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ABSTRACT. In this paper we prove that every multiplier M (every bounded
operator commuting with the shift operator S) on a large class of Banach
spaces of sequences on Z is associated to a function essentially bounded by
‖M‖ on spec(S). This function is holomorphic on

◦
spec(S) if

◦
spec(S) 6= ∅.

Moreover, we give a simple description of spec(S). We also obtain similar
results for Toeplitz operators on a large class of Banach spaces of sequences
on Z+.
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INTRODUCTION

Let E ⊂ CZ be a Banach space of sequences. Denote by S : CZ → CZ, the
shift operator defined by Sx = (x(n− 1))n∈Z, for x = (x(n))n∈Z ∈ CZ, so that
S−1x = (x(n + 1))n∈Z. Let F(Z) be the set of sequences on Z which have a finite
number of non-zero coefficients and assume that F(Z) ⊂ E. The elements of
F(Z) will be called finite sequences. We will call a multiplier on E every bounded
operator M on E such that MSa = SMa, for every a ∈ F(Z). Denote by µ(E) the
space of multipliers on E. For z ∈ T = {z ∈ C : |z| = 1}, set ψz(x) = (x(n)zn)n∈Z
for x = (x(n))n∈Z. Notice that if we assume ψz(E) ⊂ E for all z ∈ T and if for all
n ∈ Z, the map pn : E 3 x → x(n) ∈ C is continuous, then from the closed graph
theorem it follows that ψz is bounded on E. In this paper we deal with Banach
spaces of sequences on Z satisfying only the following very natural hypotheses:

(H1) The set F(Z) is dense in E.
(H2) For every n ∈ Z, pn is continuous from E into C.
(H3) We have ψz(E) ⊂ E, ∀z ∈ T and sup

z∈T
‖ψz‖ < +∞.

It is easy to see that if S(E) ⊂ E, then by the closed graph theorem the
restriction S|E of S to E is bounded from E into E. From now we will say that
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S (respectively S−1) is bounded when S(E) ⊂ E (respectively S−1(E) ⊂ E). If
S(E) ⊂ E, we will call spec(S) the spectrum of the operator S with domain E. If
S is not bounded, denote by spec(S) the spectrum of S, where S is the smallest
extension of S|F(Z) as a closed operator. Recall that the domain of S is

D(S) = {x ∈ E : ∃(xn)n∈N ⊂ F(Z) such that xn → x and Sxn → y ∈ E}

and Sx = y. We will denote by
◦

spec(S) the interior of spec(S). Our aim is to
prove that every multiplier on E is associated to a L∞-function on spec(S), which
is holomorphic on

◦
spec(S), if

◦
spec(S) 6= ∅. In this paper we study a general

problem which is the continuation of the results of Shields, Gellar, Esterle, etc.
Let ek be the sequence such that ek(n) = 0 if n 6= k and ek(k) = 1. For M ∈ µ(E),
set M̂ = M(e0) and for z ∈ C, denote by M̃(z) the formal Laurent series

(0.1) M̃(z) = ∑
n∈Z

M̂(n)zn.

For M ∈ µ(E), we call M̃ the symbol of M. Given a ∈ E, set ã(z) = ∑
n∈Z

a(n)zn, for

z ∈ C. It is easy to see that for a ∈ F(Z), we have Ma = M̂ ∗ a, where M̂ = M(e0).
Indeed, for a ∈ F(Z), we have for some N > 0,

Ma = M
( N

∑
k=−N

a(k)ek

)
= M

( N

∑
k=−N

a(k)(Ske0)
)

=
N

∑
k=−N

a(k)Sk(Me0).

It follows that

(Ma)(n) =
N

∑
k=−N

a(k)(M(e0))(n− k), ∀n ∈ Z

and we have
Ma = a ∗M(e0).

It is easy to see that on the space of formal Laurent series

M̃a(z) = M̃(z)ã(z), ∀z ∈ C, ∀a ∈ F(Z),

but it is more difficult to determine when M̃(z) converges. In [10], Shields con-
siders multipliers on weighted spaces l2

ω(Z). We recall his main result in this
direction. Let ω be a positive sequence in CZ such that

(0.2) 0 < sup
n∈Z

ω(n + k)
ω(n)

< +∞, ∀k ∈ Z.

Set
l2
ω(Z) =

{
(x(n))n∈Z ∈ CZ : ∑

n∈Z
|x(n)|2ω(n)2 < +∞

}
and

‖x‖ω,2 =
(

∑
n∈Z
|x(n)|2ω(n)2

)1/2
.
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The condition (0.2) is satisfied if and only if S and S−1 are both bounded on l2
ω(Z).

Shields proves that M̃ is holomorphic on
◦

spec(S) if
◦

spec(S) 6= ∅. He does not
examine the case when S or S−1 is not bounded and the very usual case when
spec(S) is a circle. The problem for the multipliers on l2

ω(Z) when
◦

spec(S) =
∅ was solved only in 2003 by Esterle in [2]. He proves that in this case M̃ ∈
L∞(spec(S)). The multipliers on a more general spaces that the weighted l2

ω(Z)
spaces were considered by Gellar [4]. He deals with multipliers on Banach spaces
of sequences with Schauder basis. We will see later that our hypothesis imply that
for x ∈ E, we have

lim
k→+∞

∥∥∥x−
k

∑
p=0

1
k + 1

( p

∑
n=−p

x(n) en

)∥∥∥ = 0,

but not necessary lim
p→+∞

∥∥∥x −
p
∑

n=−p
x(n) en

∥∥∥ as it has been assumed in [4]. The

Example 0.6 below shows that this situation appears and this motivates the gen-
erality of our considerations.

For a closed operator A with dense domain, denote by ρ(A) the spectral
radius of A defined by ρ(A) = sup{|λ| : λ ∈ spec(A)}. We suppose that at least
one of the operators S and S−1 is bounded. Define for r > 0,

Cr := {z ∈ C : |z| = r}.

For a multiplier M on a general Banach space E, M̃ denotes the formal Laurent
series defined in (0.1). Our main result is the following.

THEOREM 0.1. (i) If S is not bounded, but S−1 is bounded, ρ(S) = +∞ and if S
is bounded, but S−1 is not bounded, ρ(S−1) = +∞.

(ii) We have spec(S) =
{

z ∈ C : 1
ρ(S−1) 6 |z| 6 ρ(S)

}
.

(iii) Let M ∈ µ(E). For r > 0 such that Cr ⊂ spec(S), we have M̃ ∈ L∞(Cr) and

|M̃(z)| 6 ‖M‖,

a.e. on Cr.
(iv) If ρ(S) > 1

ρ(S−1) , M̃ is holomorphic on
◦

spec(S).

If ρ(S−1) = +∞, here 1
ρ(S−1) denotes 0.

The class of Banach spaces of sequences on Z that we consider in this paper
is very general. We will give some classical examples of Banach spaces satisfying
the conditions (H1), (H2) and (H3).

EXAMPLE 0.2. Let ω be a positive sequence on Z. Set

lp
ω(Z) =

{
(x(n))n∈Z ∈ CZ : ∑

n∈Z
|x(n)|pω(n)p < +∞

}
, 1 6 p < +∞,
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and

‖x‖ω,p =
(

∑
n∈Z
|x(n)|pω(n)p

)1/p
.

It is easy to see that the Banach space lp
ω(Z) satisfies our hypothesis.

EXAMPLE 0.3. For every two weights ω1 and ω2 and 1 6 p < +∞, 1 6
q < +∞, the space lp

ω1(Z) ∩ lq
ω2(Z) with the norm ‖x‖ = max{‖x‖ω1,p, ‖x‖ω2,q}

satisfies also our conditions.

EXAMPLE 0.4. Let K be a convex, non-decreasing, continuous function on
R+ such that K(0) = 0 and K(x) > 0, for x > 0. For example, K may be xp, for
1 6 p < +∞ or xp+sin(log(− log(x))), for p > 1 +

√
2. Let ω be a weight on Z. Set

lK,ω(Z) =
{
(x(n))n∈Z ∈ CZ : ∑

n∈Z
K
( |x(n)|

t

)
ω(n) < +∞, for some t > 0

}
and

‖x‖ = inf
{

t > 0, ∑
n∈Z
K
( |x(n)|

t

)
ω(n) 6 1

}
.

The space lK,ω(Z), called a weighted Orlicz space (see [3], [6]), is a Banach space
satisfying our hypothesis. We can apply Theorem 0.1 to the multipliers on lK,ω(Z)
as well as to the spectrum of the shift on lK,ω(Z). It seems that in the literature
there are no complete results concerning the spectrum of the shift on lK,ω(Z).

EXAMPLE 0.5. Let (q(n))n∈Z be a real sequence such that q(n) > 1, for all
n ∈ Z. For a = (a(n))n∈Z ∈ CZ, set

‖a‖{q} = inf
{

t > 0, ∑
n∈Z

∣∣∣ a(n)
t

∣∣∣q(n)
6 1

}
.

Consider the space l{q} = {a ∈ CZ : ‖a‖{q} < +∞}, which is a Banach space (see
[1]) satisfying our hypothesis. Notice that if lim

n→+∞
|q(n + 1) − q(n)| 6= 0 and if

sup
n∈Z

q(n) < +∞, then either S or S−1 is not bounded (see [7]).

EXAMPLE 0.6. Denote by C[0,2π] the space of continuous, complex-valued,
2π-periodic functions on R. For f ∈ C[0,2π], we denote by f̂ the sequence of
Fourier coefficients of f . Set C = { f̂ : f ∈ C[0,2π]} and ‖ f̂ ‖ = ‖ f ‖∞ for f ∈ C[0,2π].
It is easy to check that the hypotheses (H1) and (H2) are satisfied by C. For α ∈ R
and f ∈ C[0,2π], ψeiα( f̂ ) is the sequence of Fourier coefficients of the function
t → f (t + α). So it is clear that (H3) is satisfied by C. Notice that in C, f̂ is not
the limit of ∑

|n|6k
f̂ (n)en as k → +∞ and the space C is not included in the class of

Banach spaces treated in [4].

REMARK 0.7. If both S and S−1 are unbounded then Theorem 0.1 is not
valid in general. For example, if E = l2

ω(Z), where ω(2n) = 1 and ω(2n + 1) =
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|n|+ 1, for n ∈ Z, S and S−1 are not bounded. It is easy to see that spec(S) = C
and S2 ∈ µ(E), but S̃2(z) = z2 is obviously not bounded on C.

In Section 2, we investigate Toeplitz operators on a general Banach space
of sequences on Z+ = N ∪ {0}, which will be defined precisely in Definition 0.9
below. Let Z− = −N ∪ {0}. There are many similarities between multipliers and
Toeplitz operators. We are motivated by the recent results in [2] about Toeplitz
operators on l2

ω(Z+), where ω is a weight on Z+ and the results of the author (see
[9]) concerning Wiener–Hopf operators on weighted spaces L2

δ(R
+). Let E ⊂ CZ+

be a Banach space. Let F(Z+) (respectively F(Z−)) be the space of the sequences
on Z+ (respectively Z−) which have a finite number of non-zero coefficients. By
convention, we will say that x ∈ F(Z) is a sequence of F(Z+) (respectively F(Z−))
if x(n) = 0, for n < 0 (respectively n > 0). We will assume that E is satisfying the
following hypothesis:

(H1) The set F(Z+) is dense in E.
(H2) For every n ∈ Z+, the application pn : x → x(n) is continuous from E

into C.
(H3) For x = (x(n))n∈Z+ ∈ E, we have γz(x) = (znx(n))n∈Z+ ∈ E, for

every z ∈ T and sup
z∈T
‖γz‖ < +∞.

Notice again that if γz(x) ∈ E, for every x ∈ E, then γz : E→ E is bounded.

DEFINITION 0.8. We define on CZ+
the operators S1 and S−1 as follows. For

u ∈ CZ+
, (S1(u))(n) = 0, if n = 0 and (S1(u))(n) = u(n− 1), if n > 1

(S−1(u))(n) = u(n + 1), for n > 0.

For simplicity, we note S instead of S1. Remark that we have S−1S = I,
however we do not have SS−1 = I and this is the main technical difficulty in the
analysis of the case of Toeplitz operators. It is easy to see that if S(E) ⊂ E, then
by the closed graph theorem the restriction S|E of S to E is bounded from E into
E. We will say that S (respectively S−1) is bounded when S(E) ⊂ E (respectively
S−1(E) ⊂ E). Next, if S|E (respectively S−1|E) is bounded, spec(S) (respectively
spec(S−1)) denotes the spectrum of S|E (respectively S−1|E). If S (respectively
S−1) is not bounded, spec(S) (respectively spec(S−1)) denotes the spectrum of
the smallest closed extension of S|F(Z+) (respectively S−1|F(Z+)).

DEFINITION 0.9. A bounded operator on E is called a Toeplitz operator, if we
have:

(S−1TS)u = Tu, ∀u ∈ F(Z+).

For u ∈ l2(Z−)⊕ E introduce

(P+(u))(n) = u(n), ∀n > 0 and (P+(u))(n) = 0, ∀n < 0.
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Given a Toeplitz operator T, set T̂(n) = (Te0)(n) and T̂(−n) = (Ten)(0), for
n > 0. Define T̂ = (T̂(n))n∈Z. It is easy to check that

Tu = P+(T̂ ∗ u), ∀u ∈ F(Z+).

Set
T̃(z) = ∑

n∈Z
T̂(n)zn,

for z ∈ C. Notice that the series T̃(z) could diverge.
Taking into account the similarities between multipliers and Toeplitz opera-

tors, it is natural to obtain analogous results for Toeplitz operators and to conjec-
ture that T̃(z) converges for z ∈ spec(S) ∩ (spec(S−1))−1. It is clear that if M is
a multiplier on E− ⊕ E, where E− and E are Banach spaces of sequences respec-
tively on Z− and Z+, then P+M is a Toeplitz operator on E. However, despite the
extensive literature related to Toeplitz operators, it seems that it is not known if
every Toeplitz operator is induced by a multiplier on some suitable Banach space
of sequences on Z. Thus we cannot use our results for the multipliers on spaces
of sequences on Z to prove similar ones for Toeplitz operators. In this way, we
apply the methods of Section 1 and we obtain the following theorem, when at
least one of the operators S and S−1 is bounded.

THEOREM 0.10. Let T be a Toeplitz operator on E.

(i) For r ∈
[

1
ρ(S−1)

, ρ(S)
]
, if ρ(S) < +∞ or for r ∈

[
1

ρ(S−1)
, +∞

[
, if ρ(S) = +∞

we have T̃ ∈ L∞(Cr) and |T̃(z)| 6 ‖T‖, a.e. on Cr.

(ii) If S and S−1 are bounded and if 1
ρ(S−1)

< ρ(S), then we have T̃ ∈ H∞(
◦
Ω),

where Ω :=
{

z ∈ C : 1
ρ(S−1)

6 |z| 6 ρ(S)
}

.

(iii) If S is not bounded, but S−1 is bounded, T̃ ∈ H∞(
◦
U), where

U :=
{

z ∈ C :
1

ρ(S−1)
6 |z|

}
.

(iv) If S is bounded, but S−1 is not bounded, T̃ ∈ H∞(
◦
V), where

V := {z ∈ C : |z| 6 ρ(S)}.

1. MULTIPLIERS

In this section, we prove Theorem 0.1. We denote by E∗ the dual space of E,
by ‖ · ‖ the norm of E and by ‖ · ‖∗ the norm of E∗. For y ∈ E∗ and x ∈ E, define
〈x, y〉 := y(x).We set |||x||| = sup

z∈T
‖ψz(x)‖. Notice that

|||x||| 6
(

sup
z∈T
‖ψz‖

)
‖x‖ = K‖x‖,
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where K = sup
z∈T
‖ψz‖ < +∞, according to the condition (H3). This implies that

the norm ||| · ||| is equivalent to the norm ‖ · ‖. We have

sup{|||ψz(x)|||, x ∈ E, |||x||| = 1} = 1,

so without loss of generality we can assume that ψz is an isometry from E into E,
for every z ∈ T. We start with the following lemma.

LEMMA 1.1. For x ∈ E, we have

lim
k→+∞

∥∥∥ k

∑
p=0

1
k + 1

( p

∑
n=−p

x(n) en

)
− x
∥∥∥ = 0.

Proof. Fix x ∈ E. First, we show that the function

Ψ : T 3 z→ ψz(x) ∈ E

is continuous. Suppose that x ∈ F(Z). Then for some N > 0 we have x =
N
∑
−N

x(n)en and for z and η ∈ T, we have

‖ψz(x)−ψη(x)‖=
∥∥∥ N

∑
−N

(x(n)znen−x(n)ηnen)
∥∥∥6 sup

n∈[−N,N]
(|x(n)|‖en‖)

N

∑
−N
|zn−ηn|

and it is clear that the function z→ ψz(x) is continuous on T. Now, let x ∈ E. Let
x0 ∈ F(Z). We have, for z, η ∈ T,

‖ψz(x)− ψη(x)‖ 6 ‖ψz(x)− ψz(x0)‖+ ‖ψz(x0)− ψη(x0)‖+ ‖ψη(x0)− ψη(x)‖
6 2 sup

δ∈T
‖ψδ‖‖x− x0‖+ ‖ψz(x0)− ψη(x0)‖.

Since, the function z → ψz(x0) is continuous for x0 ∈ F(Z) and F(Z) is dense in
E, it is clear that z→ ψz(x) is continuous on T for every x ∈ E. Consider the Fejer
kernels (gk)k∈N ⊂ L1(T) defined by the formula

gk(eit) :=
k

∑
p=0

1
k + 1 ∑

|m|6p
eimt =

1
k + 1

( sin( (k+1)t
2 )

sin t
2

)2
, for t ∈ R.

We have ‖gk‖L1(T) = 1, for k ∈ N and lim
k→+∞

∫
δ6|t|6π

gk(eit)dt = 0 for δ > 0.

Moreover, for |n| 6 k,

ĝk(n) =
1

2π

π∫
−π

gk(eit)e−int dt = 1− |n|
k + 1

and for |n| > k we get

ĝk(n) = 0.
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Below we write dz instead of dm(z), where m is the Haar measure on T such that
m(T) = 1. Define

gk ∗Ψ : T→ E

by the formula

(gk ∗Ψ)(η) =
∫
T

gk(z)Ψ(ηz−1)dz =
∫
T

gk(z)ψηz−1(x)dz, ∀η ∈ T.

Notice that
∫
T

gk(z)ψηz−1(x)dz is a well-defined Bochner integral with values in

E. Indeed, it is clear that∫
T

|gk(z)| ‖ψηz−1(x)‖dz 6
∫
T

|gk(z)| sup
δ∈T
‖ψδ‖‖x‖dz < +∞.

We have
lim

k→+∞
‖(gk ∗Ψ)(η)−Ψ(η)‖ = 0, ∀η ∈ T

and in particular
lim

k→+∞
‖(gk ∗Ψ)(1)−Ψ(1)‖ = 0.

Notice that Ψ(1) = x. For n ∈ Z, we have

((gk ∗Ψ)(1))(n) =
( ∫

T

gk(z)ψz−1(x)dz
)
(n) =

∫
T

gk(z)z−nx(n)dz = ĝk(n)x(n).

So we obtain

(gk ∗Ψ)(1) =
k

∑
n=−k

(
1− |n|

k + 1

)
x(n)en =

k

∑
p=0

1
k + 1

( p

∑
n=−p

x(n) en

)
and since Ψ(1) = x, the proof is complete.

LEMMA 1.2. For x ∈ E and M ∈ µ(E), the functionMx : T→ E defined by

Mx(z) = (ψz ◦M ◦ ψz−1)(x)

is continuous.

Proof. Fix x in F(Z) and M ∈ µ(E). It is easy to see that

(1.1) Mx(z) = (ψz ◦M ◦ ψz−1)(x) = ψz(M̂) ∗ x, ∀z ∈ T.

Indeed, for some k ∈ N, we have

((ψz ◦M ◦ ψz−1)(x))(n) = zn ∑
|p|6k

M̂(n− p)z−px(p), ∀n ∈ Z.

Thus, for every x ∈ F(Z), the function z→ (ψz ◦M ◦ ψz−1)(x) is continuous from
T into E. Since F(Z) is dense in E and ‖ψz ◦ M ◦ ψz−1‖ 6 ‖M‖ for z ∈ T, we
deduce thatMx is continuous from T into E, for every x ∈ E.
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Denote by Mφ the operator of convolution with φ ∈ F(Z), when φ ∗ E ⊂ E.
Then it is clear that M̂φ = φ. We recall that the property Mx = M̂ ∗ x for x ∈ F(Z)
means that

(Mx)(n) =
N

∑
k=−N

M̂(k)x(n− k) =
N

∑
k=−N

M̂(k)(Skx)(n), ∀n ∈ Z,

for some N > 0. In order to approximate a multiplier M by a linear combination
of operators Sk, it is natural to consider the sequence of multipliers Mk given by
the formula

Mk =
k

∑
p=0

1
k + 1

( p

∑
n=−p

M̂(n) Sn
)

, ∀k ∈ N.

We need the following.

LEMMA 1.3. Let M ∈ µ(E), x ∈ E.
(i) We have

lim
k→+∞

‖Mkx−Mx‖ = 0,

where for k ∈ N,

Mk =
k

∑
p=0

1
k + 1

( p

∑
n=−p

M̂(n) Sn
)

=
k

∑
n=−k

(
1− |n|

k + 1

)
M̂(n)Sn.

(ii) We have ‖Mk‖ 6 ‖M‖, ∀k ∈ N.
(iii) If S−1 is not bounded, but S is bounded, M̂(n) = 0, for n < 0, while if S−1 is

bounded, but S is not bounded, M̂(n) = 0, for n > 0.

Proof. It is immediate to see that
(

1 − |n|
k+1

)
M̂(n) converges to M̂(n), for

n ∈ Z and we obtain

(1.2) lim
k→∞
‖Mkx−Mx‖ = 0, ∀x ∈ F(Z).

However the control of the norm of Mk is less obvious. The proof follows with
some modifications the arguments of [10] in our more general case. Consider
the Fejer kernels (gk)k∈N ⊂ L1(T) defined in the proof of Lemma 1.1. We recall
that for every multiplier M, we denote by M̂ the sequence M(e0) and we have
Ma = M̂ ∗ a, ∀a ∈ F(Z). Fix M ∈ µ(E). For x ∈ E, we will use the functionMx
defined in Lemma 1.2. Introduce the convolution

(gk ∗Mx) : T→ E

by the formula

(gk ∗Mx)(η) =
∫
T

gk(z)Mx(ηz−1)dz,
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where the integral
∫
T

gk(z)Mx(ηz−1)dz is well-defined as a Bochner integral with

values in E. To justify this, notice that∫
T

|gk(z)| ‖Mx(ηz−1)‖dz 6
∫
T

|gk(z)|(sup
δ∈T
‖ψδ‖)2‖M‖‖x‖dz < +∞.

Since Mx is continuous from T into E, for every x ∈ E and Mx(1) = Mx, we
have

lim
k→+∞

‖(gk ∗Mx)(1)−Mx‖ = 0, ∀x ∈ E.

Fix x ∈ F(Z). For k ∈ N, we obtain

(gk ∗Mx)(1) =
∫
T

gk(z)Mx(z−1)dz

=
∫
T

gk(z)ψz−1(Mψz(x))dz =
∫
T

gk(z)(ψz−1(M̂) ∗ x)dz,

taking into account (1.1). Then we have

(gk ∗Mx)(1) =
( ∫

T

gk(z)ψz−1(M̂)dz
)
∗ x.

We observe that, for |n| 6 k, we have( ∫
T

gk(z)ψz−1(M̂)dz
)
(n)=

∫
T

gk(z)z−n M̂(n)dz= ĝk(n)M̂(n)=
(

1− |n|
k+1

)
M̂(n),

while for |n| > k, we get ( ∫
T

gk(z)ψz−1(M̂)dz
)
(n) = 0.

Since

M̂k = Mk(e0) =
k

∑
n=−k

(
1− |n|

k + 1

)
M̂(n)en,

it follows that

M̂k =
( ∫

T

gk(z)ψz−1(M̂)dz
)

.

Now it is clear that

‖Mka‖=‖M̂k ∗ a‖=
∥∥∥∫

T

gk(z)(ψz−1(M̂) ∗ a)dz
∥∥∥=

∥∥∥∫
T

gk(z)(ψz−1◦M◦ψz)(a)dz
∥∥∥

6
∫
T

|gk(z)| ‖ψz−1‖‖M‖‖ψz‖ ‖a‖dz 6 ‖M‖‖a‖, ∀a ∈ F(Z)
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and, since F(Z) is dense in E, we obtain ‖Mk‖ 6 ‖M‖, ∀k ∈ N. Now taking into
account the control of the norm ‖Mk‖, for all k, the density of F(Z) in E and (1.2)
it is clear that

lim
k→+∞

‖Mkx−Mx‖ = 0, ∀x ∈ E.

Suppose that S−1 is not bounded, but S is bounded. Fix k ∈ N. Since

Mk =
k

∑
n=−k

(
1− |n|

k + 1

)
M̂(n)Sn

is bounded, the operator Sk−1Mk is bounded. We have the equality

Sk−1Mk =
(

1− k
k + 1

)
M̂(−k)S−1 +

k

∑
n=−k+1

(
1− |n|

k + 1

)
M̂(n)Sn+k−1

and using the fact that the operator
k
∑

n=−k+1

(
1 − |n|

k+1

)
M̂(n)Sn+k−1 is bounded

combined with the non-boundedness of S−1, it is clear that M̂(−k) = 0. In the
same way, composing Mk and Sp, for p = k− 2, k− 3, . . . , 1, we obtain M̂(−n) =
0, for n > 0. We can use the same argument if S−1 is bounded but S is not
bounded. Thus the proof is complete.

LEMMA 1.4. Let φ ∈ F(Z) be such that φ ∗ E ⊂ E.
(i) If S and S−1 are bounded, then

|φ̃(z)| 6 ‖Mφ‖, ∀z ∈ Ω :=
{

z ∈ C :
1

ρ(S−1)
6 |z| 6 ρ(S)

}
.

(ii) If S is not bounded, but S−1 is bounded and φ ∈ F(Z−), then

|φ̃(z)| 6 ‖Mφ‖, ∀z ∈ O :=
{

z ∈ C : |z| > 1
ρ(S−1)

}
.

(iii) If S is bounded, but S−1 is not bounded and φ ∈ F(Z+), we have

|φ̃(z)| 6 ‖Mφ‖, ∀z ∈W := {z ∈ C : |z| 6 ρ(S)}.

Proof. Suppose that S and S−1 are bounded. For z ∈ spec(S), we have three
cases:

Case 1. The operator S − zI is not injective. Then there exists x ∈ E\{0}
such that Sx = zx.

Case 2. The operator S∗ − zI is injective. Then the range of S− zI is dense
in E and it is not closed. Consequently, there exists a sequence ( fp)p∈N ⊂ E such
that

lim
p→+∞

∥∥∥(S− zI)
fp

‖ fp‖

∥∥∥ = 0.

Case 3. The operator S∗ − zI is not injective. Then there exists y ∈ E∗\{0}
such that S∗y = zy.
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Fix z ∈ spec(S). First, assume that there exists (hp)p∈N ⊂ E such that

lim
p→+∞

‖Shp − zhp‖ = 0 and ‖hp‖ = 1, ∀p ∈ N.

It follows immediately that

lim
p→+∞

‖Skhp − zkhp‖ = 0, ∀k ∈ Z.

Then for φ ∈ F(Z), we have for some N > 0,

‖φ ∗ hp − φ̃(z)hp‖ 6
N

∑
k=−N

(
sup
|k|6N

|φ(k)|
)
‖Skhp − zkhp‖

and we obtain
lim

p→+∞
‖φ ∗ hp − φ̃(z)hp‖ = 0.

Since
|φ̃(z)| = ‖φ̃(z)hp‖ = ‖φ̃(z)hp − φ ∗ hp‖+ ‖Mφhp‖,

it follows that |φ̃(z)| 6 ‖Mφ‖.
Now assume that there exists y ∈ E∗\{0} such that S∗y = zy. We obtain in

the same way

|φ̃(z)| 6 ‖M∗φ‖ = ‖Mφ‖

and we conclude that for φ ∈ F(Z), we have

|φ̃(z)| 6 ‖Mφ‖, ∀z ∈ spec(S).

If S is bounded and S−1 is not bounded, the proof is similar. If S is not bounded
and S−1 is bounded, we use the spectrum of S−1 and the same arguments. Thus
in the case when 1

ρ(S−1) = ρ(S) the proof is complete.

Suppose again that S and S−1 are bounded and 1
ρ(S−1) < ρ(S). Fix φ ∈

F(Z). Let R1 > 0, R2 > 0 be such that R1 < R2 and such that the circles CR1

and CR2 with radius respectively R1 and R2 are included in spec(S). Since φ̃ is
holomorphic on C\{0} and |φ̃(z)| 6 ‖Mφ‖, for z ∈ CR1 ∪ CR2 , by the maximum
modulus theorem we obtain

|φ̃(z)| 6 ‖Mφ‖, ∀z ∈ ΩR1,R2 := {z ∈ C : R1 6 |z| 6 R2}.

The inclusions Cρ(S) ⊂ spec(S) and C 1
ρ(S−1)

⊂ spec(S) imply

|φ̃(z)| 6 ‖Mφ‖, for z ∈ Ω.

We complete the proof of (ii) and (iii) with similar arguments taking into account
that if φ ∈ F(Z−), the function z → φ̃(z−1) is holomorphic on C, while if φ ∈
F(Z+), φ̃ is holomorphic on C.
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Proof of Theorem 0.1. Suppose that S and S−1 are bounded and let M ∈ µ(E).
Let (Mk)k∈N be the sequence constructed in Lemma 1.3 so that

(1.3) lim
k→+∞

‖Mkx−Mx‖ = 0, ∀x ∈ E

and ‖Mk‖ 6 ‖M‖, ∀k ∈ N. Set φk = M̂k, for k ∈ N, so that Mk = Mφk . For r > 0

and a = (a(n))n∈Z ∈ E, denote (a)r(n) = a(n)rn and fix r ∈
[

1
ρ(S−1) , ρ(S)

]
. We

have
|(̃φk)r(z)| 6 ‖Mφk‖ 6 ‖M‖, ∀z ∈ T, ∀k ∈ N.

We can extract from ((̃φk)r)k∈N a subsequence which converges with respect to
the weak topology σ(L∞(T), L1(T)) to a function νr ∈ L∞(T). For simplicity, this

subsequence will be denoted also by ((̃φk)r)k∈N. We obtain

lim
k→+∞

∫
T

((̃φk)r(z)g(z)− νr(z)g(z))dz = 0, ∀g ∈ L1(T)

and ‖νr‖∞ 6 ‖M‖. It is clear that

lim
k→+∞

∫
T

((̃φk)r(z)(̃a)r(z)g(z)−νr(z)(̃a)r(z)g(z))dz=0, ∀g ∈ L2(T), ∀a ∈ F(Z).

We conclude that, for a ∈ F(Z), the sequence ((̃φk)r (̃a)r)k∈N converges with re-

spect to the weak topology of L2(T) to νr (̃a)r. Set ν̂r(n) = 1
2π

π∫
−π

νr(eit)e−itndt, for

n ∈ Z and let ν̂r = (ν̂r(n))n∈Z be the sequence of the Fourier coefficients of νr.
The Fourier transform from l2(Z) to L2(T) defined by

F : l2(Z) 3 (a(n))n∈Z → ã|T ∈ L2(T)

is unitary, so the sequence ((Mφk a)r)k∈N = ((φk)r ∗ (a)r)k∈N converges to ν̂r ∗ (a)r

with respect to the weak topology of l2(Z). Taking into account (1.3), we obtain
for a ∈ F(Z) and b ∈ F(Z),

lim
k→+∞

∣∣∣ ∑
n∈Z

((Mφk a)(n)− (Ma)(n))rnb(n)
∣∣∣ 6 lim

k→+∞
C‖Mφk a−Ma‖ = 0,

where C ∈ R. Thus we deduce that

(Ma)r(n) = (ν̂r ∗ (a)r)(n), ∀n ∈ Z, ∀a ∈ F(Z).

This implies
(M̂)r ∗ (a)r = ν̂r ∗ (a)r, ∀a ∈ F(Z)

and
(M̂)r = ν̂r.

Consequently, we have

M̃(rz) = ∑
n∈Z

M̂(n)rnzn = ∑
n∈Z

ν̂r(n)zn = νr(z), ∀z ∈ T.
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Since ‖νr‖∞ 6 ‖M‖, it follows that the function M̃ is essentially bounded by ‖M‖
on every circle included in Ω. If ρ(S) = 1

ρ(S−1) , it is clear that

spec(S) = Cρ(S) = Ω.

We assume below that ρ(S) > 1
ρ(S−1) . Since (φ̃k)k∈N is an uniformly bounded se-

quence of holomorphic functions on
◦
Ω, we can replace (φ̃k)k∈N by a subsequence

which converges to a function ν ∈ H∞(
◦
Ω) uniformly on every compact subset

of
◦
Ω. Thus, for r ∈

]
1

ρ(S−1) , ρ(S)
[
, the sequence ((̃φk)r)k∈N converges uniformly

on T to the function z → ν(rz) and we obtain ν(rz) = νr(z). We conclude that
ν(rz) = M̃(rz), for z ∈ T and we get

ν(z) = M̃(z) = ∑
n∈Z

M̂(n)zn, for z ∈
◦
Ω.

Consequently, M̃ is holomorphic on
◦
Ω.

Now we will prove that spec(S) = Ω. Let α 6∈ spec(S). Then (S− αI)−1 ∈
µ(E) and for r > 0, if Cr ⊂ Ω, there exists νr ∈ L∞(T) such that

F (((S− αI)−1a)r)(z) = νr(z)(̃a)r(z), ∀z ∈ T, ∀a ∈ F(Z).

Replacing a by (S− αI)a, it follows that

(̃a)r(z) = νr(z)F (((S− αI)a)r)(z) = νr(z)(rz− α)(̃a)r(z), ∀z ∈ T, ∀a ∈ F(Z),

and we get (rz− α)νr(z) = 1. Suppose that α ∈ Cr i.e. α = rz0, z0 ∈ T. For ε > 0,
there exists zε ∈ T such that |rzε − rz0| 6 ε and |νr(zε)| 6 ‖νr‖∞. This implies
1 6 ε‖νr‖∞ and we obtain a contradiction. We deduce that Cr ⊂ spec(S), Ω ⊂
spec(S) and spec(S) = Ω. If we suppose that S or S−1 is not bounded, we obtain
the same results by the same argument replacing Ω by O and W, where O and
W are introduced in Lemma 1.4. Notice that when spec(S) = O, we deduce that
ρ(S) = +∞ and when spec(S) = W, we conclude that ρ(S−1) = +∞.

2. TOEPLITZ OPERATORS

In this section, we prove Theorem 0.10. In the same way, as in the proof of
Lemma 1.1, for x ∈ E, we obtain

lim
k→+∞

∥∥∥ k

∑
n=0

1
k + 1

n

∑
p=0

x(p)ep − x
∥∥∥ = 0.

If φ ∈ F(Z) is such that P+(φ ∗ E) ⊂ E, we denote by Tφ the operator on E
defined by Tφx = P+(φ ∗ x), for x ∈ E. By the same method, as in Section 1, we
obtain the following lemma.
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LEMMA 2.1. (i) Given a Toeplitz operator T on E, the sequence (φn)n∈N, de-
fined by

φn =
n

∑
p=0

1
n + 1

( p

∑
k=−p

T̂(k)ek

)
has the properties

lim
n→+∞

‖Tφn x− Tx‖, ∀x ∈ E, and ‖Tφn‖ 6 ‖T‖, ∀n ∈ N.

(ii) If S is bounded, but S−1 is not bounded, T̂(k) = 0, for k < 0.
(iii) If S is not bounded, but S−1 is bounded, T̂(k) = 0, for k > 0.

LEMMA 2.2. (i) If S and S−1 are bounded, for φ ∈ F(Z), we have

|φ̃(z)| 6 ‖Tφ‖, ∀z ∈ Ω :=
{

z ∈ C :
1

ρ(S−1)
6 |z| 6 ρ(S)

}
.

(ii) If S is not bounded, but S−1 is bounded, for φ ∈ F(Z−), we have

|φ̃(z)| 6 ‖Tφ‖, ∀z ∈ V :=
{

z ∈ C :
1

ρ(S−1)
6 |z|

}
.

(iii) If S is bounded, but S−1 is not bounded, for φ ∈ F(Z+), we have

|φ̃(z)| 6 ‖Tφ‖, ∀z ∈ U := {z ∈ C : |z| 6 ρ(S)}.
Proof. We will present only the proof of (i). The proofs of (ii) and (iii) are

very similar. Suppose that S and S−1 are bounded. Let

λ ∈ spec(S) ∩ (spec(S−1))−1.

Since λ ∈ spec(S), there exists a sequence ( fn)n∈N, fn ∈ E such that

(2.1) lim
n→+∞

‖S fn − λ fn‖ = 0 and ‖ fn‖ = 1, ∀n ∈ N

or there exists

(2.2) a ∈ E∗\{0}, S∗a = λa.

If (2.1) holds, we obtain

(2.3) lim
n→+∞

‖Sk fn − λk fn‖ = 0 and lim
n→+∞

‖Sk
−1 fn − λ−k fn‖ = 0, ∀k ∈ N.

Since λ−1 ∈ spec(S∗−1), there exists a sequence (gn)n∈N, gn ∈ E∗ such that

(2.4) lim
n→+∞

‖S∗−1gn − λ−1gn‖∗ = 0 and ‖gn‖∗ = 1, ∀n ∈ N

or there exists

(2.5) b ∈ E\{0}, (S∗−1)
∗b = S−1b = λ−1b.

Next if (2.4) holds, we get

(2.6) lim
n→+∞

‖(S∗)kgn−λkgn‖∗=0 and lim
n→+∞

‖(S∗−1)
kgn−λ−kgn‖∗=0, ∀k∈N.
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Suppose that we have (2.2) and (2.5). Let a ∈ E∗\{0} be such that S∗(a) = λa. Set

x(−n) = 〈en, x〉 = 〈Sne0, x〉 = 〈e0, S∗nx〉, ∀x ∈ E∗.

Since F(Z+) is dense in E, the map

E∗ 3 x → (x(−n))n>0

is injective. We have
a(−n) = λna(0), n > 0.

Let b ∈ E\{0} be such that S−1b = λ−1b. We obtain

b(n)λn = b(0), n > 0.

Since a 6= 0 and b 6= 0, we have a(0) 6= 0, b(0) 6= 0. For k ∈ N, define uk ∈
F(Z+) by

uk =
k

∑
n=0

1
k + 1

n

∑
p=0

b(p)ep =
k

∑
n=0

(
1− n

k + 1

)
b(n)en.

We have lim
k→+∞

‖uk − b‖ = 0 and so lim
k→+∞

〈uk, a〉 = 〈b, a〉. On the other hand,

lim
k→+∞

〈uk, a〉= lim
k→+∞

k

∑
n=0

(
1− n

k+1

)
λ−nb(0)λna(0)= lim

k→+∞

( k
2
+1
)

a(0)b(0)=+∞.

We obtain an obvious contradiction and we conclude that we cannot have in the
same time (2.2) and (2.5), hence we have (2.3) or (2.6). Using the same arguments
as in the proof of Lemma 1.4 and (2.3) or (2.6), we deduce

|φ̃(λ)| 6 ‖Tφ‖, ∀φ ∈ F(Z), ∀λ ∈ spec(S) ∩ (spec(S−1))−1.

By the maximum modulus theorem we obtain

(2.7) |φ̃(λ)| 6 ‖Tφ‖, ∀φ ∈ F(Z), ∀λ ∈ Ω.

If S is bounded and S−1 is not bounded, then for λ ∈ spec(S) there exists a
sequence (hn)n∈N, hn ∈ E such that lim

n→+∞
‖Shn− λhn‖ = 0 and ‖hn‖ = 1 or there

exists c ∈ E∗\{0} such that S∗c = λc. Using the same arguments as in the proof
of Lemma 1.4, we obtain

|φ̃(λ)| 6 ‖Tφ‖, ∀φ ∈ F(Z+), ∀λ ∈ spec(S).

If S−1 is bounded, we use the spectrum of S−1. In both situations, we obtain the
result by using the maximum modulus theorem.

Now we will prove the main result in this section.

Proof of Theorem 0.10. The proof of Theorem 0.10 goes by using the same ar-
guments as the proof of Theorem 0.1 with minor modifications. For the conve-
nience of the reader we will give the main steps.
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First, assume that S and S−1 are bounded. Let T be a Toeplitz operator on
E and let (φk)k∈N ⊂ F(Z) be such that

lim
k→+∞

‖Tφk a− Ta‖ = 0, ∀a ∈ E

and

‖Tφk‖ 6 ‖T‖, ∀k ∈ N.

For r > 0 and a ∈ E, denote (a)r(n) = a(n)rn. Fix r ∈
[

1
ρ(S−1)

, ρ(S)
]
. We have

|(̃φk)r(z)| 6 ‖Tφk‖ 6 ‖T‖, ∀z ∈ T, ∀k ∈ N.

We can extract from ((̃φk)r)k∈N a subsequence which converges with respect to
the weak topology σ(L∞(T), L1(T)) to a function νr ∈ L∞(T). For simplicity, this

subsequence will be denoted also by ((̃φk)r)k∈N.

We conclude that, for a ∈ F(Z), ((̃φk)r (̃a)r)k∈N converges with respect to the
weak topology of L2(T) to νr (̃a)r. Denote by ν̂r = (ν̂r(n))n∈Z the sequence of the
Fourier coefficients of νr. Since the Fourier transform from l2(Z) to L2(T) is an
isometry, the sequence (φk)r ∗ (a)r converges to ν̂r ∗ (a)r with respect to the weak
topology of l2(Z). On the other hand, (Tφk a)k∈N converges to Ta with respect to
the topology of E. Consequently, we have for a ∈ F(Z+) and b ∈ F(Z+)

lim
k→+∞

∣∣∣ ∑
n∈N

((Tφk a)(n)− (Ta)(n))rnb(n)
∣∣∣ 6 lim

k→+∞
C‖Tφk a− Ta‖ = 0,

where C ∈ R. We conclude that

(Ta)r = P+(ν̂r ∗ (a)r), ∀a ∈ F(Z+).

Since

(Ta)r = P+((T̂ ∗ a)r), ∀a ∈ F(Z+),

it follows that T̂(n)rn = ν̂r(n), ∀n ∈ Z. From the estimation ‖νr‖∞ 6 ‖T‖, we
deduce that the function T̃ is essentially bounded by ‖T‖ on every circle included
in Ω.

If we assume that ρ(S) > 1
ρ(S−1)

, as in the proof of Theorem 0.1, we conclude

that T̃ is holomorphic on
◦
Ω.

Replacing Ω by U and V and using the same arguments, we obtain the
results when one of the operators S and S−1 is not bounded.
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