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ABSTRACT. We establish a continuity result for the map sending a masa-bimo-
dule to its support. We characterise the convergence of a net of weakly closed
convex hulls of bilattices in terms of the convergence of the corresponding
supports, and prove a lower-semicontinuity result for the map sending a sup-
port to the corresponding masa-bimodule.
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1. INTRODUCTION AND PRELIMINARIES

The study of collections of operator algebras from a global viewpoint was
initiated by Effros in [2]. He defined a Borel structure on the set of all von Neu-
mann algebras acting on a fixed separable Hilbert space, and showed that a num-
ber of maps defined on this set, including the commutant, are Borel. The topic
has attracted considerable attention since then, see e.g. [9], [10] and [15]. In [5],
Haagerup and Winslow established a continuity theorem for the commutant and
obtained a number of results on the topological properties of certain collections
of von Neumann algebras.

In non-selfadjoint operator algebra theory the role of the commutant is of-
ten played by the collection LatA of all (closed) invariant subspaces of an op-
erator algebra A, known as its invariant subspace lattice. The continuity of the
map sending an operator algebra A to LatA was studied in [11] and [12]. It was
shown that Lat is continuous on the collection of all von Neumann algebras as
well as on the collection of all CSL algebras, a class of non-selfadjoint operator
algebras introduced by Arveson in [1]. Subspaces which are bimodules over two
maximal abelian selfadjoint algebras (masa-bimodules) generalise CSL algebras;
these objects were extensively studied later in [4].
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Associated with a masa-bimodule U are two objects dual to each other: its
bilattice BilU [13], which generalises the notion of the invariant subspace lattice
of an algebra, and its support [4], a subset κ of the direct product X × Y of two
measure spaces associated in a natural way with the corresponding masas. The
subject of the present paper is the convergence relation between masa-bimodules,
their bilattices and their supports. More precisely, for fixed separable Hilbert
spaces H and K and masas on them, we equip the collection of all reflexive (in
the sense of Loginov and Shulman [8]) masa-bimodules U ⊆ B(H,K) with a con-
vergence coming from the weak* and the strong* topologies of the space B(H,K)
of all bounded linear operators from H into K. Our convergence is closely re-
lated to the ones used by Tsukada [14] and Haagerup and Winslow [5]. To de-
fine a convergence on the set of supports, we use the notion of a capacity on the
power set of X × Y. More precisely, we equip the collection of all supports of
masa-bimodules with a convergence coming from a family of capacities on X×Y
that were introduced and studied by Haydon and Shulman in [7]. The main re-
sult of Section 2 is the equivalence of the convergence of a net of supports to the
convergence of the net of the weakly closed convex hulls of the corresponding
bilattices.

In Section 3 we establish the continuity of the mapping sending a (reflexive)
masa-bimodule to its support. Our result yields a subspace version of the conti-
nuity of Lat on the collection of CSL algebras established in [12]. It naturally splits
into a limsup and a liminf parts. For the limsup, we establish the equivalence of
the convergence of the masa-bimodules, their supports, and their bilattices. For
the liminf, we only have strict implications. The failure of equivalence motivates
Section 4, where we obtain the lower semi-continuity of the map sending a sup-
port to its corresponding (minimal) masa-bimodule, in a weaker sense. This re-
sult implies that this map is lower semi-continuous for the convergence used by
Haagerup and Winslow in [5].

We now introduce notation and state some preliminary results. If H and K
are Hilbert spaces, we let B(H,K) be the space of all bounded linear operators
from H into K, and write B(H) = B(H,H). We denote by B(H)+ the set of all
positive operators on H and by ωx (where x ∈ H) the vector functional given by
ωx(A) = (Ax, x). IfM ⊆ B(H), we denote by Proj(M) the set of all projections
inM, by Ball(M) the unit ball ofM and by ConvM the weakly closed convex
hull ofM. If P is a projection, we write P⊥ = I − P. If E ⊆ H we denote by [E ]
the projection onto the closed linear span of E .

Let D1 and D2 be maximal abelian selfadjoint algebras (masas) on H and
K, respectively. A D2,D1-bimodule (or simply a masa-bimodule ifD1 and D2 are
clear from the context) is a subspace U ⊆ B(H,K) for which D2UD1 ⊆ U . If
U ⊆ B(H,K) is a masa-bimodule, let

BilU = {(P, Q) ∈ Proj(D1)× Proj(D2) : QUP = {0}}.
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The set BilU is a bilattice [13] in the sense that (P, 0), (0, Q) ∈ BilU for all
P ∈ Proj(D1) and Q ∈ Proj(D2) and (P1, Q1), (P2, Q2) ∈ BilU imply (P1 ∧
P2, Q1 ∨ Q2), (P1 ∨ P2, Q1 ∧ Q2) ∈ BilU . Conversely, if S ⊆ Proj(D1)× Proj(D2)
is a bilattice then the set

OpS = {T ∈ B(H,K) : QTP = 0, for all (P, Q) ∈ S}

is a masa-bimodule. The masa-bimodules of the form OpS for some bilattice
S ⊆ Proj(D1)× Proj(D2) are precisely the masa-bimodules which are reflexive in
the sense of Loginov and Shulman [8].

Let (X, m) and (Y, n) be standard (finite) measure spaces, that is, such that
there exist topologies with respect to which X and Y are compact metric spaces
and m and n are regular Borel measures. Let H = L2(X, m), K = L2(Y, n) and
D1 ≡ L∞(X, m) and D2 ≡ L∞(Y, n) be the multiplication masas on H and K, re-
spectively. By P(α) we denote the projection given by multiplication by the char-
acteristic function of a measurable set α ⊆ X. The sets of the form M×Y∪X×N,
where M ⊆ X and N ⊆ Y are null sets, and their subsets, are called marginally
null [1]. We say that two measurable sets κ and λ of X× Y are marginally equiv-
alent, and write κ ' λ, if their symmetric difference is marginally null. The sets

which are marginally equivalent to sets of the form
∞⋃

i=1
αi × βi, with αi ⊆ X and

βi ⊆ Y measurable, are called ω-open. The complements of ω-open sets are called
ω-closed.

Let κ ⊆ X × Y. An operator T is said to be supported on κ if P(β)TP(α)
= 0 whenever α ⊆ X and β ⊆ Y are measurable and (α × β) ∩ κ ' ∅. The
space Mmax(κ) of all operators, supported on κ, is easily seen to be a reflexive
masa-bimodule; indeed,Mmax(κ) = OpSκ , where Sκ is the bilattice

(1.1) Sκ = {(P(α), P(β)) : α ⊆ X, β ⊆ Y measurable and (α× β) ∩ κ ' ∅}.

By [1] and [3], Sκ = BilMmax(κ). It was shown in [4] that, conversely, ifM is a
reflexive masa-bimodule then there exists a unique, up to marginal equivalence,
ω-closed set κ (called the support of M) with M = Mmax(κ). If κ ⊆ X × Y
is arbitrary, its ω-closure clω(κ) is by definition the support ofMmax(κ). It was
shown in [1] and [13] that, given a subset κ ⊆ X×Y, there exists a minimal weak*
closed masa-bimodule U with the property that OpBilU =Mmax(κ); denote this
masa-bimodule by Mmin(κ). If Mmin(κ) = Mmax(κ), we say that κ satisfies
operator synthesis [1].

Reflexive masa-bimodules are a subspace analogue of CSL algebras intro-
duced by Arveson in [1], while their bilattices are an analogue of commutative
subspace lattices, that is, strongly closed sublattices of Proj(D), for some masa
D. The lemma that follows was established in the case of commutative subspace
lattices by Arveson in [1].

LEMMA 1.1. Let D1 ⊆ B(H) and D2 ⊂ B(K) be masas, M ⊆ B(H,K) be a
D2,D1-bimodule and S = BilM. Then
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(i) ConvS={(A, B)∈Ball(D+
1 )×Ball(D+

2 ) : TAT∗6I−B, ∀ T∈Ball(M)}, and
(i) the extreme points of ConvS are the elements of S.

Proof. (i) We denote by EC(·) the spectral measure of the selfadjoint operator
C. Let E denote the set on the right hand side of the identity, (A, B) ∈ E and
T ∈ Ball(M). By Lemma 7.2 of [4], T∗EI−B[0, t]K ⊆ EA[0, t]H, for every t > 0.
This implies

EA[0, s)⊥T∗EI−B[0, t) = 0, whenever s > t.

Thus, EB[1− t, 1]TEA[s, 1] = 0 whenever s > t or, equivalently, EB[t, 1] T EA[s, 1]
= 0 whenever s + t > 1. By Lemma 3.2 of [13], (A, B) ∈ ConvS.

Assume that (P, Q) ∈ S and T ∈ Ball(M). Then PT∗Q = 0 and so Q(TPT∗)
Q = 0. It follows that QK ⊆ ker(TPT∗) and so ran(TPT∗) ⊆ Q⊥K. Since
TPT∗ is a positive contraction, we conclude that TPT∗ 6 Q⊥. Now, let (A, B) =
N
∑

i=1
λi(Pi, Qi), where λi > 0,

N
∑

i=1
λi = 1 and (Pi, Qi) ∈ S. We have TPiT∗ 6 Q⊥i for

each i and hence

T
( N

∑
i=1

λiPi

)
T∗ =

N

∑
i=1

λiTPiT∗ 6
N

∑
i=1

λiQ⊥i = I −
N

∑
i=1

λiQi.

In other words, E contains all convex combinations of elements of S. Since E is
weakly closed, ConvS ⊆ E . The claim is proved.

(ii) Let L = {P⊕Q⊥ : (P, Q) ∈ S}. It is easy to see that L is a commutative
subspace lattice and that ConvL = {A ⊕ (I − B) : (A, B) ∈ ConvS}. Hence,
(C, D) is an extreme point of ConvS if and only if C ⊕ (I − D) is an extreme
point of L. The fact now follows from the corresponding result for commutative
subspace lattices [1].

Let κ ⊆ X×Y. Haydon and Shulman set [7]

γ(κ) = inf{m(α) + n(β) : κ ⊆ (α×Y) ∪ (X× β)},

where the sets α and β in the infimum are taken to be measurable. They showed
that the map κ −→ γ(κ) is a capacity on the power set of X×Y in the sense that

(a) γ(κ) 6 γ(κ′) whenever κ ⊆ κ′;
(b) lim

n→∞
γ(κn) = γ(κ) whenever {κn} is an increasing sequence of subsets

of X×Y and κ =
⋃

κn, and
(c) γ(κ) = inf{γ(U) : U open and κ ⊆ U}.

Relation (c) holds with respect to any pair of topologies on X and Y which turn
m and n into regular Borel measures. Moreover, κ is marginally null if and only if
γ(κ) = 0.

We next recall the general notion of the limit space structure in the set of
all subsets of a topological space (Z, τ). For a net {Eλ} of subsets of Z, denote
by τ-lim inf Eλ the set of all points z ∈ Z which are τ-limits of nets {zλ} with
zλ ∈ Eλ and by τ-lim sup Eλ the set of all points z ∈ Z which are τ-cluster points
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of such nets. If τ-lim inf Eλ = τ-lim sup Eλ = E, we write E = τ-lim
λ

Eλ. We

will be interested in the case where Z = B(H,K), equipped with the strong* and
the weak* topology or Z = Proj(B(H))× Proj(B(K)), equipped with the strong
operator topology.

We finish this section with a general observation which will be used in the
sequel.

LEMMA 1.2. Let (Z, d) be a metric space and {Eλ}λ∈Λ be a net of closed subsets
of Z. Then lim inf Eλ is closed.

Proof. It is clear that

(1.2) lim inf Eλ = {x ∈ Z : lim d(x, Eλ) = 0}.

Let x ∈ lim inf Eλ, ε > 0 and x′ ∈ lim inf Eλ be such that d(x, x′) < ε. By (1.2),
there exists λ0 ∈ Λ such that d(x′, Eλ) 6 ε whenever λ > λ0. Hence, if λ > λ0
then

d(x, Eλ) = inf
y∈Eλ

d(x, y) 6 inf
y∈Eλ

d(x, x′) + d(x′, y)

= d(x, x′) + inf
y∈Eλ

d(x′, y) = d(x, x′) + d(x′, Eλ) 6 2ε.

Thus, x ∈ lim inf Eλ.

2. CONVEX HULLS OF BILATTICES

We fix standard (finite) measure spaces (X, m) and (Y, n); letH = L2(X, m),
K = L2(Y, n) and D1 ≡ L∞(X, m), D2 ≡ L∞(Y, n) be the corresponding multipli-
cation masas. In this section, we define quantities which generalise the capacity
of a subset κ ⊆ X × Y studied in [7], and show that they are capacities. We then
show that convergence of a net of subsets of X×Y with respect to these capacities
is equivalent to the convergence of the net of the weakly closed convex hulls of
the bilattices corresponding to these sets via (1.1).

Let Z be the family of all ordered triples of the form

((αi)N
i=1, (βi)N

i=1, (µi)N
i=1),

where (αi)N
i=1 (respectively (βi)N

i=1) is an (ordered) partition of X (respectively Y)
into (finitely many) Borel sets, and (µi)N

i=1 is a (finite) collection of non-negative
real numbers.

Fix κ ⊆ X×Y and let

Vκ = {A⊕ B : (A, B) ∈ ConvSκ};
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Vκ is thus a (convex and weakly compact) subset of Ball(D1 ⊕ D2)+. For ∆ =
((αi)N

i=1, (βi)N
i=1, (µi)N

i=1) ∈ Z , let

γ∆(κ) = inf
{ N

∑
i=1

µi(m(α ∩ αi) + n(β ∩ βi)) : κ ⊆ (α×Y) ∪ (X× β)
}

,

where α and β in the above infimum are taken to be measurable. It is clear that if
µi = 1 for all i = 1, . . . , N, then γ∆(κ) = γ(κ).

For a subsetM⊆ B(H⊕K)+ and ξ ∈ H⊕K, we let

Γξ(M) = sup
C∈M

ωξ(C).

LEMMA 2.1. Let ∆ = ((αi)N
i=1, (βi)N

i=1, (µi)N
i=1) ∈ Z and h =

N
∑

i=1
λi(χαi ⊕χβi ),

where λi ∈ C, |λi|2 = µi, i = 1, . . . , N. Then

(i) Γh(Vκ) + γ∆(κ) =
N
∑

i=1
µi(m(αi) + n(βi)), and

(i) the infimum in the definition of γ∆(κ) is attained.

Proof. (i) Let S = Sκ and V = Vκ . Notice that κ ⊆ (α× Y) ∪ (X × β) if and
only if (αc × βc) ∩ κ = ∅, if and only if (P(αc), P(βc)) ∈ S. We thus have

γ∆(κ) = inf
{ N

∑
i=1

µi(m(αc ∩ αi) + n(βc ∩ βi)) : (P(α), P(β)) ∈ S
}

= inf
{N

∑
i=1

µi(m(αi)−m(α ∩ αi)+n(βi)−n(β ∩ βi)) : (P(α), P(β))∈S
}

(2.1)

=
N

∑
i=1

µi(m(αi)+n(βi))−sup
{N

∑
i=1

µi(m(α∩αi)+n(β∩βi)) : (P(α), P(β))∈S
}

.

For each h ∈ H⊕K, the function p : V → R+ given by p(C) = ωh(C) is weakly
continuous and satisfies p(λC1 + µC2) = λp(C1) + µp(C2) whenever λ, µ > 0
and λ + µ = 1. Since V is weakly compact and convex, p attains its supremum at
an extreme point of V . By Lemma 1.1 (ii), the extreme points of V coincide with
the elements of the form P⊕Q, where (P, Q) ∈ S. Hence

Γh(V) = sup{((P⊕Q)h, h) : (P, Q) ∈ S}

= sup
{ N

∑
i,j=1

λiλj((P(α)χαi , χαj) + (P(β)χβi , χβ j)) : (P(α), P(β)) ∈ S
}

= sup
{ N

∑
i=1

µi((P(α)χαi , χαi ) + (P(β)χβi , χβi )) : (P(α), P(β)) ∈ S
}

= sup
{ N

∑
i=1

µi(m(α ∩ αi) + n(β ∩ βi)) : (P(α), P(β)) ∈ S
}

.
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The claim follows from (2.1) and the last identity.
(ii) follows from the previous paragraph.

PROPOSITION 2.2. Let ∆ ∈ Z . Then
(i) the function γ∆ is a capacity;

(ii) γ∆(κ) = γ∆(clω(κ)), for each κ ⊆ X×Y.

Proof. Fix ∆ = ((αi)N
i=1, (βi)N

i=1, (µi)N
i=1) ∈ Z .

(i) Let m′ (respectively n′) be the measure on X (respectively Y) given by

m′(α) =
N
∑

i=1
µim(α ∩ αi) (respectively n′(β) =

N
∑

i=1
µin(β ∩ βi)). Then γ∆(κ) is the

capacity of κ arising from the measures m′ and n′ as defined in [7], and the claim
follows from the Corollary of Lemma 1 and Lemma 2 of [7].

(ii) If κ ⊆ (α×Y) ∪ (X× β) then

(P(αc), P(βc)) ∈ Sκ = BilMmax(κ) = BilMmax(clω(κ)) = Sclω(κ),

and so clω(κ) ⊆ (α × Y) ∪ (X × β) up to a marginally null set. It follows that
γ∆(clω(κ)) 6 γ∆(κ) and by (i) we have that γ∆(clω(κ)) = γ∆(κ).

Notation. Let {κλ}λ∈Λ be a net of subsets, and κ be a subset, of X × Y. If
γ∆(κ) 6 lim inf

λ∈Λ
γ∆(κλ) (respectively lim sup

λ∈Λ

γ∆(κλ) 6 γ∆(κ)) for each ∆ ∈ Z

then we will write symbolically κ 6 lim inf
c

κλ (respectively lim sup
c

κλ 6 κ). If

κ 6 lim inf
c

κλ and lim sup
c

κλ 6 κ, we will write κ = lim
c

κλ, and we will say that

{κλ} converges to κ in capacity.
The next theorem, which is the main result of this section, characterises the

convergence of the convex hulls of a net of bilattices in terms of the convergence
of the corresponding ω-closed sets.

THEOREM 2.3. Let Λ be a directed set and κ, κλ, λ ∈ Λ be ω-closed sets. Let
S = Sκ , Sλ = Sκλ

. The following hold:
(i) ConvS ⊆ w-lim inf ConvSλ if and only if lim sup

c
κλ 6 κ, and

(ii) w-lim sup ConvSλ ⊆ ConvS if and only if κ 6 lim inf
c

κλ.

Proof. Let V = {A ⊕ B : (A, B) ∈ ConvS} and Vλ = {A ⊕ B : (A, B) ∈

ConvSλ}, λ ∈ Λ. LetF be the set of vectors inH⊕K of the form
N
∑

i=1
µi(χαi ⊕χβi ),

where µi > 0 and (αi)N
i=1 and (βi)N

i=1 are partitions of X and Y, respectively.
(i) Fix ∆ = ((αi)N

i=1, (βi)N
i=1, (µi)N

i=1) ∈ Z and assume that ConvS ⊆
w-lim inf ConvSλ. Let h ∈ F and C ∈ V . Then C = w-lim Cλ, for some Cλ ∈ Vλ,
and hence (Ch, h) = lim(Cλh, h). It follows that (Ch, h) 6 lim inf Γh(Vλ) and
since this holds for each C ∈ V , we conclude that Γh(V) 6 lim inf Γh(Vλ). By
Lemma 2.1, lim sup γ∆(κλ) 6 γ∆(κ), for each ∆ ∈ Z .
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Conversely, assume that lim sup γ∆(κλ) 6 γ∆(κ), for each ∆ ∈ Z . Fix
(P(α0), P(β0)) ∈ S and let h = χα0 ⊕ χβ0 and ∆ = ((α0, αc

0), (β0, βc
0), (1, 0)). Then

γ∆(κ) = 0 and so lim γ∆(κλ) = 0. Hence there exist Borel subsets αλ ⊆ X and
βλ ⊆ Y such that (P(αλ), P(βλ)) ∈ Sλ, m(α0 ∩ αc

λ) → 0 and n(β0 ∩ βc
λ) → 0.

It follows that m(α0 ∩ αλ) → m(α0) and n(β0 ∩ βλ) → n(β0). This implies that
P(α0 ∩ αλ) → P(α0) and P(β0 ∩ βλ) → P(β0) in the strong operator topology.
On the other hand, (P(α0 ∩ αλ), P(β0 ∩ βλ)) is dominated by (P(αλ), P(βλ)) and
hence belongs to Sλ. We showed that S ⊆s-lim inf Sλ and hence S ⊆w-lim inf Sλ.
Thus, the non-closed convex hull of S is contained in w-lim inf ConvSλ. Since the
weak operator topology on the unit ball of B(H⊕K) is metrisable, Lemma 1.2
shows that ConvS ⊆w-lim inf ConvSλ.

(ii) Assume that w-lim sup ConvSλ ⊆ ConvS and that γ∆(κ) > δ > lim inf

γ∆(κλ), for some ∆ = ((αi)N
i=1, (βi)N

i=1, (µi)N
i=1) ∈ Z . Let h =

N
∑

i=1

√
µi (χαi ⊕

χβi ). By Lemma 2.1 (i), lim sup Γh(Vλ) > δ0 > Γh(V), where δ0 =
N
∑

i=1
µi(m(αi) +

n(βi))− δ. Let Λ0 be a subnet of Λ and {Cν}ν∈Λ0 ⊆ Vν, be such that (Cνh, h) > δ0,
ν ∈ Λ0. Assume, without loss of generality, that Cν → C in the weak operator
topology. It follows that (Ch, h) > δ. On the other hand, C ∈ V and hence
Γh(V) > δ0, a contradiction.

Assume that γ∆(κ) 6 lim inf γ∆(κλ), for each ∆ ∈ Z . By Lemma 2.1,
lim sup Γh(Vλ) 6 Γh(V) for each h ∈ F . Suppose that C = w-lim Cν for some
Cν ∈ Vν, where ν ∈ Λ0 for some subnet Λ0 of Λ.
Claim. ωh(C) 6 Γh(V), for each h ∈ H⊕K.

Proof. Since ω|h|(D) = ωh(D) for each D ∈ D, we may assume that h > 0.
First assume that h ∈ F . Suppose that Γh(V) < δ < ωh(C). There exists ν0 ∈ Λ0
such that ωh(Cν) > δ whenever ν > ν0. It follows that Γh(Vν) > δ if ν > ν0, and
hence lim sup Γh(Vν) > δ. This implies that Γh(V) > δ, a contradiction.

Suppose next that h = ξ ⊕ η ∈ L∞(X, m)⊕ L∞(Y, n) and that ‖ξ‖∞ 6 1 and
‖η‖∞ 6 1. If 0 = t0 6 t1 6 · · · 6 tN = 1, let αj = {x ∈ X : tj−1 6 ξ(x) < tj} and

β j = {y ∈ Y : tj−1 6 η(y) < tj}. Then the vectors of the form
N
∑

i=1
ti(χαi ⊕ χβi )

approximate ξ⊕ η as maxj=1,...,N |tj− tj−1| tends to zero. Hence there exist hj ∈ F
such that hj → h. Since every non-negative L2-function can be approximated by
non-negative L∞-functions in the L2-norm, we may relax the assumption that
h ∈ L∞(X, m)⊕ L∞(Y, n).

We have that ωhj
→ ωh in norm. Assume that ωh(C) > δ > Γh(V). Then

there exists j0 such that ωhj
(C) > δ if j > j0. It follows that Γhj

(V) > δ if j > j0,
and hence there exists Dj ∈ V such that ωhj

(Dj) > δ if j > j0. Let D be a weak
cluster point of {Dj}. From the inequality

|ωh(D)−ωhj
(Dj)| 6 ‖ωh −ωhj

‖+ |ωh(D)−ωh(Dj)|
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it follows that ωh(D) > δ; therefore Γh(V) > δ, a contradiction.

We finish the proof of the theorem. Assume that C = A⊕ B and fix a unit
vector η ∈ H and T ∈ Ball(OpS). Let ξ = T∗η and h = ξ ⊕ η ∈ H ⊕ K. By
the Claim and the weak compactness of V , there exists A′ ⊕ B′ ∈ V such that
(AT∗η, T∗η) + (Bη, η) 6 (A′T∗η, T∗η) + (B′η, η). By Lemma 1.1,

(A′T∗η, T∗η) + (B′η, η) = (TA′T∗η, η) + (Bη, η) 6 ‖η‖2 = 1

and hence (AT∗η, T∗η) + (Bη, η) 6 1. This implies that (TAT∗η, η) 6 ((I −
B)η, η) and so TAT∗ 6 I − B. By Lemma 1.1 again, A⊕ B ∈ V .

COROLLARY 2.4. Let κ, κλ, λ ∈ Λ, be ω-closed sets. The following are equivalent:
(i) ConvSκ = w-lim ConvSκλ

;
(ii) κ = lim

c
κλ.

REMARK 2.5. Easy examples show that the capacity γ [7] is not sufficient to
describe the convergence of the convex hulls in Theorem 2.3. For instance, let X =
Y = [0, 1] with the Lebesgue measure, D1 = D2 ≡ L∞(0, 1), κn = [0, 1

2 ]× [0, 1],
n ∈ N and κ = [ 1

2 , 1] × [0, 1]. Then γ(κ) = γ(κn) = 1
2 for each n ∈ N. Letting

P = P([0, 1
2 ]) we see that Sκn = {(L, M) ∈ Proj(D1)× Proj(D2) : L 6 P⊥}, n ∈ N,

while Sκ = {(L, M) ∈ Proj(D1)× Proj(D2) : L 6 P}. Thus (P, I) ∈ Sκ does not
belong to w-lim sup ConvSκn .

3. THE CONTINUITY OF THE SUPPORT

In this section, we establish the continuity of the mapping sending a (re-
flexive) masa-bimodule to its support. We equip the collection of reflexive masa-
bimodules with a convergence coming from the weak* and strong* topologies,
and the collection of all ω-closed subsets of X × Y with the convergence arising
from the capacities γ∆ defined in Section 2.

THEOREM 3.1. Let κ be an ω-closed subset, and {κλ}λ∈Λ be a net of ω-closed
subsets, of X×Y. The following are equivalent:

(i) w-lim sup Ball(Mmax(κλ)) ⊆ Ball(Mmax(κ));
(ii) lim sup

c
κn 6 κ;

(iii) Sκ ⊆ s-lim inf Sκλ
.

Proof. (i)⇒(iii) SetM =Mmax(κ),Mλ =Mmax(κλ), S = Sκ and Sλ = Sκλ
.

For a given D2,D1-bimodule U , let AU be the algebra consisting of the block
matrices of the form

( B T
0 A
)

where A ∈ D1, B ∈ D2 and T ∈ U . Then

LatAU = {Q⊕ P ∈ Proj(D2 ⊕D1) : (P, Q⊥) ∈ BilU}.

By [12], LatAM ⊆ s-lim LatAMλ
and hence S ⊆s-lim Sλ.
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(iii)⇒(i) Let {Tµ}µ∈Λ0 be a subnet of the net {Tλ}λ∈Λ, where Tλ ∈ Mλ,
λ ∈ Λ, and assume that Tµ → T weakly. Fix (P, Q) ∈ S. Then there exists
(Pλ, Qλ) ∈ Sλ such that Pλ → P and Qλ → Q strongly. It follows that QµTµPµ →
QTP weakly. Since QµTµPµ = 0 for each µ ∈ Λ0, we conclude that QTP = 0; in
other words, T ∈ M.

(ii)⇒(iii) Was shown in the proof of Theorem 2.3 (i).
(iii)⇒(ii) As in the proof of Theorem 2.3 (i), (iii) implies ConvS ⊆ w-lim inf

ConvSλ. The claim now follows from Theorem 2.3 (i).

REMARK 3.2. Conditions (i)–(iii) of Theorem 3.1 are not equivalent to
lim sup Ball (Mmin (κλ)) ⊆ Mmin(κ). To see this, let κ ⊆ X× Y be any ω-closed

set which does not satisfy operator synthesis [1]. Assume that κc =
∞⋃

j=1
αj× β j. Let

κn =
( n⋃

j=1
αj × β j

)c
. Then κn is a finite union of Borel rectangles, and it is easily

seen that the sets of this form satisfy operator synthesis. We have that κn+1 ⊆ κn

for each n ∈ N and that
∞⋂

n=1
κn = κ. It follows that

∞⋂
n=1
Mmax(κn) = Mmax(κ).

Hence w-lim supMmax(κn) ⊆Mmax(κ). However

∞⋂
n=1

Mmin(κn) =
∞⋂

n=1

Mmax(κn) =Mmax(κ) 6=Mmin(κ),

and hence w-lim supMmin(κn) 6⊆ Mmin(κ).

THEOREM 3.3. Let κ be an ω-closed subset, and {κλ}λ∈Λ be a net of ω-closed
subsets, of X×Y. Consider the following statements:

(i) Ball(Mmax(κ)) ⊆ s∗-lim inf Ball(Mmax(κλ));
(ii) κ 6 lim inf

c
κλ;

(iii) s-lim sup Sκλ
⊆ Sκ .

Then (i)⇒(ii)⇒(iii).

Proof. (i)⇒(ii) SetM =Mmax(κ),Mλ =Mmax(κλ), S = Sκ and Sλ = Sκλ
.

By Theorem 2.3, it suffices to show that w-lim sup ConvSλ ⊆ ConvS. Suppose
that (Aµ, Bµ) ∈ ConvSµ, for each µ ∈ Λ0, where Λ0 is a subnet of Λ, and that
(Aµ, Bµ) → (A, B) weakly. Take T ∈ Ball(M) and let Tλ ∈ Ball(Mλ) be such
that Tλ → T in the strong* topology. Then

I − Bµ − Tµ AµT∗µ → I − B− TAT∗

weakly. By Lemma 1.1 (i), I − Bµ − Tµ AµT∗µ > 0 for each µ and hence TAT∗ 6
I − B. By Lemma 1.1 (i) again, (A, B) ∈ ConvS.

(ii)⇒(iii) Suppose that (P(αµ), P(βµ)) ∈ Sµ for µ ∈ Λ0, where Λ0 is a subnet
of Λ, and that (P(αµ), P(βµ)) → (P(α), P(β)) strongly. Then m(α ∩ αc

µ) → 0 and
n(β ∩ βc

µ) → 0. Let ∆ = ((α, αc), (β, βc), (1, 0)). Since κµ ⊆ (αc
µ × Y) ∪ (X × βc

µ)
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up to a marginally null set, we have that

γ∆(κµ) 6 m(α ∩ αc
µ) + n(β ∩ βc

µ)→ 0

and hence γ∆(κ) = 0. By Lemma 2.1 (ii), there exist Borel sets δ1 ⊆ X, δ2 ⊆ Y,
such that κ ⊆ (δ1 × Y) ∪ (X × δ2) and m(α ∩ δ1) = 0 and n(β ∩ δ2) = 0. Thus,
(α× β) ∩ κ ⊆ ((α ∩ δ1)×Y) ∪ (X× (β ∩ δ2)) which implies that (α× β) ∩ κ ' ∅
and hence (P(α), P(β)) ∈ Sκ .

PROPOSITION 3.4. The converse implications in Theorem 3.3 do not hold.

Proof. We first show that implication (ii)⇒(i) in Theorem 3.3 does not hold.
By [4], there exists an ω-closed set κ ⊆ X × Y such that κ is the ω-closure of an

ω-open set κ0 =
∞⋃

j=1
αj × β j, and Mmin(κ) 6= Mmax(κ). Let κn =

n⋃
j=1

αj × β j,

n ∈ N, and U =
∞⋃

n=1
Mmax(κn)

w∗

. Since the support κ̃ of U contains κn for

each n, we have that κ̃ ⊇ κ, up to a marginally null set, and so Mmax(κ) ⊆
Mmax(κ̃). On the other hand, clearly U ⊆ Mmax(κ) and hence κ = κ̃. Since
the sets κn satisfy operator synthesis, we conclude that U = Mmin(κ). Clearly,
s∗-lim inf Ball(Mmax(κn)) ⊆ U . Since U 6=Mmax(κ), we conclude that

Ball(Mmax(κ)) 6⊆ s∗-lim inf Ball(Mmax(κn)).

It is obvious that ConvSκ ⊆
⋂

ConvSκn and easy to see that Sκ =
⋂

Sκn . As-
sume that (A, B) ∈ ConvSκn for each n. By Lemma 3.2 of [13], (EA[s, 1], EB[t, 1]) ∈
Sκn whenever s + t > 1 and hence (EA[s, 1], EB[t, 1]) ∈ Sκ whenever s + t > 1.
By Lemma 3.1 of [13] again, (A, B) ∈ ConvSκ . We thus have that ConvSκ =⋂

ConvSκn . In particular, w-lim sup ConvSn = ConvS. By Theorem 2.3 (ii),
κ 6 lim inf κn. We showed that (ii) does not imply (i).

We next show that implication (iii)⇒(ii) in Theorem 3.3 does not hold. Let
H = L2(0, 1) and D ≡ L∞(0, 1). Let {Ln} ⊆ D be a sequence of projections
which converges weakly to an element A ∈ D such that ‖A‖ = ‖I − A‖ = 1
and ker A = ker(I − A) = {0}. Let S = {(P, 0), (0, Q) : P, Q ∈ Proj(D)} and
Sn = {(P, Q) ∈ Proj(D) × Proj(D) : P 6 Ln 6 Q⊥} ∪ S. It is easy to see that
S =s-lim Sn.

We have that ConvS consists of the weak limits of the pairs of the form( k
∑

i=1
λiPi,

m
∑

j=1
µjQj

)
, where Pi, Qj ∈ Proj(D) and

k
∑

i=1
λi +

m
∑

j=1
µj = 1, λi, µj > 0. It

follows that if (A, B) ∈ ConvS then ‖A‖+ ‖B‖ 6 1. On the other hand, (A, I −
A) ∈ w-lim sup ConvSn and hence (A, I − A) 6∈ ConvS. By Theorem 2.3 (ii),
condition (ii) of Theorem 3.3 does not hold.

Theorems 3.1 and 3.3 have the following immediate corollary. Implication
(i)⇒(ii) establishes the continuity of the mapping sending a masa-bimodule to its
support.
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COROLLARY 3.5. Let κ be an ω-closed subset, and {κλ}λ∈Λ be a net of ω-closed
subsets, of X×Y. Consider the following statements:

(i) w-lim sup Ball(Mmax(κλ) = Ball(Mmax(κ)) = s∗-lim inf Ball (Mmax (κλ);
(ii) κ = lim

c
κλ;

(iii) S = s-lim Sλ.
Then (i)⇒(ii)⇒(iii).

In the case where the limit masa-bimodule is trivial, the continuity result
takes a simpler form which we state in the next proposition.

PROPOSITION 3.6. Let {κλ}λ∈Λ be a net of ω-closed subsets of X×Y. The fol-
lowing statements are equivalent:

(i) w-lim Ball(Mmax(κλ)) = {0};
(ii) lim γ(κλ) = 0.

Proof. (i)⇒(ii) follows from Corollary 3.5 by taking ∆ = ((X), (Y), (1)).
(ii)⇒(i) Assume that γ(κλ) → 0 and let {Tλ}λ∈Λ be a weakly convergent

net with Tλ ∈ Ball(Mmax(κλ)). There exist Borel sets αλ ⊆ X and βλ ⊆ Y with
(P(αc

λ), P(βc
λ)) ∈ Sκλ

such that lim m(αλ) = lim n(βλ) = 0. We have

Tλ = P(βλ)TλP(αλ) + P(βc
λ)TλP(αλ) + P(βλ)TλP(αc

λ).

It follows that Tλ → 0 weakly and hence lim supMmax(κλ) = {0}.

4. LOWER SEMI-CONTINUITY OFMmin

Our next aim is to establish a partial converse of the implication (ii)⇒(i)
of Theorem 3.3. Namely, we show that if Λ is a directed set, κ and κλ, λ ∈ Λ,
are ω-closed sets, κ 6 c-lim inf κλ and, moreover κ satisfies operator synthesis,
then every T ∈ Mmax(κ) can be approximated by a net {Tλ}λ∈Λ, where Tλ ∈
Mmax(κλ), on every countable set of vectors. This is a consequence of a more
general result on the lower semi-continuity of the map sending an ω-closed set κ
to the masa-bimoduleMmin(κ).

We will need the notion of a semistrong limit of a net of projections intro-
duced by Halmos in [6]. If {Pλ}λ∈Λ is a net of projections on a Hilbert space
H then we say that Pλ converge semistronlgy to a projection P on H (and write
P =ss-lim Pλ) if for every x = Px there exist xλ = Pλxλ such that xλ → x, and
whenever y is a cluster point of a net {yλ}λ∈Λ with yλ = Pλyλ, we have y = Py.
In other words, P =ss-lim Pλ if the space PH is the limit of the subspaces PλH in
the power set ofH, whenH is equipped with its norm topology.

We will use the following fact proved in [6].

LEMMA 4.1. If T = w-lim Pλ then [ker(I − T)] = ss-lim Pλ.
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LEMMA 4.2. Let Λ be a directed set and U ,Uλ ⊆ B(H,K) be reflexive subspaces.
Suppose that if QλUλPλ = {0} for each λ ∈ Λ, and (P, Q⊥) is a semistrong cluster
point of {(Pλ, Q⊥λ )}λ∈Λ then QUP = {0} (where P, Q, Pλ, Qλ are projections). Then
for each T ∈ U and each x ∈ H there exists a net {Tλ}λ∈Λ such that Tλ ∈ Uλ and
Tλx → Tx.

Proof. Let T ∈ U , x ∈ H and P be the projection onto the one dimensional
space generated by x. Suppose that dist(Tx,Uλx) 9 0. Then there exists ε > 0
and a cofinal subset Λ0 ⊆ Λ such that dist(Tx,Uλx) > ε for each λ ∈ Λ0.

Let Qλ be the projection onto (Uλx)⊥. We have that QλUλP = {0}. Let Λ1
be a subnet of Λ0 such that A = w- lim

µ∈Λ1
Q⊥µ . By Lemma 4.1, if Q = [ker(I − A)]⊥

then Q⊥ = ss- lim
µ∈Λ1

Q⊥µ .

By the assumption, QTP = 0. Thus, QTx = 0, that is,

Tx ∈ ker(I − A) = ss- lim
µ∈Λ1

Q⊥µ .

Hence, lim
µ∈Λ1

dist(Tx, Q⊥µ K) = 0, a contradiction.

THEOREM 4.3. Let κ be an ω-closed subset, and {κλ}λ∈Λ be a net of ω-closed
subsets, of X×Y. If κ 6 lim inf

c
κλ then for each T ∈ Mmin(κ) and each countable

collection of vectors E ⊆ H there exists a net {Tλ}λ∈Λ such that Tλ ∈ Mmin(κλ) and
Tλx → Tx, for each x ∈ E .

Proof. Let S = Sκ , Sλ = Sκλ
,

Ŝ = {(P, Q) ∈ Proj(B(l2 ⊗H))× Proj(B(l2 ⊗K)) : Q(1⊗Mmin(κ))P = {0}}

and

Ŝλ = {(P, Q) ∈ Proj(B(l2 ⊗H))× Proj(B(l2 ⊗K)) : Q(1⊗Mmin(κλ))P = {0}},

where 1 ⊗ U = {I ⊗ T : T ∈ U} . Assume that P and Q are projections on
l2 ⊗H and l2 ⊗ K, respectively, such that (P, Q⊥) is a semistrong cluster point
of a net {(Pλ, Q⊥λ )}λ∈Λ, where (Pλ, Qλ) ∈ Ŝλ, λ ∈ Λ. Then there exist subnets
{Pµ}µ∈Λ0 and {Qµ}µ∈Λ0 such that Pµ →µ∈Λ0 P and Q⊥µ →µ∈Λ0 Q⊥ semistrongly.
We may assume that Pµ →µ∈Λ0 A and Q⊥λ →µ∈Λ0 I − B weakly, for some oper-
ators A ∈ B(l2 ⊗H) and B ∈ B(l2 ⊗K). By Lemma 4.1, Pµ →µ∈Λ0 [ker(I − A)]
and Q⊥λ →µ∈Λ0 [ker B] semistrongly and so P = [ker(I − A)] and Q = [imB].

For each state ϕ of B(l2), let

Lϕ : B(l2 ⊗H, l2 ⊗K)→ B(H,K)

be the slice map given by Lϕ(A ⊗ T) = ϕ(A)T, A ∈ B(l2), T ∈ B(H,K). We
have that

Lϕ(Pµ)→µ∈Λ0 Lϕ(A) and Lϕ(Qλ)→µ∈Λ0 Lϕ(B)
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in the weak operator topology. By Lemma 4.1 and Corollary 4.4 of [13], (Lϕ(Pµ),
Lϕ (Qµ)) ∈ ConvSµ for each µ ∈ Λ0. Theorem 2.3 (ii) now implies that (Lϕ(A),
Lϕ (B)) ∈ ConvS. By Lemma 5.1 of [13], (P, Q) ∈ Ŝ. We showed that the condi-
tion of Lemma 4.2 is satisfied for 1⊗Mmin(κ) and 1⊗Mmin(κλ), λ ∈ Λ.

Let {xj}∞
j=1 ⊆ H be a countable set of non-zero vectors and

ξ =
∞

∑
j=1

1
n‖xj‖

ej ⊗ xj,

where {ej} is the standard basis of l2. Lemma 4.2 implies that there exists a net
{Tλ}λ∈Λ such that Tλ ∈ Mmin(κλ) and (I ⊗ T)ξ = lim

λ∈Λ
(I ⊗ Tλ)ξ. This implies

that Tλxj →λ∈Λ Txj, for each j. The proof is complete.

We have the following immediate corollary.

COROLLARY 4.4. Let κ be an ω-closed subset, and {κλ}λ∈Λ be a net of ω-closed
subsets, of X×Y, and assume that κ satisfies operator synthesis. If κ 6 lim inf

c
κλ then

for each T ∈ Mmax(κ) and each countable collection of vectors E ⊆ H there exists a net
{Tλ}λ∈Λ such that Tλ ∈ Mmax(κλ) and Tλx → Tx, for each x ∈ E .

REMARK 4.5. Haagerup and Winslow [5] have studied a different kind of
limes inferior for von Neumann algebras: if τ is a topology on B(H,K) and
{Uλ}λ∈Λ is a net of subspaces of B(H,K), let lim infτ Uλ be the set of all operators
T ∈ B(H,K) with the property that for each τ-neighborhood Ω of T there exists
λ0 ∈ Λ such that Ω∩ Uλ 6= ∅ if λ > λ0. Theorem 4.3 implies that if κ 6 lim inf

c
κλ

then Mmin(κ) ⊆ lim inf SOTMmin(κλ), where SOT denotes the strong operator
topology.
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