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ABSTRACT. In this note unbounded regular operators on Hilbert C∗-modu-
les over arbitrary C∗-algebras are discussed. A densely defined operator t
possesses an adjoint operator if the graph of t is an orthogonal summand.
Moreover, for a densely defined operator t the graph of t is orthogonally com-
plemented and the range of PFPG(t)⊥ is dense in its biorthogonal complement
if and only if t is regular. For a given C∗-algebra A any densely defined A-
linear closed operator t between Hilbert C∗-modules is regular, if and only if
any densely defined A-linear closed operator t between Hilbert C∗-modules
admits a densely defined adjoint operator, if and only if A is a C∗-algebra
of compact operators. Some further characterizations of closed and regular
modular operators are obtained.
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INTRODUCTION

Hilbert C∗-modules are an often used tool in the study of locally compact
quantum groups and their representations, in noncommutative geometry, in KK-
theory, and in the study of completely positive maps between C∗-algebras.

A (left) pre-Hilbert C∗-module over a (not necessarily unital) C∗-algebra A is
a left A-module E equipped with an A-valued inner product 〈·, ·〉 : E× E → A,
which is A-linear in the first variable and has the properties:

〈x, y〉 = 〈y, x〉∗, 〈x, x〉 > 0 with equality if and only if x = 0.

We always suppose that the linear structures of A and E are compatible.
A pre-HilbertA-module E is called a HilbertA-module if E is a Banach space

with respect to the norm ‖x‖ = ‖〈x, x〉‖1/2. If E, F are two Hilbert A-modules
then the set of all ordered pairs of elements E⊕ F from E and F is a Hilbert A-
module with respect to theA-valued inner product 〈(x1, y1), (x2, y2)〉 = 〈x1, x2〉E
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+〈y1, y2〉F. It is called the direct orthogonal sum of E and F. A HilbertA-submodule
of a Hilbert A-module F is a direct orthogonal summand if E together with its
orthogonal complement E⊥ in F gives rise to an A-linear isometric isomorphism
of E ⊕ E⊥ and F. Some interesting results about orthogonally complemented
submodules can be found in [4], [5], [15]. For the basic theory of Hilbert C∗-
modules we refer to the book by E.C. Lance [14] and to respective chapters in the
monographic publications [7], [18], [20].

As a convention, throughout the present paper we assume A to be an ar-
bitrary C∗-algebra (i.e. not necessarily unital). Since we deal with bounded and
unbounded operators at the same time we simply denote bounded operators by
capital letters and unbounded operators by lower case letters. We use the de-
notations Dom(·), Ker(·) and Ran(·) for domain, kernel and range of operators,
respectively. If E, F are Hilbert A-modules and W is an orthogonal summand
in E ⊕ F, PW denotes the orthogonal projection of E ⊕ F onto W and PE and PF
denote the canonical projections onto the first and second factors of E⊕ F.

Suppose E, F are HilbertA-modules. We denote the set of allA-linear maps
T : E→ F for which there is a map T∗ : F → E such that the equality

(0.1) 〈Tx, y〉F = 〈x, T∗y〉E
holds for any x ∈ E, y ∈ F by B(E, F). The operator T∗ is called the adjoint
operator of T. The existence of an adjoint operator T∗ for some A-linear operator
T : E → F implies that each adjointable operator is necessarily bounded and A-
linear in the sense T(ax) = aT(x) for any a ∈ A, x ∈ E, and similarly for T∗. The
reason for this is the requirement that the equality (0.1) is supposed to hold for
any elements of E and F, so T has E as its domain.

In general, bounded A-linear operators may fail to possess an adjoint op-
erator, however, if E is a full Hilbert C∗-module over a C∗-algebra A, then it is
known that each bounded A-linear operator on E possesses an adjoint operator
if and only if E is orthogonally comparable, i.e. whenever E appears as a Hilbert
A-submodule of another HilbertA-module F then E is an orthogonal direct sum-
mand of F (cf. Theorem 6.3 of [5]).

In several contexts where Hilbert C∗-modules arise, one also needs to study
“unbounded adjointable operators”, or what are now known as regular opera-
tors. These were first introduced by Baaj and Julg in [2] where they gave an inter-
esting construction of Kasparov bimodules in KK-theory using regular operators.
Later regular operators were reconsidered by Woronowicz in [21], while inves-
tigating noncompact quantum groups. The functional calculus of regular oper-
ators and the Fuglede–Putnam theorem for Hilbert C∗-modules were explained
by Kustermans in [13]. Beside these works Kucerovsky gave a new approach
to functional calculus of regular operators in [11], [12]. Also, Lance gave a brief
indication in his book [14] about Hilbert modules and regular operators on them.
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Modifying the defining equality (0.1) of adjointability for unbounded A-linear
operators t : Dom(t) ⊆ E → Ran(t) ⊆ F between Hilbert A-modules E and F,
the operator t is said to be adjointable if there exists another A-linear operator
t∗ : Dom(t∗) ⊆ F → Ran(t∗) ⊆ E such that the equality

(0.2) 〈tx, y〉F = 〈x, t∗y〉E

holds for all x ∈ Dom(t), y ∈ Dom(t∗). Despite the good properties of un-
bounded operators on Hilbert spaces adjointable unbounded operators on Hilbert
C∗-modules may lack some good properties that are wanted in applications. So
the notion of regular operators was introduced to provide a tractable class of un-
bounded C∗-linear densely defined closed operators on Hilbert C∗-modules. An
operator t from a Hilbert A-module E to another Hilbert A-module F is said to
be regular if

(i) t is closed and densely defined with domain Dom(t),
(ii) its adjoint t∗ is also densely defined, and

(iii) the range of 1 + t∗t is dense in E.

Note that as we set A = C i.e. if we take E, F to be a Hilbert space, then this
is exactly the definition of a densely defined closed operator, except that in that
case, both the second and the third condition follow from the first one. In [17] Pal
considered a larger class of operators, semiregular operators, which are densely
defined closable operators whose adjoints are densely defined. He proved that
every closed semiregular operator (i.e. an operator that satisfies the first two con-
ditions above) on Hilbert C∗-modules over commutative C∗-algebras as well as
over subalgebras of C∗-algebras of compact operators is regular ([17], Proposi-
tion 4.1, Theorem 5.8). He also gave an example of a closed semiregular nonregu-
lar operator, and showed that regularity of its adjoint does not ensure regularity
of the original operator ([17], Propositions 2.2 and 2.3).

In the present paper we prove that a densely defined operator t from a
Hilbert A-module E to another Hilbert A-module F possesses a densely defined
adjoint operator from F to E if the graph of t is orthogonally complemented in
E ⊕ F and the range of PFPG(t)⊥ is dense in its biorthogonal complement. This
fact and the Magajna–Schweizer theorem show that every densely defined closed
operator on Hilbert C∗-modules over C∗-algebras of compact operators is regular,
that is for densely defined closed operators on such Hilbert modules, the second
and the third conditions hold automatically. Magajna, Schweizer and the first
author have presented nice descriptions of C∗-algebras of compact operators in
[15], [19], [6]. Beside their work we give further descriptions of such C∗-algebras
via some properties of densely defined closed operators.
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1. PRELIMINARIES

In this section we would like to recall some definitions and present a few
simple facts about regular operators on HilbertA-modules. For details see Chap-
ter 9 and 10 of [14], and the paper [21]. We give a necessary and sufficient condi-
tion for closedness of the range of regular operators.

Let E, F be HilbertA-modules, we will use the notation t : Dom(t) ⊆ E→ F
to indicate that t is an A-linear operator whose domain Dom(t) is a dense sub-
module of E (not necessarily identical with E) and whose range is in F. A densely
defined operator t : Dom(t) ⊆ E→ F is called closed if its graph G(t) = {(x, tx) :
x ∈ Dom(t)} is a closed submodule of the Hilbert A-module E ⊕ F. In accor-
dance with the literature we give a stronger definition of adjointability of densely
defined operators that extends the definition for bounded operators.

DEFINITION 1.1. A densely defined operator t : Dom(t) ⊆ E → F is called
adjointable if it possesses a densely defined map t∗ : Dom(t∗) ⊆ F → E with the
domain

Dom(t∗)={y∈F : there exists z∈E such that 〈tx, y〉F = 〈x, z〉E for any x∈Dom(t)}

which satisfies the property 〈tx, y〉F = 〈x, t∗y〉E, for any x ∈ Dom(t) and any
y ∈ Dom(t∗).

The above property implies that t∗ is a closed A-linear map. A densely de-
fined closed A-linear map t : Dom(t) ⊆ E→ F is called regular if it is adjointable
and the operator 1 + t∗t has a dense range. We denote the set of all regular op-
erators from E to F by R(E, F). There is an alternative definition of a regular
operator between Hilbert C∗-modules (cf. Definition 1.1 of [21]), however, Lance
has proved in his book [14] that both of them are equivalent. If t is regular then t∗

is regular and t = t∗∗, moreover t∗t is regular and selfadjoint (cf. Corollaries 9.4,
9.6 and Proposition 9.9 of [14]). Define Qt = (1 + t∗t)−1/2 and Ft = tQt, then
Ran(Qt) = Dom(t), 0 6 Qt 6 1 in B(E, E) and Ft ∈ B(E, F) (cf. Chapter 9 of [14]).
The bounded operator Ft is called the bounded transform (or z-transform) of the
regular operator t. The map t→ Ft defines a bijection

R(E, F)→ {T ∈ B(E, F) : ‖T‖ 6 1 and Ran(1− T∗T) is dense in F},

(cf. Theorem 10.4 of [14]). This map is adjoint-preserving, i.e. F∗t = Ft∗ , and for
the bounded transform Ft = tQt = t(1 + t∗t)−1/2 we have ‖Ft‖ 6 1 and

t = Ft(1− F∗t Ft)−1/2 and Qt = (1− F∗t Ft)1/2 .

Very often there are interesting relationships between regular operators and
their bounded transforms. In fact, for a regular operator t, some properties trans-
fer to its bounded transform Ft, and vice versa. Recall the following definitions
for a regular operator t ∈ R(E) := R(E, E):
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• t is called normal if and only if Dom(t)=Dom(t∗) and 〈tx, tx〉= 〈t∗x, t∗x〉
for all x ∈ Dom(t).
• t is called selfadjoint if and only if t∗ = t.
• t is called positive if and only if t is normal and 〈tx, x〉 > 0 for all x ∈

Dom(t).
Then there are the following transfers of properties:
• t is normal if and only if Ft is normal (cf. 1.15 of [21]).
• t is selfadjoint if and only if Ft is selfadjoint.
• t is positive if and only if Ft is positive (cf. Result 1.14 of [13]).

Let E, F be two HilbertA-modules and suppose that an operator T in B(E, F)
has closed range. We would like to consider the kernel Ker(T) and the range
Ran(T) of T. Closed submodules of Hilbert modules need not to be orthogo-
nally complemented at all, but Lance states in Theorem 3.2 of [14] under which
conditions closed submodules may be orthogonally complemented (see also The-
orem 15.3.8 of [20]). For the special choice of bounded operators T with closed
range one has:

• Ker(T) is orthogonally complemented in E, with complement Ran(T∗),
• Ran(T) is orthogonally complemented in F, with complement Ker(T∗),
• the map T∗ ∈ B(F, E) has a closed range, too.

The collected facts, as well as Lemmata 4.1 and 4.2 from [16] lead us to the
following proposition.

PROPOSITION 1.2. Let t ∈ R(E, F) and Ker(t) = {x ∈ Dom(t) : tx = 0}.
Then

(i) Ker(t) and Ker(t∗) both are closed submodules of E and F, respectively,
(ii) Ran(t) = Ran(Ft) and Ran(t∗) = Ran(Ft∗),

(iii) Ker(t∗) = Ran(t)⊥ and Ker(t) = Ran(t∗)⊥,
(iv) Ker(t) = Ker(Ft) and Ker(t∗) = Ker(Ft∗).
(v) The regular operator t has closed range if and only if its adjoint operator t∗ has

closed range, and then for |t| := (t∗t)1/2 the direct sum decompositions E = Ker(t)⊕
Ran(t∗) = Ker(|t|)⊕Ran(|t|), F = Ker(t∗)⊕Ran(t) = Ker(|t∗|)⊕Ran(|t∗|) hold.

Proof. To show (i), let {xn} be a sequence in Ker(t) which converges to x ∈ E
in norm. Then t(xn) = 0 for any n ∈ N. Therefore the sequence {t(xn)} converges
to zero. Closedness of the operator t implies that x ∈ Dom(t) and therefore,
tx = 0. So x ∈ Ker(t) and Ker(t) is a closed submodule. Since t is regular so t∗ is
regular, too, and similarly Ker(t∗) is also a closed submodule of F.

For the proof of (ii) recall that Ft = tQt and Ran(Qt) = Dom(t). Then
Ran(t) = Ran(Ft). Since t is regular so is t∗, thus Ran(t∗) = Ran(Ft∗).

To demonstrate (iii) we notice that y ∈ Ker(t∗) if and only if 〈tx, y〉 =
〈x, 0〉 = 0 for all x ∈ Dom(t), or if and only if y ∈ Ran(t)⊥. Consequently,
we have Ker(t∗) = Ran(t)⊥. The second equality follows from the first equality
and Corollary 9.4 of [14].
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For the proof of (iv) we know that Ker(Ft∗) = Ran(Ft)⊥, cf. Theorem 15.3.5
of [20]. Therefore,

Ker(Ft∗) = Ran(Ft)⊥ = Ran(t)⊥ = Ker(t∗) .

Similarly, we obtain Ker(Ft) = Ker(t).
Finally, we derive (v). The bounded operator Ft has closed range if and

only if its adjoint operator Ft∗ has closed range. Hence, the regular operator t has
closed range if and only if t∗ has. Result 7.19 of [13] implies that

Ran(|t|) = Ran(t∗), Ker(|t|) = Ker(t), Ran(|t∗|) = Ran(t), Ker(|t∗|) = Ker(t∗) .

The equalities follow immediately from (ii), (iv) and Theorem 3.2 of [14].

PROPOSITION 1.3. Let t ∈ R(E, F), then t has closed range if and only if Ker(t)
is orthogonally complemented in E and t is bounded below on (Ker(t))⊥ ∩Dom(t), i.e.
‖tx‖ > c‖x‖, for all x ∈ (Ker(t))⊥ ∩Dom(t) for a certain positive constant c.

Proof. Let first Ran(t) be closed then the Proposition 2.2(v) implies that
Ker(t) is orthogonally complemented in E. We define the A-linear module map

t̃ : (Ker(t))⊥ ∩Dom(t)→ Ran(t)

by t̃x := tx for all x ∈ (Ker(t))⊥ ∩ Dom(t). Then t̃ is a bijection. The inverse
of this mapping exists and is A-linear from Ran(t) into (Ker(t))⊥ with closed
domain Dom(t̃ −1) = Ran(t). Moreover t̃ −1 is closed since t is. Therefore, it
has to be a bounded operator by the closed graph theorem, that is there exists a
positive constant c such that: ‖t̃ −1 x‖ 6 c‖x‖, for each x ∈ Ran t. This implies
that ‖tx‖ > c−1‖x‖, for all x ∈ (Ker t)⊥ ∩Dom(t).

Conversely, let t be bounded below on (Ker(t))⊥∩Dom(t) and E=Ker(t)⊕
(Ker(t))⊥. Then if the sequence {yn} ∈ Ran(t) converges to y, there exists a
sequence {xn} ∈ (Ker(t))⊥ ∩ Dom(t) such that yn = t(xn). Then (xn − xm) ∈
(Ker(t))⊥, and therefore ‖xn − xm‖ 6 c−1‖yn − ym‖ converges to zero as m, n go
to infinity. This means that there exists an element x ∈ (Ker(t))⊥ such that the
sequence {xn} converges to x in norm and the sequence {t(xn)} converges to y
in norm. The closedness of t implies that x ∈ Dom(t) and tx = y.

2. ADJOINTABILITY OF DENSELY DEFINED OPERATORS

Corollary 2.4 of [6] shows that a bounded A-linear operator T : E → F
possesses an adjoint operator T∗ : F → E if and only if the graph of T is an
orthogonal summand of the Hilbert A-module E⊕ F. This fact motivates us to
give a sufficient condition for the adjointability of densely defined operators via
their graphs.
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THEOREM 2.1. Let E, F be two Hilbert A-modules and t : Dom(t) ⊆ E → F be
a densely defined operator. If the graph of t is orthogonally complemented in E⊕ F and
the range of PFPG(t)⊥ is dense in its biorthogonal complement then t is adjointable. In
this case t is closed and 1 + t∗t is surjective.

Proof. Consider the unitary element V of B(E⊕ F, F⊕ E) defined by V(x, y)
= (y,−x). Then G(t) is orthogonally complemented in E ⊕ F if and only if
V(G(t)) is orthogonally complemented in F ⊕ E. The orthogonal complement
of V(G(t)) with respect to F⊕ E is the closed set

[V(G(t))]⊥={(y, z) : y∈F, z∈E, such that 〈(tx,−x), (y, z)〉=0, for all x∈Dom(t)}
={(y, z) : y ∈ F, z ∈ E, such that 〈tx, y〉 = 〈x, z〉, for all x ∈ Dom(t)} .

Now we define

Dom(t∗) :={y∈F : there exists z∈E such that 〈tx, y〉= 〈x, z〉 for all x∈Dom(t)}.

The set Dom(t∗) is a non-trivial submodule of F since the set [V(G(t))]⊥ is a non-
trivial submodule of F ⊕ E. The domain of t is dense in E, and so we consider
elements y ∈ F such that an element z with the property

〈tx, y〉 = 〈x, z〉, for any x ∈ Dom(t)

exists and is unique. This set is not empty since y = 0 and z = 0 forms an
admissible pair of elements. Collecting all such elements y ∈ F we can define
an operator t∗ : Dom(t∗) ⊆ F → E by t∗ y = z. Clearly t∗ is A-linear and
satisfies 〈tx, y〉 = 〈x, t∗y〉 for all x ∈ Dom(t), y ∈ Dom(t∗). Moreover we have
[V(G(t))]⊥ = {(y, t∗y) : y ∈ Dom(t∗)} = G(t∗), i.e. F ⊕ E = V(G(t))⊕ G(t∗).
Since Ran(PFPG(t)⊥) = Dom(t∗) and (Ran(PFPG(t)⊥))⊥ = Ker(PG(t)⊥P∗F ) = {0},
we find Dom(t∗) = {0}⊥ = F. The graph of t is orthogonally complemented,
so Lemma 15.3.4 of [20] implies that G(t) is closed in E ⊕ F. Suppose u ∈ E
is an arbitrary element then (0, u) ∈ F ⊕ E = V(G(t)) ⊕ G(t∗), that is, there
exist elements x0 ∈ Dom(t) and y0 ∈ Dom(t∗) such that y0 = −t(x0) and u =
t∗(y0)− x0, consequently, x0 ∈ Dom(t∗t) and u = −(1 + t∗t)x0. Hence, 1 + t∗t is
surjective.

The above theorem shows that the closedness and the assumption to un-
bounded C∗-linear densely defined operators of possessing a densely defined
adjoint operator can be reduced in some results of [11], [14]. Contrary to the
situation for bounded operators, the converse of the above theorem is not valid.
An example of a selfadjoint densely defined closed operator whose graph is not
orthogonally complemented was given by Hilsum in [9] (see also page 103 of
[14]). Now we can find a necessary and sufficient condition as follows:
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COROLLARY 2.2. Let t : Dom(t) ⊆ E → F be an A-linear densely defined
operator between Hilbert A-modules E and F. Then the graph of t is orthogonally com-
plemented in E⊕ F and Ran(PFPG(t)⊥) = Ran(PFPG(t)⊥)⊥⊥ if and only if t is regular,
i.e. t is adjointable, closed, and the range of 1 + t∗t is dense in E.

Proof. The assertion is a direct conclusion from Theorem 9.3 of [14] and The-
orem 2.1 above.

The criterion found by Kucerovsky as Proposition 6 in [11] now reads as
follows:

COROLLARY 2.3. Let t : Dom(t) ⊆ E → F be an A-linear densely defined
operator between Hilbert A-modules E and F. The operator t is regular if and only if t is
adjointable, closed, and for any positive real number c the operator c1 + t∗t is bijective.
If t is selfadjoint, then t is necessarily closed and so t is regular if and only if the operator
ci± t is bijective for any non-zero real constant c.

In [12] Kucerovsky has given a geometrical criterion for regularity of closed
operators, cf. Proposition 5 of [12]. Here, by reducing some of his suppositions
we can sharpen his criterion.

THEOREM 2.4. Let E, F be two Hilbert A-modules. Then a closed operator is reg-
ular if and only if there exists a Hilbert A-module G and a bounded adjointable operator
S ∈ B(G, E⊕ F) such that:

(i) the graph of the operator is the range of S, and
(ii) PES has dense range, and

(iii) the range of PFPKer(S∗) is dense in its biorthogonal complement.

Proof. Let a regular operator t : Dom(t) ⊆ E → F be given. Suppose G is
the graph of t and S is the inclusion of G into E⊕ F. The graph of t is orthogonally
complemented in E⊕ F and so S is adjointable and Ker(S∗) = Ran(S)⊥ = G(t)⊥.
Furthermore Ran(PES) = Dom(t) and Ran(PFPG(t)⊥) = Dom(t∗) are dense in E
and F, respectively.

Conversely, let t : Dom(t) ⊆ E → F be closed and suppose the conditions
(i) and (ii) hold. Then the range of S is closed, hence Theorem 3.2 of [14] implies
that it is an orthogonal summand, with complement Ker(S∗). The range of PES is
dense in E, so t is a densely defined closed operator whose graph is orthogonally
complemented in E⊕ F, that is t is regular by Corollary 2.2.

Suppose that A is an arbitrary C∗-algebra of compact operators. It is well-
known that A has to be of the form A=c0-⊕i∈IK(Hi), i.e. A is a c0-direct sum of
elementary C∗-algebras K(Hi) of all compact operators acting on Hilbert spaces
Hi, i ∈ I (cf. Theorem 1.4.5 of [1]).

Magajna and Schweizer have shown, respectively, that C∗-algebras of com-
pact operators can be characterized by the property that every norm-closed (co-
inciding with its biorthogonal complement, respectively) submodule of every
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Hilbert C∗-module over them is automatically an orthogonal summand, cf. [15],
[19]. Recently further generic properties of the category of Hilbert C∗-modules
over C∗-algebras which characterize precisely the C∗-algebras of compact oper-
ators have been found by the first author in [6]. We recall results by Magajna,
Schweizer and Frank as follows:

THEOREM 2.5. Let A be a C∗-algebra. The following conditions are equivalent:
(i) A is an arbitrary C∗-algebra of compact operators.

(ii) For every HilbertA-module E every HilbertA-submodule F ⊆ E is automatically
orthogonally complemented, i.e. F is an orthogonal summand.

(iii) For every Hilbert A-module E, every Hilbert A-submodule F⊆E that coincides
with its biorthogonal complement F⊥⊥⊆E is automatically orthogonally complemented
in E.

(iv) For every pair of Hilbert A-modules E, F, every bounded A-linear map T : E→F
possesses an adjoint bounded A-linear map T∗ : F → E.

(v) The kernels of all boundedA-linear operators between arbitrary HilbertA-modules
are orthogonal summands.

(vi) The images of all bounded A-linear operators with norm-closed range between
arbitrary Hilbert A-modules are orthogonal summands.

(vii) For every HilbertA-module E every HilbertA-submodule is automatically topolo-
gically complemented there, i.e. it is a topological direct summand.
(viii) For every (maximal) norm-closed left ideal I of A the corresponding open projec-

tion p ∈ A∗∗ is an element of the multiplier C∗-algebra M(A) of A.

Consider the C∗-algebra of compact operators as a Hilbert C∗-module over
itself. Pal has proved in Theorem 5.8 of [17] that every closed semiregular oper-
ator (i.e. every densely defined closed operator which adjoint is densely defined)
on Hilbert C∗-modules over C∗-algebras of compact operators is regular. Corol-
lary 2.2 and the second part of the above theorem give a short proof for Pal’s
Theorem. Moreover we can reformulate Pal’s Theorem as follows:

REMARK 2.6. In the category of all Hilbert C∗-modules over a C∗-algebra
of compact operators every densely defined closed C∗-linear operator between
Hilbert C∗-modules is regular.

COROLLARY 2.7. LetA be a C∗-algebra. The following conditions are equivalent:
(i) A is an arbitrary C∗-algebra of compact operators.

(ix) For every pair of HilbertA-modules E, F, every densely defined closed operator t :
Dom(t) ⊆ E→ F possesses a densely defined adjoint operator t∗ : Dom(t∗) ⊆ F → E.

(x) For every pair of Hilbert A-modules E, F, every densely defined closed operator
t : Dom(t) ⊆ E→ F is regular.

(xi) The kernels of all densely defined closed operators between arbitrary Hilbert A-
modules are orthogonal summands.
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(xii) The images of all densely defined closed operator with norm-closed range between
arbitrary Hilbert A-modules are orthogonal summands.

Proof. Theorem 2.1, Pal’s Theorem and condition (ii) imply (ix), (x), (xi) and
(xii). To show the contrary let condition (ix) hold and let T : E→ F be an arbitrary
bounded A-linear map between Hilbert A-modules E and F. The operator T :
Dom(T) = E→ F is a densely defined closed operator (since it is bounded), and
so condition (ix) implies that there exists a (possibly unbounded) densely defined
operator T∗ : Dom(T∗) ⊆ F → E such that

〈Tx, y〉 = 〈x, T∗y〉, for all x ∈ Dom(T) = E, y ∈ Dom(T∗) .

Then T∗ is bounded on the pre-Hilbert module Dom(T∗). The domain of T∗ is
dense in F and E is a Hilbert module, so T∗ has a unique boundedA-linear exten-
sion T̃∗ : F → E such that 〈 Tx, y〉 = 〈x, T̃∗ y〉 for all x ∈ E, y ∈ F. Therefore every
bounded A-linear map T : E → F possesses an adjoint bounded A-linear map,
i.e. condition (iv) holds. Condition (x) implies (ix) and hence, (iv). Conditions
(xi) and (xii) imply conditions (v) and (vi), respectively, since each everywhere
defined bounded operator is a densely defined closed operator.

COROLLARY 2.8. Suppose A is any C∗-algebra which does not admit a faithful
∗-representation as a C∗-subalgebra in some C∗-algebra of compact operators. Then there
exists a densely defined closed operator t between two full Hilbert C∗-modules over A
such that t is not regular or, even more, the adjoint operator t∗ of t is not densely defined
(and therefore, there does not exist any adjoint operator in the strong sense of Defini-
tion 1.1).

This fact directly follows from Corollary 2.7(i), (ix) and (x). In other words,
Hilsum’s example reflects a quite regular case for unbounded densely defined
closed operators between Hilbert C∗-modules over non-compact C∗-algebras of
any kind.

Let K(H) be the C∗-algebra of all compact operators on a Hilbert space H.
Let e ∈ K(H) be an arbitrary minimal projection and E be a K(H)-module. Sup-
pose Ee := eE = {ex : x ∈ E}, then Ee is a Hilbert space with respect to the
inner product (·, ·) = trace (〈·, ·〉), which is introduced in [3]. Let B(E) and B(Ee)
be C∗-algebras of all bounded adjointable operators on Hilbert K(H)-module E
and Hilbert space Ee, respectively. Bakić and Guljaš have shown that the map
Φ : B(E) → B(Ee), Φ(T) = T|Ee is a ∗-isomorphism of C∗-algebras (cf. The-
orem 5 of [3]). On the other hand, Remark 2.6 and Theorem 10.4 of [14] give
adjoint-preserving bijection maps t→ Ft = t(1 + t∗t)−1/2 as follows:

R(E) → {T ∈ B(E) : ‖T‖ 6 1 and Ran(1− T∗T) is dense in E} ,

R(Ee)→ {T ∈ B(Ee) : ‖T‖ 6 1 and Ran(1− T∗T) is dense in Ee} .
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These maps together with the ∗-isomorphism Φ give an adjoint-preserving
bijection map between all densely defined closed operators on Hilbert K(H)-
module E and all densely defined closed operators on Hilbert space Ee. It means
that all densely defined closed operators on a Hilbert K(H)-module E are re-
duced by a suitable Hilbert space contained in E.

Acknowledgements. The authors would like to thank the referee for his/her useful
comments.
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related publication [8] by B. Guljaš. His results are rather complementary and describe
situations for C∗-algebras of compact operators. The authors thank B. Guljaš for pointing
out a gap in the initial proof of Theorem 2.1.


