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ABSTRACT. We argue that weak containment is an appropriate notion of am-
enability for inverse semigroups. Given an inverse semigroup S and a homo-
morphism ϕ of S onto a group G, we show, under an assumption on ker(ϕ),
that S has weak containment if and only if G is amenable and ker(ϕ) has weak
containment. Using Fell bundle amenability, we find a related result for in-
verse semigroups with zero. We show that all graph inverse semigroups have
weak containment and that Nica’s inverse semigroup TG,P of a quasi-lattice
ordered group (G, P) has weak containment if and only if (G, P) is amenable.
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INTRODUCTION

Amenability for inverse semigroups has been studied by a number of au-
thors, and the results suggest that not all of the equivalent definitions of group
amenability translate well to inverse semigroups. In [3] it is shown that an inverse
semigroup S admits a left invariant mean if and only if the maximum group ho-
momorphic image of S is amenable. This notion of amenability is too weak for in-
verse semigroups. Indeed, any inverse semigroup with zero has trivial maximum
group homomorphic image and hence admits an invariant mean (the unique in-
variant mean is given by evaluating functions in `∞(S) at zero). Another equiv-
alent condition from group theory says that a group G is amenable if and only
if L1(G) is amenable as a Banach algebra. It is also shown in [3] for a discrete
inverse semigroup that `1(S) is amenable as a Banach algebra if and only if the
set of idempotents of S is finite and every subgroup of S is amenable. This notion
is too strong, for example, since many infinite commutative inverse semigroups
would fail to be amenable.
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As in the work of Duncan and Paterson [4], we study yet another notion
of amenability motivated by group theory: the weak containment property. Re-
call that the full C∗-algebra C∗(S) is universal for representations of S by par-
tial isometries. That is, any representation π : S → PI(H), where PI(H) is
the set of partial isometries on a Hilbert space H, induces a ∗-homomorphism
π : C∗(S) → B(H). In particular, the left regular representation induces a ∗-
homomorphism Λ : C∗(S) → B(`2(S)) whose image is denoted C∗r (S) and is
called the reduced C∗-algebra of S. An inverse semigroup S has weak containment if
and only if Λ is an isomorphism.

In many ways, the weak containment property is an appropriate notion of
amenability for inverse semigroups. For example, if F2 denotes the free group on
two generators, then F0

2 admits an invariant mean (we denote by S0 the inverse
semigroup S with an adjoined zero and the obvious multiplication). However,
F0

2 fails to have weak containment. On the other hand, any commutative inverse
semigroup has weak containment.

We prove some additional results that suggest weak containment is the right
notion of amenability for inverse semigroups. Let ϕ : S→ G be a homomorphism
onto a group with kernel H. We say H is C∗-isometric in S if ‖g‖C∗(S) = ‖g‖C∗H for
all g in CH. Assuming H is C∗-isometric in S, we show S has weak containment
if and only if G is amenable and H has weak containment (Corollary 2.5). This
resembles the theorem that says, for an exact sequence of discrete groups H ↪→
G� K, that G is amenable if and only if H and K are amenable.

Every inverse semigroup S has an associated maximum group homomor-
phic image G(S), where the homomorphism σ : S → G(S) is the quotient map
obtained by identifying s, t in S if es = et for some idempotent e. We say S is
E-unitary if ker σ consists solely of idempotents (in which case we say σ is idem-
potent pure). As a consequence of Corollary 2.5, an E-unitary inverse semigroup
S has weak containment if and only if G(S) is amenable. This generalizes what is
already known for E-unitary Clifford semigroups [14].

Many inverse semigroups suffer from a seemingly fatal flaw: they contain
a zero. In that case any group homomorphic image is the trivial group, and the
results described above are vacuous. This difficulty is overcome in Section 3 by
replacing homomorphisms with maps ϕ : S → G0 such that ϕ(ab) = ϕ(a)ϕ(b)
whenever ab 6= 0 and ϕ−1(0) = {0}. A map ϕ satisfying these properties is called
a grading of S by the group G. This approach is inspired by Lawson’s construction
of a grading σ : S → G0, called the universal grading of S, that generalizes the
maximum group homomorphism [10]. Building on the work of Bulman-Fleming,
Fountain, and Gould [2], Lawson shows that the so-called strongly E∗-unitary
inverse semigroups are exactly the inverse semigroups having idempotent pure
universal gradings. Thus the property of being strongly E∗-unitary is the right
generalization of the E-unitary property to inverse semigroups with zero.

Let ϕ be a grading of an inverse semigroup S by a group G with kernel
H. Unlike before, we can not say that G is amenable if S has weak containment.
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Instead, we relate the weak containment property of S to the amenability of a
C∗-algebraic bundle over G induced from ϕ. (Such amenability was defined and
studied by Exel [5], where the term Fell bundle is used instead of C∗-algebraic
bundle. We outline the results of Exel that will be needed in this paper in the next
section.) As a consequence, a strongly E∗-unitary inverse semigroup S has weak
containment if and only if the associated Fell bundle over the universal group is
amenable.

Using a result from [6] on Fell bundle amenability, we show that graph
inverse semigroups have weak containment. It is known that graph inverse
semigroups are strongly E∗-unitary with free universal gradings [10]. Thus, for
example, the polycyclic inverse semigroup on n generators (the graph inverse
semigroup associated with the bouquet of n circles) has weak containment, even
though its universal group is Fn.

We also consider the Toeplitz inverse semigroup TG,P defined by Nica [12].
We note in Section 5 that TG,P has weak containment if and only if the pair (G, P)
is amenable in the sense defined by Nica [11].

In the final section we study positivity of the restriction map from the com-
plex algebra CS of an inverse semigroup onto the complex algebra CH of an
inverse subsemigroup. This property is important because it implies that H is
C∗-isometric in S. We find some classes of inverse semigroups where the restric-
tion map is positive, but we do not know if positivity holds whenever H is the
kernel of a homomorphism onto a group (or when H is the kernel of a group
grading).

1. PREMIMINARIES

A semigroup S is an inverse semigroup if for each s in S there exists unique
s∗ in S such that s = ss∗s and s∗ = s∗ss∗. In this paper we deal only with discrete
inverse semigroups (and discrete groups). There is a natural partial order on S
defined by s 6 t if s = te for some idempotent e. The subsemigroup E(S) of
idempotents of S is commutative, and hence forms a (meet) semilattice for the
natural partial order where e ∧ f := e f for e, f in E(S). A helpful introduction to
the algebraic theory of inverse semigroups can be found in [9].

The left regular representation Λ : S → `2(S) of an inverse semigroup S is
defined by

Λ(a)δb =
{

δab if b ∈ Da,
0 otherwise,

for a, b in S, where Da = {b : a∗ab = b}= {b : a∗a> bb∗}. We also denote by Λ the
induced ∗-homomorphism on C∗(S). The algebra C∗r (S) :=Λ(C∗(S)) is called the
reduced C∗-algebra of S. The right regular representation R of S and the induced
map on C∗(S) are defined similarly in terms of right multiplication on `2(S). It is
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easy to show that the images of Λ and R commute. We will sometimes write ΛS,
RS to avoid confusion when there are multiple inverse semigroups in play.

We regard the ∗-algebra CS both as finitely supported functions f : S → C
and as finite formal sums over semigroup elements f = ∑ f (s) s. The product of
f , g in CS is defined as ( f · g)(a) = ∑

st=a
f (s)g(t) and the involution is defined as

f ∗ = ∑ f (s) s∗. It is a dense subalgebra of both the full and reduced C∗-algebras of
S. An element f ∈ CS is positive if f can be expressed as a finite sum of elements of
the form g∗g, where g ∈ CS. A map between the complex algebras of two inverse
semigroups is positive if it carries positive elements to positive elements. A state
on the algebra CS of an inverse semigroup S is a positive linear map ρ : CS→ C,
such that

(∗) sup{|ρ(a)|2 : a ∈ CS; ρ(a∗a) 6 1} = 1.

This last condition ensures that states on CS induce cyclic representations via the
GNS construction. See Section 1 of [4] for a discussion of states on CS, where the
authors use a condition different than (∗). For the general theory of representable
positive linear maps on ∗-algebras, and for the equivalence of the condition in [4]
to (∗), see Palmer ([13], Section 9.4).

If ρ is a state on CS, the GNS construction furnishes a ∗-representation πρ :
CS → B(Hρ) with cyclic unit vector xρ. The map πρ extends to a representation
π̃ρ on C∗(S). Then ρ̃(A) := 〈π̃ρ(A)xρ, xρ〉 defines a state on C∗(S) that extends ρ.
Conversely, if ρ is a state on C∗(S), then ρ restricts to a state on CS. This bijective
correspondence between states on C∗(S) and states on CS gives the norm formula

‖ f ‖C∗(S) = sup{ρ( f ∗ f )1/2 : ρ ∈ S(C∗(S))} = sup{ρ( f ∗ f )1/2 : ρ ∈ S(CS)}

where f lies in CS and S(X) denotes the set of states for the algebra X.
A Fell bundle over a discrete group G is a collection of closed subspaces B =

{Bg}g∈G of a C∗-algebra B, satisfying Bg
∗ = Bg−1 and BgBh ⊆ Bgh for all g and h

in G. If the subspaces Bg are linearly independent and their direct sum is dense in
B, then B is called a grading for B. If in addition there is a conditional expectation
ε : B → B1G , where 1G is the identity of G, then B is called a topological grading
for B. Exel [5] has defined the reduced C∗-algebra C∗r (B) of a Fell bundle B, and
has shown that all topologically graded C∗-algebras over B lie between C∗(B)
and the reduced C∗-algebra C∗r (B), both of which are graded over B. When the
two algebras are isomorphic the Fell bundle is said to be amenable. This is the case
if and only if the expectation on C∗(B) is faithful. For the definition of C∗(B), see
VIII.17.2 of [7]. We remark that the ∗-representations of C∗(B) are in one-to-one
correspondence with the ∗-representations of B, and so C∗(B) can be thought of
as the full C∗-algebra of B.
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2. WEAK CONTAINMENT AND HOMOMORPHISMS ONTO GROUPS

Let ϕ : S→ G be a homomorphism of an inverse semigroup S onto a group
G with kernel H. Under the assumption that H is C∗-isometric we show that S has
weak containment if and only if H has weak containment and G is amenable. This
is the analog of the fact that, in an exact sequence of discrete groups H ↪→ G� K,
G is amenable if and only if H and K are amenable. The main corollary to this
fact is that an E-unitary inverse semigroup has weak containment if and only if
the maximum group image G(S) is amenable.

We first show that the map ε : CS→ CH defined by

ε
(

∑
s∈S

αss
)

= ∑
h∈H

αhh

extends to a faithful expectation εr : C∗r (S) → CHr and an expectation ε f :
C∗(S)→ CH f , where CHr is the closure of CH in C∗r (S) and CH f is the closure in
C∗(S). The proof is inspired by the work on coactions of groups on C∗-algebras
appearing in papers such as [8] and [17]. The map δ below is in fact a coaction
of G on C∗r (S). The construction of the unitary W is adapted from [8], while the
proof that εr is faithful mimics the proof of Lemma 1.4 in [17].

PROPOSITION 2.1. There exists a faithful conditional expectation

εr : C∗r (S)→ CHr

such that

εr

(
∑
s∈S

αss
)

= ∑
h∈H

αhh.

Proof. When viewing a semigroup element t in C∗r (S) we will now write
Λ(t). Let λ denote the ∗-homomorphism on C∗(G) induced by the left regular
representation of G. We first show that the map Λ(t) 7→ Λ(t)⊗ λ(ϕ(t)) extends
to a ∗-homomorphism δ : C∗r (S) → C∗r (S)⊗minC∗r (G). Since there is no universal
property for C∗r (S) this is a nontrivial fact. First, let W in B(`2(S)⊗ `2(G)) be the
unitary operator defined by

W(δs ⊗ δg) = δs ⊗ δϕ(s)g.

Define δ := Ad(W) ◦ j, where j(A) = A⊗ I for A in C∗r (S). Then δ is a (bounded)
∗-homomorphism. It is also clear that δ is injective. For δs ⊗ δg in `2(S)⊗ `2(G)
and t in S we have:

δ(Λ(t))(δs ⊗ δg) = Wj(Λ(t))W∗(δs ⊗ δg) =
{

δts ⊗ δϕ(t)g if s ∈ Dt,
0 otherwise,

= Λ(t)⊗ λ(ϕ(t))(δs ⊗ δg).

Then δ satisfies δ(Λ(t)) = Λ(t)⊗ λ(ϕ(t)).
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Given ρ ∈ C∗r (G)∗ there is a slice map Sρ : C∗r (S)⊗minC∗r (G) → C∗r (S). That
is, Sρ is a linear map of norm ‖ρ‖ such that

Sρ

( n

∑
i=1

ai ⊗ bi

)
=

n

∑
i=1

aiρ(bi)

for ai ⊗ bi in C∗r (S)⊗minC∗r (G). Moreover, if ρ is positive, then Sρ is a completely
positive map ([21], Corollary IV 4.25). Recall that χe, where e is the identity of G,
is a faithful state on C∗r (G). Thus εr = Sχe ◦ δ is a positive contraction on C∗r (S).
Also, for s ∈ S,

εr(Λ(s)) = Sχe(Λ(s)⊗ ϕ(s)) =
{

Λ(s) if s ∈ H,
0 otherwise.

It follows by linearity that

εr

(
∑
s∈S

αsΛ(s)
)

= ∑
h∈H

αhΛ(h)

and by continuity that εr is a projection with range CH.
Suppose that a 6= 0 in C∗r (S) is positive. Since δ is injective, δ(a) is nonzero

and positive, and hence there is a state ω of C∗r (S), such that (ω ⊗ ι) ◦ δ(a) is
a nonzero positive element of C∗r (G), where ι is the identity on C∗r (G) (cf. [22]).
Then χe ◦ (ω⊗ ι) ◦ δ(a) = ω ◦ (ι⊗ χe) ◦ δ(a) = ω ◦ εr(a). Thus εr(a) 6= 0.

We can construct an expectation ε f on C∗(S) in a similar way, using full C∗-
algebras instead of reduced ones. This map will not be faithful in general since
χe is not always faithful on C∗(G). However if G is amenable, then χe is faithful
and hence ε f is faithful. These facts are recorded in the next proposition.

PROPOSITION 2.2. There is a conditional expectation ε f : C∗(S) → CHr such

that ε
(

∑
s∈S

αss
)

= ∑
h∈H

αhh. Moreover, ε is faithful if G is amenable.

In order to relate the weak containment property on S to the weak contain-
ment property on H, we need an assumption about the norms of elements of CH
inside C∗(S). Recall the following:

DEFINITION 2.3. An inverse subsemigroup H of an inverse semigroup S is
C∗-isometric in S if ‖ f ‖C∗(S) = ‖ f ‖C∗(H) for all f in CH.

If H is C∗-isometric in S then the embedding of CH in C∗(S) extends to an
isomorphism between C∗(H) and CH f . This fact is used implicitly in the proof
of the next theorem, the main result of this section.

THEOREM 2.4. Let ϕ : S → G be a homomorphism of an inverse semigroup S
onto a group G with kernel H. Suppose that H is C∗-isometric in S. The following
conditions are equivalent:

(i) S has weak containment;
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(ii) ε f is faithful and H has weak containment.

Proof. Let ΛH denote the map on C∗(H) induced from the left regular rep-
resentation of H and let ΛS,H denote the restriction of ΛS to C∗(H). We first show
that ΛH is injective if and only if ΛS,H is injective. For h ∈ H and s ∈ Dh notice
that

hs ∈ H if and only if s ∈ H.

It follows that `2(H) is an invariant subspace for ΛS(h), and that

ΛS(h) =
[

ΛH(h) 0
0 ∗

]
with respect to the decomposition `2(H)⊕ `2(H)⊥. Thus, for any A in C∗(H),

ΛS(A) =
[

ΛH(A) 0
0 ∗

]
.

Hence if ΛH is injective, then ΛS,H is injective. Conversely, if ΛS(A) 6= 0 for some
A in C∗(H), then ΛS(A) δs 6= 0 for some s in S. But then,

RS(s)ΛS(A) δss∗ = ΛS(A)RS(s) δss∗ = ΛS(A) δs 6= 0.

Since s∗s ∈ H we have that ΛH(A) 6= 0.
We see from the commuting diagram:

C∗(S)
ΛS−−−−→ C∗r (S)

ε f

y y εr
faithful

C∗(H)
ΛS,H−−−−→ CH

that ΛS is injective if and only if ε f is faithful and ΛS,H is injective. Since ΛS,H is
injective if and only if ΛH is injective, the theorem follows.

Paterson has shown that G(S) is amenable when S has weak containment
(See Proposition 4.1 of [14] and note that, in Paterson’s notation, 1 ∈ P(S) =
PL(S)). Since G(S) maps onto G, it follows that G is amenable if S has weak
containment. Also, by Proposition 2.2, ε is faithful if G is amenable. Combining
these two facts with the theorem we get the following corollary.

COROLLARY 2.5. Let ϕ : S → G be a homomorphism of an inverse semigroup
S onto a group G with kernel H. Suppose that H is C∗-isometric in S. The following
conditions are equivalent:

(i) S has weak containment;
(ii) G is amenable and H has weak containment.

Though it is often the case that H is C∗-isometric, we do not know if this
property always holds. One way to show ‖ f ‖C∗(S) = ‖ f ‖C∗(H) for all f in CH is
to prove ε : CS → CH is positive. Suppose ε is positive. If ρ is a state on CH,
then ρ ◦ ε is a positive linear map. In fact, for a in CS, ε(a)∗ε(a) 6 ε(a∗a). Then for



324 DAVID MILAN

each a in CS with (ρ ◦ ε)(a∗a) 6 1, ε(a) ∈ CH with ρ(ε(a)∗ε(a)) 6 1. Thus ρ ◦ ε
satisfies condition (∗) from Section 1, and is therefore a state on CS. Fix f in CH.
Any representation of S restricts to a representation of H, from which it follows
that ‖ f ‖C∗(H) > ‖ f ‖C∗(S). Conversely, since states on CH can be extended to
states on CS,

‖ f ‖C∗(H) =sup{ρ( f ∗ f )1/2 : ρ∈S(CH)}6sup{ρ( f ∗ f )1/2 : ρ∈S(CS)}=‖ f ‖C∗(S).

Thus, ‖ f ‖C∗(H) = ‖ f ‖C∗(S).
In Section 6, we show there are many inverse semigroups S for which ε is

positive. Most notably, if S is E-unitary then the kernel of the homomorphism
σ : S → G(S) is the semilattice E := E(S). We show ε : CS → CE is positive.
Since any semilattice has weak containment we get the following result.

COROLLARY 2.6. Suppose S is an E-unitary inverse semigroup. Then S has weak
containment if and only if G(S) is amenable.

3. WEAK CONTAINMENT AND INVERSE SEMIGROUPS WITH ZERO

The use of group homomorphisms in the previous section is suitable for
many inverse semigroups, including all E-unitary inverse semigroups. However,
if S contains a zero, then G(S) is trivial, S is the kernel of any homomorphism
onto a group, and the results of the previous section are vacuous. To remedy
this, we work with maps that are not quite homomorphisms. For any inverse
semigroup S, let S0 denote the inverse semigroup obtained from S by adjoining a
zero if S does not already have one, otherwise S0 = S.

DEFINITION 3.1. A grading of an inverse semigroup S containing a zero by
the group G is a map ϕ : S → G0 such that ϕ−1(0) = {0} and ϕ(ab) = ϕ(a)ϕ(b)
provided that ab 6= 0.

It is customary when working with algebras generated by semigroups with
zero to consider the quotient by the ideal generated by the zero. This identifies the
zero of the algebra with the zero of the semigroup. The algebras C∗0 (S), C∗r 0(S),
and C0S, for example, are just the quotients of the algebras with which we have
been working by the ideal generated by the zero of S.

Fix a grading ϕ : S → G0, and let H = ϕ−1(1G)0. As before, we have an
expectation ε f : C∗0 (S) → C0H f and a faithful expectation εr : C∗r 0(S) → C0Hr ,
where each map extends the restriction map from C0S onto C0H. The analog of
Theorem 2.4 holds.

THEOREM 3.2. Let ϕ : S → G0 be a grading of an inverse semigroup S by a
group G. Let H = ϕ−1(1G)0. Suppose that H is C∗-isometric in S. Then S has weak
containment if and only if ε f is faithful and H has weak containment.
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Unlike in the previous section, it may happen that S has weak containment
and yet G is not amenable. In the next section we show that all graph inverse
semigroups have weak containment, yet the universal grading of a graph inverse
semigroup is a free group. The proof requires that we view a grading ϕ : S →
G0 in a different light. We observe that ϕ induces a Fell bundle structure (see
Section 1) on C∗0 (S). We then relate weak containment for S to amenability of the
Fell bundle, showing in particular that strongly E∗-unitary inverse semigroups
(such as graph inverse semigroups) have weak containment if and only if the
associated Fell bundle is amenable. Exel [5] has found an approximation property
for Fell bundles that guarantees amenability. Using this property he was able to
give examples of amenable Fell bundles over nonamenable groups arising from
Cuntz–Krieger algebras. We use conditions on Fell bundles over free groups that
Exel found in subsequent work [6] to establish amenability of Fell bundles arising
from graph inverse semigroups.

We first define the Fell bundle structure arising from a grading ϕ. For each
g in G, let

Ag = Span{s : ϕ(s) = g} inside C0S, Bg = Ag inside C∗0 (S).

PROPOSITION 3.3. The collection B = {Bg}g∈G is a Fell bundle for C∗0 (S).

Proof. We show only that Ag Ah ⊆ Agh for all g and h in G. It is enough
to show that, for s and t in S such that ϕ(s) = g and ϕ(t) = h, st ∈ Agh. This
is the case since either st = 0 ∈ Agh, or ϕ(st) = ϕ(s)ϕ(t) = gh, in which case
st ∈ Agh.

In fact, since there is an expectation ε f : C∗0 (S) → B1G that vanishes on Bg
for g 6= 1G, B is a topological grading for C∗0 (S) ([5], Theorem 3.3). It follows
that ε f is faithful whenever B is amenable. In fact, one can verify that repre-
sentations of B are in one-to-one correspondence with representations of C∗0 (S)
and hence C∗(B) is isomorphic to C∗0 (S). Moreover, the expectation on C∗(B) is
just ε f . Thus ε f is faithful if and only if B is amenable. Recall that a strongly
E∗-unitary inverse semigroup S is an inverse semigroup that admits a grading
ϕ : S → G0, with ϕ−1(1G) equal to the nonzero idempotents of S. We then have
the following corollary to Theorem 3.2, which is the analog of Corollary 2.6 for
inverse semigroups with zero.

COROLLARY 3.4. Suppose S is strongly E∗-unitary. Then S has weak contain-
ment if and only if the Fell bundle B arising from the universal grading of S is amenable.

4. GRAPH INVERSE SEMIGROUPS

We follow most of the conventions of [18] for directed graphs. Briefly, a
directed graph E = (E0, E1, r, s) consists of countable sets E0, E1 and functions
r, s : E1 → E0. The elements of E0 are called vertices, and the elements of E1
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are called edges. Given an edge e, r(e) denotes the range of e and s(e) denotes
the source of e. We denote by E∗ the collection of finite directed paths in E. The
functions r, s can be extended to E∗ by defining r(µ) = r(µn), s(µ) = s(µ1) for
a path µ = µnµn−1 · · · µ1 in E∗. If µ = µnµn−1 · · · µ1 and ν = νmνm−1 · · · ν1 are
paths with s(µ) = r(ν), we write µν for the path µn · · · µ1νm · · · ν1. The length of
a path µ is denoted |µ|.

The graph inverse semigroup of the directed graph E is the set

SE = {(µ, ν) : s(µ) = s(ν)} ∪ {0}

with the products not involving zero defined by

(µ, ν)(α, β) =


(µ, βν′) if ν = αν′,
(µα′, β) if α = να′,
0 otherwise.

The inverse operation is given by (µ, ν)∗ = (ν, µ). It is easy to see that the set of
idempotents of SE is E = {(µ, µ) : µ ∈ E∗}.

The inverse semigroup SE is important in the study of C∗-algebras of di-
rected graphs. It has been shown that C∗(E) is a quotient of C∗(SE) [15]. SE has
also been studied in the semigroup literature. See [10], [1], for example.

Let F be the free group generated by the set E1. Define a map ϕ : SE → F by
ϕ((µ, ν)) = red(µν−1), where red(w) denotes the reduction of the word w over
the alphabet E1 ∪ (E1)−1 in F. Then ϕ is a grading of SE by F with kernel E [10].
Let B := {Bw}w∈F be the Fell bundle for C∗0 (SE) arising from the grading ϕ. We
want to show that SE has weak containment. Since SE is strongly E∗-unitary, it
suffices to show that ε : C∗0 (SE) → C∗0 (E) is faithful. That is, it suffices to show
that B is amenable. We first need some definitions.

DEFINITION 4.1 (Exel). A Fell bundle B = {Bw}w∈F over a free group F
with a fixed set of generators X is orthogonal if B∗x By = 0 for distinct x, y ∈ X. B is
semi-saturated if, for any pair s, t in F such that the product st−1 does not involve
cancellation, Bst−1 = BsBt−1 .

The following theorem was proved in [6].

THEOREM 4.2 (Exel). Let B be an orthogonal, semi-saturated Fell bundle over a
free group F with separable fibers. Then B is amenable.

The rest of this section is devoted to proving the following theorem by
showing that the Fell bundle B arising from a graph inverse semigroup is or-
thogonal and semi-saturated.

THEOREM 4.3. The inverse semigroup SE of a directed graph E has weak contain-
ment.

Proof. For w in F let Sw = ϕ−1(w). Take x, y in E1. An arbitrary element of
S∗x is of the form (µ, xµ) with µ in E∗. Similarly, the elements of Sy are of the form
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(yν, ν), where ν in E∗. The product (µ, xµ)(yν, ν) = 0 unless either xµ = yνα, or
yν = xµα for some α in E∗. In either case, x = y. It follows that B is orthogonal.

Next we show that B is semi-saturated. Suppose s, t ∈ F where the product
st−1 involves no cancellation. If Bst−1 is the zero subspace then the containment
BsBt−1 ⊆ Bst−1 implies the two subspaces are equal. Otherwise st−1 = red(ab−1)
where a, b describe paths in E starting at a common vertex v. We may assume that
ab−1 is a reduced word. Also, since a, b are positive words over the set E1, either
a is a prefix of s or b is a prefix of t. Since the two cases are similar we consider
only the first. We can then write s = ac−1, where c is a path starting at v. Let Ev

denote the set of idempotents (w, w) with r(w) = v. We claim that

Sst−1 = (a, v)Ev(v, b).

The nontrivial inclusion is Sst−1 ⊆ (a, v)Ev(v, b). Suppose ϕ((α, β)) = st−1. Then
red(αβ−1) = ab−1. Since α, β are already reduced words, the only cancellation in
the product αβ−1 occurs where α meets β−1. Hence, there exists a path w with
r(w) = v such that α = aw and β = bw. Thus (α, β) = (a, v)(w, w)(v, b) ∈
(a, v)Ev(v, b).

An element f in the span of Sst−1 can be written

f = ∑
w∈Ev

λw (a, v)(w, w)(v, b),

where all but finitely many of the λw are zero. Suppose w, w′ are paths of the
same length with r(w) = v = r(w′). The product (w, w)(w′, w′) is nonzero only
if w = w′, in which case it is (w, w). Set Ev

k := {w : r(w) = v, |w| = k} and define

fk := ∑
w∈Ev

k

λ1/2
w (a, v)(w, w)(v, c), f ′k := ∑

w′∈Ev
k

λ1/2
w′ (c, v)(w′, w′)(v, b).

For w, w′ in Ev
k we have

[(a, v)(w, w)(v, c)][(c, v)(w′, w′)(v, b)] =
{

(a, v)(w, w)(v, b) if w = w′,
0 otherwise.

We then have f = ∑
k

fk f ′k. Since fk ∈ Bs and f ′k ∈ Bt−1 , we have f in BsBt−1 and it

follows that B is semi-saturated.

5. NICA’S INVERSE SEMIGROUP TG,P

In [11], Nica studies C∗-algebras C∗(G, P) andW(G, P) associated with cer-
tain pairs (G, P) called quasi-lattice ordered groups. Here G is a discrete group
and P is a subsemigroup of G. He defines (G, P) to be amenable if and only if a nat-
ural map C∗(G, P) → W(G, P) is an isomorphism. The C∗-algebras constructed
from quasi-lattice ordered groups include many famous C∗-algebras having cer-
tain uniqueness properties. It is shown that the uniqueness property follows
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from amenability of the quasi-lattice ordered group. The first example is (Z, N),
from which one recovers the C∗-algebra of the unilateral shift. The pair (Z, N)
is amenable and this corresponds to the uniqueness property given by Coburn’s
theorem. In a subsequent paper [12], Nica studies an inverse semigroup TG,P
induced from a quasi-lattice ordered group (G, P). For example, TZ,N is isomor-
phic to the bicyclic monoid, an inverse semigroup that has the weak containment
property.

In this section, we point out that Nica’s definition of amenability of a quasi-
lattice ordered group (G, P) is equivalent to weak containment for TG,P. For the
rest of this section we consider a pair (G, P), where G is a discrete group with a
subsemigroup P, such that P ∩ P−1 is the unit of G. It follows that the relation 6,
defined by x 6 y if and only if x−1y ∈ P, is a partial order on G.

DEFINITION 5.1 (Nica). The group (G, P) is quasi-lattice ordered if and only
if (1) Any x ∈ PP−1 has a least upper bound in P, and (2) Any s, t ∈ P with a
common upper bound have a least common upper bound.

One often considers the inverse semigroup I(X) of partially-defined bijec-
tions on the set X. That is, a function f in I(X) is a bijection of a subset dom( f )
of X to another subset ran( f ) of X. The multiplication of elements f , g in I(X) is
given by composition of the two functions on the largest domain where the com-
position is defined. The inverse semigroup I(X) plays the same role in inverse
semigroup theory as the group of permutations on a set plays in group theory (cf.
Theorem 1, p. 36 of [9]).

For each x ∈ G, define βx : {t ∈ P : xt ∈ P} → {s ∈ P : x−1s ∈ P}
by βxt = xt. Notice that βx ∈ I(P). Then TG,P is defined to be the inverse
semigroup generated by {βx}x∈G. It is shown in Theorem 6.9 of [10], that TG,P
is strongly E∗-unitary. An idempotent pure grading ϕ : TG,P → G is given by
ϕ(βx1 · · · βxn) = x1 · · · xn for βx1 · · · βxn 6= 0. Thus, by Corollary 3.4, TG,P has
weak containment if and only if the conditional expectation ε : C∗0 (TG,P)→ C∗0 (E)
is faithful, where E = E(TG,P).

Notice that the semigroup isomorphism given near the end of page 370 in
[12] shows that the algebra C∗(G, P) defined in Section 4.1 of [11] is isomorphic
to C∗0 (TG,P). Moreover, the conditional expectation on C∗(G, P) is ε. Thus, by the
first proposition in Section 4.3 of [11], we have:

PROPOSITION 5.2. A quasi-lattice ordered group (G, P) is amenable if and only
if the inverse semigroup TG,P has weak containment.

6. POSITIVITY OF ε

Let H be an inverse subsemigroup of an inverse semigroup S, and ε : CS→
CH the restriction map. The crucial hypothesis that H is C∗-isometric in S that
appears in Section 2 is satisfied when ε is positive. In this section we study that
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positivity property. It is easy to find examples where ε fails to be positive for an
arbitrary subsemigroup H. We give one such example below (Example 6.1). We
also find two classes of semigroups where it is possible to prove positivity. The
question raised in this section, which we do not answer, is whether ε is positive
when H is the kernel of a group homomorphism. There is some reason to believe
the question has an affirmative answer. In the case that S is a group, the restric-
tion map onto the complex algebra generated by any subgroup is positive. This
was proved by Rieffel ([20], Lemma 1.1) using basic facts about cosets of H in S.
In general, an inverse subsemigroup H does not admit cosets that partition the
larger semigroup. However, if H is closed upwards in the natural partial order
(such as the case that H is the kernel of a group homomorphism), then there is a
related notion of ω-cosets, defined by

↑ sH := {t ∈ S : te ∈ sH, for some idempotent e}

for s in S. These sets partition S and play a role similar to that of cosets of a
subgroup (cf. IV.4 of [16]). We suspect it may be possible to generalize Rieffel’s
proof to such subsemigroups, but so far we have not been successful. For this
reason we pose the following question, which is more general than the case that
H is the kernel of a homomorphism onto a group.

OPEN QUESTION. Suppose H is an inverse subsemigroup of S such that ↑H =
H. Does it follow that the restriction map ε : CS→ CH is positive?

We now give an example showing that ε is not positive if the hypothesis
that ↑H = H is not satisfied.

EXAMPLE 6.1. Let a in I(Z) (see Section 5) be the map defined by a(n) =
n + 1 for n in Z, and let e in I(Z) be the identity on N and undefined elsewhere.
Let S be the inverse semigroup generated by a and e and let H be the inverse
subsemigroup of S generated by b := ae. Then H is the bicyclic semigroup and
C∗(H) is the C∗-algebra of the unilateral shift. Let x = e − a. Then xx∗ is a
positive element of CS and ε(xx∗) = e− b− b∗. This is not a positive element of
CH. To see this note that e− b− b∗ maps to the non-positive function 1− z− z in
the Calkin algebra C(T).

We can prove positivity of ε if either H is the semilattice of S, or if, for each
ω-coset ↑sH, there is an element s′ such that ↑sH = s′H. The next result will be
used for that purpose.

PROPOSITION 6.2. Let ϕ : S → G be a homomorphism of an inverse semigroup
S onto a group G and let H = ϕ−1(1G). Suppose ε : CS → CH is the restriction map.
Then ε( f ∗ f ) is positive in CS for every f in CS.

Proof. We can write

f = ∑
g∈G

fg
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where fg ∈ Span ϕ−1(g). Then

ε( f ∗ f ) = ε
(

∑
g,h∈G

fh
∗ fg

)
= ∑

g∈G
fg
∗ fg,

a positive element of CS.

REMARK 6.3. Note we have not shown that ε is positive, since we do not
know that ε( f ∗ f ) is positive as an element of CH. The author would like to thank
an anonymous referee for finding this error in a previous version of this paper.

PROPOSITION 6.4. Let ϕ : S → G be a homomorphism of an inverse semigroup
S onto a group G and let H = ϕ−1(1G). Suppose ε : CS → CH is the restriction map.
If H = E(S), or if for each g ∈ G there is an element sg ∈ S such that ϕ−1(g) = sg H,
then ε is positive.

Proof. For g ∈ G let Sg := ϕ−1(g). By the proof of the last proposition it is
enough to show, for every f ∈ Span{Sg} there exists f ′ ∈ CH such that f ′∗ f ′ =
f ∗ f . To this end, fix f = ∑

s∈Sg

αss in Span{Sg}. In the case that H = E(S) let

f ′ = ∑
s∈Sg

αss∗s.

Then f ′ ∈ CH and, since s∗(st∗)t = s∗(ts∗)t = s∗t for all s, t ∈ Sg we have:

f ′∗ f ′ = ∑
s,t∈Sg

αsαts∗st∗t = ∑
s,t∈Sg

αsαts∗t = f ∗ f .

If we have Sg = sgH for some sg ∈ S then let f ′ = ∑
s∈Sg

αss∗gsghs, where hs is

chosen so that s = sghs. Since (s∗gsg)2 = s∗gsg we have

f ′∗ f ′ = ∑
s,t∈Sg

αsαth∗s (s∗gsg)2ht = ∑
s,t∈Sg

αsαts∗t = f ∗ f .

Next we give an example satisfying the second hypothesis of the above
proposition that is in general not E-unitary. Using the main result of Section 2, we
can characterize the weak containment property for the class of bisimple inverse ω-
semigroups. This is the class of bisimple inverse semigroups whose idempotents
form a descending chain e0 > e1 > e2 > · · · .

EXAMPLE 6.5. Let θ be an endomorphism of a group G, and BR(G, θ) be the
set N0 × G×N0 equipped with the multiplication:

(m, a, n)(i, b, j) = (m− n + t, θt−n(a)θt−i(b), j− i + t),

where t = max(n, i). BR(G, θ) is called the Bruck–Reilly extension of G determined
by θ. Reilly [19] showed that S is a bisimple inverse ω-semigroup if and only if
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S is isomorphic to some BR(G, θ). There is a homomorphism ϕ : BR(G, θ) → Z
given by ϕ(m, a, n) = m− n. Let H = ker ϕ. For k ∈ Z, notice that

ϕ−1(k) =
{

(k, 1G, 0)H if k > 0,
(0, 1G, k)H otherwise.

Thus, by Proposition 6.4, H is C∗-isometric in BR(G, θ). It follows by Corollary 2.5
that BR(G, θ) has weak containment if and only if H has weak containment. Since
the idempotents of H are central, H is a Clifford ω-semigroup with all maximal
subgroups isomorphic to G. By Theorem 2.6 of [4] H has weak containment if
and only if G is amenable. Thus BR(G, θ) has weak containment if and only if G
is amenable. It should be noted that a stronger result is proved by Duncan and
Paterson in [4], where the authors characterize weak containment for the Bruck–
Reilly extension of a finite semilattice of groups.

Finally, we note that there is a version of Proposition 6.4 in the case that S
contains a zero. We state it here without proof.

PROPOSITION 6.6. Let ϕ : S → G0 be a grading of an inverse semigroup S
containing a zero by a group G and let H = ϕ−1(1G)0. Suppose ε : C0S → C0H is the
restriction map. If H = E(S), or if for each g in G there is an element sg in G such that
ϕ−1(g) = sgH, then ε is positive.
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