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ABSTRACT. We prove that independent rectangular random matrices, when
embedded in an algebra of larger square matrices, are asymptotically free with
amalgamation over a commutative finite dimensional subalgebra D (under
an hypothesis of unitary invariance). Then we consider elements of a W∗-
probability space containing D, which have kernel and range projection in D.
We associate to them a free entropy constructed with micro-states given by
rectangular matrices. We also associate to them a free Fisher’s information
with a conjugate variables approach. Both approaches give rise to optimiza-
tion problems whose solutions involve freeness with amalgamation overD. It
could possibly be a first proposition for the study of sets of operators between
different Hilbert spaces with the tools of free probability. As an application,
we prove a result of freeness with amalgamation between the two parts of the
polar decomposition of R-diagonal elements with nontrivial kernel.
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INTRODUCTION

In a previous paper [3], we considered an independent family of rectangular
random matrices with different sizes, say n×p, p×n, n×n and p×p. We embedded
them, as blocks, in (n + p)×(n + p) matrices by the following rules

(0.1) M→



[
M 0
0 0

]
if M is n×n,

[
0 M
0 0

]
if M is n×p,

[
0 0
0 M

]
if M is p×p,

[
0 0
M 0

]
if M is p×n,

and we proved that under an assumption of invariance under actions of unitary
groups and of convergence of singular laws (i.e. uniform distribution on eigen-
values of the absolute value), the embedded matrices are asymptotically free with
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amalgamation on the two-dimensional commutative subalgebra D generated by
the projectors [

In 0
0 0

]
,
[

0 0
0 Ip

]
.

Asymptotically refers to the limit when n, p → ∞ in a ratio having a non neg-
ative limit. In fact, we considered not only two sizes n, p, but a finite family
q1(n), . . . , qd(n) of sizes, and the large matrices were represented as d×d block
matrices.

In this paper, we prove a similar result with different techniques (which
allows us to remove the hypothesis of convergence of singular laws). Then we
consider a W∗-probability space (A, ϕ) endowed with a finite dimensional com-
mutative subalgebra D. Note that such a situation can arise if one considers op-
erators between different spaces, say H1, H2, and embeds them in B(H1 ⊕ H2)
as it was made for matrices in (0.1). We define a microstate free entropy for N-
tuples (a1, . . . , aN) of elements of A which have kernel and range projections in
D: it is the asymptotic logarithm of the volume of N-tuples of rectangular matri-
ces whose joint distribution (under the state defined by the trace) is closed to the
joint distribution of (a1, . . . , aN) in (A, ϕ).

This free entropy is subadditive, and we prove that it is additive only on
families which are free with amalgamation over D. This is one of the properties
that has made us consider this free entropy possibly relevant to study sets of op-
erators between different Hilbert spaces with the tools of free probability. These
results are proved using some change of variable formulae we establish here.
These formulae still remain valid for Voiculescu’s free entropy for nonhermitian
operators, as it is defined in Section 1.2 of [32] or p. 279 of [10].

Another optimization problem has given rise to an interesting analogy. In
the previous paper [3], for each λ ∈ (0, 1), we defined a free convolution µ�λν

of symmetric probability measures as the distribution in (qAq, 1
ϕ(q) ϕ) of a + b,

where a, b are free with amalgamation over D, have kernel projection 6 p = 1−
q ∈ D and range projection 6 q such that ϕ(q)

ϕ(p) = λ, and have symmetrized dis-

tributions µ, ν in (qAq, 1
ϕ(q) ϕ). We established, in [2], and deepened, in [1], [4], a

correspondence (like the Bercovici–Pata bijection) between �λ-infinitely divisible
distributions and ∗-infinitely divisible distributions. In this correspondence, the
analogue of Gaussian distributions are symmetrizations of Marchenko–Pastur
distributions. In this paper, we prove that among the set of elements a with ker-
nel projection 6 p and range projection 6 q and such that ϕ(aa∗) 6 ϕ(q), the
elements which maximize free entropy are the elements a such that the distribu-
tion of aa∗ in (qAq, 1

ϕ(q) ϕ) is a Marchenko–Pastur distribution.
We also construct a free Fisher’s information with the conjugate variables

approach for elements which have kernel and range projections in D. We have
a Cramér–Rao inequality, where Marchenko–Pastur distributions appear again
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as the distributions which realize equality, and a superadditivity result where
freeness with amalgamation over D is equivalent to additivity (when quantities
are finite).

The main relevance, according to the author, of these problems of optimiza-
tion, is the legitimization of these notions. Indeed, the analogous problems, for the
classical entropy and information on the one hand and for the entropy and the
information defined by Voiculescu on the other hand, have been solved (see [9],
[10], [15], [16], [14]), and the solutions were actually the analogues of the solu-
tions given here. This supports the idea that the notions proposed here are the
right ones to apply the tools and the ideas of free probability theory to the study
of operators between different Hilbert spaces. Moreover, the solutions of opti-
mization problems for entropy and information under certain constraints are, in
a sense, the generic objects which realize these constraints.

In Section 1 and 2, we define the objects we are going to use and we recall
definitions and basic properties of operator valued cumulants.

In Section 3, we prove that under certain hypothesis, freeness with respect
to the state ϕ implies freeness with amalgamation over the finite dimensional
commutative algebraD. As an application, we prove a result about polar decom-
position of R-diagonal elements with nontrivial kernel: the partial isometry and
the positive part are free with amalgamation over the algebra generated by the
kernel projection.

In Section 4, we prove asymptotic freeness with amalgamation over D of
rectangular independent random matrices (as a consequence of results of the pre-
vious section). This result is used in Section 5, where we define our microstates
free entropy and solve the optimization problems we talked about above, using
some change of variable formulae we establish in the same section. Similarly, in
Section 6, we construct our free Fisher’s information with the conjugate variables
approach and solve some optimization problems.

1. DEFINITIONS

In this section, we will define the spaces and the notions. For all d integer,
we denote by [d] the set {1, . . . , d}.

Consider a tracial ∗-noncommutative probability space (A, ϕ) endowed
with a family (p1, . . . , pd) of self-adjoint nonzero projectors (i.e. ∀i, p2

i = pi) which
are pairwise orthogonal (i.e. ∀i 6= j, pi pj = 0), and such that p1 + · · ·+ pd = 1.
Any element x of A can then be represented

x =

x11 · · · x1d
...

...
xd1 · · · xdd

 ,
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where ∀i, j, xij = pixpj. This notation is compatible with the product and the
involution.

Let us define, for all i, j ∈ [d], Ai,j = piApj (the comma between i and j will
often be omitted). We call simple elements the nonzero elements of the union of
the Aij’s (i, j ∈ [d]). We define ϕi := 1

ρi
ϕ|Aii

, with ρi := ϕ(pi). Note that, since ϕ

is a trace, every ϕi is a trace, but for i, j ∈ [d], a ∈ Aij, b ∈ Aji, one has

(1.1) ρi ϕi(ab) = ρj ϕj(ba).

Note also that the linear span D of {p1, . . . , pd} is a ∗-algebra, which will be
identified to the set of d×d diagonal complex matrices by

d

∑
i=1

λi pi ' diag(λ1, . . . , λd).

The application E, which maps x ∈ A to diag(ϕ1(x11), . . . , ϕd(xdd)), is then a
conditional expectation from A to D:

∀(d, a, d′) ∈ D ×A×D, E(dad′) = d E(a)d′.

A family (Ai)i∈I of subalgebras of A which all contain D is said to be free
with amalgamation over D if for all n, i1 6= · · · 6= in ∈ I, for all x(1) ∈ Ai1 ∩
ker E, . . . , x(n) ∈ Ain ∩ ker E, one has

(1.2) E(x(1)) · · ·E(x(n)) = 0.

A family (χi)i∈I of subsets of A is said to be free with amalgamation over D if
there exists free with amalgamation overD subalgebras (Ai)i∈I (which all contain
D) such that for all i, χi ⊂ Ai.

The D-distribution of a family (ai)i∈I of elements of A is the application
which maps a word Xε0

i0
d1Xε1

i1
· · ·Xεn

in dn in Xi, X∗i (i ∈ I) and elements d1, . . . of
D to E(aε0

i0
d1aε1

i1
· · · aεn

in dn).
It is easy to see that the D-distribution of a free with amalgamation over D

family depends only on the individual D-distributions.
Consider a sequence (An, ϕn) of tracial ∗-noncommutative probability

spaces such that for all n,D can be identified with a ∗-subalgebra ofAn (the iden-
tification is not supposed to preserve the state). The convergence in D-distribution
of a sequence (ai(n))i∈I of families of elements of the An’s to a family (ai)i∈I of
A is the pointwise convergence of the sequence of D-distributions. In this case,
if I =

⋃
s∈S

Is is a partition of I, then the family of subsets ({ai(n) ; i ∈ Is})s∈S

is said to be asymptotically free with amalgamation over D if the family of subsets
({ai ; i ∈ Is})s∈S is free with amalgamation over D.

It is easy to see that the D-distribution of a free with amalgamation over D
family depends only on the individual D-distributions.
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2. CUMULANTS

The theory of cumulants in a D-probability space (i.e. in an algebra en-
dowed with a conditional expectation on a subalgebra D) has been developed
in [24]. In this section, we will begin by giving the main lines of this theory, and
then we will investigate the special case of the situation we presented in the pre-
vious section.

2.1. GENERAL THEORY OF CUMULANTS IN A D-PROBABILITY SPACE. In this sec-
tion, we consider an algebra A, a subalgebra D of A, and a conditional expecta-
tion E form A to D.

Let us begin with algebraic definitions. A D-bimodule is a vector space
M over C such that the algebra D acts on M on the right and on the left. The
tensor product M ⊗D N of two D-bimodules M, N is their tensor product as C-
vector spaces, where for all (m, d, n) ∈ M×D×N, (m · d)⊗ n and m⊗ (d · n) are
identified. M⊗D N is endowed with a structure of D-bimodule by d1 · (m⊗ n) ·
d2 = (d1 ·m)⊗ (n · d2). This allows us to define, for n positive integer, A⊗Dn =
A⊗D · · · ⊗D A︸ ︷︷ ︸

n times

.

Consider a sequence ( fn)n>1 of maps, each fn being a D-bimodule mor-
phism between A⊗Dn and D. For n positive integer and π ∈ NC(n) (noncross-
ing partition of [n]), we define the D-bimodule morphism fπ between A⊗Dn and
D in the following way: if π = 1n is the one-block partition, fπ = fn. In the
other case, a block V of π is an interval [k, l]. If k = 1 (respectively l = n),
then fπ(a1⊗· · ·⊗ an) = fl−k+1(a1⊗· · ·⊗ al) fπ\{V}(al+1⊗· · ·⊗ an) (respectively
fπ\{V}(a1 ⊗ · · · ⊗ ak−1) fl−k+1(ak ⊗ · · · ⊗ an)). In the other case, one has 1 < k 6
l < n. Then fπ(a1 ⊗ · · · ⊗ an) is defined to be fπ\{V}(a1 ⊗ · · · ⊗ ak−1 fl−k+1(ak ⊗
· · · ⊗ al)⊗ al+1⊗ · · · ⊗ an) or fπ\{V}(a1⊗ · · · ⊗ ak−1⊗ fl−k+1(ak⊗ · · · ⊗ al)al+1⊗
· · · ⊗ an), both are the same by definition of ⊗D .

For example, if π = {{1, 6, 8}, {2, 5}, {3, 4}, {7}, {9}}, then

fπ(a1 ⊗ · · · ⊗ a9) = f3(a1 f2(a2 f2(a3 ⊗ a4)⊗ a5)⊗ a6 f1(a7)⊗ a8) f1(a9).

Let us define, for all n > 1, the D-bimodule morphism En between A⊗Dn

andD which maps a1⊗ · · · ⊗ an to E(a1 · · · an). Then one can define the sequence
(cn)n>1 of maps, each cn being a D-bimodule morphism between A⊗Dn and D,
by one of the following four equivalent formulae:

∀n, ∀π ∈ NC(n), Eπ = ∑
σ6π

cσ;(2.1)

∀n, En = ∑
σ∈NC(n)

cσ;(2.2)

∀n, ∀π ∈ NC(n), cπ = ∑
σ6π

µ(σ, π) Eσ;(2.3)
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∀n, cn = ∑
σ∈NC(n)

µ(σ, 1n) Eσ;(2.4)

where µ is the Möbius function [20], [14] of the lattice NC(n) endowed with the
refinement order.

The following result is a consequence of Proposition 3.3.3 of [24], used with
the formula of cumulants with products as entries ([26], Theorem 2), which can
be generalized to D-probability spaces.

THEOREM 2.1. A family (χi)i∈I of subsets ofA is free with amalgamation overD
if and only if for all n > 2, for all non constant i ∈ In, for all a1 ∈ χi1 , . . . , an ∈ χin , one
has cn(a1 ⊗ · · · ⊗ an) = 0.

Note that this theorem is a little improvement of Theorem 1 of [26].

2.2. THE SPECIAL CASE WHERE D = Span(p1, . . . , pd). For the rest of the text,
we consider again, without introducing them, the same objects as in Section 1. By
linearity of the cumulant functions, we will work only with simple elements (i.e.
nonzero elements of the union of the Aij’s, 1 6 i, j 6 d).

(a) First, for all i, j, k, l ∈ [d] such that j 6= k, one has Aij ⊗D Akl = {0}
(because pj pk = 0). So we will only have to compute the cumulant functions on
subspaces of the type Ai0i1 ⊗D Ai1i2 ⊗D · · · ⊗D Ain−1in, with i0, i1, . . . , in ∈ [d].

(b) Moreover, on such a subspace, cn takes values in Ai0in , because it is a D-
bimodule morphism. So, if i0 6= in, since D ∩Ai0in = {0}, cn is null on Ai0i1 ⊗D
Ai1i2 ⊗D · · · ⊗D Ain−1in . So it is easily proved by induction that for π ∈ NC(n),
for all i0, i1, . . . , in ∈ [d], cπ is null onAi0i1 ⊗D Ai1i2 ⊗D · · · ⊗D Ain−1in whenever
a block {k1 < · · · < km} of π is such that ik1−1 6= ikm .

(c) Hence the function cπ factorizes on the complex vector space Ai0i1 ⊗D
Ai1i2 ⊗D · · · ⊗D Ain−1in in the following way: for (a1, . . . , an) ∈ Ai0i1 × · · · ×
Ain−1in ,

(2.5) cπ(a1 ⊗ · · · ⊗ an) =
(

∏
V∈π

V={k1<···<km}

c(ikm )
m (ak1 ⊗ · · · ⊗ akm)

)
· pin ,

where for all m, c(1)
m , . . . , c(d)

m are the linear forms on the complex vector space
A⊗Dm defined by

∀x ∈ A⊗Dm, cm(x) =


c(1)

m (x)
. . .

c(d)
m (x)

 .

Formula (2.5) can be written in the following way: for (a1, . . . , an) ∈ Ai0i1 × · · · ×
Ain−1in ,

(2.6) cπ(a1 ⊗ · · · ⊗ an) = ∏
V∈π

V={k1<···<km}

ηin ,ikm
◦ cm(ak1 ⊗ · · · ⊗ akm),
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where for all i, j ∈ [d], ηi,j is the involution of D which permutes the i-th and the
j-th columns in the representation of elements of D as d×d complex matrices.

REMARK 2.2. In (b), (c), we only used the fact that for all n, cn is a D-
bimodule morphism, so everything stays true if one replaces cn by En and cπ

by Eπ .

(d) Now it remains only to investigate the relation between the functions
c(1)

n , . . . , c(d)
n . We will prove, by induction on n, a formula analogous to (1.1).

Consider (a1, . . . , an) ∈ Ai0i1 × · · · × Ain−1in , with i0 = in. Then one has

(2.7) ρi0 c(i0)
n (a1 ⊗ · · · ⊗ an) = ρi1 c(i1)

n (a2 ⊗ · · · ⊗ an ⊗ a1).

For n = 1, it is clear. Now suppose the result proved to the ranks 1, . . . , n− 1, and
consider (a1, . . . , an) ∈ Ai0i1 × · · · × Ain−1in , with i0 = in. One has, by formulae
(2.2),(2.5),

c(i0)
n (a1 ⊗ · · · ⊗ an) = ϕi0(a1 · · · an)︸ ︷︷ ︸

X

− ∑
π∈NC(n)

π<1n

∏
V∈π

V={k1<···<km}

c(ikm )
m (ak1 ⊗ · · · ⊗ akm)

︸ ︷︷ ︸
Y

,

c(i1)
n (a2 ⊗ · · · ⊗ an ⊗ a1) =

ϕi1(a2 · · · ana1)︸ ︷︷ ︸
X′

− ∑
π∈NC(n)

π<1n

∏
V∈π

V={k1<···<km}

c
(iσ(km))
m (aσ(k1) ⊗ · · · ⊗ aσ(km))

︸ ︷︷ ︸
Y′

,

where σ is the cycle (12 · · · n) of [n].
Since ρi0 X = ρi1 X′ (by formula (1.1)), it suffices to prove that

ρi0Y = ρi1Y′.

To do that, it suffices to propose a bijective correspondence π 7→ π̃ form NC(n)−
{1n} to NC(n)− {1n} such that for all π ∈ NC(n)− {1n},

ρi0 × ∏
V∈π

V={k1<···<km}

c(ikm )
m (ak1 ⊗ · · · ⊗ akm) = ρi1 × ∏

V∈π̃
V={k1<···<km}

c
(iσ(km))
m (aσ(k1) ⊗ · · · ⊗ aσ(km)).

By induction hypothesis, the correspondence which maps π ∈ NC(n)− {1n} to
π̃ defined by

k π̃∼ l ⇔ σ(k) π∼ σ(l)

is convenient.
The following theorem has been proved in the section called Rectangular

Gaussian distribution and Marchenko–Pastur distribution of [2].
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THEOREM 2.3. For k, l ∈ [d] such that ρk 6 ρl , b ∈ Ak,l satisfies, for all positive
integer n,

c(k)
2n (b⊗ b∗ ⊗ · · · ⊗ b∗) =

ρl
ρk

δn,1

if and only if the moments of bb∗ in (Akk, ϕk) define the Marchenko–Pastur distribution
with parameter ρl

ρk
(defined p. 101 of [10]).

3. FREENESS WITH RESPECT TO ϕ VERSUS FREENESS WITH AMALGAMATION OVER D

3.1. D-CENTRAL LIMIT THEOREMS. On sets of matrices, ‖ · ‖ will denote the op-
erator norm associated to the canonical hermitian norms. A self-adjoint element
X of A is said to be D-semicircular with covariance ϕ if it satisfies:

(i) c1(X) = 0,
(ii) ∀d ∈ D, c2(Xd⊗ X) = ϕ(d),

(iii) ∀k > 3, ∀d1, . . . , dk ∈ D, ck(Xd1 ⊗ · · · ⊗ Xdk) = 0.

Note that it determines the D-distribution of X.

THEOREM 3.1 (D-central limit theorem). Consider a family (Xi)i>1 of self-
adjoint elements of A which satisfy:

(i) X1, X2, . . . are free with amalgamation over D,
(ii) ∀i, ∀d ∈ D, E(Xi) = 0, E(XidXi) = ϕ(D),

(iii) ∀k, ∀d1, . . . , dk ∈ D, sup
i>1
‖E(Xid1 · · ·Xidk)‖ < ∞.

Then Yn := 1√
n

n
∑

i=1
Xi converges in D-distribution to a D-semicircular element

with covariance ϕ.

This theorem is very close to many well-known results of free probability
theory (e.g. Theorem 4.2.4 of [24]).

We prove now a kind of multidimensional D-central limit theorem, analo-
gous to Theorem 2.1 of [29]:

THEOREM 3.2. Consider a family (Tj)j∈N of self-adjoint elements of A and a ∗-
subalgebra B of A containing D, such that

∀m, ∀B1, . . . , Bm ∈ B, sup
i1,...,im∈N

‖E(Ti1 B1Ti2 · · · Tim Bm)‖ < ∞,(H1)

for m > 1, for B0, . . . , Bm ∈ B, for α : [m]→ N,(H2)

one has:
(i) E(B0Tα(1)B1· · ·Tα(m)Bm)=0 if an element of N has exactly one antecedent by α;

(ii) E(B0Tα(1)B1· · ·Tα(m)Bm) = ϕ(Br)E(B0Tα(1)B1· · ·Tα(r−1)Br−1Br+1· · ·Tα(m)Bm)
if no element of N has strictly more than two antecedents by α and α(r) = α(r + 1), with
1 6 r < m;
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(iii) E(B0Tα(1)B1 · · · Tα(m)Bm) = 0 if no element of N has strictly more than two
antecedents by α and for all 1 6 r < m, α(r) 6= α(r + 1).

Consider β : N2 → N injective, and define Xm,n = 1√
n

n
∑

j=1
Tβ(m,j). Then for

all m, Xm,n converge in distribution, when n → ∞, to a D-semicircular element with
covariance ϕ, and the family of subsets (B, ({Xm,n})m∈N) is asymptotically free with
amalgamation over D as n→ ∞. Moreover, if we have the following then (H1) and (H2)
are satisfied:

(i’) (B, ({Tj})j∈N) is free with amalgamation over D;
(ii’) ∀j, ∀d ∈ D, E(Tj) = 0, E(TjdTj) = ϕ(d);

(iii’) ∀m, ∀d1, . . . , dm ∈ D, sup
j∈N
‖E(Tjd1 · · · Tjdm)‖ < ∞.

Proof. We shall proceed as in the proof of Theorem 2.1 of [29]. First we prove
that (i’), (ii’), (iii’) imply (H1), (H2). Then we prove that it suffices to prove the
result replacing (H1), (H2) by (i’), (ii’), (iii’), and at last we prove the result in this
particular case. For x ∈ A, we define

◦
x := x− E(x).

Step I. Suppose that the Tj’s and D satisfy (i’), (ii’), (iii’).
The proof of the fact that (i’) and (iii’) together imply (H1) is along the same

lines as the proof of 1 ◦ of the Step I of the proof of Theorem 2.1 of [29], so we
leave it to the reader.

Consider m > 1, B0, . . . , Bm ∈ B, α : [m]→ N.
(H2)(i) follows from (i’), (ii’), and the following easy result:

(3.1) ∀a, b, c∈A, [{a}, {b, c}free with amalgamation over D]⇒E(bac)=E(b E(a)c).

Suppose no element of N has strictly more than two antecedents by α and
α(r) = α(r + 1), with 1 6 r < m.

Let us prove that

E(B0Tα(1)B1 · · · Tα(m)Bm) = ϕ(Br) E(B0Tα(1)B1 · · · Tα(r−1)Br−1︸ ︷︷ ︸
:=A

Br+1 · · · Tα(m)Bm︸ ︷︷ ︸
:=B

).

Suppose first that Br ∈ D. Then {Yα(r)BrYα(r+1)}, {A, B} are free with amalgama-
tion over D, so, by (3.1),

E(B0Tα(1)B1 · · · Tα(m)Bm) = E(A E(Yα(r)BrYα(r+1))B).

But by (ii’), E(Yα(r)BrYα(r+1)) = ϕ(Br), which allows us to conclude.
So, by linearity, we can now suppose that E(Br) = 0. In this case, ϕ(Br) = 0,

so it suffices to prove that E(B0Tα(1)B1 · · · Tα(m)Bm) = 0. It follows from (i’) and
(1.2), applied to all terms of the right hand side of:

E(B0Tα(1)B1· · ·Tα(m)Bm)=E(
◦
AYα(r)BrYα(r+1)

◦
B) + E(A) E(Yα(r)BrYα(r+1)

◦
B)

+E(
◦
AYα(r)BrYα(r+1)) E(B)+E(A) E(Yα(r)BrYα(r+1)) E(B).
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Suppose that no element of N has strictly more than two antecedents by α
and that for all 1 6 r < m, α(r) 6= α(r + 1). By linearity, E(B0Tα(1)B1 · · · Tα(m)Bm)
is equal to

∑
P⊂{0,...,m}

E((1P(0)
◦

B0 + 1Pc(0) E(B0))Tα(0) · · · Tα(m)(1P(m)
◦

B0 + 1Pc(m) E(B0))),

where for P ⊂ {0, . . . , m}, 1P (respectively 1Pc ) denotes the characteristic function
of P (respectively of its complementary). It follows from (i’) and (1.2), applied to
all terms of the sum, that E(B0Tα(1)B1 · · · Tα(m)Bm) = 0.

Step II. After having eventually extended A, consider a free with amalga-
mation over D family (xm)m>1 of D-semicircular elements of A with covariance
ϕ, which is also free with amalgamation overD with B. Let us show that in order
to prove that for all r > 1, B0, . . . , Br ∈ B, m : [r]→ N,

E(B0Xm(1),nB1 · · · Br−1Xm(r),nBr) −→n→∞
E(B0xm(1)B1 · · · Br−1xm(r)Br),

it suffices to prove it in the particular case where (i’), (ii’), (iii’) are satisfied.
So consider r > 1, B0, . . . , Br ∈ B, and m : [r]→ N. Define, for n > 1, the set

Pn = m([r])×[n], and define, for I = (p1, . . . , pr) ∈ Pr
n,

ΠI = B0Tβ(p1)B1 · · · Br−1Tβ(pr)Br.

Then by linearity, there exists a family (CI)I of elements of {0, 1}, indexed by
I ∈ Pr

n, such that we have:

E(B0Xm(1),nB1 · · · Br−1Xm(r),nBr) =
1

nr/2 ∑
I∈Pr

n

CI E(ΠI).

By (H2)(i), if E(ΠI) 6= 0, then no element of Pn appears exactly once in I.
Let Rn,r be the set of elements I of Pr

n such that no element of Pn appears exactly
once in I and an element of Pn appears at least three times in I. Its cardinality is
less than |Pn|×|Pn|(r−3)/2r! = o(nr/2), so, since by (H1) there exists M > 0 such
that for all n, I ∈ Pn

r , ‖E(ΠI)‖ 6 M, one has
1

nr/2 ∑
I∈Rn,r

‖CI E(ΠI)‖ −→n→∞
0.

So

(3.2) lim
n→∞

E(B0Xm(1),nB1 · · · Br−1Xm(r),nBr)

exists if and only if

lim
n→∞

1

n
r
2

∑
I∈Pr

n such that each element
of Pr appears exactly 0 or 2 times in I

CI E(ΠI),

exists, and in this case, the limits are the same.
But the computation of E(ΠI), for elements I of Pr

n such as those considered
in the previous sum, is completely determined by (H2). So the limit (3.2) will be
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the same (and exist in the same time) if one replaces the Tj’s by another family
which satisfies (H1), (H2). In particular, by Step I, one can suppose that (i’), (ii’),
(iii’) are satisfied.

Step III. Suppose now that (i’), (ii’), (iii’) are satisfied. The previous theorem
allows us to claim that for all m, Xm,n converges in D-distribution, as n → ∞,
to a D-semicircular with covariance ϕ. Moreover, for all n, the family of subsets
(B, ({Xm,n})m∈N) is free with amalgamation overD, so the theorem is proved.

The main theorem of this section is the following one. Recall that a family
(Ai)i∈I of subalgebras of A is said to be free if for all n, i1 6= · · · 6= in ∈ I, for all
x(1) ∈ Ai1 ∩ ker ϕ, . . . , x(n) ∈ Ain ∩ ker ϕ, one has

(3.3) ϕ(x(1) · · · x(n)) = 0.

A family (χi)i∈I of subsets of A is said to be free if there exist free subalgebras
(Ai)i∈I such that for all i, χi ⊂ Ai. In order to avoid confusion between freeness
and freeness with amalgamation over D, freeness will be called ϕ-freeness. We
use the notion of ϕ-distribution of a family (ai)i∈I of elements of A: it is the ap-
plication which maps a word Xε1

i1
· · ·Xεn

in in Xi, X∗i (i ∈ I) to ϕ(aε1
i1
· · · aεn

in ). It is
easy to see that the ϕ-distribution of a ϕ-free family depends only on the individ-
ual ϕ-distributions, and that the D-distribution of a family which contains D is
determined by its ϕ-distribution. At last, recall that ϕ-semicircular elements are
elements whose moments are given by the moments of the semicircle distribution
with center 0 and radius 2.

THEOREM 3.3. Consider, in A, a family (y(s))s∈N of ϕ-semicircular elements,
and a subalgebra B of A which contains D such that the family (B, ({y(s)})s∈N) is ϕ-
free. Then the family (B, ({y(s)})s∈N) is also free with amalgamation over D, and the
D-distribution of y(s)’s is the D-semicircular distribution with covariance ϕ.

Proof. Consider β : N×N → N injective. By stability of ϕ-semicircular dis-
tribution under free convolution, it is clear that for all n > 1, the family(

B,
( 1√

n

n

∑
j=1

y(β(m, j))
)

m>0

)
has the same ϕ-distribution (and hence D-distribution, because contains D) as
(B, ({y(s)})s∈N). So it suffices to prove that (B, ({y(s)})s∈N) satisfies (H1) and
(H2).

(H1) is due to the fact that for m > 1 and b1, . . . , bm ∈ B fixed, for all
s1, . . . , sm ∈ N,

‖E(y(s1)b1 · · · y(sm)bm)‖ =
∥∥∥ d

∑
k=1

ϕk(pky(s1)b1 · · · y(sm)bm pk) · pk

∥∥∥
= max

16k6d

1
ρk
|ϕ(pky(s1)b1 · · · y(sm)bm pk)|,
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which only depends on the partition π of [m] which links two elements i, j if and
only if si = sj.

To prove (H2)(i), (ii), (iii), since for all x ∈ A,

E(x) =
d

∑
k=1

1
ρi

ϕ(pixpi) · pi

and the algebra B contains all pi’s, it suffices to prove it with E replaced by ϕ.
Then it follows from the last assertion of Theorem 2.1 of [29].

REMARKS ABOUT THE PREVIOUS THEOREM. (i) Let C be a subalgebra ofAwhich
is ϕ-free with D. It is easy to see that for all x ∈ C, E(x) = ϕ(x) · 1, hence for all
n > 1, a1, . . . , an ∈ C,

cn(a1 ⊗ · · · ⊗ an) = Kn(a1, . . . , an) · 1,

where Kn is the n-th ϕ-cumulant function. So a ϕ-free family of subalgebras of C
is also E-free: ϕ-freeness implies vanishing of mixed ϕ-cumulants, which implies
E-freeness, by Theorem 2.1. It is not enough to prove our result, because the
algebra C cannot in the same time be ϕ-free with D and contain D, hence cannot
contain B.

(ii) This theorem recalls Theorem 3.5 of [18]. But to prove our result using this
theorem, it would be necessary to compute B-cumulant functions.

3.2. POLAR DECOMPOSITION OF R-DIAGONAL ELEMENTS WITH NONTRIVIAL KER-
NEL. In the following, we shall use polar decomposition of noninvertible elements
of von Neumann algebras (for example, in the following section, noninvertible
matrices). Recall that the polar decomposition of an element x of a von Neumann
algebra consists in writing x = uh, where h > 0 such that ker h = ker x, and u is
a partial isometry with initial space the orthogonal of ker x and with final space
the closure of the image of x (see the appendix of [7] or Section 0.1 of [27]).

R-diagonal elements have been introduced by Nica and Speicher in [13].
In this section, we consider a W∗-noncommutative probability space (M, τ). In
1.9 of [13], R-diagonal elements of (M, τ) were characterized as the elements x
which can be written x = uh, where u is a Haar unitary (i.e. u is unitary, and for
all n ∈ Z− {0}, τ(un) = 0), and h is a positive element τ-free with u. If x ∈ M
is R-diagonal and if x has a null kernel, then with the previous notations, uh is
the polar decomposition of x. In the case where x has a nontrivial kernel, the
polar decomposition of x is (up)h, where p is the projection on the orthogonal of
ker(x). In this section, we shall prove that up, h are free with amalgamation over
the algebra Span{p, 1− p}.

We first have to prove a preliminary result:

PROPOSITION 3.4. Consider the space (A, ϕ) introduced in Section 1, suppose
moreover that (A, ϕ) is a W∗-probability space. Consider, in A, a family (y(s))s∈N of
normal elements. Consider also a subalgebra B of A which contains D such that the
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family (B, ({y(s)})s∈N) is ϕ-free. Then the family (B, ({y(s)})s∈N) is also free with
amalgamation over D.

Proof. Let (N , τ̃) be a W∗-probability space which is generated, as a W∗-
algebra, by a family x(s) (s ∈ N) of τ-semicircular elements and an algebra B̃
isomorphic to B by a map x → x̃, such that the family (B̃, ({x(s)})s∈N) is τ̃-free.
The distributions of the x(s)’s are non-atomic, so for each s ∈ N, there exists
a Borel function fs on the real line such that fs(x(s)) has the same distribution
as y(s). Note that the τ̃-freeness (respectively freeness with amalgamation over
D̃) of a family (Ai)i∈I of ∗-subalgebras of N (respectively of ∗-subalgebras of
N which all contain D̃) is equivalent to the ϕ-freeness (respectively the freeness
with amalgamation over D̃) of the family (A′′i )i∈I of von Neumann algebras they
generate. So, by Theorem 3.3 and by the fact that for all s, fs(x(s)) ∈ {x(s)}′′, the
family (B̃, ({ fs(x(s))})s∈N) is free with amalgamation over D. But the map

B ∪ {y(s) ; s ∈ N} → B̃ ∪ { fs(x(s)) ; s ∈ N}

z 7→
{

z̃ if z ∈ B,
fs(x(s)) if z = y(s),

extends clearly to a W∗-probability spaces isomorphism, hence the following
family is also free with amalgamation over D:

(B, ({y(s)})s∈N).

COROLLARY 3.5. Consider a W∗-noncommutative probability space (M, τ), and
an R-diagonal element x ofM with nontrivial kernel. Let p1 be the projection on ker x,
and p2 = 1− p1. Then the polar decomposition x = vh of x is such that :

(i) v, h are free with amalgamation over D := Span{p1, p2};
(ii) v has the D-distribution of up2, where u is a Haar unitary τ-free with p2;

(iii) the D-distribution of h is defined by the fact that h2 = x∗x and p2hp2 = h.
Moreover, the projection on the final subspace of v is τ-free with h.

Note that this result could also have been deduced from Lemma 2.6 of [22],
but the proof of this lemma is incomplete, and a complete proof of the lemma
would take as long as what we use to prove this corollary.

REMARK 3.6. Elements with τ-distributions such as the one of v are called
a (α, α)-Haar partial isometries in Remark 1.9 3◦ of [17].

Proof. By 1.9 of [13], x can be written x = uh, where u is a Haar unitary τ-
free with h, and the polar decomposition of x is (up2)h, where p2 is the projection
on the orthogonal of ker x = ker h. Thus, with the notation D := Span{1 −
p2, p2}, it suffices to prove the freeness with amalgamation over D of up2 and h,
which follows from the freeness with amalgamation over D of u and h, which
follows from Proposition 3.4. The projection on the final subspace of up2 is up2u∗

which is τ-free with h by Lemma 3.7 of [8].
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REMARK 3.7. In the same way, we can prove the following: let q1 be the
projector on Ran(x) and q2 = 1− q1, then the polar decomposition of x is wh,
where:

(i) w, h are free with amalgamation over D := Span{q1, q2};
(ii) w has the D-distribution of q1u, where u is a Haar unitary τ-free with q1;

(iii) the D-distribution of h is defined by the fact that h2 = x∗x and p2hp2 = h.
Moreover, the projection on ker w is τ-free with D.

4. ASYMPTOTIC FREENESS WITH AMALGAMATION OVER D
OF RECTANGULAR RANDOM MATRICES

Since in the present section we will prove asymptotic freeness with amalga-
mation over D of random matrices in an analogous way to the proofs of [29] and
[32], we shall frequently refer to those papers.

Consider, for n > 1, q1(n), . . . , qd(n) positive integers with sum n such that
q1(n)

n −→
n→∞

ρ1, . . . , qd(n)
n −→

n→∞
ρd (recall that ρ1 = ϕ(p1), . . . , ρd = ϕ(pd)). Then for

all n, D can be identified with a ∗-subalgebra of the algebra Mn of complex n×n
matrices by

∀λ1, . . . , λd ∈ C, diag(λ1, . . . , λd) '

λ1 Iq1(n)
. . .

λd Iqd(n)

 .

The image of each pk will be denoted by pk(n). tr will denote the normalized
trace on Mn, while Tr will denote the trace. e(i, j; n) will denote the matrix-units
of Mn.

We shall refer to Mn as a set of n×n random matrices (over a probability
space not mentioned here), while the elements of Mn (which is a subalgebra of
Mn) will be called constant matrices. Mn is endowed with the state E(tr(·)), and
the identification of D with a ∗-subalgebra of Mn allows us to speak of conver-
gence in D-distribution of random matrices.

The following result is an immediate corollary of Theorem 2.2 of [32] and of
Theorem 3.3.

THEOREM 4.1. Let, for s > 0, n > 1, Y(s, n) = ∑
16i,j6n

a(i, j; n, s)e(i, j; n) be a

random matrix. Assume that a(i, j; n, s) = a(j, i; n, s) and that

{<a(i, j; n, s) ; 1 6 i 6 j 6 n, s ∈ N} ∪ {=a(i, j; n, s) ; 1 6 i < j 6 n, s ∈ N}

are independent Gaussian random variables, which are (0, (2n)−1) if i < j and (0, n−1)
if i = j. Let further (B(j, n))j∈N be a family of elements of Mn, stable under multipli-
cation and adjunction, which contains p1(n), . . . , pd(n), such that for all j, the sequence
(‖E(B(j, n))‖)n is bounded, and which converges in D-distribution.
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Then the family ({B(j, n) ; j ∈ N}, ({Y(s, n)})s) is asymptotically free with amal-
gamation over D as n → ∞, and the limit D-distribution of each Y(s, n) is the D-
semicircular D-distribution with covariance ϕ.

COMPARISON WITH THEOREM 4.1 OF [21]. Since the B(j, n)’s are diagonal and
since convergence inD-distribution is less restrictive than convergence for ‖ · ‖∞,
which is the one used by Shlyakhtenko in [21], this result cannot be deduced from
Theorem 4.1 of [21].

In order to modelize asymptotic D-distribution of nonhermitian gaussian
random matrices, let us introduce the D-circular distribution with covariance ϕ. It
is the D-distribution of an element of A which can be written c = a+ia′√

2
, with a, a′

D-semicircular elements with covariance ϕ, which are free with amalgamation
over D. Note that the D-distribution of c can be defined by the following rules:

(i) c1(c) = c1(c∗) = 0,
(ii) ∀d ∈ D, c2(cd⊗ c) = c2(c∗d⊗ c∗) = 0, c2(cd⊗ c∗) = c2(c∗d⊗ c) = ϕ(d),

(iii) ∀k > 3, ε1, . . . , εk ∈ {·, ∗}, d1, . . . , dk ∈ D, ck(cε1 d1 ⊗ · · · ⊗ cεk dk) = 0.

COROLLARY 4.2. The hypothesis are the same as the one of the previous theorem,
except that the random matrices are not self-adjoint anymore, and their law is defined by
the fact that

{<a(i, j; n, s) ; 1 6 i, j 6 n, s ∈ N} ∪ {=a(i, j; n, s) ; 1 6 i, j 6 n, s ∈ N}

are independent gaussian random variables, which are (0, (2n)−1). Then the family
({B(j, n) ; j ∈ N}, ({Y(s, n)})s) is asymptotically free with amalgamation over D as
n → ∞, and the limit D-distribution of each Y(s, n) is the D-circular distribution with
covariance ϕ.

Proof. It suffices to notice that if Y, Y′ are independent random matrices as
in the hypothesis of the previous theorem, then Y+iY′√

2
has the distribution of the

ones of the hypothesis of the corollary.

The previous corollary allows us to modelize asymptotic collective behavior
of independent rectangular gaussian random matrices with different sizes: con-
sider, for s > 0, k, l ∈ [d], n > 1, M(s, k, l, n) a random matrix of size qk(n)×ql(n),
with independent complex gaussian entries. In order to have a nontrivial limit
for asymptotic singular values of the M(s, k, l, n)’s (the singular values of a q×q′

matrix M are the eigenvalues of MM∗ if q 6 q′, and of M∗M if q > q′), it is well
known, by results about Wishart matrices (see, e.g., [10], [19]) that the variance
of the entries must have the order of qk(n), i.e. of n. So we will suppose that
the real and imaginary parts of the entries of the M(s, k, l, n)’s are independent
N(0, (2n)−1). To give the asymptotic behavior of these matrices amounts to give
the asymptotic normalized traces of words of the type:

(4.1) M(s1, k1, l1, n)ε1 M(s2, k2, l2, n)ε2 · · ·M(sm, km, lm, n)εm ,
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where m > 1, s1, . . . , sm ∈ N, ε1, . . . , εm ∈ {·, ∗}, k1, l1, . . . , km, lm ∈ [d] such that
the product is possible and gives a square matrix.

In order to avoid problems of definition of the products, let us embed all
these matrices in n×n matrices: for all (s, k, l, n), M(s, k, l, n) will be replaced by
X(s, k, l, n) := pk(n)Y(s, k, l, n)pl(n), where Y(s, k, l, n) is a random matrix as in
the hypothesis of the previous corollary. Then if the product (4.1) is not defined,
the product

(4.2) X(s1, k1, l1, n)ε1 X(s2, k2, l2, n)ε2 · · ·X(sm, km, lm, n)εm

is zero. In the other case, the product (4.2) is a simple element of Mn (simple
refers to the definition given in Section 1), whose only nonzero block is (4.1).
If moreover, (4.1) is a square matrix, its normalized trace is the only nonzero
coordinate of

E[(X(s1, k1, l1, n)ε1 X(s2, k2, l2, n)ε2 · · ·X(sm, km, lm, n)εm)].

So the following corollary gives an answer to the question of the asymptotic
collective behavior of independent rectangular Gaussian random matrices with
different sizes.

COROLLARY 4.3. Let, for s > 0, k, l ∈ [d], n > 1,

X(s, k, l, n) = pk(n)
[

∑
16i,j6n

a(i, j; n, k, l, s)e(i, j; n)
]

pl(n)

be a random matrix. Assume that

{<a(i, j; n, k, l, s) ; i, j∈[n], k, l∈[d], s∈N}∪{=a(i, j; n, k, l, s) ; i, j∈[n], k, l∈[d], s∈N}

are independent Gaussian random variables, which are (0, (2n)−1). Let further

(B(j, n))j∈N

be a family elements of Mn, which satisfies the same assumptions as in the hypothesis of
Theorem 4.1.

Then the family ({B(j, n) ; j ∈ N}, ({X(s, k, l, n)})s,k,l) is asymptotically free
with amalgamation over D as n→ ∞.

Proof. It is an immediate consequence of the previous corollary and of the
fact that freeness with amalgamation over D is preserved by multiplication by
elements of D.

For n > 1, the set of matrices U of pk(n)Mn pk(n) such that UU∗ = U∗U =
pk(n) will be denoted by Uk(n). It is a compact group, isometric to the group of
qk(n)×qk(n) unitary matrices. By Lemma 4.3.10 p. 160 of [10], the partial isome-
try of the polar decomposition of X(s, k, k, n) is uniform on Uk(n) (i.e. distributed
according to the Haar measure).

PROPOSITION 4.4. Let, for n > 1, V(s, k, n) (s ∈ N, k ∈ [d]), be a family of
independent random matrices, such that for all s, k, V(s, k, n) is uniform on Uk(n). Let
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further (B(j, n))j∈N be a family of elements of Mn which satisfies the same assump-
tions as in the previous results. Then the family ({B(j, n) ; j ∈ N}, ({V(s, k, n)})s,k) is
asymptotically free with amalgamation over D as n→ ∞.

Note that two elements of respectively Akk, All , with k 6= l (or more gen-
erally of Akk′ , All′ , with {k, k′} ∩ {l, l′} = ∅) are always free with amalgamation
over D, and that elements of Akk are free with amalgamation over D if and only
if they are free in the compressed space (Akk, ϕk). So without the set of constant
matrices, Proposition 4.4 would be an easy consequence of Theorem 3.8 of [29].
That being said, the proof of this proposition is very closed to the one of Theo-
rem 3.8 of [29].

The proof of the proposition relies on the following lemma. We endow Mn
with the norms |M|p = (E tr(MM∗)r/2)1/r. They fulfill Hölder inequalities (see
[12]).

LEMMA 4.5. Let, for n > 1, (M(i, n))i∈I be a family of n×n random matrices,
and (B(j, n))j∈N be a family of elements of Mn, which satisfies the same assumptions
as in the hypothesis of Theorem 4.1. Suppose moreover that for all i ∈ I, r > 1, the
sequence |M(i, n)|r is bounded. Suppose that for all δ > 0 and n > 1, their exists a
family (M(i, n, δ))i∈I of random n×n matrices such that :

(i) the family ({B(j, n) ; j ∈ N}, ({M(i, n, δ)})i∈I) is asymptotically free with amal-
gamation over D as n→ ∞;

(ii) for all i ∈ I, r > 1, lim
n→∞
|M(i, n, δ) − M(i, n)|r := C(i, r, δ) is such that

C(i, r, δ) −→
δ→0

0.

Then the family ({B(j, n) ; j ∈ N}, ({M(i, n)})i∈I) is asymptotically free with amalga-
mation over D as n→ ∞.

Proof. Note first that if a sequence (Dn) in D is such that for all positive δ,
there is a sequence (Dn(δ)) in D which converges and such that lim

n→∞
‖Dn(δ) −

Dn‖ := C(δ) tends to zero as δ tends to zero, then (Dn) is Cauchy, and hence
converges. So, by Hölder inequalities, the family ((B(j, n))j∈N, (M(i, n))i∈I) has
limit D-distribution as n→ ∞. Moreover, Hölder inequalities imply also that the
later limitD-distribution is the limit, for convergence inD-distribution, as δ tends
to zero, of the limit D-distribution of ((B(j, n))j∈N, (M(i, n, δ))i∈I) as n → ∞.
But the set of D-distributions of families ((bj)j∈N, (mi)i∈I) such that the family
({bj ; j ∈ N}, ({mi})i∈I) is free with amalgamation over D is obviously closed, so
the lemma is proved.

Let us now give the proof of Proposition 4.4.

Proof. Consider independent random matrices X(s, k, n) (s ∈ N, k ∈ [d], n ∈
N), such that for all s, k, n, X(s, k, n) has the same distribution as X(s, k, k, n) of
the previous corollary. Then, as noted before, one can suppose that for all s, k, n,
V(s, k, n) is the partial isometry of the polar decomposition of X(s, k, k, n).
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In this proof, we shall use a particular functional calculus with the matrices

X(s, k, n)∗X(s, k, n).

Note that these matrices are simple elements of Mn (simple refers to the defini-
tion given in Section 1): they belong to pk(n)Mn pk(n). Here we shall “erase” the
action of a function f on the orthogonal of the image of the projector pk(n). This
means that f (X(s, k, n)∗X(s, k, n)) will mean pk(n) f (X(s, k, n)∗X(s, k, n))pk(n).
So we can write:

V(s, k, n) = lim
ε→0+

X(s, k, n)(ε + X(s, k, n)∗X(s, k, n))−1/2.

Step I. As stated in the Step I of the proof of Theorem 3.8 of [29], there exists
C > 0 such that for all continuous bounded function f : [0, ∞) → (0, ∞), for all
polynomial P, all s, k, and all r > 1, the limsup of

lim
n→∞
|X(s, k, n)P(X(s, k, n)∗X(s, k, n))− X(s, k, n) f (X(s, k, n)∗X(s, k, n))|r

is not larger than C sup
06t6C

|P(t)− f (t)|.

Step II. Consider ε > 0, and let

Y(s, k, n, ε) = X(s, k, n)(ε + X(s, k, n)∗X(s, k, n))−1/2.

We claim that the family

({B(j, n) ; j ∈ N}, ({Y(s, k, n, ε)})s,k)

is asymptotically free with amalgamation over D as n→ ∞. It is an easy applica-
tion of the lemma, using, for all positive δ, the random matrices

X(s, k, n)Pδ(X(s, k, n)∗X(s, k, n)),

where Pδ is a polynomial such that sup
06t6C

|Pδ(t)− (ε + t)−1/2| 6 δ. Let us prove

that the hypothesis of the lemma are satisfied. For s, k, r, the boundness of the
sequence (|Y(s, k, n, ε)|r)n comes from the boundness of the function t 7→ (t/(ε +
t))1/2 on the positive half line, (i) is due to the previous corollary, and (ii) follows
from Step I.

Step III. The conclusion is another application of the lemma, where the
Y(s, k, n, ε)’s will play the roll of the M(i, n, δ)’s (and ε the roll of δ). Let us, again,
prove that the hypotheses of the lemma are satisfied. For s, k, r, the sequence
(|V(s, k, n)|r)n is bounded because the matrices are in Uk(n), and (i) follows from
Step II. Let us prove (ii). We have

|Y(s, k, n, ε)−V(s, k, n)|r
= |V(s, k, n)(X(s, k, n)∗X(s, k, n))1/2(ε + X(s, k, n)∗X(s, k, n))−1/2 −V(s, k, n)|

= |(X(s, k, n)∗X(s, k, n))1/2(ε + X(s, k, n)∗X(s, k, n))−1/2 − pk(n))|r

But 0 6 t 6 ε1/2 ⇒ 0 6
t1/2

(ε + t)1/2 6 1,
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and t > ε1/2 ⇒ 1− ε1/2

2(1 + ε1/2)
6

t1/2

(ε + t)1/2 6 1.

So, if Q(n) denotes the spectral projection of X(s, k, n)∗X(s, k, n) for [0, ε1/2],

|V(s, k, n)−Y(s, k, n, ε)|r 6 E(tr(pk(n)Q(n)pk(n))) +
ε1/2

2(1 + ε1/2)
,

so (ii) is checked, since it is known (see [28] for a precise result) that there exists a
constant C′ such that

lim
n→∞

E(tr(pk(n)Q(n)pk(n))) 6 C′ε1/2.

Note that, as in Remark 2.3 of [32], it is obvious that the previous proposi-
tion also holds for subsequences of the natural numbers. It allows us to prove the
following corollary. Its proof is along the same lines as the one of Corollary 2.6
of [32]: it relies on the fact that the topology of convergence in D-distribution, for
countable families, has countable bases of neighborhoods, and hence if for all n,
X(i, n) (i ∈ I countable) is a family of random matrices with norms uniformly
bounded, one can extract a subsequence k(1) < k(2) < · · · such that the family
(X(i, k(n)))i∈I converges in D distribution.

COROLLARY 4.6. Let, for n > 1, V(s, k, n) (s ∈ N, k ∈ [d]), be a family of
independent random matrices, such that for all s, k, V(s, k, n) is uniform on Uk(n) and
let F(N×[d]) 3 g 7→ Vg(n) ∈ Mn be the semigroup morphism which maps the (s, k)-th
generator to V(s, k, n). Then, given N ∈ N, R > 0, and g0, . . . , gN ∈ F(N×[d])− {e},
the suppremum, over families B1, . . . , BN of elements of Mn such that for all k ∈ [N],
‖Bk‖ 6 R and E(Bk) = 0, of the following tends to zero as n→ ∞:

| tr(Vg0(n)B1Vg1(n)B2 · · ·VgN−1(n)BNVgN (n))|.
At last, in the same way, one can translate the proof of Theorem 2.7 of [32]

to prove the following proposition:

PROPOSITION 4.7. Let, for n > 1, V(s, k, n) (s ∈ N, k ∈ [d]), be a family of
independent random matrices, such that for all s, k, V(s, k, n) is uniform on Uk(n) and
let F(N×[d]) 3 g 7→ Vg(n) ∈ Mn be the semigroup morphism which maps the (s, k)-th
generator to V(s, k, n). Fix N ∈ N and R > 0. Let, for each n ∈ N, B1(n), . . . , BN(n)
be n×n constant matrices such that for all k ∈ [N], ‖Bk(n)‖ 6 R and E(Bk(n)) = 0.
Then, given g0, . . . , gN ∈ F(N×[d])− {e} and ε > 0, the probability of the following
event tends to 1 as n goes to infinity:

{‖E(Vg0(n)B1Vg1(n)B2 · · ·VgN−1(n)BNVgN (n))‖ 6 ε}.

5. ANALOGUE OF FREE ENTROPY OF SIMPLE ELEMENTS: THE MICROSTATES APPROACH

5.1. DEFINITIONS. For q, q′ positive integers, we will denote by Mqq′ (Mq when
q = q′) the set of q×q′ complex matrices.
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From now on, we suppose (A, ϕ) to be a tracial W∗-probability space, en-
dowed with a family of projectors such as presented in Section 1: A is endowed
with a family p1, . . . , pd of self-adjoint pairwise orthogonal projectors with sum
1, and for all k ∈ [d], ρk denotes ϕ(pk). If a is a simple element of A, the unique
(k, l) ∈ [d]2 such that a ∈ Ak,l will be called the type of a.

In this section, we shall define the entropy of families of simple elements
of A as the asymptotic logarithm of the Lebesgue measure of sets of matrices
with closed noncommutative moments. Thus we have to define, for all n, a set of
matrices Mn(a) where we shall choose the microstates associated to a simple ele-
ment a. We let, for k ∈ [d], qk(n) be the integer part of ρkn. With this definition of
q1(n), . . . , qd(n), we keep the notations introduced in the beginning of Section 4.
We define, for (k, l) ∈ [d]2 and n positive integer,

Mn(k, l) = pk(n)Mn pl(n).

Mn(k, l) is endowed with the Lebesgue measure arising from the Euclidean struc-
ture defined by 〈M, N〉 = <(Tr M∗N). The norm arising from this Euclidean
structure will be denoted by ‖ · ‖2, whereas ‖ · ‖ still denotes the operator norm
associated to the canonical hermitian norm on Cn. We denote in the same time,
without distinction, by Λ the tensor product of these measures on any product of
such spaces.

Consider a1, . . . , aN ∈ A simple elements with respective types

(k(1), l(1)), . . . , (k(N), l(N)).

Let us define, for n, r positive integers, ε, R positive numbers,

ΓR(a1, . . . , aN ; n, r, ε)

the set of families (A1, . . . , AN) ∈ Mn(k(1), l(1))×· · ·×Mn(k(N), l(N)) such that
for all i = 1, . . . , N, ‖Ai‖ 6 R and for all p ∈ {1, . . . , r}, for all i1, . . . , ip ∈ [N], for
all ε1, . . . εp ∈ {∗, ·},

‖E(Aε1
i1
· · · Aεp

ip
)− E(aε1

i1
· · · aεp

ip
)‖ 6 ε.

Let us then define

χDR (a1, . . . , aN ; r, ε) = lim sup
n→∞

1
n2 log Λ(ΓR(a1, . . . , aN ; n, r, ε)) + L log n + D,

where

L =
d

∑
k,l=1

ρkρl |{i ∈ [N] ; ai has type (k, l)}|,

D =
d

∑
k=1

ρ2
k log ρk|{i ∈ [N] ; ai has type (k, k)}|.

We define then
χDR (a1, . . . , aN) = inf

r,ε
χDR (a1, . . . , aN ; r, ε),
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and at last,

χD(a1, . . . , aN) = sup
R

χDR (a1, . . . , aN).

5.2. PARTICULAR CASES, COMPARISON WITH ALREADY DEFINED QUANTITIES.

5.2.1. CASE WHERE ALL ai ’S ARE OF THE SAME TYPE (k, k). Then

χDR (a1, . . . , aN ; r, ε) = ρ2
kχVoic

R (a1, . . . , aN ; r, ε/ρk),

where χVoic
R (a1, . . . , aN ; r, ε) stands for χR(a1, . . . , aN ; r, ε) as it is defined in Sec-

tion 1.2 of [32] or p. 279 of [10], when considering a1, . . . , aN as non-selfadjoint
elements of (Akk, ϕk).

5.2.2. CASE WHERE N = 1 AND a1 HAS TYPE (k, l), WITH k 6= l, qk(n) = ql(n)
FOR ALL n. Then ΓR(a; n, r, ε) is the set of matrices A ∈ Mn(k, l) ' Mqk(n) such
that ‖M‖ 6 R and for all s positive integer such that 2s 6 r, the s-th moment of
the spectral law of AA∗ is within ε with the s-th moment of the distribution of aa∗

in (Akk, ϕk). Thus χD(a) = ρ2
k(χVoic

+ (aa∗) − log ρk), where χVoic
+ (aa∗) is defined

on p. 282 of [10], when considering aa∗ as a positive element of (Akk, ϕk).
Note that, if µ is the distribution of aa∗ in (Akk, ϕk), then

χD+(aa∗) =
∫∫

log |x− y|dµ(x)dµ(y) + log π +
3
2

.

5.2.3. CASE WHERE N = 1 AND a1 HAS TYPE (k, l), WITH k 6= l. Then ΓR(a; n, r, ε)
is the set of matrices A ∈Mn(k, l) such that ‖M‖ 6 R and for all s positive integer
such that 2s 6 r, the s-th moment of the spectral law of AA∗ is within ε with the
s-th moment of the distribution of aa∗ in (Akk, ϕk) and the s-th moment of the
spectral law of A∗A is within ε with the s-th moment of the distribution of a∗a in
(All , ϕl). Let us define

µ =

{
distribution of aa∗ in (Akk, ϕk) if ρk 6 ρl ,
distribution of a∗a in (All , ϕl) if ρk > ρl .

Then we prove the following proposition (proof postponed in the appendix):

PROPOSITION 5.1. If R2 is more than the supremum of the support of µ,

(5.1) χDR (a)=α2Σ(µ)+(β−α)α
∫

log xdµ(x)+αβ
(
log

π

α
+1
)
+

α2

4
−α2

β/α∫
β−α/α

x log xdx,

where Σ(µ) =
∫∫

log |x− y|dµ(x)dµ(y), α = min{ρk, ρl} and β = max{ρk, ρl}.
We can verify that when α = β, this formula coincides with the formula of

χD(a) given by 5.2.2.
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5.3. PRELIMINARY LEMMA. The following lemma is a very useful tool for inte-
gration on sets of rectangular matrices. It gives the “law” of the singular values
of rectangular matrices distributed according to the Lebesgue measure. Its proof
is postponed in the appendix. Consider 1 6 q 6 q′ integers. Denote by Mq,q′ the
set of q×q′ complex matrices. Denote by Uq the group of q×q unitary matrices,
and by Tq the torus of diagonal matrices of Uq. As an homogeneous space, Uq/Tq
is endowed with a unique distribution invariant under the left action of Uq, de-
noted by γq. Denote by Uq,q′ the set of matrices v of Mq,q′ which satisfy vv∗ = Iq
(i.e. whose lines are orthogonal with norm 1). As an homogeneous space (under
the right action of Uq′ ), Uq,q′ is endowed with a unique distribution invariant un-
der these actions, denoted by γq,q′ . Note that γq,q′ is also invariant under the left
action of Uq.

LEMMA 5.2. Define

Rq
+,< = {x ∈ Rq ; 0 < x1 < · · · < xq}.

Then the map

Ψ : Uq/Tq ×Rq
+,< × Uq,q′ → Mq,q′

(uTq, x, v) 7→ u diag(x1, . . . , xq)1/2u∗v

is injective onto a set with complement of null Lebesgue measure. Moreover, the push-
forward, by Ψ−1, of the Lebesgue measure, is γq ⊗ σq,q′ ⊗ γq,q′ , where σq,q′ is the proba-
bility measure on Rq

+,< with density

(5.2)
πqq′

∏
q−1
j=1 j! ∏

q′−1
j=q′−q j!

∆(x)2
q

∏
i=1

xq′−q
j .

REMARK 5.3. It will be more useful to use the following consequence of the
lemma. Let us denote, for G compact group, Haar(G) the Haar probability mea-
sure on G. The measures γq and γq,q′ are push-forwards of Haar(Uq), Haar(Uq′)
by the respective maps u → uTq, v → Pv, where P is the q×q′ matrix with diago-
nal entries equal to 1, and other entries equal to 0. Then the map

Ψ̃ : Uq × (R+)q × Uq′ → Mq,q′

(u, x, v) 7→ u diag(x1, . . . , xq)1/2u∗Pv

is surjective and the push-forward of the measure Haar(Uq)⊗ 1
q! σ̃q,q′ ⊗Haar(Uq′)

by Ψ̃ is the Lebesgue measure, where σ̃q,q′ is the measure on (R+)n with density
given by formula (5.2).

5.4. CLASSICAL PROPERTIES OF ENTROPY. The following properties are analo-
gous to properties of Voiculescu’s entropy, the proofs are analogous too, and the
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straightforward adaptation will be left to the reader. For the proof of Proposi-
tion 5.5, the classical change of variables formula used for square matrices needs
to be replaced by the result given below Lemma 5.2.

PROPOSITION 5.4. χD is subadditive: for 1 6 m < N,

χD(a1, . . . , aN) 6 χD(a1, . . . , aM) + χD(aM+1, . . . , aN).

PROPOSITION 5.5. For R1 > R > max{‖a1‖, . . . , ‖aN‖}, we have

χDR1
(a1, . . . , aN) = χDR (a1, . . . , aN).

PROPOSITION 5.6 (Upper semicontinuity). Consider, for m > 1, am,1, . . . , am,N
simple elements of A such that :

(i) for all i, am,i has the same type as ai;
(ii) the family (am,1, . . . , am,N) converges in D-distribution to (a1, . . . , aN);

(iii) for all i, the sequence ‖am,i‖ is bounded.
Then χD(a1, . . . , aN) > lim sup χD(am,1, . . . , am,N).

For example, the proposition holds if for all i, am,i has the same type as ai
and converges strongly to ai.

PROPOSITION 5.7. Consider b1, . . . , bN simple elements such that for all i ∈
[N], bi has the type of ai and bi − ai ∈ {a1, . . . , ai−1}′′. Then χD(a1, . . . , aN) =
χD(b1, . . . , bN).

5.5. ENTROPY AND FREENESS WITH AMALGAMATION OVER D. Adapting the
Section 5 of [30] and using Proposition 4.7, we obtain the following result:

THEOREM 5.8. If the simple elements a1, . . . , aN are free with amalgamation over
D, then

χD(a1, . . . , aN) = χD(a1) + · · ·+ χD(aN).

5.6. CHANGE OF VARIABLE FORMULA. Consider a1, . . . , aN ∈ A simple elements
with respective types (k(1), l(1)), . . . , (k(N), l(N)). In this section, for i ∈ [N], in
order to simplify expressions, we denote Mn(k(i), l(i)) by Mn(ai). Since we are
going to work with adjoints of the ai’s, we have to define, for i ∈ [N], ε ∈ {∗, 1},
(k(i, ε), l(i, ε)) to be the type of aε

i i.e.

(k(i, ε), l(i, ε)) =

{
(l(i), k(i)) if ε = ∗,
(k(i), l(i)) if ε = 1.

Define F to be the set of formal power series in the noncommutative vari-
ables X1, X∗1 , . . . , XN , X∗N endowed with the natural involution F → F∗. Let us
define, for m > 0, i1, . . . , im ∈ [N], ε1, . . . , εm ∈ {1, ∗}, C i1,...,im

ε1,...,εm
the map from F to

C which maps a series F to its coefficient in Xε1
i1
· · ·Xεm

im .
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A multi-radius of convergence for F ∈ F is a family (R1, . . . , RN) of positive
numbers such that

M(F; R1, . . . , RN) := ∑
m>0

∑
i1,...,im∈[N]

ε1,...,εm∈{∗,1}

|C i1,...,im
ε1,...,εm

(F)|Ri1 · · · Rim < ∞.

Define, for i ∈ [N], the set Fi of formal power series F ∈ F such that for all
m > 1, for all i1, . . . , im, ε1, . . . , εm, such that C i1,...,im

ε1,...,εm
(F) 6= 0, we have

k(i) = k(i1, ε1), l(i1, ε1) = k(i2, ε2), . . . , l(im−1, εm−1) = k(im, εm), l(im, εm) = l(i).

Consider F = (F(1), . . . , F(N)) in F1×· · ·×FN . We suppose moreover that
there exists (R1, . . . , RN) common multiradius of convergence of the F(i)’s such
that for all i, ‖ai‖ < Ri.

Let also, for n > 1, F be the map defined on the Cartesian product, for
i ∈ [N], of the open ball of (Mn(ai), ‖ · ‖) with center zero and radius Ri, by

F :
N

∏
i=1

BMn(ai)(0, Ri) →
N

∏
i=1

BMn(ai)(0, R′i),

(A1, . . . , AN) 7→ F(A1, . . . , AN).

Then F is analytic, and with the natural identification between the set

L
( N

∏
i=1

Mn(ai)
)

of endomorphisms of
N

∏
i=1

Mn(ai) and the Cartesian product

∏
16i,j6N

L(Mn(aj), Mn(ai)),

the differential DF(A) of F at A = (A1, . . . , AN) ∈
N

∏
i=1

BMn(ai)(0, Ri) has (i, j)-th

block

∑
m>1

i1,...,im∈[N]
ε1,...,εm∈{∗,1}

C i1,...,im
ε1,...,εm

(F(i))
[

∑
l∈[m]
il=j
ε l=1

L(Aε1
i1
· · · Aε l−1

il−1
) ◦ R(Aε l+1

il+1
· · · Aεm

im )

+ ∑
l∈[m]
il=j
ε l=∗

L(Aε1
i1
· · · Aε l−1

il−1
) ◦ R(Aε l+1

il+1
· · · Aεm

im ) ◦Adj
]
,

where for A matrix, L(A) (respectively R(A)) denotes the operator of left (re-
spectively right) multiplication by A, and Adj denotes the operator of adjunction
in Mn.
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Now, we are going to compute the Jacobian of F at A=(A1,. . ., AN). It is the
absolute value of the determinant of the differential of F at (A1,. . ., AN), that is

(det DF(A)DF(A)∗)1/2 = exp
1
2

Tr log DF(A)DF(A)∗,

where the adjoint is taken when considering DF(A) as an endomorphism of the

space
N

∏
i=1

Mn(ai) endowed with the product euclidean structure. Note that the

identification between

L
( N

∏
i=1

Mn(ai)
)

and ∏
16i,j6N

L(Mn(aj), Mn(ai))

preserves the adjunction in the following way:

([Mi,j]N
i,j=1)

∗ = [M∗j,i]
N
i,j=1,

and composition in the following way

[Li,j]N
i,j=1 ◦ [Mi,j]N

i,j=1 =
[ n

∑
k=1

Li,k ◦Mk,j

]N

i,j=1
.

Let, for n > 1, Ln be the space of endomorphisms L of
N

∏
i=1

Mn(ai) such that,

for all i, j ∈ [N], Li,j is a linear combination of linear maps of the type LA ◦ LB
(with A ∈ Mn(k(i), k(j)) and B ∈ Mn(l(j), l(i))) and of maps of the type LA ◦
LB ◦ Adj (with A ∈ Mn(k(i), l(j)) and B ∈ Mn(k(j), l(i))). Ln is a subalgebra

of L
( N

∏
i=1

Mn(ai)
)

closed under adjunction. Indeed, we have, for all X, Y, Z, T

matrices with suitable sizes,

(L(X) ◦ R(Y)) ◦ (L(Z) ◦ R(T)) = L(XZ) ◦ R(YT),

(L(X) ◦ R(Y)) ◦ (L(Z) ◦ R(T) ◦Adj) = L(XZ) ◦ R(YT) ◦Adj,

(L(X) ◦ R(Y) ◦Adj) ◦ (L(Z) ◦ R(T)) = L(XT∗) ◦ R(YZ∗) ◦Adj,

(L(X) ◦ R(Y) ◦Adj) ◦ (L(Z) ◦ R(T) ◦Adj) = L(XT∗) ◦ R(YZ∗),

(L(X) ◦ R(Y))∗ = L(X∗) ◦ R(Y∗),

(L(X) ◦ R(Y) ◦Adj)∗ = L(Y) ◦ R(X) ◦Adj .

Thus in order to compute the Jacobian of F, it suffices to be able to compute
the trace of a self-adjoint element of Ln. Note that the identification between

L
( N

∏
i=1

Mn(ai)
)

and ∏
16i,j6N

L(Mn(aj), Mn(ai))
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preserves the trace in the following way:

Tr([Mi,j]N
i,j=1) =

N

∑
i=1

Tr Mi,i.

Moreover, if [Mi,j]N
i,j=1 ∈ Ln is self-adjoint, then for all i ∈ {1, . . . , N}, Mi,i = M∗i,i,

and one can write

Mi,i = ∑
α

cα(LXα ◦ RYα
+ LX∗α ◦ RY∗α ) + ∑

β

cβ(LZβ
◦ RTβ

◦Adj +LT∗β
◦ RZ∗β

◦Adj),

where α, β run in disjoint finite sets, and for all α, β, cα, cβ are real,

Xα ∈ pk(i)(n)Mn pk(i)(n), Yα ∈ pl(i)(n)Mn pl(i)(n), Zβ, Tβ ∈ Mn(ai).

Thus the trace of Mi,i is

∑
α

cα2<(Tr Xα Tr Yα + Tr X∗α Tr Y∗α︸ ︷︷ ︸
∈R

), i.e. ∑
α

2cα(Tr Xα Tr Yα + Tr X∗α Tr Y∗α ).

Thus, in order to compute the Jacobian of F at A = (A1, . . . , AN), we have
to introduce the following objects. Let S2 = {e, τ} be the group of permutations
of the set {1, 2}, and C[S2] = Ce⊕ Cτ be its convolution algebra. For j ∈ [N],
define the C-linear map

Dj : F → F ⊗F ⊗C[S2]

by

Dj(Xε1
i1
· · ·Xεm

im )

= ∑
l∈[m]
il=j
ε l=1

Xε1
i1
· · ·Xε l−1

il−1
⊗Xε l+1

il+1
· · ·Xεm

im ⊗e + ∑
l∈[m]
il=j
ε l=∗

Xε1
i1
· · ·Xε l−1

il−1
⊗Xε l+1

il+1
· · ·Xεm

im ⊗τ.

Define then, for any ∗-algebra M (which will be F , or Mn, or A), the product
and the adjunction on the linear spaceM⊗M⊗C[S2] defined by the rules:

(X⊗Y⊗ e)×(Z⊗ T ⊗ e) = XZ⊗YT ⊗ e,

(X⊗Y⊗ e)×(Z⊗ T ⊗ τ) = XZ⊗YT ⊗ τ,

(X⊗Y⊗ τ)×(Z⊗ T ⊗ e) = XT∗ ⊗YZ∗ ⊗ τ,

(X⊗Y⊗ τ)×(Z⊗ T ⊗ τ) = XT∗ ⊗YZ∗ ⊗ e,

(X⊗Y⊗ e)∗ = X∗ ⊗Y∗ ⊗ e,

(X⊗Y⊗ τ)∗ = Y⊗ X⊗ τ.

If moreover, the algebraM is endowed with a linear functional f (which will be
Tr ifM = Mn, and ϕ ifM = A), then we shall endowM⊗M⊗C[S2] with the
linear functional 2 f ⊗ f ⊗ δe, where δe is the state on C[S2] defined by δe(e) = 1,
δe(τ) = 0.
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With these notations, if one uses the identifications, for X, Y ∈Mn:

L(X) ◦ R(Y) ' X⊗Y⊗ δe ∈Mn ⊗Mn ⊗C[S2],

L(X) ◦ R(Y) ◦Adj ' X⊗Y⊗ τ ∈Mn ⊗Mn ⊗C[S2],

and thus identifies Ln with a subset of the finite-dimensional algebra MN ⊗
(Mn ⊗Mn ⊗C[S2]), the Jacobian of F at A = (A1, . . . , AN) is

exp
1
2

Tr⊗Tr⊗Tr⊗δe(log(DF(A)DF∗(A))).

With these tools, adapting the proof of Proposition 3.5 of [30], we have the
following proposition. ∆Tr⊗ϕ⊗ϕ⊗(2δe) denotes the Kadison–Fuglede determinant
of the linear functional Tr⊗ϕ⊗ ϕ⊗ (2δe) on MN ⊗A⊗A⊗C[S2] (see Section 2
of [8] for a brief introduction to Kadison–Fuglede determinant).

PROPOSITION 5.9. Consider F = (F(1), . . . , F(N)), G = (G(1), . . . , G(N)) which
both belong to F1×· · ·×FN , and such that for all i ∈ [n],

G(i)(F(1), . . . , F(N)) = Xi.

We suppose moreover that there exists (R1, . . . , RN) common multiradius of convergence
of the F(i)’s and (R′1, . . . , R′N) common multiradius of convergence of the G(i)’s such that:

(i) for all i, ‖ai‖ < Ri;
(ii) for all i, M(F(i); R1, . . . , RN) < R′i.

Then

χD(F(1)(a1, . . . , aN), . . . , F(N)(a1, . . . , aN))

> log ∆Tr⊗ϕ⊗ϕ⊗(2δe)[DjF(i)(a1, . . . , aN)]N
i,j=1 + χD(a1, . . . , aN).

If moreover, the following is a common multiradius of the F(i)’s, then we have equality:

(M(G(1); R′1, . . . , R′N), . . . , M(G(N); R′1, . . . , R′N)).

REMARK 5.10. Note that if instead of (ii) we have M(F(i); ‖a1‖, . . . , ‖aN‖) <
R′i for all i, then one can reduce the Ri’s in order to have (i) and (ii).

REMARK 5.11. Note that by Subsection 5.2.1, these formulae still remain
valid for Voiculescu’s free entropy for nonhermitian operators, as it is defined in
Section 1.2 of [32] or p. 279 of [10].

As a corollary, we have the following result, whose proof is an adaptation
of the proof of Proposition 6.3.3 of [10].

COROLLARY 5.12. Let P1, . . . , PN be polynomials in the noncommutative vari-
ables X1, X∗1 , . . . , X∗N such that for all i ∈ [N], ai + Pi(a1, . . . , aN) has type (k, l).

Then for α sufficiently near 0 we have the following, where for all i, F(i)
α = Xi +
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P(X1, . . . , XN):

χD(a1 + αP1(a1, . . . , aN), . . . , aN + αPN(a1, . . . , aN))

= log ∆Tr⊗ϕ⊗ϕ⊗(2δe)[DjF
(i)
α (a1, . . . , aN)]N

i,j=1 + χD(a1, . . . , aN).

5.7. FUNCTIONAL CALCULUS AND ENTROPY. For x ∈ A, with spectral decom-
position uh, and f real Borel function on [0, ∞), bounded on the spectrum of h,
let f (x) denote u f (h). If f (0) = 0 and f is positive on (0, ∞), then the polar
decomposition of f (x) is u f (h).

We begin with the following lemma, analogous to Lemma 6.3.5 of [10].

LEMMA 5.13. Consider k, l ∈ [d] such that k 6 l, a ∈ Akl such that the distribu-
tion µ of (aa∗)1/2 in (Akk, ϕk) satisfies

Σ(µ) > −∞,
∫

log tdµ(t) > −∞,

and f a continuous increasing function on [0, ∞), such that f (0) = 0 and f is positive
on (0, ∞). Then there exists a sequence ( fm) of smooth functions on [0, ∞), such that for
all m, fm(0) = 0, f ′m is positive on [0, ∞),

‖ fm(a)− f (a)‖ −→
n→∞

0, χD( fm(a)) −→
n→∞

χD( f (a)).

Proof. Let us prove that there exists a sequence ( fm) of smooth functions on
[0, ∞), such that for all m, fm(0) = 0, f ′m is positive on [0, ∞),

‖ fm(a)− f (a)‖ −→
n→∞

0, χD( fm(a)) −→
n→∞

χD( f (a)).

Then we will have, by upper semicontinuity: χD( f (a)) > lim sup χD( fm(a)), and
by (5.1), it will suffice to prove

Σ( f (µ)) 6 lim inf Σ( fm(µ)),
∫

log( f (t))dµ(t) 6 lim inf
∫

log( fm(t))dµ(t),

where for all function g, g(µ) denotes the push-forward of µ by g.
Consider, for m > 1, δ(m) ∈ (0, 1

m ) such that∫∫
|t−s|<δ(m)

log |t− s|dµ(t)dµ(s) > − 1
m

,
∫

[0,δ(m)]

log tdµ(t) > − 1
m

,

∫∫
|t−s|<δ(m)

dµ(t)dµ(s) 6
1

m log m
, µ([0, δ(m)]) 6

1
m log m

.

Let us extend f by the value 0 on the negative real numbers. Let, for m > 1, φm
be a nonnegative smooth function with support in [0, 1

m ] such that
∫

φm(t)dt = 1
and

| f ∗ φm(t)− f (t)| 6 δ(m)
m
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for all t ∈ [0, S], where S is the maximum of the support of µ. Define fm(t) :=
t
m + f ∗ φm(t). Since f is increasing and φm > 0, f ∗ φm is increasing, hence
f ′m >

1
m . Moreover, fm(0) = 0 and fm converges uniformly to f on [0, S].
Similarly to p. 267 of [10], we can prove that for m large enough to satisfy

∀s, t ∈ [0, S], |t− s| < δ(m)⇒ | f (t)− f (s)| < 1,

we have Σ( fm(µ)) > Σ( f (µ))− 2
m . Moreover, for t ∈ [0, δ(m)], fm(t) > t

m and for
t ∈ [δ(m), S],

fm(t) >
δ(m)

m
+ f (t)− | f ∗ φm(t)− f (t)| > f (t),

so if δ(m) 6 1,∫
log( fm(t))dµ(t)>

∫
[δ(m),S]

log( f (t))dµ(t) +
∫

[0,δ(m)]

log( T
m )dµ(t)

>
∫

[0,S]

log( f (t))dµ(t)+
∫

[0,δ(m)]

log tdµ(t)−log(m)µ([0, δ(m)])

>
∫

log( f (t))dµ(t)− 2
m

,

which closes the proof.

Adapting the proof of Proposition 6.3.6 of [10] (with the density of eigen-
values presented in Lemma 5.2), we obtain the following proposition:

PROPOSITION 5.14. Consider a family f1, . . . , fN of continuous increasing func-
tions on [0, ∞), with value 0 in 0, and positive on (0, ∞). Consider a1, . . . , aN simple
elements of A such that for all i, χD(ai) > −∞. Then

χD( f1(a1)), . . . , ( fN(aN)) > χD(a1, . . . , aN) +
N

∑
i=1

χD( fi(ai))− χD(ai).

Moreover, equality holds if the functions are strictly increasing.

5.8. MAXIMIZATION OF FREE ENTROPY.

5.8.1. ONE VARIABLE. The problem here is to maximize χD(a), where a is taken
among a set of simple elements of type (k, l) in A. For such a, we have seen in
5.2.3 a formula which expresses χD(a) as a function of µ (distribution of aa∗ if
ρk 6 ρl , distribution of a∗a in the other case), of ρk and of ρl . For example, let us
suppose that ρk 6 ρl .

PROPOSITION 5.15. Fix c positive. Then among elements a of type (k, l) such
that ϕk(aa∗) 6 c, the maximizers of χD are those for which the distribution of aa∗ in
(Akk, ϕk) is the push-forward, by t → cρk

ρl
t, of the Marchenko–Pastur distribution with

parameter ρl
ρk

.
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Proof. First of all, since for all a, for all λ > 0, χD(λa) = χD(a) + 2ρkρl log λ,
it suffices to prove it when c = ρl

ρk
. According to Proposition 5.1, χD(a) is maximal

if and only if

A(µ) := Σ(µ) +
( ρl

ρk
− 1
) ∫

log xdµ(x)

is maximal. Note that the condition ϕk(aa∗) 6 c is equivalent to
∫

xdµ(x) 6 c.
But Proposition 5.3.7 of [10] states that the functional

B(µ) := Σ(µ) +
( ρl

ρk
− 1
) ∫

log xdµ(x)−
∫

xdµ(x)

is maximized, among probability measures on [0, ∞), by the Marchenko–Pastur
distribution µc with parameter c. So for all µ probability measure on [0, ∞) such
that

∫
xdµ(x) 6 c,

A(µc)− A(µ) = B(µc)− B(µ) +
∫

xdµc(x)−
∫

xdµ(x)

= B(µc)− B(µ) +
(

c−
∫

xdµ(x)
)
> 0,

with equality if and only if µ = µc.

5.8.2. N VARIABLES. Fix k 6= l ∈ [N] such that ρk 6 ρl . A consequence of sub-
additivity, of Theorem 5.8, and of the previous section is the fact that if c1, . . . , cN
are positive numbers, among N-tuples (a1, . . . , aN) of type (k, l) elements which
satisfy

∀i ∈ [N], ϕk(aia∗i ) = ci,

the maximum of χD(a1, . . . , aN) is realized on free with amalgamation over D
families (a1, . . . , aN) of elements such that the distribution of each aia∗i in (Akk, ϕk)
is the push-forward, by t→ ciρk

ρl
t, of the Marchenko–Pastur distribution with pa-

rameter ρl
ρk

. The following theorem states the reciprocal to this fact.

THEOREM 5.16. If the maximum is realized on a family (a1, . . . , aN), then the
family is free with amalgamation overD, and the distribution of each aia∗i in (Akk, ϕk) is
the push-forward, by t→ciρk

ρl
t, of the Marchenko–Pastur distribution with parameter ρl

ρk
.

Proof. Step I. First of all, since for all a1, . . . , aN of type (k, l), for all positive
numbers λ1, . . . , λN ,

(5.3) χD(λ1a1, . . . , λN aN) = χD(a1, . . . , aN) + 2ρkρl log(λ1 · · · λN),

it suffices to prove it when each ci is ρl
ρk

.
Step II. By Theorem 2.3, if b is an element of type (k, l) such that the distri-

bution of bb∗ in (Akk, ϕk) is the Marchenko–Pastur distribution with parameter
ρl
ρk

, then for all n even integer,

c(k)
n (b⊗ b∗ ⊗ · · · ⊗ b⊗ b∗) =

ρl
ρk

δn,2.
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Let us compute the ϕ-distribution of a free with amalgamation over D family
(b1, . . . , bN) of such elements. For all i1, . . . , i2r+1, i0 ∈ [N], we have

ϕ(bi1 b∗i2 · · · bi2r+1 bi0 i∗) = ρk ϕk(bi1 b∗i2 · · · bi2k+1
b∗i0)

= ρk ∑
06j6r

i2j+1=i0

ϕk(bi1 · · · b
∗
i2j

)c(k)
2 (bi0 ⊗ E(b∗2j+2 · · · b2r+1)︸ ︷︷ ︸

ϕl(b∗2j+2···b2r+1)·pl

·b∗i0)

= ρk ∑
06j6r

i2j+1=i0

ϕk(bi1 · · · b
∗
i2j

)c(k)
2 (bi0 ⊗ ϕl(b∗2j+2 · · · b2r+1) · plb∗i0︸︷︷︸

b∗i0

)

= ρk ∑
06j6r

i2j+1=i0

ϕk(bi1 · · · b
∗
i2j

)c(k)
2 (bi0 ⊗ ϕl(b∗2j+2 · · · b2r+1) · b∗i0)

= ρk ∑
06j6r

i2j+1=i0

ϕk(bi1 · · · b
∗
i2j

)ϕl(b∗2j+2 · · · b2r+1)c(k)
2 (bi0 ⊗ b∗i0)

= ρl ∑
06j6r

i2j+1=i0

ϕk(bi1 · · · b
∗
i2j

)ϕl(b∗2j+2 · · · b2r+1).

Step III. Now, consider a family (a1, . . . , aN) of elements of type (k, l) such
that for all i, ϕk(aia∗i ) = ρl

ρk
and the maximum of the entropy is realized on

(a1, . . . , aN). Let us prove that the D-distribution of the family is the one of
(b1, . . . , bN) of Step II. Since the elements are simple and for all x, ϕ(x∗) = ϕ(x),
it suffices to prove that for all r > 0, for all i1, . . . , i2r+1, i0 ∈ [N], we have

ϕ(ai1 a∗i2 · · · ai2r+1 a∗i0) = ρl ∑
06j6r

i2j+1=i0

ϕk(ai1 · · · a
∗
i2j

)ϕl(a∗2j+2 · · · a2r+1).

Fix λ ∈ C and let us define the polynomial P = λXi1 X∗i2 · · ·Xi2r+1 , and
d = P(a1, . . . , aN). We have, for α sufficiently near 0,

χD(a1, . . . , aN) > χD
(

a1, . . . , ai−1,
ρ1/2

l (ai0 + αd)
(ρk ϕk((ai0 + αd)(ai0 + αd)∗))1/2 , ai+1, . . . , aN

)
.

Thus the derivative with respect to α, at α = 0, of the difference between right-
hand side and left-hand side of the previous equation is zero. According to (5.3)
and to Corollary 5.12, for α sufficiently near 0, the difference between right-hand
side and left-hand side of the previous equation is equal to

log ∆Tr⊗ϕ⊗ϕ⊗(2δe)[DjF
(i)
α (a1, . . . , aN)]N

i,j=1 − ρkρl log
ρk ϕk((ai0 + αd)(ai0 + αd)∗)

ρl
,

where for all j, F(j)
α = Xj + αδi,jP. We have

log∆Tr⊗ϕ⊗ϕ⊗(2δe)[DjF
(i)
α (a1, . . . , aN)]N

i,j=1
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= Tr⊗ϕ⊗ ϕ⊗ δe log([DjF
(i)
α (a1, . . . , aN)]N

i,j=1[DiF
(j)
α (a1, . . . , aN)∗]N

i,j=1)

= Tr⊗ϕ⊗ ϕ⊗ δe log(IN ⊗ 1⊗ 1⊗ e + α(A + A∗) + α2 AA∗),

where A is the N×N matrix with (i, j)-th entry{
0 if i 6= i0,
DjP(a1, . . . , aN) if i = i0.

Thus

log∆Tr⊗ϕ⊗ϕ⊗(2δe)[DjF
(i)
α (a1, . . . , aN)]N

i,j=1

= αϕ⊗ ϕ⊗ δe(Di0 P(a1, . . . , aN) + (Di0 P(a1, . . . , aN))∗) + o(α).

Thus

∂

∂α |α=0
log ∆Tr⊗ϕ⊗ϕ⊗(2δe)[DjF

(i)
α (a1, . . . , aN)]N

i,j=1

= ϕ⊗ ϕ⊗ δe(Di0 P(a1, . . . , aN) + (Di0 P(a1, . . . , aN))∗)

= 2<ϕ⊗ ϕ⊗ δe(Di0 P(a1, . . . , aN)).

Moreover, since ϕk(ai0 a∗i0) = ρl
ρk

,

∂

∂α |α=0
ρkρl log

ρk ϕk((ai0 + αd)(ai0 + αd)∗)
ρl

= ρ2
k ϕk(ai0 d∗ + da∗i0)

= 2ρ2
k<ϕk(P(a1, . . . , aN)a∗i0).

Thus ϕ⊗ ϕ⊗ δe(Di0 P(a1, . . . , aN)) and ρ2
k ϕk(P(a1, . . . , aN)a∗i0) have the same real

part. Recall that P = λXi1 X∗i2 · · ·Xi2r+1 . What we did is true for any λ ∈ C, so

ρ2
k ϕk(P(a1, . . . , aN)a∗i0) = ϕ⊗ ϕ⊗ δe(Di0 P(a1, . . . , aN)).

Now recall the definition of Di0 P and choose λ = 1. This gives

ρ2
k ϕk(ai1 a∗i2 · · · ai2r+1 a∗i0) = ∑

06j6r
i2j+1=i0

ϕ(ai1 · · · a
∗
i2j

)ϕ(a∗2j+2 · · · a2r+1),

i.e. the following, which closes the proof:

ρk ϕ(ai1 a∗i2 · · · ai2r+1 a∗i0) = ∑
06j6r

i2j+1=i0

ρk ϕk(ai1 · · · a
∗
i2j

)ρl ϕl(a∗2j+2 · · · a2r+1).

COROLLARY 5.17. Consider a family (a1, . . . , aN) of elements of type (k, l) such
that

χD(a1, . . . , aN) = χD(a1) + · · ·+ χD(aN) > −∞.

Then the family is free with amalgamation over D.
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Proof. We use the notation defined in the beginning of Section 5.7. Since for
all i, χD(ai) > −∞, the distribution of aia∗i in (Akk, ϕk) is non-atomic, hence the
distribution of |ai| in (Akk, ϕk) is also non-atomic. Hence we can find a contin-
uous increasing function fi on [0, ∞), with value 0 in 0, and positive on (0, ∞),
such that the distribution of fi(ai) fi(ai)∗ is the Marchenko–Pastur distribution
with parameter ρl

ρk
. Then by Proposition 5.14 and subadditivity,

χD( f1(a1), . . . , fN(aN)) = χD( f1(a1)) + · · ·+ χD( fN(aN)),

hence by the previous theorem, f1(a1), . . . , fN(aN) are free with amalgamation
over D, and so do a1, . . . , aN , because for all i, ai ∈ { fi(ai)}′′.

QUESTION. It would be interesting to have a characterization of R-diagonal el-
ements with nontrivial kernel involving the entropy defined in this paper. In-
spired by the papers [9], [16], we ask the following question: given a compactly
supported probability measure ν on R+, what are the elements a ∈ Ap1 such that
aa∗ has distribution ν in (A22, p2), and such that χD(p1ap2, p2ap2, p2a∗p1, p2a∗p2)
is maximal ?

6. ANALOGUE OF FREE FISHER’S INFORMATION FOR SIMPLE ELEMENTS:
THE MICROSTATE-FREE APPROACH

In this section, we present a notion of free Fisher’s information for sim-
ple elements, constructed without using the microstates, like what was done by
Voiculescu in [31] and by Shlyakhtenko in [22] for elements of a W∗-probability
space. For a synthetic presentation of the free Fisher’s information of elements of
a W∗-probability space, see Section 2 of [15].

6.1. DEFINITIONS. In this section, we suppose that (A, ϕ) is a W∗-probability
space, with ϕ faithful tracial state. L2(A) will denote the Hilbert space obtained
by completing A for the norm ‖a‖2 = (ϕ(aa∗))1/2, a ∈ A.

A acts on L2(A) on the right and on the left, so one can define, for k, l ∈ [d],
L2(A)kl = pkL2(A)pl . We still have an identification between L2(A) andL2(A)11 · · · L2(A)1d

...
...

L2(A)d1 · · · L2(A)dd

 ,

by the map x ∈ L2(A) →

p1xp1 · · · p1xpd
...

...
pdxp1 · · · pdxpd

 . We still call the nonzero el-

ements of
⋃

k,l∈[d]

L2(A)kl the simple elements of L2(A). We define, for a nonzero
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simple element of L2(A), r(a) (r is for row) and c(a) (c is for column) the unique
numbers of [d] such that

a ∈ L2(A)r(a),c(a).

Moreover, x → x∗ extends to L2(A), and for all a, b ∈ A, x ∈ L2(A), we
have (axb)∗ = b∗x∗a∗. For all k ∈ [d], the state ϕk on Akk extends to L2(A)kk, so
the conditional expectation E extends to L2(A), and we still have

∀d, d′ ∈ D, ∀x ∈ L2(A), E(dxd′) = d E(x)d′.

In the same way, for n > 1 and π ∈ NC(n), we can extend En, Eπ , cn and cπ to
L2(A)⊗ (A⊗n−1), and the relations (2.1), (2.2), (2.3), and (2.4) remain true.

A family (ai)i∈I of elements of L2(A) is said to be a self-adjoint family if there
exists an involution ∗ of I such that for all i ∈ I, a∗i = a∗(i).

A finite sequence (a1, . . . , an) of simple elements of L2(A) is said to be a
square sequence if for all i ∈ [n], c(ai) = l(ai+1) (with an+1 := a1).

DEFINITION 6.1. Let (ai)i∈I be a self-adjoint family of simple elements ofA.
A family (ξi)i∈I of simple elements of L2(A) is said to fulfill conjugate relations for
(ai)i∈I if for all i ∈ I,

r(ξi) = c(ai), c(ξi) = r(ai),

and if one of the following equivalent propositions is true :

(i) for all n > 0, for all i, i1, . . . , in ∈ I such that (ξi, ai1 , . . . , ain) is a square
sequence,

ϕr(ξi)(ξiai1 · · · ain) =
n

∑
m=1

δi,im ϕc(ξi)(ai1 · · · aim−1)ϕr(ξi)(aim+1 · · · ain);

(ii) - for all i ∈ I, E(ξi) = 0,
- for all i, j ∈ I, E(ξiaj) = δij pr(ξi),
- for all n > 2, for all i, i1, . . . , in ∈ I such that (ξi, ai1 , . . . , ain) is a square

sequence,

E(ξiai1 · · · ain) =
n

∑
m=1

δi,im ηr(ξi),c(ξi) ◦ E(ai1 · · · aim−1) E(aim+1 · · · ain),

(we recall that for all k, l ∈ [d], ηk,l is the involution of D which permutes the
k-th and the l-th columns in the representation of elements of D as d×d diagonal
matrices);

(iii) for all n > 0, for all i, i1, . . . , in ∈ I such that (ξi, ai1 , . . . , ain) is a square
sequence,

cn+1(ξi ⊗ ai1 ⊗ · · · ⊗ ain) = δn,1δi,i1 pr(ξi).

Proof. Consider a family (ξi)i∈I of simple elements of L2(A) such that for
all i ∈ I,

li := r(ξi) = c(ai), ki := c(ξi) = r(ai),
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and let us prove the equivalence of (i), (ii), and (iii). The equivalence between (i)
and (ii) is obvious by definition of E: for all x ∈ L2(A),

E(x) =
d

∑
k=1

ϕk(pkapk) · pk.

Now, suppose (ii) true, and let us prove (iii) by induction on n. Note that
c1 = E1, and that for all ξ ∈ L2(A), a ∈ A,

c2(ξ ⊗ a) = E(ξa)− E(ξ) E(a),

so (iii) is proved for n = 0, 1. Now, suppose it proved for to all ranks 0, 1, . . . , n−
1, with n > 2, and let us prove it to the rank n. Consider i, i1, . . . , in ∈ I such that
(ξi, ai1 , . . . , ain) is a square sequence. We have

cn+1(ξi ⊗ ai1 ⊗ · · · ⊗ ain) = E(ξiai1 · · · ain)−∑
π

cπ(ξi ⊗ ai1 ⊗ · · · ⊗ ain),

where the sum is taken over all noncrossing partitions π of {0, . . . , n} which are
< 1{0, . . . , n}, and in which all blocks are associated to square subsequences of
(ξi, ai1 , . . . , ain).

Consider such a partition π, and apply the factorization formula (2.6) to
cπ(ξi ⊗ ai1 ⊗ · · · ⊗ ain). If it is not null, then the block of π containing 0 has only
one other element, say m, and in this case, we have

cπ(ξi⊗ ai1 ⊗· · ·⊗ ain) = ∏
V∈π1

V={t1<···<tr}

ηli ,ltr◦ cr(ait1
⊗· · ·⊗ aitr ) ∏

V∈π2
V={t1<···<tr}

ηli ,ltr◦ cr(ait1
⊗· · ·⊗ aitr ),

where π1 (respectively π2) is the partition induced by π on {1, . . . , m − 1} (re-
spectively {m + 1, . . . , n}), i.e. to

δi,im ηli ,ki
◦ cπ1(ai1 ⊗ · · · ⊗ aim−1)cπ2(aim+1 ⊗ · · · ⊗ ain),

Thus we have

cn+1(ξi ⊗ ai1 ⊗ · · · ⊗ ain)

=E(ξiai1 · · · ain)−
n

∑
m=1

∑
π1∈NC(m−1)

π2∈NC({m+1,...,n})

δi,im ηli ,ki
◦ cπ1(ai1 ⊗ · · · ⊗ aim−1)cπ2(aim+1 ⊗ · · · ⊗ ain)

=E(ξiai1 · · · ain)−
n

∑
m=1

δi,im ηli ,ki
◦ E(ai1 · · · aim−1) E(aim+1 · · · ain) = 0.

The reciprocal implication is analogous.

DEFINITION 6.2. Let (ai)i∈I be a self-adjoint family of simple elements ofA.
(i) A family (ξi)i∈I of simple elements of L2(A) is said to be a conjugate system

for (ai)i∈I if it fulfills conjugate relations and if in addition we have that

(6.1) ∀i ∈ I, ξi ∈ Alg({ai ; i ∈ I} ∪ D)
‖·‖2 ⊂ L2(A).
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(ii) Let the D-Fisher’s information of (ai)i∈I be

Φr((ai)i∈I) =

∑
i∈I
‖ξi‖2 if (ξi)i∈I is a conjugate system,

∞ if there is no conjugate system.

REMARKS. (i) The algebra generated by {ai ; i ∈ I} ∪ D is the set of elements of
A which have a d×d matrix representation of the typeP11(ai ; i ∈ I) · · · P1d(ai ; i ∈ I)

... · · ·
Pd1(ai ; i ∈ I) · · · Pdd(ai ; i ∈ I)

 ,

where for all k, l ∈ [d], Pkl is a polynomial in the noncommutative variables
Xi ; i ∈ I, and Pkl(ai ; i ∈ I) ∈ Akl . So the conjugate relations can be viewed
as a prescription for the inner products in L2(A) between ξi (i ∈ I) and elements
of this subalgebra. It follows that the conjugate system for (ai)i∈I is unique, if
it exists. Note moreover that the existence of the conjugate system is equivalent
to the existence of any family in L2(A) which fulfills the conjugate relations; in-
deed, if (ξi)i∈I fulfill the conjugate relations and if we set, for all i ∈ I, γi to be

the projection of ξi onto Alg({ai ; i ∈ I} ∪ D)
‖·‖2 , then (γi)i∈I will also fulfill the

conjugate relations, hence will give a conjugate system.
(ii) Consider an involution ∗ of I such that for all i ∈ I, a∗(i) = a∗i . Consider a

family (ξi)i∈I which fulfills conjugate relations. Then define, for all i ∈ I,

ξ̃i =
ρc(ai)

ρr(ai)
ξ∗∗(i).

Then (ξ̃i)i∈I fulfills conjugate relations, hence we have ξi = ξ̃i for all i if (ξi)i∈I is
a conjugate system. It can be written

(6.2) ξ∗(i) =
ρr(ai)

ρc(ai)
ξ∗i .

Proof. Let us prove (ii). It suffices to prove that (ξ̃i)i∈I fulfills conjugate
relations. Consider n > 0 and i, i1, . . . , in ∈ I such that (ξ̃i, ai1 , . . . , ain) is a square
sequence. Then we have the following which closes the proof:

cn+1(ξ̃i ⊗ ai1 ⊗ · · · ⊗ ain) =
ρc(ai)

ρr(ai)
cn+1(ξ∗∗(i) ⊗ a∗∗(i1)

⊗ · · · ⊗ a∗∗(in))

=
ρc(ai)

ρr(ai)
cn+1(a∗(in) ⊗ · · · ⊗ a∗(i1) ⊗ ξ∗(i))

∗

= (ηr(ξi),c(ξi) ◦ cn+1(ξ∗(i) ⊗ a∗(in) ⊗ · · · ⊗ a∗(i1)))
∗

= (ηr(ξi),c(ξi)δn,1δ∗(i),∗(i1)pr(ξ∗(i)))
∗ = δi,i1 pr(ξi).



RECTANGULAR RANDOM MATRICES, ENTROPY, AND FISHER’S INFORMATION 407

(iii) A link with the already defined notions of Fisher’s information can be
made as follows: Consider x ∈ Akl such that x∗x is invertible in All . Then a
pair (ξ, ρk

ρl
ξ∗) fulfills conjugate relations for (x, x∗) if ρk

ρl
ξx(x∗x)−1 fulfills conju-

gate relations in the sense of [15] for x∗x in (All , ϕl). The reciprocal is true if
moreover, ϕl(ξx(x∗x)−1) is null.

Proof. (ξ, ρk
ρl

ξ∗) fulfills conjugate relations for (x, x∗) if and only if for all
n > 0, 

(A) ϕl(ξx(x∗x)n) =
n

∑
i=0

ϕk((xx∗)i)ϕk((x∗x)n−i),

(B) ρk
ρl

ϕk(ξ∗x∗(xx∗)n) =
n

∑
i=0

ϕl(x∗xi)ϕk((xx∗)n−i),

where (xx∗)0 stands for pk and (x∗x)0 stands for pl .
But using ϕ(·∗) = ϕ(·), we have

(A) ⇔ ϕl((x∗x)nx∗ξ∗) =
n

∑
i=0

ϕl(x∗xi)ϕk((xx∗)n−i),

which is equivalent to (B) because ϕl((x∗x)nx∗ξ∗) = ρk
ρl

ϕk(ξ∗x∗(xx∗)n).

So (ξ, ρk
ρl

ξ∗) fulfills conjugate relations for (x, x∗) if and only if for all n > 0,

ϕl(ξx(x∗x)n) =
n

∑
i=0

ϕk((xx∗)i)ϕk((x∗x)n−i).

It is implied by the fact that ρk
ρl

ξx(x∗x)−1 fulfills conjugate relations in the sense

of [15] for x∗x in (All , ϕl), and the reciprocal is true if moreover, ϕl(ξx(x∗x)−1) is
null.

6.2. CRAMÉR–RAO INEQUALITY.

THEOREM 6.3. Consider a nonnull element a of Akl , with k 6= l and ρk 6 ρl .
Then

ϕ(aa∗)Φr(a, a∗) > ρ2
k + ρ2

l ,

with equality if and only if there exists c positive number such that the moments of c · aa∗

in (Akk, ϕk) are the moments of the Marchenko–Pastur distribution with parameter ρl
ρk

.

Proof. If (a, a∗) has no conjugate system, then it is obvious. If a conjugate
system for (a, a∗) is (ξ, ρk

ρl
ξ∗) (indeed, by (6.2), any conjugate system has this

form), then

Φr(a, a∗) =
(

1 +
ρ2

k
ρ2

l

)
ϕ(ξξ∗),

so it suffices to prove that
ϕ(aa∗)ϕ(ξξ∗) > ρ2

l .
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Note that we have ϕ((ξ∗)∗a) = ρl , so the result follows from the Cauchy–Schwarz
inequality. Moreover, we have equality if and only if there exists c > 0 such that
ξ∗ = ca, which is equivalent to the fact that for all n > 2 even,

c(l)
n (a∗ ⊗ a⊗ · · · ⊗ a) = δn,2

1
c

and c(k)
n (a⊗ a∗ ⊗ · · · ⊗ a∗) = δn,2

ρl
ρk

1
c

,

which is equivalent, by Theorem 2.3, to the fact that the moments of c · aa∗ in
(Akk, ϕk) are the moments of the Marchenko–Pastur distribution with parameter
ρl
ρk

.

6.3. FISHER’S INFORMATION AND FREENESS.

THEOREM 6.4. Consider a nonnull elements x, y of Akl , with k6=l. Then we have

(6.3) Φr(x, y, x∗, y∗) > Φr(x, x∗) + Φr(y, y∗),

and we have equality if x, y are free with amalgamation over D. Moreover, if we have the
following then x, y are free with amalgamation over D:

Φr(x, y, x∗, y∗) = Φr(x, x∗) + Φr(y, y∗) < ∞.

Proof. Let us prove that

Φr(x, y, x∗, y∗) > Φr(x, x∗) + Φr(y, y∗).

If Φr(x, y, x∗, y∗) = ∞, it is clear, and in the other case, let (ξ, ρk
ρl

ξ∗, ζ, ρk
ρl

ζ∗) be the

conjugate system for (x, y, x∗, y∗). Then (ξ, ρk
ρl

ξ∗), (respectively (ζ, ρk
ρl

ζ∗)) satisfy
conjugate relations for (x, x∗) (respectively for (y, y∗)), so the result is proved.

Suppose that x, y are free with amalgamation over D. If Φ(x, x∗) = ∞ or
Φ(y, y∗) = ∞, then we have equality in (6.3). In the other case, let (ξ, ρk

ρl
ξ∗),

(respectively (ζ, ρk
ρl

ζ∗)) be a conjugate system for (x, x∗) (respectively for (y, y∗)).

It suffices to prove that (ξ, ρk
ρl

ξ∗, ζ, ρk
ρl

ζ∗) is a conjugate system for (x, y, x∗, y∗). It
is clear that

ξ,
ρk
ρl

ξ∗, ζ,
ρk
ρl

ζ∗ ∈ Alg({x, y, x∗, y∗} ∪ D)
‖·‖2 ,

so it suffices to prove that (ξ, ρk
ρl

ξ∗, ζ, ρk
ρl

ζ∗) fulfills conjugate relations for the fam-

ily (x, y, x∗, y∗). Let us prove condition (iii) of Definition 6.1. Since (ξ, ρk
ρl

ξ∗),

(respectively (ζ, ρk
ρl

ζ∗)) is a conjugate system for (x, x∗) (respectively for (y, y∗)),
we have c1(ξ) = c1(ξ∗) = c1(ζ) = c1(ζ∗) = 0, and c2(ξ ⊗ x) = c2(ζ ⊗ y) = pl ,

c2(
ρk
ρl

ζ∗ ⊗ y∗) = c2(
ρk
ρl

ξ∗ ⊗ x∗) = pk. Since ξ, ξ∗ ∈ Alg({x, x∗} ∪ D)
‖·‖2 , and

ζ, ζ∗ ∈ Alg({y, y∗} ∪ D)
‖·‖2 , by freeness with amalgamation over D, we have

c2(ζ ⊗ x) = c2(ζ∗ ⊗ x∗) = c2(ξ ⊗ y) = c2(ξ∗ ⊗ y∗) = 0.
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Consider now n > 2, and a square sequence (T, a1, . . . , an) ∈ {ξ, ρk
ρl

ξ∗, ζ, ρk
ρl

ζ∗}×
({x, x∗, y, y∗}n). Let us prove that

(6.4) cn+1(T ⊗ a1 ⊗ · · · ⊗ an) = 0.

For example, we can suppose that T = ξ. If one of the ai’s is y or y∗, then (6.4) is
due to the freeness with amalgamation over D. If none of the ai’s is y or y∗, then
(6.4) is due to the fact that (ξ, ρk

ρl
ξ∗) fulfills conjugate relations for (x, x∗).

In order to finish the proof, let us prove that if (ξ, ρk
ρl

ξ∗) is a conjugate system
for (x, x∗), then we have xξ = ξ∗x∗. Both belong to

pkAlg({x, x∗} ∪ D)
‖·‖2 pk,

which is equal to

{pk} ∪ {(xx∗)n ; n > 1}‖·‖2 .

Thus, since ϕk is a faithful trace state on Akk, it suffices that for all n > 0,

ϕk((xx∗)nxξ) = ϕk((xx∗)nξ∗x∗),

where (xx∗)0 stands for pk. We have

ϕk((xx∗)nxξ) =
ρl
ρk

ϕl(ξ(xx∗)nx) =
ρl
ρk

n

∑
i=0

ϕk((xx∗)i)ϕl((xx∗)n−i),

which is a real number. Thus

ϕk((xx∗)nξ∗x∗)=ϕk(ξ∗x∗(xx∗)n)=ϕk(((xx∗)nxξ)∗)=ϕk((xx∗)nxξ)=ϕk((xx∗)nxξ).

So we have proved that xξ = ξ∗x∗.
Now, suppose that

Φr(x, y, x∗, y∗) = Φr(x, x∗) + Φr(y, y∗) < ∞.

By Theorem 2.1, in order to prove the freeness with amalgamation over D of x
and y, it suffices to prove that for all n > 2, for all z1, . . . , zn taken in the algebras
Alg({x, x∗} ∪ D) and Alg({y, y∗} ∪ D), but not all in the same one, we have

(6.5) cn(z1 ⊗ · · · ⊗ zn) = 0.

By the formula of cumulants with products as entries ([26], Theorem 2), we can
suppose that

z1, . . . , zn ∈ {x, x∗, y, y∗}.
If the sequence (z1, . . . , zn) is not square, then (6.5) holds by paragraph 2.2 (a).
So we suppose the sequence to be square, and by equation (2.7), we can suppose
that

(z1, z2) ∈ {(x, y∗), (y, x∗), (x∗, y), (y∗, x)}.
For example, we will treat the case where (z1, z2) = (x, y∗).

Consider (ξ, ρk
ρl

ξ∗, ζ, ρk
ρl

ζ∗) a conjugate system for (x, y, x∗, y∗). Then using

the hypothesis and (i) of Remark following Definition 6.2, we know that (ξ, ρk
ρl

ξ∗),
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(respectively (ζ, ρk
ρl

ζ∗)) is the conjugate system for (x, x∗) (respectively for (y, y∗)).
Since xξ = ξ∗x∗, we have

(6.6) c(k)
n+1(xξ ⊗ z2 ⊗ · · · ⊗ zn ⊗ z∗1) = c(k)

n+1(ξ∗x∗ ⊗ z2 ⊗ · · · ⊗ zn ⊗ z∗1).

Now, we apply the formula of cumulants with products as entries ([26], Theo-
rem 2) to left hand side and right hand side of (6.6):

LHS = c(k)
n+2(x⊗ ξ ⊗ y⊗ z3 ⊗ · · · ⊗ zn ⊗ z∗1)

+ ∑
16i6ni even

c(l)
i (ξ ⊗ z2 ⊗ z3 ⊗ · · · ⊗ zi)︸ ︷︷ ︸

=0 because
z2=y (and c2(ξ) = 0)

c(k)
n−i+2(x⊗ zi+1 ⊗ · · · ⊗ zn ⊗ z∗1)

=
ρl
ρk

c(l)
n+2(ξ ⊗ y⊗ z3 ⊗ · · · ⊗ zn ⊗ z∗1 ⊗ x) = 0.

On the other side, we have

RHS = c(k)
n+2(ξ∗ ⊗ x∗ ⊗ z2 ⊗ z3 ⊗ · · · ⊗ zn ⊗ z∗1)︸ ︷︷ ︸

=0 because
n+2>2

+ ∑
16i6n
i even

c(l)
i (x∗ ⊗ z2 ⊗ z3 ⊗ · · · ⊗ zi) c(k)

n−i+2(ξ∗ ⊗ zi+1 ⊗ · · · ⊗ zn ⊗ z∗1)︸ ︷︷ ︸
=0 if i < n

= c(l)
n (x∗ ⊗ y⊗ z3 ⊗ · · · ⊗ zn) c(k)

2 (ξ∗ ⊗ x∗)︸ ︷︷ ︸
6=0

.

Hence we have the following which is what we wanted to obtain:

c(l)
n (x∗ ⊗ y⊗ z3 ⊗ · · · ⊗ zn) = 0.

QUESTION. It would be interesting to have a characterization of R-diagonal el-
ements with nontrivial kernel involving the Fisher’s information defined in this
paper. Inspired by the paper [15], we ask the following question: given a com-
pactly supported probability measure ν on R+, what are the elements a ∈ Ap1
such that aa∗ has distribution ν in (A22, p2), and such that

Φr(p1ap2, p2ap2, p2a∗p1, p2a∗p2)

is minimal ?

APPENDIX A: PROOF OF PROPOSITION 5.1

Let us suppose, for example, that ρk 6 ρl . Fix R > 0 such that R2 is more
than the suppremum of the support of µ. Define, for all q > 1, the map

κq : x ∈ [0, R]q → 1
q

q

∑
i=1

δxi .
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The index q in κq will always be omitted, because no confusion will ever be pos-
sible. For P probability measure on [0, R]q, we denote by κ(P) the push-forward
of P by κ. First of all, let us recall a large deviation principle. For basic definitions
on large deviations, see p. 177 of [10] or many other books (e.g. [6]).

THEOREM 6.5. Let, for n > 1, Zn be the total mass of

Pn := ∆(x)2
qk(n)

∏
i=1

xql(n)−qk(n)
j 1[0,R]qk(n)(x)dx.

Then the finite limit B := lim
n→∞

n−2 log Zn exists, and the sequence (κ( 1
Zn

Pn))n satis-

fies a large deviation principle in the set of probability measures on [0, R] endowed with
topology of weak convergence in the scale n−2 with the good rate function

I : ν→ −ρ2
kΣ(ν)− (ρkρl − ρ2

k)
∫

log(x)dν(x) + B.

This Theorem was proved under a slightly different hypothesis in [10] (The-
orem 5.5.1 p. 227, with Q = 0). The difference between the hypothesis above and
the hypothesis of Theorem 5.5.1 of [10] is that in the latter, the bound R does not
appear, the measures are considered on R+. But it is not a problem: the proof
of Theorem 5.5.1 can easily be adapted to this context (in fact it is more easy to
work with the compact set [0, R]). Note that an analogous modification of a result
proved for the interval R+ to the interval [0, R] is done on p. 240 of [10].

Note that removing the renormalization constant Zn and the limit B, one
gets the following result. Its formulation implies to have extended the notion of
large deviation principle to sequences of finite measures (not only of probability
measures), but it can be done without any ambiguity.

COROLLARY 6.6. The sequence of finite measures (κ(Pn))n satisfies a large devi-
ation principle in the set of probability measures on [0, R] endowed with topology of weak
convergence in the scale n−2 with the good rate function

J : ν→ −ρ2
kΣ(ν)− (ρkρl − ρ2

k)
∫

log(x)dν(x).

Now, we give the proof of Proposition 5.1.
Step I. For all r > 1, ε > 0,

χR(a; 2r, ε) = lim sup
n→∞

1
n2 log Λ(ΓR(a; n, 2r, ρkε)) + ρkρl log n.

ΓR(a; n, r, ρkε) is the set of matrices of Mn(k, l) such that ‖M‖ 6 R and each mo-
ment of order6 r of the spectral law of the k-th diagonal block of MM∗ is ε-close
to the moment of same order of µ. Thus by the remark following Lemma 5.2,
Λ(ΓR(a; n, 2r, ρkε)) is

πqk(n)ql(n)Pn({x ∈ [0, R]qk(n) ; ∀i = 0, . . . , r, |mi(κ(x))−mi(µ)| 6 ε})

∏
qk(n)
j=1 j! ∏

ql(n)−1
j=ql(n)−qk(n) j!

,



412 FLORENT BENAYCH-GEORGES

where Pn is the measure introduced in the previous theorem.
Step II. Let us compute the limit C, as n→ ∞, of

un :=
1
n2 log

πqk(n)ql(n)

∏
qk(n)
j=1 j! ∏

ql(n)−1
j=ql(n)−qk(n) j!

+ ρkρl log n.

We have, by Stirling formula, log j! = 1
2 log j + j(log j− 1) + O(1). So

un =
qk(n)ql(n)

n2 log π − 1
n2

qk(n)

∑
j=1

(1
2

log j + j(log j− 1)
)

− 1
n2

ql(n)−1

∑
j=ql(n)−qk(n)

(1
2

log j + j(log j− 1)
)

+ ρkρl log n + O( 1
n )

= ρkρl log π

+
qk(n)(qk(n)+1)+(ql(n)− 1)ql(n)− (ql(n)− qk(n)− 1)(ql(n)− qk(n))

2n2

− qk(n)2

n2
1

qk(n)

qk(n)

∑
j=1

j
qk(n)

log
j

qk(n)
− log qk(n)

n2

qk(n)

∑
j=1

j

− qk(n)2

n2
1

qk(n)

ql(n)−1

∑
j=ql(n)−qk(n)

j
qk(n)

log
j

qk(n)
− logqk(n)

n2

ql(n)−1

∑
j=ql(n)−qk(n)

j+ρkρl logn+o(1)

= ρkρl(log π + 1)− ρ2
k

1∫
0

t log tdt− ρ2
k

ρl /ρk∫
ρl /ρk−1

t log tdt

− log qk(n)
2n2

[
qk(n)(qk(n)+1)+(ql(n)−1)ql(n)−(ql(n)−qk(n)−1)(ql(n)−qk(n))

]
+ ρkρl log

(
qk(n)

n
qk(n)

)
+ o(1)

= ρkρl(log π + 1− log ρk)− ρ2
k

1∫
0

t log tdt− ρ2
k

ρl/ρk∫
ρl/ρk−1

t log tdt +
log qk(n)

n2

×
[
qk(n)(qk(n) + 1) + (ql(n)− 1)ql(n)− (ql(n)− qk(n)− 1)(ql(n)− qk(n))

− 2qk(n)ql(n) + O(n)
]
+ o(1).

Thus

un −→n→∞
C := ρkρl(log π + 1− log ρk)− ρ2

k

1∫
0

t log tdt

︸ ︷︷ ︸
=−1/4

−ρ2
k

ρl/ρk∫
ρl/ρk−1

t log tdt.
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Step III. Now, let us denote by F(r, ε) (respectively G(r, ε)) the set of prob-
ability measures on [0, R] for which each moment of order 6 r is ε-close (respec-
tively strictly ε-close) to the moment of same order of µ. F(r, ε) (respectively
G(r, ε)) is closed (respectively open). Thus by the previous corollary, we have

lim sup
n→∞

1
n2 log Pn(κ−1(F(r, ε))) 6 − inf

F(r,ε)
J,

lim inf
n→∞

1
n2 log Pn(κ−1(G(r, ε))) > − inf

G(r,ε)
J.

But inf
F(r,ε)

J = inf
G(r,ε)

J, so

1
n2 log Pn(κ−1(F(r, ε))) −→

n→∞
− inf

F(r,ε)
J,

and it follows, by Steps I and II, that

χR(a; 2r, ε) = − inf
F(r,ε)

J + C.

As ε goes to 0 and r goes to ∞, inf
F(r,ε)

J goes to J(µ), and we obtain the desired

result:

χR(a)

=ρ2
kΣ(µ)+(ρl−ρk)ρk

∫
log(x)dµ(x)+ρkρl

(
log

π

ρk
+1
)
+

ρ2
k

4
−ρ2

k

ρl/ρk∫
ρl/ρk−1

t log tdt.

APPENDIX B: PROOF OF LEMMA 5.2

In all this proof, we shall identify elements of Rq with the associated diago-
nal q×q matrix.

(i) First of all, the fact that Ψ is an injection onto a set with negligible comple-
mentary is well known (see [11]).

(ii) Let P be the q×q′ matrix with entry (i, j) equal to 1 if i = j, and to 0 in
the other case. Then the set Uq,q′ is PUq′ . So the set Uq/Tq × Rq

+,< × Uq,q′ is a
manifold, and for u ∈ Uq, a ∈ Rq

+,<, v ∈ Uq′ , its tangent space at (uTq, a, Pv)
is the cartesian product of tangent spaces of respectively Uq/Tq, Rq

+,<, Uq,q′ at
respectively uTq, a, Pv. The first of them can be identified, via the map M→ u∗M,
to the set U0

q of anti-hermitian matrices with zeros and the diagonal, the second
one is Rn, and the third one can be identified, via the map M → Mv∗, to the
set Uq,q′ of q×q′ matrices in which the submatrix of the first q columns is anti-
hermitian. The differential dΨuTq ,a,Pv of Ψ at (uTq, a, Pv) is given by the following
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formulae:

∀X ∈ U0
q, dΨuTq ,a,Pv(u∗X, 0, 0) = u(Xa1/2 − a1/2X︸ ︷︷ ︸

:=Ma(X)

)u∗Pv,

∀A ∈ Rq, dΨuTq ,a,Pv(0, A, 0) =
1
2

u
A

a1/2 u∗Pv,

∀Y ∈ Uq,q′ , dΨuTq ,a,Pv(0, 0, Yv) = ua1/2u∗Yv.

(iii) Let det denote the determinant on the canonical basis of Mq,q′ , when con-
sidered as a real space. Define n = q2 − q and m = 2qq′ − q2. Fix (uTq, a, Pv) in
the manifold, and X1,. . . , Xn ∈ U0

q, A1,. . . ,Aq ∈ Rq, and Y1, . . . , Ym ∈ Uq,q′ . Now,
let us compute the differential form Ψ∗det at (uTq, a, Pv) on the family

((u∗X1, 0, 0), . . . , (u∗Xn, 0, 0), (0, A1, 0), . . . , (0, Aq, 0), (0, 0, Y1v), . . . , (0, 0, Ymv)).

It is equal to

det
[
uMa(X1)u∗Pv, . . . , uMa(Xn)u∗Pv,

1
2

u
A1

a1/2 u∗Pv, . . . ,
1
2

u
Aq

a1/2 u∗Pv,

ua1/2u∗Y1v, . . . , ua1/2u∗Ymv
]
.

Define ũ =
[

u 0
0 Iq′−q

]
∈ Uq′ . We have Pũ = uP. Note that the base we chose

is orthonormal for the euclidian structure we chose on Mq,q′ , and the left or right
multiplications by unitary elements are orthogonal, and have determinant 1 by
connexity of the unitary group. So what we want to compute is equal to

det
(

Ma(X1)P, . . . , Ma(Xn)P,
1
2

A1

a1/2 P, . . . ,
1
2

Aq

a1/2 P, a1/2u∗Y1ũ, . . . , a1/2u∗Ymũ
)

.

In order to compute this, let us introduce another basis of Mq,q′ . Let us denote
the elementary matrices of Mq,q′ by

Ek,l (1 6 k 6 q, 1 6 l 6 q′).

Define, for 1 6 k < l 6 q,

ek,l = Ek,l + El,k, e′k,l = i(Ek,l − El,k),

let B1 be the family (ek,l , e′k,l)16k<l6q, define

B2 = (Ek,k)16k6q,

and let B3 be any basis of Uq,q′ . Note that B := B1 ∪B2 ∪B3 is a basis of Mq,q′ . Let
λ be a non-null real number such that det is λ times the determinant on B. Note
that the matrix of the family

F :=
(

Ma(X1)P, . . . , Ma(Xn)P,
1
2

A1

a1/2 P, . . . ,
1
2

Aq

a1/2 P, a1/2u∗Y1ũ, . . . , a1/2u∗Ymũ
)
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on B is block upper-triangular (with respect to the decomposition B = B1 ∪ B2 ∪
B3). So det(F ) is λ times the product of the determinants of the matrices of the
families

(Ma(X1)P, . . . , Ma(Xn)P),
(1

2
A1

a1/2 P, . . . ,
1
2

Aq

a1/2 P
)

,

(Pr(a1/2u∗Y1ũ), . . . , Pr(a1/2u∗Ymũ)),

on the respective basesB1, B2, B3 (where Pr denotes the projection on Span(B3) =
Uq,q′ in the direction of Span(B1 ∪ B2), i.e. the orthogonal projection on Uq,q′ ).

Let us compute the first determinant. Ma maps linearly U0
q into the set of

hermitian matrices with null diagonal, so X → Ma(X)P maps linearly U0
q into

Span(B1). Let (Fk,l)16k,l6q be the elementary matrices of Mq,q. Define, for 1 6
k < l 6 q,

fk,l = Fk,l − Fl,k, f ′k,l = i(Fk,l + Fl,k),

let β1 be the family ( fk,l , f ′k,l)16k<l6q. The matrix of the map X → Ma(X)P be-
tween the bases β1 and B1 is block-diagonal, with blocks[

0 a1/2
k − a1/2

l
a1/2

l − a1/2
k 0

]
, (1 6 k < l 6 q).

So its determinant is ∆(a1/2)2, and the determinant of the matrix of the family
(Ma(X1)P, . . . , Ma(Xn)P) in B1 is ∆(a1/2)2 times the determinant of the matrix of
the family (X1, . . . , Xn) in β1.

The second determinant is 1
2n

1
(a1···an)1/2 times the determinant of the matrix

of the family (A1, . . . , An) in B2.
Let us compute the third determinant. In this paragraph, we shall use a two

blocks-decomposition of matrices of Mq,q′ . Any q×q′ matrix Y will be denoted
by Y = (Ys, Yr), where Ys is a q×q matrix, and Yr is a q×(q′ − q) matrix (s is for
square, and r for rectangular). With this decomposition, Pr has a simple expression:
Pr(Y) = (Ys−Y∗s

2 , Yr). Note that if Y ∈ Uq,q′ , then Ys is anti-hermitian, so

Pr(a1/2u∗Yũ) = Na((u∗Ysu, u∗Yr)),

where

Na : Y ∈ Uq,q′ →
( a1/2Ys + Ysa1/2

2
, a1/2Yr

)
∈ Uq,q′ .

Note that Y ∈ Uq,q′ → (u∗Ysu, u∗Yr) is orthogonal, and has determinant one by
connexity of Uq. Let us compute the determinant of Na. All vectors of the basis

(Ek,l − El,k)16k<l6q ∪ (i(Ek,l + El,k))16k6l6q ∪ (Ek,l) 16k6q
q′−q6l6q′

∪ (iEk,l) 16k6q
q′−q6l6q′

are eigenvectors of Na, with respective eigenvalues( a1/2
k + a1/2

l
2

)
16k<l6q

∪
( a1/2

k + a1/2
l

2

)
16k6l6q

∪ (a1/2
k ) 16k6q

q′−q6l6q′
∪ (a1/2

k ) 16k6q
q′−q6l6q′

.
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Thus the determinant of Na : Uq,q′ → Uq,q′ is

(a1 · · · aq)q′−q+1/2 ∏
16k<l6q

( a1/2
k + a1/2

l
2

)2
.

The third determinant is this quantity times the determinant, in B3, of the family
(Y1, . . . , Ym).

(iv) So the value of the differential form Ψ∗det at (uTq, a, Pv) on the family

((u∗X1, 0, 0), . . . , (u∗Xn, 0, 0), (0, A1, 0), . . . , (0, Aq, 0), (0, 0, Y1v), . . . , (0, 0, Ymv))

is

λ∆(a1/2)2 det
β1

(X1, . . . , Xn)
1
2n

1
(a1 · · · an)1/2

×det
can

(A1, . . . , An)(a1 · · · aq)q′−q+1/2 ∏
16k<l6q

( a1/2
k + a1/2

l
2

)2
det
B3

(Y1, . . . , Ym).

It is well known (see, e.g., Section I.5 of [5]), that it is equal, up to a multiplicative
constant, to

∆(a)2
q

∏
k=1

aq′−q
k ω

Uq/Tq
uT (u∗X1, . . . , u∗Xn) det

can
(A1, . . . , An)ω

Uq,q′
vP (Y1v, . . . , Ymv),

where ωUq/Tq is a non-null differential n-form on Uq/Tq which is invariant under
the left action of the unitary group, and ω

Uq,q′ is a non-null differential m-form on
Uq,q′ which is invariant under the left and right actions of the unitary groups. So
Ψ∗det is equal, up to a multiplicative constant, to

f ·ωUq/Tq ∧ det
can
∧ω

Uq,q′ ,

where f is the smooth function defined on Uq/Tq ×Rq
+,< × Uq,q′ by

f (uT, a, Pv) = ∆(a)2
q

∏
k=1

aq′−q
k .

Hence the push-forward, by Ψ−1, of the Lebesgue measure on Mq,q′ is the tensor
product γq ⊗ Cσq,q′ ⊗ γq,q′ , where C is a positive constant.

(v) Let us compute C. As noticed in the remark following the lemma, by defi-
nition of the measures γq and γq,q′ , we can now claim that the map

Ψ̃ : Uq × (R+)q × Uq′ → Mq,q′

(u, x, v) 7→ u diag(x1, . . . , xq)1/2u∗Pv

is surjective and preserves the measure Haar(Uq) ⊗ C
q! σ̃q,q′ ⊗Haar(Uq′) (i.e. the

push-forward of this measure by Ψ̃ is the Lebesgue measure), where σ̃q,q′ is the
measure on (R+)n with density given by formula (5.2).
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The function x ∈Mq,q′ → e−Tr xx∗ has integral with respect to the Lebesgue
measure equal to πqq′ . Thus

πqq′

=
Cπqq′

∏
q
j=1 j! ∏

q′−1
j=q′−q j!

∫
a∈(R+)q

∫
u∈Uq

∫
v∈Uq′

∆(a)2
q

∏
j=1

aq′−q
j e−Tr ua1/2Pvv∗P∗a1/2u∗dadudv.

Thus

1
C

=
1

∏
q
j=1 j! ∏

q′−1
j=q′−q j!

∫
a∈(R+)q

∆(a)2
q

∏
j=1

aq′−q
j e

−
q
∑

i=1
ai

da.

We can now apply formula (4.1.8) p. 119 of [10], with n = q, β = 1, a = q′ − q + 1,
and it appears that C = 1.
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