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OPERATOR-VALUED DYADIC BMO SPACES

OSCAR BLASCO and SANDRA POTT

Communicated by Nikolai K. Nikolski

ABSTRACT. We consider BMO spaces of operator-valued functions, among
them the space of operator-valued functions B which define a bounded para-
product on L2(H). We obtain several equivalent formulations of ‖πB‖ in
terms of the norm of the "sweep" function of B or of averages of the norms
of martingales transforms of B in related spaces. Furthermore, we investigate
a connection between John–Nirenberg type inequalities and Carleson-type in-
equalities via a product formula for paraproducts and deduce sharp dimen-
sional estimates for John–Nirenberg type inequalities.
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1. INTRODUCTION

Spaces of BMO functions on the real numbers R or the circle T, taking values
in the bounded linear operators on a Hilbert space, have been investigated in a
number of different contexts in recent years, for example non-commutative Lp

spaces [16], [10], matrix-weighted inequalities [4], [5], sharp estimates for vector
Carleson embedding theorem [8], [11], [12], [14], observation operators in linear
systems over contractive semigroups [6], [7], and Hankel operators in several
variables [17].

The theory of operator valued BMO functions is much more complicated
than the scalar theory and remains to be fully understood. Some of the different
yet equivalent characterizations of scalar BMO(T) or BMO(R) lead to distinct
spaces of operator valued BMO functions. In many cases, we can express this
in the language of operator spaces by saying that different operator space struc-
tures on the scalar BMO space arise naturally from the different yet equivalent
characterisations of scalar BMO. These difficulties reflect partly the subtle geo-
metric properties of the dual Banach space L(H) of bounded linear operators on
a Hilbert space.
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It is often easier to consider dyadic versions of BMO and to work with
dyadic versions of classical operators like the Hilbert transform H or the Hankel
operator with symbol b, Γb. Two such dyadic counterparts of a Hankel opera-
tor Γb are the dyadic paraproduct πb and the operator Λb = πb + π∗b̄ . While the
former has a natural interpretation as a Carleson embedding operator, the latter
connects more easily in the operator valued case to the theory of vector-valued
BMO functions (in particular to the space BMOd

norm(L(H))). Estimates for Han-
kel operators can then be obtained by averaging techniques.

One important difference between the scalar-valued and the operator-
valued settings is the failure of a certain version of the classical John–Nirenberg
Lemma, or in other words, the lack of boundedness of the “sweep”, which governs
the behaviour of the dyadic paraproduct.

The purpose of the present paper is to study in particular the spaces aris-
ing from the operators πb and Λb, to investigate the relationship between dyadic
paraproduct, its “real part” Λb and the sweep, and to give sharp dimensional
estimates for the sweep in the “strong” BMO norm ‖ · ‖BMOd

so
and other norms,

answering a question in [4].
LetD denote the collection of dyadic subintervals of the unit circle T, and let

(hI)I∈D , where hI = 1
|I|1/2 (χI+ −χI−), be the Haar basis of L2(T). LetH be a sepa-

rable, finite or infinite-dimensional Hilbert space and let F00 denote the subspace
ofL(H)-valued functions on T with finite formal Haar expansion. Given e, f ∈ H
and B ∈ L2(T,L(H)), we denote by Be the function in L2(T,H) defined by
Be(t) = B(t)(e) and by Be, f the function in L2(T) defined by Be, f (t) = 〈B(t)(e), f 〉.
As in the scalar case, let BI denote the formal Haar coefficients

∫
I

B(t)hIdt, and

mI B = 1
|I|
∫
I

B(t)dt denote the average of B over I for any I ∈ D. Observe

that for BI and mI B to be well-defined operators, we shall be assuming that
the L(H)-valued function B is weak∗-integrable. That means, using the dual-
ity L(H) = (H⊗̂H)∗, that 〈B(·)(e), f 〉 ∈ L1(T) for e, f ∈ H. In particular, for any

measurable set A, there exist BA ∈ L(H) such that 〈BA(e), f 〉 =
〈 ∫

A
B(t)(e)dt, f

〉
.

Let us denote by BMOd(T,H) the space of Bochner integrable H-valued
functions b : T→ H such that

(1.1) ‖b‖BMOd(H) = sup
I∈D

( 1
|I|

∫
I

‖b(t)−mIb‖2dt
)1/2

< ∞

and by WBMOd(T,H) the space of Pettis integrable H-valued functions b : T→
H such that

(1.2) ‖b‖WBMOd(H) = sup
I∈D,e∈H,‖e‖=1

( 1
|I|

∫
I

|〈b(t)−mIb, e〉|2dt
)1/2

< ∞.
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Let us define different version of dyadic operator-valued BMO to be consid-
ered throughout the paper.

We denote by BMOd
norm(T,L(H)) the space of Bochner integrable L(H)-

valued functions B such that

(1.3) ‖B‖BMOd
norm

= sup
I∈D

( 1
|I|

∫
I

‖B(t)−mI B‖2dt
)1/2

< ∞

and denote by WBMOd(T,L(H)) the space of weak∗-integrable L(H)-valued
functions B such that

‖B‖WBMOd = sup
I∈D,‖e‖=‖ f ‖=1

( 1
|I|

∫
I

|〈(B(t)−mI B)e, f 〉|2dt
)1/2

(1.4)

= sup
e∈H,‖e‖=1

‖Be‖WBMOd(T,H) < ∞,

or, equivalently, such that

‖B‖WBMOd = sup
A∈S1,‖A‖161

‖〈B, A〉‖BMOd(T) < ∞.

Here, S1 denotes the ideal of trace class operators in L(H), and 〈B, A〉 stands for
the scalar-valued function given by 〈B, A〉(t) = trace(B(t)A∗).

In the operator-valued setting one has another natural formulation. Denote
by SBMOd(T,L(H)) the space of L(H)-valued functions B such that B(·)e ∈
BMOd(T,H) for all e ∈ H and such that

(1.5) ‖B‖SBMOd = sup
I∈D,e∈H,‖e‖=1

( 1
|I|

∫
I

‖(B(t)−mI B)e‖2dt
)1/2

< ∞.

We would like to point out that while B belongs to one of the spaces
BMOd

norm(T,L(H)) or WBMOd(T,L(H))) if and only if B∗ does, this is not the
case for the space SBMOd(T,L(H)). This leads to the following notion:

DEFINITION 1.1 (see [4], [14],[16]). We say that B ∈ BMOd
so(T,L(H)), if B

and B∗ belong to SBMOd(T,L(H)). We define ‖B‖BMOd
so

= ‖B‖SBMOd+
‖B∗‖SBMOd .

Continuous versions of this space in the more general setting of a von Neu-
mann algebra with a semifinite normal faithful trace were studied by Pisier and
Xu [16] and more recently by Mei [10], together with an Hp theory and a rich
duality and interpolation theory.

We now define another operator-valued BMO space, using the notion of
Haar multipliers. As in the scalar-valued case (see [13]), a sequence (ΦI)I∈D ,
ΦI ∈ L2(I,L(H)) for all I ∈ D, is said to be an operator-valued Haar multiplier, if
there exists C > 0 such that∥∥∥ ∑

I∈D
ΦI( f I)hI

∥∥∥
L2(T,H)

6 C
(

∑
I∈D
‖ f I‖2

)1/2
for all ( f I)I∈D ∈ l2(D,H).
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We write ‖(ΦI)‖mult for the norm of the corresponding operator on L2(T,H).
Let us observe that

(1.6) ‖ΦJ‖L2(T,H) 6 ‖(ΦI)‖mult|J|1/2, J ∈ D.

DEFINITION 1.2. Let us define PI B = ∑
J⊆I

hJ BJ , and use the notation

ΛB( f ) = ∑
I∈D

(PI B)( f I)hI .

We define BMOmult(T,L(H)) as the space of those weak∗-integrable L(H)-
valued functions for which (PI B)I∈D defines a bounded operator-valued Haar
multiplier, and write

(1.7) ‖B‖BMOmult
= ‖ΛB‖ = ‖(PI B)I∈D‖mult.

Let us now give the definition of a further BMO space, the space defined in
terms of dyadic paraproducts.

Let B ∈ F00. We define

πB : L2(T,H)→ L2(T,H), f = ∑
I∈D

f IhI 7→ ∑
I∈D

BI(mI f )hI ,

∆B : L2(T,H)→ L2(T,H), f = ∑
I∈D

f IhI 7→ ∑
I∈D

BI( f I)
χI
|I| .

πB is called the vector paraproduct with symbol B.
It is elementary to see that

(1.8) ΛB( f ) = ∑
I∈D

BI(mI f )hI + ∑
I∈D

BI( f I)
χI
|I| .

This shows that ΛB = πB + ∆B. Observe that ∆B = π∗B∗ . Therefore (ΛB)∗ =
ΛB∗ , and ‖B‖BMOmult

= ‖B∗‖BMOmult
.

DEFINITION 1.3. Let EkB = ∑
|I|>2−k

BIhI for k ∈ N. The space

BMOpara(T,L(H)) consists of those weak∗-integrable operator-valued functions
for which sup

k∈N
‖πEk B‖ < ∞. For such functions, πB f = lim

k→∞
πEk B f defines a

bounded linear operator on L2(T,H), and we write

(1.9) ‖B‖BMOpara = ‖πB‖.

Let us notice that

(1.10) ΛB f = B f − ∑
I∈D

(mI B)( f I)hI .

From here one concludes immediately that

(1.11) L∞(T,L(H)) ⊆ BMOmult(T,L(H)).

However, Tao Mei [9] has shown recently that L∞(T,L(H)) * BMOpara and
therefore in particular BMOmult * BMOpara. This is in contrast to the situation of
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scalar paraproducts in two variables, where BMOmult(T2) = BMOpara(T2) ([2],
Theorem 2.8).

The following chain of strict inclusions for infinite-dimensional H can be
shown (see [3]):

BMOd
norm(T,L(H)) ( BMOmult(T,L(H)) ( BMOd

so(1.12)

( SBMO(T,L(H)) ( WBMO(T,L(H)).

The reader is referred to [1], [2], [9], [18] for some recent results on dyadic
BMO and Besov spaces connected to the ones in this paper.

Mei’s result implies in particular that BMOd
norm(T,L(H)) * BMOpara, and

it is also easy to see that the reverse inclusion does not hold (see for example the
proof of BMOmult * BMOpara at the beginning of Section 2).

To retrieve an estimate of the norm of the paraproduct in terms of the
BMOd

norm norm, we will consider the “sweep”, which is of independent interest,
in Section 2, and averages of martingale transforms in Section 4.

Given B ∈ F00, we define the sweep of B as

(1.13) SB = ∑
I∈D

B∗I BI
χI
|I| .

Our main result of Section 2, Theorem 2.4, states that

‖B‖2
BMOpara

≈ ‖SB‖BMOmult
+ ‖B‖2

SBMOd .

In particular, using the result BMOd
norm(T,L(H)) ( BMOmult(T,L(H)) (see [3]),

this shows that if B ∈ SBMOd and SB ∈ BMOd
norm, then πB is bounded.

Section 3 is devoted to the study of sweeps of functions in different BMO
spaces. The classical John–Nirenberg theorem on BMOd(T) implies (and is es-
sentially equivalent to) the fact that there exists a constant C > 0 such that

(1.14) ‖Sb‖BMOd 6 C‖b‖2
BMOd

for any b ∈ BMOd.
We will show that this formulation of John–Nirenberg does not hold for

‖B‖BMOso . In fact, it is shown that if (1.14) holds for some space contained in
SBMOd then this space is also contained in BMOpara.

In [8], [11] and [12], the correct rate of growth of the constant in the Car-
leson embedding theorem in the matrix case in terms of the dimension of Hilbert
space H was determined, namely log(dimH + 1). Here, we want to show that
this breakdown of the Carleson embedding theorem in the operator case is inti-
mately connected to a breakdown of the John–Nirenberg Theorem, and that the
dimensional growth for constants in the John–Nirenberg Theorem is the same.
This answers a question left open in [4].
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In Section 4, we investigate “average BMO conditions” in the following

sense. We show (see Theorem 4.1) that ‖B‖BMOpara 6 C
( ∫

Σ

‖TσB‖2
BMOd

norm
dσ
)1/2

.

More precisely, ‖B‖2
BMOpara

+ ‖B∗‖2
BMOpara

≈
∫
Σ

‖TσB‖2
BMOmult

dσ.

Moreover, the norms ‖B‖BMOd
so

, ‖B‖BMOmult
and ‖B‖BMOpara can be com-

pletely described in terms of average boundedness of certain operators involv-
ing either ΛB or commutators [Tσ, B]. The results of this section complete those
proved in [4].

2. HAAR MULTIPLIERS AND PARAPRODUCTS

We start by describing the action of a paraproduct πB as a Haar multiplier.

PROPOSITION 2.1. Let B ∈ F00. Then

‖πB‖ = ‖(B∗I hI)I∈D‖mult = ‖(PI+ B + PI−B)I∈D‖mult =
∥∥∥( ∑

J(I
B∗J BJ

χJ

|J|

)
I∈D

∥∥∥1/2

mult
.

In particular,

‖BI‖ 6 ‖πB‖|I|1/2, ‖PI+ B(e) + PI−B(e)‖L2(T,H) 6 ‖πB‖|I|1/2‖e‖, and∥∥∥( ∑
J(I

B∗J BJ
χJ

|J|

)
e
∥∥∥

L2(T,H)
6 ‖πB‖2|I|‖e‖.

Proof. The first and second equalities follow directly from the definitions
and ‖πB‖ = ‖∆B∗‖.

For the third equality, use ‖πB‖2 = ‖π∗BπB‖,

π∗BπB( f )(t) = ∑
I∈D

B∗I BI(mI( f ))
χI(t)
|I| = ∑

I∈D
B∗I BI

(
∑
I(J

f JmI(hJ)
)χI(t)
|I|

= ∑
I∈D

B∗I BI

(
∑
I(J

f J

)
hJ(t)

χI(t)
|I| = ∑

J∈D

(
∑
I(J

B∗I BI
χI(t)
|I|

)
f JhJ(t).

The estimates now follow from (1.6).

The following characterizations of SBMO will be useful below.

PROPOSITION 2.2 ([4]). Let B ∈ SBMOd(T,L(H)). Then

‖B‖2
SBMOd = sup

I∈D,‖e‖=1

1
|I| ‖PI(Be)‖2

L2(H) ≈ sup
I∈D

1
|I|

∥∥∥ ∑
J⊆I

B∗J BJ

∥∥∥.

It follows at once from Propositions 2.1 and 2.2 that

BMOpara(T,L(H)) ⊆ SBMOd(T,L(H)).
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It is easily seen that, if B and B∗ belong to BMOpara, then B ∈ BMOmult.
However, we want to remark that the boundedness of πB alone does not imply
boundedness of ΛB.

To see this, choose some orthonormal basis (ei)i∈N of H, and choose a se-
quence of Cn-valued function (bn)n∈N with finite Haar expansion such that
‖bn‖BMOd(L(H)) > Cn1/2‖bn‖WBMOd(L(H)) (for a choice of such a sequence, see
[7]). Let Bn(t) be the column matrix with respect to the chosen orthonormal basis
which has the vector bn(t) as its first column. Then it is easy to see that

‖πBn‖ = ‖πbn‖ ≈ ‖bn‖BMOd(T,H) > n1/2C‖bn‖WBMOd(T,H).

As pointed out to us [15], it follows from the first theorem in the Appendix in
[16] that ‖πB∗n‖ 6 C‖bn‖WBMOd(T,H) for some absolute constant C and all n ∈ N.
Forming the direct sum

B =
∞⊕

n=1

1
‖πB∗n‖

B∗n,

we find that ‖πB‖ = 1, but ∆B = (πB∗)∗ is unbounded.

One of the main tools to investigate the connection between BMOmult and
BMOpara is the dyadic sweep. Given B ∈ F00, we define

SB(t) = ∑
I∈D

B∗I BI
χI(t)
|I| .

LEMMA 2.3. Let B ∈ F00. Then

(2.1) π∗BπB = πSB + π∗SB
+ DB = ΛSB + DB,

where DB is defined by DBhI ⊗ x = hI
1
|I| ∑

J(I
B∗J BJ x for x ∈ H, I ∈ D and

‖DB‖ ≈ ‖B‖2
SBMOd .

Proof. (2.1) is verified on elementary tensors hI ⊗ x, hJ ⊗ y. We find that:
(i) for I ( J, 〈π∗BπBhI ⊗ x, hJ ⊗ y〉 = 〈π∗SB

hI ⊗ x, hJ ⊗ y〉;
(ii) for I ) J, 〈π∗BπBhI ⊗ x, hJ ⊗ y〉 = 〈πSB hI ⊗ x, hJ ⊗ y〉;
(iii) for I = J, 〈π∗BπBhI ⊗ x, hJ ⊗ y〉 = 〈DB(hI ⊗ x), hJ ⊗ y〉.
Since supp πSB hI ⊆ I and supp ∆SB hI ⊆ I, 〈π∗BπBhI ⊗ x, hJ ⊗ y〉 = 0 in all

other cases.
One sees easily that DB is block diagonal with respect to the Hilbert space

decomposition L2(T,H) =
⊕

I∈D
H defined by the mapping f 7→ ( f I)I∈D . The

operator πSB is block-lower triangular with respect to this decomposition (using
the natural partial order onD), and ∆SB is block-upper triangular. Thus we obtain
the required identity. Note that, by Proposition 2.2,

‖DB‖ = sup
I∈D,‖e‖=1

1
|I|

∥∥∥ ∑
J(I

B∗J BJe
∥∥∥ ≈ ‖B‖2

SBMOd .
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Notice that (SB)∗ = SB. Hence Lemma 2.3 gives

THEOREM 2.4. ‖SB‖BMOmult
+ ‖B‖2

SBMOd ≈ ‖πB‖2.

Proof. It suffices to use that ‖DB‖ ≈ ‖B‖2
SBMOd and that ‖B‖SBMOd . ‖πB‖

(using Proposition 2.1).

This provides, among other things, our first link between BMOd
norm and BMOpara:

COROLLARY 2.5. ‖πB‖2 . ‖SB‖BMOd
norm

+ ‖B‖2
SBMOd .

Proof. Theorem 2.4 and (1.12).

3. SWEEPS OF OPERATOR-VALUED FUNCTIONS

Let us mention that by John–Nirenberg’s lemma, we actually have that f ∈
BMOd

norm if and only if

sup
I∈D

( 1
|I|

∫
I

‖B(t)−mI B‖pdt
)1/p

< ∞

for some (or equivalently, for all) 0 < p < ∞. Since (B−mI B)χI = PI B, we can
also say that f ∈ BMOd

norm if and only if

sup
I∈D

1
|I|1/p ‖PI(B)‖Lp(L(H)) < ∞.

One way to express the John–Nirenberg inequality on scalar-valued BMOd

is to say that the mapping

(3.1) BMOd → BMOd, b 7→ Sb,

is bounded. In the operator-valued setting, this John–Nirenberg property breaks
down. Our main result is that any space of operator-valued functions which is
contained in SBMOd(T,L(H)) and on which the mapping (3.1) acts boundedly
is already contained in BMOpara(T,L(H)).

However, we find that (3.1) acts boundedly between different operator-
valued BMO spaces. We also obtain the sharp rate of growth of the norm of the
mapping (3.1) on BMOd

so(T,L(H)), BMOpara(T,L(H)), BMOmult(T,L(H)) and
BMOd

norm(T,L(H)) in terms of the dimension ofH.
Before establishing this dimensional growth, we consider an extension of

the sweep. In the scalar case, one can extend the sweep BMOd → BMOd to a
sesquilinear map ∆ : BMOd×BMOd → BMOd. This map is motivated by the
consideration of “products of paraproducts” π∗f πg, which in turn is motivated
by the long-standing investigation of products of Hankel operators Γ∗f Γg in the
literature (see [18] and the references therein).
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DEFINITION 3.1. Let us denote by ∆ : F00×F00 → L1(T,L(H)) the bilinear
map given by

∆(B, F) = ∑
I∈D

B∗I FI
χI
|I| .

In particular SB = ∆(B, B) and ∆(B, F)∗ = ∆(F, B).

LEMMA 3.2. Let B ∈ F00. Then

PI∆(B, F) = PI∆(B, PI F) = PI ∑
J⊆I

χJ

|J|B
∗
J FJ = PI ∑

J(I

χJ

|J|B
∗
J FJ .

In particular, PI(SB) = PI(SPI B) = PI(S(PI++PI− )B).

Proof. PI∆(B∗, (FJhJ)) = PI(B∗J FJ
χJ
|J| ) = 0 if I ⊆ J. Hence

PI∆(B, F) = PI∆(B, PI F) = PI∆(B, (PI+ + PI−)F).

A similar proof as in Lemma 2.3 shows that

LEMMA 3.3. Let B, F ∈ F00. Then

π∗BπF = π∆(B,F) + π∗∆(F,B) + DB,F = Λ∆(B,F) + DB,F,

where DB,F is defined by DB,F(hI ⊗ x) = hI
1
|I| ∑

J(I
B∗J FJ x for x ∈ H, I ∈ D. Moreover,

‖DB,F‖ 6 sup
‖e‖=1

‖Be‖BMO(H) sup
‖e‖=1

‖Fe‖BMO(H).

Let us now study the boundedness of the sesquilinear map ∆ in the various
BMO norms. Again, the properties of the map ∆ are more subtle in the operator-
valued case than in the scalar case.

THEOREM 3.4. There exists a constant C > 0 such that for B, F ∈ F00,
(i) ‖∆(B, F)‖BMOmult

6 C‖B‖BMOpara‖F‖BMOpara ,
(ii) ‖∆(B, F)‖WBMOd 6 C‖B‖SBMOd‖F‖SBMOd ,

(iii) ‖∆(B, F)‖SBMOd 6 C‖πB‖‖F‖SBMOd .

Proof. (i) follows from Lemma 3.3.
(ii) Using Lemma 3.2, one obtains

〈PI∆(B, F)e, f 〉 = PI ∑
J∈D
〈(PI F)Je, (PI B)J f 〉

χJ

|J|

for e, f ∈ H. Therefore,

‖〈PI∆(B, F)e, f 〉‖L1 =
∥∥∥PI ∑

J∈D
〈(PI F)Je, (PI B)J f 〉

χJ

|J|

∥∥∥
L1

6 2
∥∥∥ ∑

J∈D
〈(PI F)Je, (PI B)J f 〉

χJ

|J|

∥∥∥
L1
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6 2
∥∥∥( ∑

J∈D
‖(PI B)J f ‖2 χJ

|J|

)1/2∥∥∥
L2

∥∥∥( ∑
J∈D
‖(PI F)Je‖2 χJ

|J|

)1/2∥∥∥
L2

6 2
(

∑
J∈D
‖(PI B)J f ‖2

)1/2(
∑
J∈D
‖(PI F)Je‖2

)1/2
.

Thus if ‖B‖SBMOd = ‖F‖SBMOd = 1, then

‖〈PI∆(B, F)e, f 〉‖L1 6 2‖PI B f ‖L2(H)‖PI Fe‖L2(H) 6 2|I|.

This, again using John–Nirenberg’s lemma, gives ‖∆(B, F)‖WBMOd(L(H)) 6 C.
(iii) From Lemma 3.2, we obtain

‖PI∆(B, F)e‖L2(H) = ‖∆B∗(PI Fe)‖L2(H) 6 ‖πB‖‖PI Fe‖L2(H).

Here comes the main result of this section.

THEOREM 3.5. Let H be a separable, finite or infinite-dimensional Hilbert space.
Let ρ be a positive homogeneous functional on the space F00 of L(H)-valued functions
on T with finite formal Haar expansion such that there exists constants c1, c2 with

(i) ‖B‖SBMOd 6 c1ρ(B), and
(ii) ρ(SB) 6 c2ρ(B)2 for all B ∈ F00.

Then there exists a constant C, depending only on c1 and c2, such that ‖B‖BMOpara 6
Cρ(B) for all B ∈ F00.

Proof. For n ∈ N, let En denote the subspace { f ∈ L2(T,H) : f I = 0 for |I| <
2−n} of L2(T,H). Let c(n) = sup{‖πB‖En : ρ(B) 6 1}. An elementary estimate
shows that c(n) is well-defined and finite for each n ∈ N. For ε > 0, n ∈ N, we
can find f ∈ En, ‖ f ‖ = 1, B ∈ F00, ρ(B) 6 1 such that

c(n)2(1− ε)2 6 ‖πB f ‖2 = 〈πSB f , f 〉+ 〈 f , πSB f 〉+ 〈DB f , f 〉
6 2c(n)ρ(SB) + c1‖B‖SBMOd 6 2c2c(n) + c1.

It follows that the sequence (c(n))n∈N is bounded by C = c2 +
√

c2
2 + c1, and

therefore ‖πB‖ 6 Cρ(B) for all B ∈ F00.
One immediate consequence is the following answer to Question 5.1 in [4].

THEOREM 3.6. There exists an absolute constant C > 0 such that for each n ∈ N
and each measurable function B : T→ Mat(C, n× n),

(3.2) ‖SB‖BMOd
so

6 C log(n + 1)‖B‖2
BMOd

so
,

and this is sharp.

Proof. From (iii) in Theorem 3.4 one obtains:

‖SB‖BMOso 6 C‖B‖BMOpara‖B‖BMOd
so

6 C log(n + 1)‖B‖2
BMOd

so
,

since there exists an absolute constant C > 0 with

‖B‖BMOpara 6 C log(n + 1)‖B‖BMOd
so
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by [8] and [11]. On the other hand, denoting by Cn the smallest constant such that

‖SB‖BMOd
so

6 Cn‖B‖2
BMOd

so

for each integrable function B : T→ Mat(C, n× n), we obtain from Theorem 3.5
that

‖B‖BMOpara 6
(

Cn +
√

C2
n + 1

)
‖B‖BMOd

so
6 3Cn‖B‖BMOd

so

for each integrable B. It was shown in [12] that there exists an absolute constant
c > 0 such that for each n ∈ N, there exists B(n) : T → Mat(n× n, C) such that
‖B(n)‖BMOpara > c log(n + 1)‖B(n)‖BMOd

so
. Therefore Cn > c

3 log(n + 1), and (3.2)
is sharp.

Sharp rates of dimensional growth can also be determined for SB in
BMOd

norm, BMOpara and BMOmult. Interestingly, the rate of growth for BMOd
so

and BMOpara is slower than the one for BMOmult and BMOd
norm.

THEOREM 3.7. There exists an absolute constant C > 0 such that for each n ∈ N
and each measurable function B : T→ Mat(C, n× n),

‖SB‖BMOpara 6 C log(n + 1)‖B‖2
BMOpara

,(3.3)

‖SB‖BMOmult
6 C(log(n + 1))2‖B‖2

BMOmult
,(3.4)

‖SB‖BMOd
norm

6 C(log(n + 1))2‖B‖2
BMOd

norm
,(3.5)

and this is sharp.
Corresponding estimates also hold for the sesquilinear map ∆.

Proof. This is contained in [3].

Finally, the following corollary to Theorem 3.5 gives an estimate of ‖ · ‖BMOpara in
terms of ‖ · ‖SBMOd with an “imposed” John–Nirenberg property. We need some

notation: Let S(0)
B = B and let S(n)

B = SS(n−1)B for n ∈ N, B ∈ F00.

COROLLARY 3.8. There exists a constant C > 0 such that

‖B‖BMOpara 6 C sup
n>0
‖S(n)

B ‖
1/2n

SBMOd (B ∈ F00).

Proof. Define ρ(B) = sup
n>0
‖S(n)

B ‖
1/2n

SBMOd . One sees easily that this expression

is finite for B ∈ F00. Now apply Theorem 3.5.

4. AVERAGES OVER MARTINGALE TRANSFORMS AND OPERATOR-VALUED BMO

Let Σ = {−1, 1}D , and let dσ denote the natural product probability mea-
sure on Σ, which assigns measure 2−n to cylinder sets of length n.
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For σ ∈ {−1, 1}D , define the dyadic martingale transform

(4.1) Tσ : L2(T,H)→ L2(T,H), f = ∑
I∈D

hI f I 7→ ∑
I∈D

hIσI f I .

Given a Banach space X and F ∈ L1(T, X), we write F̃ for the function defined
a.e. on Σ×T by

F̃(σ, t) = TσF(t) = ∑
I

σI FIhI(t).

In case that X is a Hilbert space, ‖TσF‖L2(T,X) = ‖F‖L2(T,X) for any (σI)I∈D ,
and therefore ‖F̃‖L∞(Σ,L2(T,X)) = ‖F‖L2(T,X). More generally, we have for UMD
spaces that ‖TσF‖L2(T,X) ≈ ‖F‖L2(T,X). However, X = L(H) is not a UMD space,
unlessH is finite dimensional.

Whilst ‖B‖BMOpara cannot be estimated in terms of ‖B‖BMOmult
[9], we will

prove an estimate of ‖B‖BMOpara in terms of an average of ‖TσB‖BMOmult
over Σ.

Similarly, whilst the result in [9] implies that ‖SB‖BMOd
norm

cannot be estimated
in terms of ‖B‖BMOd

norm
, we will prove an estimate of ‖SB‖BMOd

norm
in terms of an

average of ‖TσB‖BMOd
norm

over Σ. For this, the following representation of the
sweep will be useful:

(4.2) SB(t) =
∫
Σ

(TσB)∗(t)(TσB)(t)dσ.

THEOREM 4.1. Let B ∈ F00. Then

‖SB‖BMOd
norm

.
∫
Σ

‖TσB‖2
BMOd

norm
dσ.

In particular ‖B‖2
BMOpara

.
∫
Σ

‖TσB‖2
BMOd

norm
dσ.

Proof. The first inequality follows from the estimate

‖PISB‖L1(T,L(H)) =‖PISPI B‖L1(T,L(H)) 6 2
∥∥∥ ∫

Σ

(TσPI B∗)(TσPI B)dσ
∥∥∥

L1(T,L(H))

62
∫
Σ

‖(PI TσB)∗PI TσB‖L1(T,L(H))dσ=2
∫
Σ

‖(PI TσB)‖2
L2(T,L(H))dσ

62|I|
∫
Σ

‖TσB‖2
BMOd

norm
dσ.

Using John–Nirenberg’s lemma for BMOd
norm(T,L(H)), one concludes the result.

The second inequality follows from the first, (1.12) and Theorem 2.4.

We are going to describe the different operator-valued BMO spaces in terms
of "average boundedness" of certain operators. First we see that the BMOd

so-norm
can be described by “average boundedness” of ΛB.
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THEOREM 4.2. Let B ∈ F00, and let ΦB be the map

ΦB : L2(T,H)→ L2(T× Σ,H), f 7→ ΛBTσ f .

Then

‖ΦB‖ = sup
‖ f ‖L2(H)=1

( ∫
Σ

‖ΛB(Tσ f )‖2
L2(T,H)dσ

)1/2
= ‖B‖SBMOd .

In particular, ‖B‖BMOso = ‖ΦB‖+ ‖ΦB∗‖.
Proof. Since ΛB(Tσ f ) = ∑

I∈D
PI(B) f IhIσI , we have

∫
Σ

∫
T

‖(ΦB f )(t, σ)‖2dtdσ

=
∫
Σ

∫
T

‖(ΛBTσ f )(t)‖2dtdσ = ∑
I∈D
‖PI(B) f IhI‖2

L2(H)

= ∑
I∈D

1
|I|

∫
I

∥∥∥(B(t)−mI B)
( f I
‖ f I‖

)∥∥∥2
‖ f I‖2dt 6 sup

‖e‖=1
‖Be‖2

BMO(H) ∑
J∈D
‖ f J‖2.

The reverse inequality follows by considering functions f = hIe, where e ∈ H,
I ∈ D.

We require a further technical lemma, which shows that the L2 norm of B̃ f
may be decomposed in a certain way.

LEMMA 4.3. Let B ∈ F00 and f ∈ L2(T,H). Write B f = πB f + ∆B f + γB f .
Then

‖B̃ f ‖2
L2(Σ×T,H) =

∫
Σ

‖πTσ B( f )‖2
L2(H)dσ+

∫
Σ

‖∆Tσ B( f )‖2
L2(H)dσ+

∫
Σ

‖γTσ B( f )‖2
L2(H)dσ

and

(4.3) ‖ΛB̃ f ‖2
L2(Σ×T,H) =

∫
Σ

‖πTσ B( f )‖2
L2(H)dσ +

∫
Σ

‖∆Tσ B( f )‖2
L2(H)dσ.

Proof. Observe that mI(TσB)hI =
(

∑
I(J

σJ BJhJ

)
hI . Hence

γTσ B( f ) = ∑
I∈D

mI(TσB)( f I)hI = ∑
J∈D

σJ BJ

(
∑
I(J

f IhI

)
hJ .

This shows that∫
T

∫
Σ

〈πTσ B f , γTσ Bg〉dσdt = ∑
I∈D

∫
I

〈
BImI f , BI

(
∑
J(I

gJhJ

)〉χI
|I|dt = 0;

∫
T

∫
Σ

〈γTσ B f , ∆Tσ Bg〉dσdt = ∑
I∈D

∫
I

〈
BI

(
∑
J(I

f JhJ

)
, BI gI

〉 hI
|I|dt = 0;



346 OSCAR BLASCO AND SANDRA POTT∫
T

∫
Σ

〈πTσ B f , ∆Tσ Bg〉dσdt = ∑
I∈D

∫
I

〈BImI f , BI gI〉
hI
|I|dt = 0.

To finish the proof, simply expand ‖B̃( f )‖2
L2(Σ×T,H) and ‖ΛB̃( f )‖2

L2(Σ×T,H).

Here is our desired estimate of ‖B‖BMOpara + ‖B∗‖BMOpara in terms of an av-
erage over ‖B̃‖BMOmult

.

COROLLARY 4.4. Let B ∈ F00. Then

1
2
(‖πB‖+ ‖∆B‖) 6 ‖B̃‖L2(Σ,BMOmult) 6 ‖πB‖+ ‖∆B‖.

Proof. To show the first estimate, it is sufficient to use (4.3) in Lemma 4.3, the
identity ‖∆B‖ = ‖πB∗‖ and the invariance of the right hand side under passing
to the adjoint B∗.

For the reverse estimate, note that∫
Σ

‖B̃‖2
BMOmult

dσ 6
∫
Σ

(‖∆Tσ B‖+ ‖πTσ B‖)2dσ = (‖∆B‖+ ‖πB‖)2.

Acknowledgements. We thank V. Paulsen for a helpful discussion on operator space
structures. We also thank T. Mei for his personal communication of a preliminary version
of [9].

The first author gratefully acknowledges support by the London Mathematical So-
ciety and Proyectos MTM 2005-08350, MTM2008-04594 and PR2006-0086. The second au-
thor gratefully acknowledges support by EPSRC and by the Nuffield Foundation.

REFERENCES

[1] O. BLASCO, Remarks on operator-valued BMO spaces, Rev. Uni. Mat. Argentina
345(2004), 63–78.

[2] O. BLASCO, S. POTT, Dyadic BMO on the bidisk, Rev. Mat. Iberoamericana 21(2005),
483–510.

[3] O. BLASCO, S. POTT, Embeddings between operator-valued dyadic BMO spaces, Illi-
nois J. Math., 52(2008), 799–814.

[4] T.A. GILLESPIE, S. POTT, S. TREIL, A. VOLBERG, Logarithmic growth for matrix mar-
tingale transforms, J. London Math. Soc. (2) 64(2001), 624–636.

[5] T.A. GILLESPIE, S. POTT, S. TREIL, A. VOLBERG, Logarithmic growth for matrix
Hilbert transform, J. Operator Theory 52(2004), 103–112.

[6] B. JACOB, J.R. PARTINGTON, The Weiss conjecture on admissibility of observation
operators for contraction semigroups, Integral Equations Operator Theory 40(2001), 231–
243.



OPERATOR BMO SPACES 347

[7] B. JACOB, J.R. PARTINGTON, S. POTT, Admissible and weakly admissible observa-
tion operators for the right shift semigroup, Proc. Edinburgh Math. Soc. (2) 45(2002),
353–362.

[8] N.H. KATZ, Matrix valued paraproducts, J. Fourier Anal. Appl. 300(1997), 913–921.

[9] T. MEI, Notes on matrix valued paraproducts, Indiana Univ. Math. J. 55(2006), 747–
760.

[10] T. MEI, Operator valued Hardy spaces, Mem. Amer. Math. Soc. 188(2007), no. 881.

[11] F. NAZAROV, S. TREIL, A. VOLBERG, Counterexample to the infinite dimensional
Carleson embedding theorem, C. R. Acad. Sci. Paris 325(1997), 383–389.

[12] F. NAZAROV, G. PISIER, S. TREIL, A. VOLBERG, Sharp estimates in vector Carleson
imbedding theorem and for vector paraproducts, J. Reine Angew. Math. 542(2002),
147–171.

[13] M.C. PEREYRA, Lecture notes on dyadic harmonic analysis, in Second Summer School
in Analysis and Mathematical Physics (Cuernavaca, 2000), Contemp. Math., vol. 289,
Amer. Math. Soc., Providence, RI 2001, pp. 1–60 .

[14] S. PETERMICHL, Dyadic shifts and a logarithmic estimate for Hankel operators with
matrix symbol, C. R. Acad. Sci. Paris Sér. I Math. 330(2000), 455–460.

[15] G. PISIER, A. VOLBERG, personal communication.

[16] G. PISIER, Q. XU, Non-commutative martingale inequalities, Comm. Math. Physics
189(1997), 667–698.

[17] S. POTT, C. SADOSKY, Bounded mean oscillation on the bidisk and operator BMO,
J. Funct. Anal. 189(2002), 475–495.

[18] S. POTT, M. SMITH, A dyadic approach to Schatten class Hankel operators via p-
John–Nirenberg theorem, J. Funct. Anal. 217(2004), 38–78.

OSCAR BLASCO, DEPARTMENTO DE ANALISIS MATEMATICO, UNIVERSITAT DE

VALENCIA, BURJASSOT 46100 (VALENCIA), SPAIN

E-mail address: oscar.blasco@uv.es

SANDRA POTT, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF GLASGOW,
UNIVERSITY GARDENS, GLASGOW G12 8QW, U.K.

E-mail address: s.pott@maths.gla.ac.uk

Received June 27, 2007.


