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ABSTRACT. We establish a continuity result for the map sending a masa-bimo-
dule to its support. We characterise the convergence of a net of weakly closed
convex hulls of bilattices in terms of the convergence of the corresponding
supports, and prove a lower-semicontinuity result for the map sending a sup-
port to the corresponding masa-bimodule.
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1. INTRODUCTION AND PRELIMINARIES

The study of collections of operator algebras from a global viewpoint was
initiated by Effros in [2]. He defined a Borel structure on the set of all von Neu-
mann algebras acting on a fixed separable Hilbert space, and showed that a num-
ber of maps defined on this set, including the commutant, are Borel. The topic
has attracted considerable attention since then, see e.g. [9], [10] and [15]. In [5],
Haagerup and Winslow established a continuity theorem for the commutant and
obtained a number of results on the topological properties of certain collections
of von Neumann algebras.

In non-selfadjoint operator algebra theory the role of the commutant is of-
ten played by the collection LatA of all (closed) invariant subspaces of an op-
erator algebra .4, known as its invariant subspace lattice. The continuity of the
map sending an operator algebra A to Lat.4 was studied in [11] and [12]. It was
shown that Lat is continuous on the collection of all von Neumann algebras as
well as on the collection of all CSL algebras, a class of non-selfadjoint operator
algebras introduced by Arveson in [1]. Subspaces which are bimodules over two
maximal abelian selfadjoint algebras (masa-bimodules) generalise CSL algebras;
these objects were extensively studied later in [4].
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Associated with a masa-bimodule U/ are two objects dual to each other: its
bilattice BilZf [13], which generalises the notion of the invariant subspace lattice
of an algebra, and its support [4], a subset x of the direct product X x Y of two
measure spaces associated in a natural way with the corresponding masas. The
subject of the present paper is the convergence relation between masa-bimodules,
their bilattices and their supports. More precisely, for fixed separable Hilbert
spaces H and K and masas on them, we equip the collection of all reflexive (in
the sense of Loginov and Shulman [8]) masa-bimodules &/ C B(H, K) with a con-
vergence coming from the weak* and the strong* topologies of the space B(H, K)
of all bounded linear operators from H into K. Our convergence is closely re-
lated to the ones used by Tsukada [14] and Haagerup and Winslow [5]. To de-
fine a convergence on the set of supports, we use the notion of a capacity on the
power set of X x Y. More precisely, we equip the collection of all supports of
masa-bimodules with a convergence coming from a family of capacities on X x Y
that were introduced and studied by Haydon and Shulman in [7]. The main re-
sult of Section 2 is the equivalence of the convergence of a net of supports to the
convergence of the net of the weakly closed convex hulls of the corresponding
bilattices.

In Section 3 we establish the continuity of the mapping sending a (reflexive)
masa-bimodule to its support. Our result yields a subspace version of the conti-
nuity of Lat on the collection of CSL algebras established in [12]. It naturally splits
into a limsup and a liminf parts. For the limsup, we establish the equivalence of
the convergence of the masa-bimodules, their supports, and their bilattices. For
the liminf, we only have strict implications. The failure of equivalence motivates
Section 4, where we obtain the lower semi-continuity of the map sending a sup-
port to its corresponding (minimal) masa-bimodule, in a weaker sense. This re-
sult implies that this map is lower semi-continuous for the convergence used by
Haagerup and Winslow in [5].

We now introduce notation and state some preliminary results. If H and K
are Hilbert spaces, we let B(H, K) be the space of all bounded linear operators
from H into K, and write B(H) = B(H,H). We denote by B(H)™ the set of all
positive operators on ‘H and by w, (where x € H) the vector functional given by
wy(A) = (Ax, x). If M C B(H), we denote by Proj(M) the set of all projections
in M, by Ball(M) the unit ball of M and by Conv.M the weakly closed convex
hull of M. If P is a projection, we write P+ = I — P. If £ C 'H we denote by [£]
the projection onto the closed linear span of £.

Let D; and D, be maximal abelian selfadjoint algebras (masas) on H and
IC, respectively. A D,, D;-bimodule (or simply a masa-bimodule if D; and D; are
clear from the context) is a subspace Y C B(H,K) for which D,UdD; C U. If
U C B(H, K) is a masa-bimodule, let

Bild = {(P,Q) € Proj(D;) x Proj(D;) : QUP = {0} }.
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The set Bill{ is a bilattice [13] in the sense that (P,0), (0,Q) € Bili/ for all
P € Proj(D;) and Q € Proj(D;) and (P1,Q1), (P2, Qz) € BilU imply (P} A
P,Q1V Q2),(PyV P, Q1 AQy) € BilU. Conversely, if S C Proj(D;) x Proj(D3)
is a bilattice then the set

OpS={T € B(H,K): QTP =0, forall (P,Q) € S}

is a masa-bimodule. The masa-bimodules of the form OpS for some bilattice
S C Proj(D;) x Proj(D;) are precisely the masa-bimodules which are reflexive in
the sense of Loginov and Shulman [8].

Let (X, m) and (Y, n) be standard (finite) measure spaces, that is, such that
there exist topologies with respect to which X and Y are compact metric spaces
and m and 7 are regular Borel measures. Let H = L2(X,m), K = L*(Y,n) and
Dy = L®(X,m) and D = L®(Y, n) be the multiplication masas on H and K, re-
spectively. By P(«) we denote the projection given by multiplication by the char-
acteristic function of a measurable set &« C X. The sets of the form M x YU X x N,
where M C X and N C Y are null sets, and their subsets, are called marginally
null [1]. We say that two measurable sets x and A of X X Y are marginally equiv-
alent, and write x ~ A, if their symmetric difference is marginally null. The sets
which are marginally equivalent to sets of the form |J «; x §;, with ; C X and
Bi C Y measurable, are called w-open. The complemeln’is of w-open sets are called
w-closed.

Let « C X x Y. An operator T is said to be supported on « if P(B)TP(«)
= 0 whenever « C X and B C Y are measurable and (a x ) Nk ~ @. The
space M pmax(x) of all operators, supported on x, is easily seen to be a reflexive
masa-bimodule; indeed, Mmax (k) = OpSy, where S is the bilattice

(1.1)  Sc={(P(a),P(B)) : a« € X,B C Y measurable and (a x ) Nk ~ @}.

By [1] and [3], Sx = Bil Mmax (k). It was shown in [4] that, conversely, if M is a
reflexive masa-bimodule then there exists a unique, up to marginal equivalence,
w-closed set « (called the support of M) with M = Mpax(x). If € C X XY
is arbitrary, its w-closure cl, (k) is by definition the support of Mmax (k). It was
shown in [1] and [13] that, given a subset x C X x Y, there exists a minimal weak*
closed masa-bimodule ¢/ with the property that OpBili/ = Mpax(k); denote this
masa-bimodule by Muin (k). If Mpin(x) = Mmax(k), we say that « satisfies
operator synthesis [1].

Reflexive masa-bimodules are a subspace analogue of CSL algebras intro-
duced by Arveson in [1], while their bilattices are an analogue of commutative
subspace lattices, that is, strongly closed sublattices of Proj(D), for some masa
D. The lemma that follows was established in the case of commutative subspace
lattices by Arveson in [1].

LEMMA 1.1. Let Dy C B(H) and Dy C B(K) be masas, M C B(H,K) be a
Dy, D1-bimodule and S = Bil M. Then
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(i) ConvS={(A, B)eBall(D; )xBall(D; ) : TAT*<I-B, V T€Ball(M)}, and
(i) the extreme points of ConvS are the elements of S.

Proof. (i) We denote by E(-) the spectral measure of the selfadjoint operator
C. Let &€ denote the set on the right hand side of the identity, (A, B) € £ and
T € Ball(M). By Lemma 7.2 of [4], T*E;_p[0, t]IC C E4[0, {|H, for every ¢t > 0.
This implies
EA[0,5)-T*E;_3[0,t) =0, whenevers > t.
Thus, Eg[1 — t,1]TE4[s, 1] = 0 whenever s > t or, equivalently, Eg[t,1] T E4[s, 1]
= 0 whenever s +t > 1. By Lemma 3.2 of [13], (A4, B) € ConvS.
Assume that (P, Q) € Sand T € Ball(M). Then PT*Q = 0 and so Q(TPT*)
Q = 0. It follows that QK C ker(TPT*) and so ran(TPT*) C Q*K. Since
TPT* is a positive contraction, we conclude that TPT* < Qt. Now, let (A,B) =

N N
Y Ai(P;, Q;), where A; >0, Y A; =1and (P, Q;) € S. We have TP, T* < Qil for
i=1 i=1

each i and hence

N N N N

T( Zx\iPi)T* — Y ATPT < Y AQF =1- Y AQn
i=1 i=1 i=1 i=1

In other words, £ contains all convex combinations of elements of S. Since £ is

weakly closed, ConvS C £. The claim is proved.

(i) Let L = {P® Q' : (P,Q) € S}. Itis easy to see that £ is a commutative
subspace lattice and that ConvL = {A @ (I — B) : (A,B) € ConvS}. Hence,
(C,D) is an extreme point of ConvS if and only if C @ (I — D) is an extreme
point of L. The fact now follows from the corresponding result for commutative
subspace lattices [1]. 1

Let x C X x Y. Haydon and Shulman set [7]
y(x) = inf{m(a) +n(B) : x C (a xY)U (X x B)},

where the sets @ and f in the infimum are taken to be measurable. They showed
that the map x — () is a capacity on the power set of X X Y in the sense that

(@) y(x) < (") whenever x C «/;

(b) nhnolo v(kn) = (x) whenever {x,} is an increasing sequence of subsets
of X x Y and ¥ = J«y,, and

(c) v(x) = inf{y(U) : U openand x C U}.

Relation (c) holds with respect to any pair of topologies on X and Y which turn
m and 7 into regular Borel measures. Moreover, « is marginally null if and only if
(k) = 0.

We next recall the general notion of the limit space structure in the set of
all subsets of a topological space (Z, T). For a net {E, } of subsets of Z, denote
by T-liminf E, the set of all points z € Z which are 7-limits of nets {z,} with
z) € Ej and by T-limsup E, the set of all points z € Z which are T-cluster points
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of such nets. If T-liminfE, = t-limsupE, = E, we write E = T_hin E,. We

will be interested in the case where Z = B('H, K), equipped with the strong* and
the weak* topology or Z = Proj(B(H)) x Proj(B(K)), equipped with the strong
operator topology.

We finish this section with a general observation which will be used in the
sequel.

LEMMA 1.2. Let (Z,d) be a metric space and {E, } e a be a net of closed subsets
of Z. Then liminf E, is closed.

Proof. 1t is clear that
(1.2) liminfE) = {x € Z : limd(x,E)) = 0}.

Let x € liminfE,, ¢ > 0 and x’ € liminf E, be such that d(x,x") < e. By (1.2),
there exists Ag € A such that d(x’,E)) < ¢ whenever A > Aq. Hence, if A > A
then

— . < . ! !
d(x,Ey) ylengAd(x,y) < ylergAd(x,x ) +d(x,y)
=d(x,x') + inf d(x',y) =d(x,x")+d(x',Ey) < 2e.
yeka

Thus, x € iminfE,. 1

2. CONVEX HULLS OF BILATTICES

We fix standard (finite) measure spaces (X, m) and (Y, n);let H = L2(X,m),
K = L2(Y,n) and D; = L®(X,m), D = L®(Y, n) be the corresponding multipli-
cation masas. In this section, we define quantities which generalise the capacity
of a subset ¥ C X x Y studied in [7], and show that they are capacities. We then
show that convergence of a net of subsets of X x Y with respect to these capacities
is equivalent to the convergence of the net of the weakly closed convex hulls of
the bilattices corresponding to these sets via (1.1).

Let Z be the family of all ordered triples of the form

(("‘i)il\il' (,Bi)il\ill (Vi)zlil)r

where (a;)N ;| (respectively (B;)Y ) is an (ordered) partition of X (respectively Y)
into (finitely many) Borel sets, and (y;))Y | is a (finite) collection of non-negative
real numbers.

Fixx C X x Y and let

Vi ={A®B: (A, B) € ConvS,};
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Vy is thus a (convex and weakly compact) subset of Ball(D; ¢ D,)*. For A =
() y, By, (i)y) € 2, let

mf{Zy m(e N ;) —|—n([30ﬁi)):;c§(och)U(Xx/B)},

where « and B in the above infimum are taken to be measurable. It is clear that if
pi=1foralli=1,...,N, then y,(x) = v(x).
For asubset M C B(H® K)" and ¢ € H® K, we let

(M) = sup we(C).

N
LEMMA 2.1. Let A= ((a;)N}, (BN, (ui)X,) € Zandh = 421 Ai(Xo; ® XB1)s
1=
where \; € C, |2 = p;, i =1,...,N. Then
(@) I (Ve) + valx) = Z pi(m(e;) +n(B;)), and
(i) the infimum in the deﬁnztzon of va(x) is attained.

Proof. (i) Let S = Sx and V = V. Notice that k C (a x Y) U (X x B) if and
only if (a° x ) Nk = @, if and only if (P(a®), P(B°)) € S. We thus have

mf{m (& ) + (BN By) : (Pla), P(B)) € S
1) {zul ai)—m(a N a;)+n(B)—n(B 1)) : (P(), P(B)) €S}

:;Vi(m(txi sup{Zyl m(aNa; Hn(BNB;)): (P (W),P(ﬁ))ES}.

For each h € H & K, the function p : V — R* given by p(C) = w;,(C) is weakly
continuous and satisfies p(ACy + uCy) = Ap(Cy) + up(Cz) whenever A, > 0
and A + p = 1. Since V is weakly compact and convex, p attains its supremum at
an extreme point of V. By Lemma 1.1 (ii), the extreme points of V' coincide with
the elements of the form P & Q, where (P, Q) € S. Hence

I,(V) = sup{((P® Q) h) : (P,Q) € S}

—sup { 30 AT (P ) + (PUB)p5) £ (PLa), PB)) € S

ij=1

sup{zuz &) Xay Xui) + (P(B)Xp, Xp,)) : (P(a), P(B)) € S}

sup{z m(aN ) +n(BNB)) : (P(x),P(B)) € S}.
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The claim follows from (2.1) and the last identity.
(ii) follows from the previous paragraph. 1

PROPOSITION 2.2. Let A € Z. Then
(i) the function <y is a capacity;
(i) ya(x) = ya(clw(x)), foreach xk C X x Y.

Proof. Fix A = ((“i)giy (,Bi)ll'\iy (,ui)zziﬂ €z
(i) Let m’ (respectively n’) be the measure on X (respectively Y) given by

m' () = g pim (e Na;) (respectively n'(B) = % uin(B N B;)). Then y,(x) is the
i=1 i=1

capacity of «k arising from the measures m’ and n’ as defined in [7], and the claim
follows from the Corollary of Lemma 1 and Lemma 2 of [7].
(i) Ifx C (a x Y)U (X x B) then

(P(a), P(B°)) € Sk = Bil Mmax(x) = Bil Mmax(clw(k)) = S, (x),

and so cly(x) € (a x Y)U (X x B) up to a marginally null set. It follows that
Ya(cly(x)) < va(x) and by (i) we have that y,(cly (k) = ya(x). 0

Notation. Let {x)} e be a net of subsets, and « be a subset, of X x Y. If

ra(x) < liani/?f'yA(K,\) (respectively limsup ya(k)) < 7ya(x)) for each A € Z
€ AEA
then we will write symbolically x hm infx, (respectively lim sup Ky < k). If

K < limc infx) and limsupk, < x, we w1ll write x = hm Ky, and we will say that
Cc

{x)} converges to x in capacity.

The next theorem, which is the main result of this section, characterises the
convergence of the convex hulls of a net of bilattices in terms of the convergence
of the corresponding w-closed sets.

THEOREM 2.3. Let A be a directed set and x,x), A € A be w-closed sets. Let
S = S, Sy = Sk, . The following hold:
(i) ConvS C w-liminf ConvS, if and only if lim sup Ky < K, and

(i) w-lim sup ConvS, C ConvS if and only if k < hm infx).
Proof. LetV = {A®B : (A,B) € ConvS}and V), = {A®B: (A,B) €
N

ConvS, }, A € A. Let F be the set of vectors in H @ K of the form Z Hi(Xa: D Xp,)s
where y; > 0and (a;)Y | and (B;)N , are partitions of X and Y, respectlvely

() Fix A = ((a))N,, (BN, (ui)Y,) € Z and assume that ConvS C
w-liminf ConvS,. Leth € F and C € V. Then C = w-lim C,, for some C) € V,,
and hence (Ch,h) = lim(Cyh,h). It follows that (Ch,h) < liminfI};,(V,) and

since this holds for each C € V, we conclude that I};(V) < liminfI};(V,). By
Lemma 2.1, limsup ya(xy) < ya(x), foreach A € Z.
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Conversely, assume that limsup ya(x)) < vya(x), for each A € Z. Fix
(P(#0), P(Bo)) € S and let h = xo, & x5 and & = ({30, a5), (Bo, B5), (1,0)). Then
v4(x) = 0 and so limy,(x,) = 0. Hence there exist Borel subsets «, C X and
Br C Y such that (P(ay), P(Br)) € Sa, m(agNaf) — 0and n(BoNB§) — 0.
It follows that m(ag Nay) — m(ag) and n(Bo N Pr) — n(Bo). This implies that
P(agNay) — P(ag) and P(Bop N Br) — P(Bo) in the strong operator topology.
On the other hand, (P(xg Ny ), P(Bo N Br)) is dominated by (P(ay ), P(B,)) and
hence belongs to S,. We showed that S Cs-liminf S, and hence S Cw-liminf S,.
Thus, the non-closed convex hull of S is contained in w-lim inf ConvS,. Since the
weak operator topology on the unit ball of B(H @ K) is metrisable, Lemma 1.2
shows that ConvS Cw-liminf ConvS§,.

(i) Assume that w-limsup ConvS, C ConvS and that y,(x) > ¢ > liminf

N
va(xy), for some A = ((ai)f\il,(ﬁi)fil, (yi)fil) € Z. Leth = Z VHi (Xe; @

Xp;)- By Lemma 2.1 (i), limsup I}, (V) > &g > I},(V), where 6y = Z wi(m(a;) +

n(pB;)) — 0. Let Ag be a subnet of Aand {Cy },cp, € Vi, be such that (th h) > 6,
v € Ap. Assume, without loss of generality, that C, — C in the weak operator
topology. It follows that (Ch,h) > 4. On the other hand, C € V and hence
I,(V) = 6o, a contradiction.

Assume that y,(x) < liminfys(x,), for each A € Z. By Lemma 2.1,
limsup I},(Vy) < I,(V) for each h € F. Suppose that C = w-lim C, for some
Cy € V,, where v € A for some subnet Aj of A.

Claim. wy(C) < I,(V), foreachh € H & K.

Proof. Since w)y, (D) = wy,(D) for each D € D, we may assume that i > 0
First assume that i € F. Suppose that I},(V) < § < wy,(C). There exists vy € Ay
such that wy,(Cy) > § whenever v > vp. It follows that I;,(V,) > d if v > v, and
hence lim sup I},(V,) > 6. This implies that I},(V) > 4, a contradiction.

Suppose next thath = ¢ @y € L*(X,m) & L®(Y,n) and that ||{]|c < 1 and
||17||oo <LIHO0=t) << Kty= 1,let0c]' = {x S X:t]‘,l < C(x) < l’]'}al’ld

N
Bi ={y € Y :tji_1 <1(y) < t;}. Then the vectors of the form Y- t;(x« © xp,)
i=1

approximate ¢ &1 as max;—1,., N |t]~ - tj,1| tends to zero. Hence there exist h; € F
such that ii; — h. Since every non-negative L?-function can be approximated by
non-negative L®-functions in the L>-norm, we may relax the assumption that
h e L®(X,m) & L*(Y,n).

We have that wy, — wj, in norm. Assume that wy(C) > 6 > I;,(V). Then
there exists jo such that wy, (C) > 4 if j > jo. It follows that I}, (V) > 0 if j > jo,
and hence there exists D; € V such that wh].(Dj) > §1if j > jo. Let D be a weak
cluster point of {D;}. From the inequality

|wp(D) = wy (Dj)| < llwy — wy || + |wn(D) = wy(Dj)|
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it follows that wy, (D) > §; therefore I},(V) > 4, a contradiction. 1

We finish the proof of the theorem. Assume that C = A @ B and fix a unit
vector # € Hand T € Ball(OpS). Let{ = T*yand h = &y € H® K. By
the Claim and the weak compactness of V, there exists A’ & B’ € V such that
(AT*n, T*n) + (By,n) < (A'T*n, T*y) + (B'y, 7). By Lemma 1.1,

(A'T*y, T*n) + (B'n, ) = (TA'T*n,n) + By, ) < |Iy|* =1

and hence (AT*n, T*y) + (By,n) < 1. This implies that (TAT*n,n) < ((I —
B)n,17) and so TAT* < I — B. By Lemma 1.1 again, A@B e V. 1

COROLLARY 2.4. Letx,x), A € A, be w-closed sets. The following are equivalent:
(i) ConvSx = w-lim ConvSy, ;
(il) x = lim k.
c

REMARK 2.5. Easy examples show that the capacity <y [7] is not sufficient to
describe the convergence of the convex hulls in Theorem 2.3. For instance, let X =
Y = [0,1] with the Lebesgue measure, D; = D, = L®(0,1), x, = [0, 3] x [0,1],
n € Nand « = [4,1] x [0,1]. Then y(x) = 7(ks) = 3 for each n € N. Letting
P = P([0, 4]) we see that Sy, = {(L, M) € Proj(D;) x Proj(D;) : L< P}, n €N,
while Sy = {(L, M) € Proj(D;) x Proj(D,) : L < P}. Thus (P,I) € S, does not
belong to w-lim sup ConvS, .

3. THE CONTINUITY OF THE SUPPORT

In this section, we establish the continuity of the mapping sending a (re-
flexive) masa-bimodule to its support. We equip the collection of reflexive masa-
bimodules with a convergence coming from the weak* and strong* topologies,
and the collection of all w-closed subsets of X x Y with the convergence arising
from the capacities v, defined in Section 2.

THEOREM 3.1. Let x be an w-closed subset, and {x } e be a net of w-closed
subsets, of X x Y. The following are equivalent:
(i) w-lim sup Ball(Mmax(x,)) € Ball(Mmax(x));
(if) lim sup x, < x;
Cc
(iii) Sx C s-liminf S, .
For a given D, D;-bimodule U, let A;; be the algebra consisting of the block
matrices of the form (B %) where A € Dy, B € Dy and T € U. Then
LatAy = {Q® P € Proj(D, @ Dy) : (P,Q1) € Bilid}.

By [12], Lat A C s-lim LatA , and hence S Cs-lim §,.
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(iii)=() Let {T)} ecn, be a subnet of the net {T)} ca, where Ty € M,,
A € A, and assume that T, — T weakly. Fix (P,Q) € S. Then there exists
(Pr,Qa) € S) such that Py — P and Q) — Q strongly. It follows that Q, T, P, —
QTP weakly. Since QT P, = 0 for each u € Ap, we conclude that QTP = 0; in
other words, T € M.

(ii)=(iii) Was shown in the proof of Theorem 2.3 (i).

(iif)=(ii) As in the proof of Theorem 2.3 (i), (iii) implies ConvS C w-liminf
ConvS,. The claim now follows from Theorem 2.3 (i). &

REMARK 3.2. Conditions (i)—(iii) of Theorem 3.1 are not equivalent to

lim sup Ball (Mmpin (k1)) € Mmin(x). To see this, let k C X x Y be any w-closed
[e0]

set which does not satisfy operator synthesis [1]. Assume thatx® = U a; x f;. Let
j=1

n Cc
Ky = ( UajxB ]-) . Then «;, is a finite union of Borel rectangles, and it is easily
j=1

seen that the sets of this form satisfy operator synthesis We have that x,, 1 C %,
for each n € N and that ﬂ kn, = k. It follows that ﬂ Mupmax(€n) = Mmax (k).

n=1 n=1
Hence w-lim sup Mmax () € Mmax (k). However

ﬂ Mmm Kn ﬂ Mmax Kn) Mmax(K) 7é Mmin(K)/

n=1 n=1
and hence w-lim sup M pmin (kn) € Mmin(%).

THEOREM 3.3. Let «k be an w-closed subset, and {x) } e be a net of w-closed
subsets, of X x Y. Consider the following statements:
(i) Ball(Mmax(x)) C s*-liminf Ball(Mmax(kp));
(i) x < limc infx,;
(iii) s-lim sup Sx, C Sx.
Then (i):>(ii):>(iii).
Proof. (i)=(ii) Set M = Mmax(x), M) = Mmax()), S = Sy and Sy = S, .
By Theorem 2 3, it suffices to show that w-lim sup ConvS, C ConvS. Suppose
that (AV, By) € Conv§y, for each p € Ay, where A is a subnet of A, and that
(Au,By) — (A,B) weakly. Take T € Ball(M) and let T, € Ball(M ) be such
that Ty — T in the strong* topology. Then

I — By — TyAuT; — I — B — TAT*

weakly. By Lemma 1.1 (i), I — By — T;;A,T,; > 0 for each y and hence TAT* <
I — B. By Lemma 1.1 (i) again, (A, B) € ConvsS.

(ii)=(iii) Suppose that (P(«;), P(B,)) € Sy for u € Ag, where Ay is a subnet
of A, and that (P(ay), P(Bu)) — (P(a), P(B)) strongly. Then m(a Naj,) — 0and
n(BNp;) — 0. Let A = ((a,ac), (B, B°), (1,0)). Since x, C (a x Y) U (X x ;)
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up to a marginally null set, we have that
Yalky) <m(anay) +n(BNp,) —0

and hence y,(x) = 0. By Lemma 2.1 (ii), there exist Borel sets 5! C X, 6> C Y,
such that k C (6! x Y) U (X x %) and m(a N 6') = 0 and n(B N é%) = 0. Thus,
(e x B)Nx C ((anél) x Y)U (X x (BN d?)) which implies that (« x B) Nk ~ @
and hence (P(«a),P(B)) € Sx. 1

PROPOSITION 3.4. The converse implications in Theorem 3.3 do not hold.

Proof. We first show that implication (ii)=(i) in Theorem 3.3 does not hold.
By [4], there exists an w-closed set x« C X x Y such that « is the w-closure of an

o n
w-open set kg = U & X B, and Muin(k) # Mmax(x). Let ky = U aj x B,
j=1 =1

w

neN andd = U Mmax(kn) . Since the support ¥ of U contains «, for
n=1

each n, we have that ¥ DO «, up to a marginally null set, and so Mmax(x) C
Mmax(K). On the other hand, clearly f C Mmax(x) and hence x = k. Since
the sets «, satisfy operator synthesis, we conclude that Y = Mpin (k). Clearly,
s*-liminf Ball(Mmax (s )) C U. Since U # Mmax(x), we conclude that

Ball(Mmax(x)) Z s*-lim inf Ball(Mmax ().

It is obvious that ConvS, C () ConvSy, and easy to see that S, = [ Sy,. As-
sume that (A4, B) € ConvSy, for each n. By Lemma 3.2 of [13], (E[s, 1], Eg[t, 1]) €
Sk, whenever s +t > 1 and hence (E4[s, 1], Eg[t, 1]) € Sx whenever s +t > 1.
By Lemma 3.1 of [13] again, (A, B) € ConvS,. We thus have that ConvS, =
N ConvSy,. In particular, w-limsup ConvS, = ConvS. By Theorem 2.3 (ii),
x < liminfx,. We showed that (ii) does not imply (i).

We next show that implication (iii)=>(ii) in Theorem 3.3 does not hold. Let
H = L?(0,1) and D = L*(0,1). Let {L,} C D be a sequence of projections
which converges weakly to an element A € D such that ||A|| = || - Al =1
and ker A = ker(I — A) = {0}. Let S = {(P,0),(0,Q) : P,Q € Proj(D)} and
Sh = {(P,Q) € Proj(D) x Proj(D) : P < L, < Qt}US. It is easy to see that
S =s-lim S,,.

We have that ConvS consists of the weak limits of the pairs of the form

k m k m
( Y AP, Y ijj), where P, Q; € Proj(D) and ¥ A+ & #j = 1, Ay = 0. It
i=1 j=1 i=1 i=1

follows that if (A, B) € ConvS then ||A]| + ||B|]| < 1. On the other hand, (A, I —
A) € w-limsup ConvS, and hence (A,I — A) ¢ ConvS. By Theorem 2.3 (ii),
condition (ii) of Theorem 3.3 does not hold. 1

Theorems 3.1 and 3.3 have the following immediate corollary. Implication
(i)=-(ii) establishes the continuity of the mapping sending a masa-bimodule to its
support.
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COROLLARY 3.5. Let k be an w-closed subset, and {x } e A be a net of w-closed
subsets, of X x Y. Consider the following statements:
(i) w-lim sup Ball(Mmax (k) = Ball(Mmax(x)) = s*-liminf Ball (Mmax (k1);
(il) x = limx,;
Cc
(iii) S = s-lim S.
Then (i)=-(ii)=-(iii).
In the case where the limit masa-bimodule is trivial, the continuity result
takes a simpler form which we state in the next proposition.

PROPOSITION 3.6. Let {x) }rca be a net of w-closed subsets of X x Y. The fol-
lowing statements are equivalent:
(i) w-lim Ball(Mmax(xy)) = {0};
(ii) lim y (x5 ) = 0.

Proof. (i)=-(ii) follows from Corollary 3.5 by taking A = ((X), (Y), (1)).

(ii)=(i) Assume that y(x)y) — 0 and let {T) } ,ca be a weakly convergent
net with T) € Ball(Mmax(k,)). There exist Borel sets «y C X and §, C Y with
(P(aS),P(BY)) € Sk, such thatlimm(xy) = limn(B,) = 0. We have

Ty = P(Br)TaP(ar) + P(B3)TaP(ar) + P(Ba) TAP(a}).

It follows that Ty — 0 weakly and hence lim sup Mmax(x3) = {0}. 1

4. LOWER SEMI-CONTINUITY OF M pin

Our next aim is to establish a partial converse of the implication (ii)=(i)
of Theorem 3.3. Namely, we show that if A is a directed set, x and x), A € A,
are w-closed sets, ¥ < c-liminfx, and, moreover « satisfies operator synthesis,
then every T € Mmax(k) can be approximated by a net {T) } ca, where T) €
Mmax(x, ), on every countable set of vectors. This is a consequence of a more
general result on the lower semi-continuity of the map sending an w-closed set %
to the masa-bimodule M yn ().

We will need the notion of a semistrong limit of a net of projections intro-
duced by Halmos in [6]. If {P)},ca is a net of projections on a Hilbert space
‘H then we say that Py converge semistronlgy to a projection P on H (and write
P =ss-lim P,) if for every x = Px there exist xy = P,x, such that x; — x, and
whenever y is a cluster point of a net {y, },ca with yy = Pyy,, we have y = Py.
In other words, P =ss-lim P, if the space PH is the limit of the subspaces PyH in
the power set of H, when H is equipped with its norm topology.

We will use the following fact proved in [6].

LEMMA 4.1. If T = w-lim P, then [ker(I — T)] = ss-lim P,.



CONVERGENCE OF BIMODULES 313

LEMMA 4.2. Let A be a directed set and U, U, C B(H, K) be reflexive subspaces.
Suppose that if QuU\Py = {0} for each A € A, and (P, Q%) is a semistrong cluster
point of {(Py, Q1) }rea then QUP = {0} (where P, Q, Py, Q, are projections). Then
for each T € U and each x € H there exists a net {T)} ca such that T, € U, and
Tyx — Tx.

Proof. Let T € U, x € H and P be the projection onto the one dimensional
space generated by x. Suppose that dist(Tx,U,x) - 0. Then there exists ¢ > 0
and a cofinal subset Ag C A such that dist(Tx, U, x) > € for each A € A,.

Let Q, be the projection onto (U x)*. We have that QU P = {0}. Let A;
be a subnet of Ay such that A = w- ngrc1 Q’J;. By Lemma 4.1, if Q = [ker(I — At

then Q+ = ss- lim Q%.
Q ueN QV

By the assumption, QTP = 0. Thus, QTx = 0, that is,

Tx € ker(I — A) = ss- lim Qﬁ.
peN

Hence, lir/xc dist(Tx, Q#IC) =0, a contradiction. 1
HeN

THEOREM 4.3. Let x be an w-closed subset, and {x) }rca be a net of w-closed
subsets, of X x Y. If x < liminfx, then for each T € Min(x) and each countable
Cc

collection of vectors £ C 'H there exists a net {T) }re such that Ty € Mumin (k) and
Tyx — Tx, for each x € £.

Proof. Let S = Sk, Sy = Sx,,
S = {(P,Q) € Proj(B(I* @ H)) x Proj(B(I*® K)) : Q(1 ® Mumin(x))P = {0}}
and
S, ={(P,Q) € Proj(B(I> ®H)) x Proj(B(Z @ K)) : Q(1 ® Mumin(x2))P = {0}},

where 1®@U = {I®T : T € U} . Assume that P and Q are projections on
1> ® H and I> ® K, respectively, such that (P, Q') is a semistrong cluster point
of a net {(Py, Q1) }aea, where (Py,Q,) € Sy, A € A. Then there exist subnets
{Pu}uen, and {Qy}cp, such that P, — e, P and Qf; —ueho Q' semistrongly.
We may assume that P, — e, A and Qx —uen, | — B weakly, for some oper-
ators A € B(I>® H) and B € B(I?® K). By Lemma 4.1, P, —cx, [ker(I — A)]
and Qy —en, [ker B] semistrongly and so P = [ker(I — A)] and Q = [imB].
For each state ¢ of B(/?), let

Ly:B(P®H,*®K)— B(H,K)

be the slice map given by Lo(A® T) = ¢(A)T, A € B(I?), T € B(H,K). We
have that

L(p(Py) —uchy LqJ(A) and L(p(Q/\) —uEA) L(p(B)
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in the weak operator topology. By Lemma 4.1 and Corollary 4.4 of [13], (Ly(Py),
Ly (Qu)) € ConvS,, for each u € Ag. Theorem 2.3£ii) now implies that (Ly(A),
Ly (B)) € ConvS. By Lemma 5.1 of [13], (P, Q) € S. We showed that the condi-
tion of Lemma 4.2 is satisfied for 1 ® Mpin(x) and 1 @ Mmpin(xy), A € A.

Let {x]-}]?”zl C 'H be a countable set of non-zero vectors and

3

1

j 1n||xj“

=

e]' ®Xj/

where {¢;} is the standard basis of I2. Lemma 4.2 implies that there exists a net
{Ta}aca such that Ty € Mumin(x2) and (I® T)¢ = lim(I ® T,)¢. This implies
€

that T)x; —aea Tx;j, for each j. The proof is complete. 1

We have the following immediate corollary.

COROLLARY 4.4. Let k be an w-closed subset, and {x } e A be a net of w-closed
subsets, of X x Y, and assume that x satisfies operator synthesis. If x < liminfx, then
Cc

foreach T € Mmax (k) and each countable collection of vectors € C H there exists a net
{T}ren such that Ty € Mmax (k) and Tyx — Tx, for each x € E.

REMARK 4.5. Haagerup and Winslow [5] have studied a different kind of
limes inferior for von Neumann algebras: if 7 is a topology on B(H,K) and
{U)} ren is anet of subspaces of B(H, K), let lim inf" U, be the set of all operators
T € B(H, K) with the property that for each T-neighborhood (2 of T there exists
Ag € Asuchthat QNU, # Dif A > Ap. Theorem 4.3 implies that if x < lirr}:inf K\

then Mupn(x) C liminf SOT Min(x)), where SOT denotes the strong operator
topology.

Acknowledgements. The authors wish to thank Professor V.S. Shulman for helpful
discussions concerning the topic of this paper. They also thank the referee for pointing out
the short proof of Proposition 2.2 included here.

REFERENCES

[1] W.B. ARVESON, Operator algebras and invariant subspaces, Ann. Math. (2) 100(1974),
433-532.

[2] E.G. EFFROS, The Borel space of von Neumann algebras on a separable Hilbert space,
Pacific ]. Math. 15(1965), 1153-1164.

[3] J.A. ERDOS, Reflexivity for subspace maps and linear spaces of operators, Proc. Lon-
don Math. Soc. (3) 52(1984), 582-600.

[4] J.A. ERDOS, A. KATAVOLOS, V.S. SHULMAN, Rank one subspaces of bimodules over
maximal abelian selfadjoint algebras, J. Funct. Anal. 157(1998), 554-587.



CONVERGENCE OF BIMODULES 315

[5] U. HAAGERUP, C. WINSLOW, The Effros-Maréchal topology in the space of von Neu-
mann algebras, Amer. ]. Math. 120(1998), 567-617.

[6] P.R. HALMOS, Limsups of Lats, Indiana Univ. Math. ]. 29(1980), 293-311.

[7] R.G. HAYDON, V.S. SHULMAN, On a measure-theoretical problem of Arveson, Proc.
Amer. Math. Soc. 124(1996), 497-503.

[8] A.I. LOoGINOV, V.S. SHUL'MAN, Hereditary and intermediate reflexivity of W*-
algebras, Izv. Akad. Nauk. SSSR 39(1975), 1260-1273; Math. USSR Izv. 9(1975), 1189—
1201.

[9] O. MARECHAL, Topologie et structure boreliénne sur I'ensemble des algebres de von
Neumann, C.R. Acad. Sci. Paris Ser. I Math. 276(1973), 847-850.

[10] O. NIELSEN, Borel sets of von Neumann algebras, Amer. J. Math. 95(1973), 145-164 .

[11] V.S. SHULMAN, On subspace lattices in a Hilbert space, Funktsional. Analiz Priloz.
23(1989), 86-87.

[12] V.S. SHULMAN, I.G. TODOROV, On subspace lattices. II. Continuity of Lat, J. Operator
Theory 52(2004), 371-384.

[13] V.S. SHULMAN, L. TUROWSKA, Operator synthesis. I. Synthetic sets, bilattices and
tensor algebras, |. Funct. Anal. 209(2004), 293-331.

[14] M. TSUKADA, The strong limit of von Neumann algebras with conditional expecta-
tions, Proc. Amer. Math. Soc. 94(1985), 259-264.

[15] E.J. WoODS, The classification of factors is not smooth, Canad. J. Math. 1(1973), 96—
102.

J.L. HABGOOD, DEPARTMENT OF PURE MATHEMATICS, QUEEN’S UNIVERSITY
BELFAST, BELFAST BT7 1NN, UNITED KINGDOM
E-mail address: Joe.habgood@qub.ac.uk

I.G. TODOROYV, DEPARTMENT OF PURE MATHEMATICS, QUEEN’S UNIVERSITY
BELFAST, BELEAST BT7 1NN, UNITED KINGDOM
E-mail address: i.todorov@qub.ac.uk

Received June 15, 2007; revised October 20, 2007.



