v$ : $\Sigma \rightarrow C^{*}(\Sigma)$ with commuting range projections which is universal for such representations: for every isometric representation $V: \Sigma \rightarrow B$ with commuting range projections, there is a unique homomorphism $\pi_{V}: C^{*}(\Sigma) \rightarrow B$ such that $V=\pi_{V} \circ v$. In this section we describe conditions on $V$ which ensure that $\pi_{V}$ is faithful, and give a concrete description of $C^{*}(\Sigma)$ in terms of the usual Toeplitz algebra $\mathcal{T}$.

THEOREM 3.1. Let $\Sigma:=\mathbb{N} \backslash\{1\}$, and let $V: \Sigma \rightarrow B(\mathcal{H})$ be an isometric representation with commuting range projections. Then the representation $\pi_{V}$ of $C^{*}(\Sigma)$ is faithful if and only if

$$
\begin{equation*}
V_{3}^{*}\left(V_{2} V_{2}^{*}-V_{2}^{2} V_{2}^{* 2}\right) V_{3}\left(1-V_{2} V_{2}^{*}\right) \neq 0 \quad \text { and } \quad V_{3}^{*}\left(1-V_{2} V_{2}^{*}\right) V_{3} \neq 0 \tag{3.1}
\end{equation*}
$$

Since $V_{3}^{*}\left(V_{2} V_{2}^{*}-V_{2}^{2} V_{2}^{* 2}\right) V_{3}\left(1-V_{2} V_{2}^{*}\right)$ and $V_{3}^{*}\left(1-V_{2} V_{2}^{*}\right) V_{3}$ are the projections on $\mathcal{K}_{00}$ and $\mathcal{H}_{00}$, (3.1) says that the subspaces $\mathcal{H}_{T}$ and $\mathcal{H}_{S}$ in the decomposition of Theorem 2.1 are both non-zero. So Theorem 3.1 implies in particular that $\pi_{T \oplus S}$ is faithful.

Proof. First notice that in the representation $\pi_{S}$, the operator

$$
\pi_{S}\left(v_{3}^{*}\left(v_{2} v_{2}^{*}-v_{2}^{2} v_{2}^{* 2}\right) v_{3}\left(1-v_{2} v_{2}^{*}\right)\right)=S_{3}^{*}\left(S_{2} S_{2}^{*}-S_{2}^{2} S_{2}^{* 2}\right) S_{3}\left(1-S_{2} S_{2}^{*}\right)
$$

fixes the vector $e_{\mathbb{N}, 0}$, and hence $v_{3}^{*}\left(v_{2} v_{2}^{*}-v_{2}^{2} v_{2}^{* 2}\right) v_{3}\left(1-v_{2} v_{2}^{*}\right)$ is non-zero in $C^{*}(\Sigma)$. Similarly, $\pi_{T}\left(v_{3}^{*}\left(1-v_{2} v_{2}^{*}\right) v_{3}\right)$ fixes $e_{\Sigma, 0}$, and $v_{3}^{*}\left(1-v_{2} v_{2}^{*}\right) v_{3} \neq 0$. So if $\pi_{V}$ is faithful, the images of both these elements of $C^{*}(\Sigma)$ must be non-zero, which is exactly what (3.1) says.

Now suppose $V$ satisfies (3.1), and consider the decomposition $\mathcal{H}=\mathcal{H}_{U} \oplus$ $\mathcal{H}_{T} \oplus H_{S}$ of Theorem 2.1, noticing that (3.1) implies that $\mathcal{H}_{S}$ and $\mathcal{H}_{T}$ are non-zero. Write $V_{U}:=\left.V\right|_{\mathcal{H}_{U}}, V_{T}:=\left.V\right|_{\mathcal{H}_{T}}$ and $V_{S}:=\left.V\right|_{\mathcal{H}_{S}}$, and fix $a \in C^{*}(\Sigma)$. Then we can check on generators that $\pi_{V}=\pi_{V_{U}} \oplus \pi_{V_{T}} \oplus \pi_{V_{S}}$, and hence we have

$$
\begin{equation*}
\left\|\pi_{V}(a)\right\|=\max \left\{\left\|\pi_{V_{U}}(a)\right\|,\left\|\pi_{V_{T}}(a)\right\|,\left\|\pi_{V_{S}}(a)\right\|\right\} . \tag{3.2}
\end{equation*}
$$

Since $\mathcal{H}_{T}$ is non-zero and $V_{T} \sim T \otimes 1$, and we can check on generators that $\pi_{T \otimes 1}=\pi_{T} \otimes 1$, we have $\pi_{V_{T}} \sim \pi_{T} \otimes 1$. Similarly, $\pi_{V_{S}} \sim \pi_{S} \otimes 1$. Thus (3.2) implies that

$$
\left\|\pi_{V}(a)\right\|=\max \left\{\left\|\pi_{V_{U}}(a)\right\|,\left\|\pi_{T}(a)\right\|,\left\|\pi_{S}(a)\right\|\right\}
$$

The operator $\pi_{V_{U}}(a) \oplus \pi_{S}(a)$ belongs to the $C^{*}$-algebra generated by $U_{1} \oplus R$, where $U_{1}=\left(V_{U}\right)_{2}^{-1}\left(V_{U}\right)_{3}$ is unitary and $R=S_{2}^{*} S_{3}$ is the unilateral shift, and hence the Lemma on page 724 of [1] implies that $\left\|\pi_{V_{U}}(a)\right\| \leqslant\left\|\pi_{S}(a)\right\|$. Thus

$$
\left\|\pi_{V}(a)\right\|=\max \left\{\left\|\pi_{T}(a)\right\|,\left\|\pi_{S}(a)\right\|\right\}
$$

Since every $C^{*}$-algebra has a faithful representation and every representation of $C^{*}(\Sigma)$ has the form $\pi_{W}$, there is a faithful representation of the form $\pi_{W}$, and then $\mathcal{H}_{T}$ and $\mathcal{H}_{S}$ are both non-zero by the first part of the proof. We can then deduce from the argument of the previous paragraph that

$$
\|a\|=\left\|\pi_{W}(a)\right\|=\max \left\{\left\|\pi_{T}(a)\right\|,\left\|\pi_{S}(a)\right\|\right\}=\left\|\pi_{V}(a)\right\|
$$

which since $a$ is an arbitrary element of $C^{*}(\Sigma)$ implies that $\pi_{V}$ is faithful.
We can view the Toeplitz algebra $\mathcal{T}$ either as the $C^{*}$-subalgebra of $B\left(\ell^{2}(\mathbb{N})\right)$ generated by the unilateral shift, or as the $C^{*}$-subalgebra of $B\left(L^{2}(\mathbb{T})\right)$ generated by the Toeplitz operators $T_{\phi}$ with symbol $\phi \in C(\mathbb{T})$. In either realisation, $\mathcal{T}$ contains the algebra $\mathcal{K}$ of compact operators, and the quotient $\mathcal{T} / \mathcal{K}$ is naturally isomorphic to $C(\mathbb{T})$. In the proof of the following theorem we realise $\mathcal{T}$ as a subalgebra of $B\left(\ell^{2}(\mathbb{N})\right)$.

THEOREM 3.2. Let $\Sigma:=\mathbb{N} \backslash\{1\}$ and let $q: \mathcal{T} \rightarrow \mathcal{T} / \mathcal{K}$ be the quotient map. Then $C^{*}(\Sigma)$ is isomorphic to

$$
C:=\{(A, B) \in \mathcal{T} \oplus \mathcal{T}: q(A)=q(B)\}
$$

For the proof, we need a lemma.

Lemma 3.3. Let $U: \ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\Sigma)$ be the unitary isomorphism such that $U e_{\mathbb{N}, 0}$ $=e_{\Sigma, 0}$ and $U e_{\mathbb{N}, n}=e_{\Sigma, n+1}$ for $n \geqslant 1$. Then $U^{*} T_{p} U-S_{p}$ is a finite-rank operator on $\ell^{2}(\mathbb{N})$ for every $p \in \Sigma$.

Proof. If $p=0$ the result is trivial, so suppose $p \in \Sigma \backslash\{0\}$. We now compute, using the notation $h \otimes \bar{k}$ for the rank-one operator $g \mapsto(g \mid k) h$ :

$$
\left(U^{*} T_{p} U\right) e_{\mathbb{N}, 0}=e_{\mathbb{N}, p-1}=\left(S_{p}+e_{\mathbb{N}, p-1} \otimes \bar{e}_{\mathbb{N}, 0}-e_{\mathbb{N}, p} \otimes \bar{e}_{\mathbb{N}, 0}\right) e_{\mathbb{N}, 0}
$$

and for $n \geqslant 1$,

$$
\left(U^{*} T_{p} U\right) e_{\mathbb{N}, n}=e_{\mathbb{N}, n+p}=\left(S_{p}+e_{\mathbb{N}, p-1} \otimes \bar{e}_{\mathbb{N}, 0}-e_{\mathbb{N}, p} \otimes \bar{e}_{\mathbb{N}, 0}\right) e_{\mathbb{N}, n}
$$

Thus $U^{*} T_{p} U-S_{p}=e_{\mathbb{N}, p-1} \otimes \bar{e}_{\mathbb{N}, 0}-e_{\mathbb{N}, p} \otimes \bar{e}_{\mathbb{N}, 0}$.
Proof of Theorem 3.2. Theorem 3.1 implies that $\pi_{S \oplus T}=\pi_{S} \oplus \pi_{T}$ is faithful. Take $U$ as in Lemma 3.3, and define $\psi: C^{*}(\Sigma) \rightarrow B\left(\ell^{2}(\mathbb{N})\right) \oplus B\left(\ell^{2}(\mathbb{N})\right)$ by $\psi(a)=$ $\left(\pi_{S}(a), U^{*} \pi_{T}(a) U\right)$. We claim that $\psi$ is an isomorphism of $C^{*}(\Sigma)$ onto $C$. It is injective because $\pi_{S} \oplus \pi_{T}$ is. Since the operators $\pi_{S}\left(v_{p}\right)=S_{p}$ are all powers of the unilateral shift, and Lemma 3.3 implies that $U^{*} \pi_{T}\left(v_{p}\right) U=U^{*} T_{p} U$ differs from $S_{p}$ by a finite-rank operator, $\psi$ has range in C. So it remains to prove that every element of $C$ is in the range of $\psi$.

Let $(A, A+K) \in C$. Since $S_{2}^{*} S_{3}=\pi_{S}\left(v_{2}^{*} v_{3}\right)$ is the unilateral shift, $\pi_{S}$ maps $C^{*}(\Sigma)$ onto $\mathcal{T}$. Thus there exists $a \in C^{*}(\Sigma)$ such that $\pi_{S}(a)=A$, and then

$$
A+K=U^{*} \pi_{T}(a) U+\left(\pi_{S}(a)-U^{*} \pi_{T}(a) U\right)+K
$$

which is $U^{*} \pi_{T}(a) U+L$, say, where $L$ is compact. So we need to show that $(0, L)$ is in the range of $\psi$, and to do this it suffices to show that every rank-one operator $\left(0, e_{\mathbb{N}, i} \otimes \bar{e}_{\mathbb{N}, j}\right)$ is in the range of $\psi$. Computations show that

$$
\begin{aligned}
\psi\left(1-\left(v_{2}^{*} v_{3}\right)^{*}\left(v_{2}^{*} v_{3}\right)\right) & =\left(0, e_{\mathbb{N}, 0} \otimes \bar{e}_{\mathbb{N}, 0}\right), \\
\psi\left(v_{2} v_{2}^{*}\left(1-\left(v_{2}^{*} v_{3}\right)\left(v_{2}^{*} v_{3}\right)^{*}\right)\right) & =\left(0, e_{\mathbb{N}, 1} \otimes \bar{e}_{\mathbb{N}, 1}\right), \text { and } \\
\psi\left(v_{i+1} v_{i+1}^{*}\left(1-v_{i} v_{i}^{*}\right)\right) & =\left(0, e_{\mathbb{N}, i} \otimes \bar{e}_{\mathbb{N}, i}\right) \quad \text { for } i \geqslant 2,
\end{aligned}
$$

so for each $i$ there exists $b_{i} \in C^{*}(\Sigma)$ such that $\psi\left(b_{i}\right)=\left(0, e_{\mathbb{N}, i} \otimes \overline{\mathcal{e}}_{\mathbb{N}, i}\right)$. Now some more calculations show that if $j \geqslant 1$, then

$$
\begin{align*}
\psi\left(b_{0} v_{j+1}^{*}\right) & =\left(0, e_{\mathbb{N}, 0} \otimes \bar{e}_{\mathbb{N}, j}\right), \text { and }  \tag{3.3}\\
\psi\left(b_{i} v_{i+1} v_{j+1}^{*}\right) & =\left(0, e_{\mathbb{N}, i} \otimes \bar{e}_{\mathbb{N}, j}\right) \quad \text { for every } i \geqslant 1
\end{align*}
$$

the adjoint of (3.3) shows that every $\left(0, e_{\mathbb{N}, j} \otimes \bar{e}_{\mathbb{N}, 0}\right)$ is also in the range of $\psi$. Thus every $\left(0, e_{\mathbb{N}, i} \otimes \bar{e}_{\mathbb{N}, j}\right)$ is in the range of $\psi$, as required.

REMARK 3.4. This structure theorem for $C^{*}(\Sigma)$, or more precisely the lemma used to prove it, has some interesting implications for Toeplitz operators. Let $e_{n}: z \mapsto z^{n}$ be the usual orthonormal basis for $L^{2}(\mathbb{T})$, let $H^{2}(\Sigma)$ be the closed span of $\left\{e_{n}: n \in \Sigma\right\}$, let $P^{\Sigma}$ be the orthogonal projection of $L^{2}(\mathbb{T})$ on $H^{2}(\Sigma)$, and define the Toeplitz operator $T_{\phi}^{\Sigma}$ with symbol $\phi \in C(\mathbb{T})$ by $T_{\phi}^{\Sigma}(f)=P^{\Sigma}(\phi f)$. The
usual Hardy space $H^{2}(\mathbb{T})$ is naturally isomorphic to $\ell^{2}(\mathbb{N})$, and the usual Toeplitz operator $T_{e_{n}}$ is then equivalent to $S_{n}$; the same isomorphism carries $H^{2}(\Sigma)$ onto $\ell^{2}(\Sigma)$, and $T_{e_{n}}^{\Sigma}$ into $T_{n}$. Let $U: H^{2}(\mathbb{T}) \rightarrow H^{2}(\Sigma)$ be the unitary operator such that $U e_{0}=e_{0}$ and $U e_{n}=e_{n+1}$ for $n \geqslant 1$. Then Lemma 3.3 implies that $U^{*} T_{e_{n}}^{\Sigma} U-T_{e_{n}}$ has finite rank, and we can deduce from the linearity and continuity of the maps $\phi \mapsto T_{\phi}^{\Sigma}$ and $\phi \mapsto T_{\phi}$ that $U^{*} T_{\phi}^{\Sigma} U-T_{\phi}$ is compact for every $\phi \in C(\mathbb{T})$. It follows that $T_{\phi}^{\Sigma}$ is Fredholm if and only if $T_{\phi}$ is Fredholm, that is, if and only if $\phi$ is non-vanishing, and the usual index theorem then gives

$$
\text { ind } T_{\phi}^{\Sigma}=\operatorname{ind} T_{\phi}=-\operatorname{deg} \phi
$$

Acknowledgements. Research supported by the Australian Research Council.

## REFERENCES

[1] L.A. Coburn, The $C^{*}$-algebra generated by an isometry, Bull. Amer. Math. Soc. 73(1967), 722-726.
[2] R.G. Douglas, On the $C^{*}$-algebra of a one-parameter semigroup of isometries, Acta Math. 128(1972), 143-152.
[3] S.Y. JANG, Uniqueness property of $C^{*}$-algebras like the Toeplitz algebra, Trends Math. 6(2003), 29-32.
[4] M. Laca, I. Raeburn, Semigroup crossed products and the Toeplitz algebras of nonabelian groups, J. Funct. Anal. 139(1996), 415-440.
[5] G.J. Murphy, Ordered groups and Toeplitz algebras, J. Operator Theory 18(1987), 303326.
[6] A. Nica, $C^{*}$-algebras generated by isometries and Wiener-Hopf operators, J. Operator Theory 27(1992), 17-52.

IAIN RAEBURN, School of Mathematics and Applied Statistics, UniverSity of Wollongong, NSW 2522, Australia

E-mail address: raeburn@uow.edu.au
SEAN T. Vittadello, School of Mathematical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia

E-mail address: sean.vittadello@newcastle.edu.au

Received February 19, 2007.

