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ABSTRACT. It is shown that, for a C∗-algebra A, every (weak*-) limit of pure
functionals is a multiple of a pure functional if and only if every limit of pure
states is a multiple of pure states (a condition previously studied by Glimm).
On the other hand, it is shown that the set of pure states P(A) being closed
does not force the set of pure functionals G(A) to be closed. The conditions
G(A) = G(A) and G(A) = G(A) ∪ {0} are characterised in terms of sums of
homogeneous C∗-algebras.
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INTRODUCTION

Let A be a C∗-algebra and let Â be the spectrum of A, the space of all (equiv-
alence classes of) irreducible representations of A. We write A ∈ [FIN] to mean
that all irreducible representations of A are on finite dimensional spaces. Let
G(A) and P(A) be the sets of pure functionals (extreme points of the unit ball in
the Banach dual A∗ of A) and pure states of A respectively. In Theorem 4.1 of [3]
Archbold and Shah have investigated when the weak*-closure G(A) is as large as
it can be, that is, G(A) = A∗1 , the unit ball in A∗. In this paper we investigate G(A)
and show how small it can be. We start our investigation by showing that, for a
C∗-algebra A every limit of pure functionals is a multiple of a pure functional if
and only if every limit of pure states is a multiple of a pure state. Glimm showed
that the second condition holds if and only if A is liminal, Â Hausdorff and at sin-
gular points π ∈ Â, π(A) is one dimensional [8]. In the special case where A is a
unital (respectively non-unital) homogeneous C∗-algebra we have G(A) = G(A)
(respectively G(A) = G(A) ∪ {0}). Hence we prove that if a C∗-algebra A is the
finite direct sum (respectively c0-sum) of homogeneous C∗-algebras then G(A) =
G(A) (respectively G(A) = G(A) ∪ {0}, that is, G(A) is nearly closed).
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These results might suggest that G(A) behaves in much the same way as
P(A) from the point of view of closure. However, there is a significant differ-
ence: P(A) can be weak*-closed when G(A) is not (see example after the proof of
Theorem 2.8). Indeed, we show that, for a unital C∗-algebra A, the following are
equivalent:

(i) P(A) = P(A);
(ii) A ∈ [FIN], Â Hausdorff and at singular points π ∈ Â, π(A) is one dimen-

sional;
(iii) G(A) = G(A) ∪ {λϕ : |λ| 6 1, ϕ ∈ P(A) with GNS representation πϕ

singular};
(iv) Â is Hausdorff and there exists a two sided closed ideal J of A such that J

is a (finite or c0) direct sum of homogeneous C∗-algebras with A/J abelian and

its spectrum (̂A/J) is the set of singular points of Â (Theorem 2.8).
In the non-unital case we will show that the following conditions are equiv-

alent:

(i) P(A) ⊆ P(A) ∪ {0} ∪ {λϕ : λ ∈ [0, 1], ϕ ∈ P(A) with GNS representation
πϕ singular};

(ii) G(A) = G(A) ∪ {0} ∪ {λϕ : |λ| 6 1, ϕ ∈ G(A) with GNS representation
π|ϕ| singular};

(iii) Â is Hausdorff and there exists a closed two sided ideal J of A such that J
is a (finite or c0) direct sum of homogeneous C∗-algebras with A/J abelian and

its spectrum (̂A/J) is the set of singular points of Â (Theorem 2.10).

The above theorems illustrate how singular points in Â have greater impact
on G(A) than on P(A). They, also, lead to the following corollaries:

(i) G(A) = G(A)⇒ A is a finite direct sum of unital homogeneous C∗-algebras
(Corollary 2.9).

(ii) G(A) = G(A) ∪ {0} ⇒ A is a (finite or c0) direct sum of homogeneous
C∗-algebras An (where either at least one An is non-unital or infinitely many An
are nonzero) (Corollary 2.11).

These are converses for the results mentioned at the end of the first para-
graph. Finally, we give an example of a C∗-algebra A for which P(A) = P(A) ∪
{0} but G(A) strictly contains G(A) ∪ {0}.

We give some definitions and known results for the reader’s convenience.
The symbols B(H) and K(H) denote, respectively, the C∗-algebras of bounded
linear and compact linear operators acting on a Hilbert space H with adjoint as
involution and operator norm. A C∗-algebra A is said to be liminal if π(A) =
K(Hπ) for every π ∈ Â, where Hπ is the Hilbert space associated with π. A C∗-
algebra A is said to be homogeneous of degree n if every irreducible representation
of A is of the same finite dimension n. A point π ∈ Â is said to be Fell-regular
(or a Fell-point) if there exists an a ∈ A+ (the set of positive elements of A ) and
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a neighbourhood V of π such that σ(a) is a rank-one projection for all σ ∈ V.
A point π ∈ Â is said to be Glimm-regular if whenever (e, U) is a pair such that
e ∈ A and U is a neighbourhood of π and (i) σ(e) is a projection for all σ ∈ U,
(ii) π(e) is a rank-one projection, then there exists a neighbourhood U0 of π with
U0 ⊆ U such that σ(e) is a rank-one for all σ ∈ U0. It is known [8], [10] that the
notions agree if A is liminal with Â Hausdorff. For more details see [9]. Hence
a point π ∈ Â is said to be singular if it is not Glimm-regular. From 4.5.3, 4.5.4 of
[6] we know that if A is a C∗-algebra with continuous trace, then A is liminal, Â
Hausdorff and every point of Â is Fell-regular; conversely, A is a C∗-algebra with
continuous trace if Â is Hausdorff and every point of Â is Fell-regular.

For the following definitions we refer the reader to [2], [4]. If ϕ and ψ are
pure states of a C∗-algebra A and p, q are their respective support projections in
A∗∗, then the transition probability between ϕ and ψ is denoted by 〈ϕ,ψ〉 and is
defined by 〈ϕ, ψ〉= ϕ(q) = ψ(p). If ϕ and ψ are unitarily equivalent, there will be
an irreducible representation π : A → B(H) and unit vectors ξ, η ∈ H such that
for every a ∈ A we have ϕ(a) = 〈π(a)ξ, ξ〉, and ψ(a) = 〈π(a)η, η〉. Hence, the
transition probability between ϕ and ψ is given by 〈ϕ, ψ〉 = |〈ξ, η〉|2. If ϕ and ψ
are inequivalent (that is, their respective GNS irreducible representations are not
unitarily equivalent) then 〈ϕ, ψ〉 = 0. We shall use the symbol QS(A) to denote
the convex and weak∗-compact subset {ϕ ∈ A∗1 : ϕ > 0} of A∗1 .

1. MULTIPLES OF PURE FUNCTIONALS

Glimm in Theorem 6 of [8] has shown that if A is a C∗ -algebra, then P(A)
⊆ {λϕ : λ ∈ [0, 1], ϕ ∈ P(A)} ⇔ A is liminal, Â is Hausdorff and at singular
points π ∈ Â, π(A) is one dimensional. In the following theorem, we extend this
result to the space of pure functionals G(A) of a C∗ -algebra A with the weak∗-
topology.

THEOREM 1.1. Let A be a C∗-algebra. Then the following are equivalent:
(i) G(A) ⊆ {λg : |λ| 6 1, g ∈ G(A)};

(ii) P(A) ⊆ {µ f : µ ∈ [0, 1], f ∈ P(A)}.

Proof. (i)⇒ (ii) Suppose G(A) ⊆ {λg : |λ| 6 1, g ∈ G(A)}. Let ρ ∈ P(A);
then since P(A) ⊆ G(A), ρ ∈ G(A). Hence there exists λ ∈ C with |λ| 6 1 and
g ∈ G(A) such that ρ = λg. If λ = 0 then ρ = 0 ∈ {µ f : µ ∈ [0, 1], f ∈ P(A)}.
So let λ 6= 0 . Then ρ = (reiθ)g (0 < r 6 1, 0 6 θ 6 2π). Or (eiθ)g = (1/r)ρ > 0.
So (eiθ)g ∈ G(A) ∩ S(A) = P(A), therefore ρ = r(eiθ g) ∈ {µ f : µ ∈ [0, 1], f ∈
P(A)}. That is P(A) ⊆ {µ f : µ ∈ [0, 1], f ∈ P(A)}.

(ii)⇒ (i) Suppose P(A) ⊆ {µ f : µ ∈ [0, 1], f ∈ P(A)}. Let ϕ ∈ G(A) then
there exists a net (ϕα) in G(A) such that ϕα → ϕ. We have two cases: ϕ = 0 and
ϕ 6= 0.
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Case (i). Suppose ϕ = 0. Then ϕ = 0 = zero times a pure functional of A .

Case (ii). Suppose ϕ 6= 0. Then (|ϕα|) is a net of pure states of A in QS(A)
which is compact so by passing to a subnet we can assume that |ϕα| → ρ for some
ρ ∈ QS(A). But ρ is the limit of pure states, so ρ ∈ P(A) and by our assumption
ρ = µψ where µ ∈ [0, 1], ψ ∈ P(A). By 3.3 of [7],

(1.1) |ϕα(a)|2 6 |ϕα|(a∗a), ∀a ∈ A.

Now because ϕα → ϕ and |ϕα| → ρ = µψ, the inequality (1.1) is preserved
for the limits so that |ϕ(a)|2 6 µψ(a∗a), ∀a ∈ A. By page 400 last 4 lines of
[7], there exists a vector η ∈ Hπψ with ‖η‖ 6

√
µ 6 1 such that, for a ∈ A,

ϕ(a) = 〈πψ(a)ξψ, η〉 = ‖η‖〈πψ(a)ξψ, η/‖η‖〉. Note that because ϕ 6= 0, ‖η‖ 6= 0
and so ϕ = λg, where|λ| 6 1, g ∈ G(A) .

COROLLARY 1.2. Let A be a C∗-algebra. Then the following are equivalent:
(i) G(A) ⊆ {λg : |λ| 6 1, g ∈ G(A)};

(ii) A is liminal, Â is Hausdorff and at singular points π∈ Â, π(A) is one dimen-
sional.

This follows immediately from Theorem 2.1 and Theorem 6 of [8].

2. LIMITS OF PURE FUNCTIONALS AND HOMOGENEOUS C∗-ALGEBRAS

In the following two theorems we investigate G(A) when A is a unital (re-
spectively non-unital) homogeneous C∗-algebra.

THEOREM 2.1. Suppose A is a unital homogeneous C∗-algebra. Then G(A) =
G(A).

Proof. Suppose A is a homogeneous C∗-algebra of degree n, i.e, dim(Hπ) =
n for all π ∈ Â. Let ϕ ∈ G(A), then there exists a net (ϕα) in G(A) such that ϕα

converges to ϕ (weak*). Since ϕα ∈ G(A) there exist an irreducible represention
πα ∈ Â and unit vectors ξα, ηα ∈ Hπα such that ϕα = 〈πα(·)ξα, ηα〉. Since A is
unital, Â is compact, so there exists a subnet (πµ) of (πα) such that πµ converges
to some π in Â. Now as A is homogeneous and π ∈ Â , by Section 5 paragraph 3
of [1] there exists an open neighbourhood U of π and a subset {eij : 1 6 i, j 6 n}
of A such that:

(i) for each σ ∈ U, {σ(eij) : 1 6 i, j 6 n} is a system of n× n matrix units
for σ(A) and hence for each x ∈ σ(A) there is a unique matrix [βij(x)] ∈ Mn(C)

such that x =
n
∑

i,j=1
βij(x)σ(eij);

(ii) for each a ∈ A the mapping θa : U → Mn(C) defined by θa(σ) =
[βij(σ(a))] is continuous on U.
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Since πµ → π there exists µ0 such that for µ > µ0, πµ ∈ U. Let a ∈ A

and σ ∈ U, then σ(a) =
n
∑

i,j=1
βij(σ(a))σ(eij) where βij(σ(a)) ∈ C. For σ ∈ U,

let Φσ : σ(A) → Mn(C) be defined by Φσ(x) = [βij(x)] (x ∈ σ(A)). Then
clearly it is a ∗-isomorphism. Note that θa(σ) = Φσ(σ(a)) (a ∈ A, σ ∈ U) and
so, in particular, ‖θa(σ)‖ 6 ‖a‖. There is a unique ψµ ∈ G(πµ(A)) such that
ψµ(πµ(a)) = φµ(a) (a ∈ A) and so ψµ ◦ πµ = ϕµ. For µ > µ0, define ρµ =
ψµ ◦Φ−1

πµ
. Then ρµ ∈ G(Mn(C)). Since every irreducible representation of Mn(C)

is unitarily equivalent to the standard representation on Cn, there exist unit vec-
tors ξµ, ηµ ∈ Cn such that ρµ([βij]) = 〈[βij]ξµ, ηµ〉.

Since Cn is finite dimensional the unit shell in Cn is compact, so by passing
to successive subnets, if necessary, we can assume that there exist unit vectors ξ, η
such that lim

µ
‖ξµ − ξ‖ = 0, lim

µ
‖ηµ − η‖ = 0. For [βij] ∈ Mn(C) define ρ([βij]) =

〈[βij]ξ, η〉. Then ρ ∈ G(Mn(C)). Let a ∈ A. Then we have ϕµ(a) = ψµ(πµ(a)) =
〈θa(πµ)ξµ, ηµ〉. Since θa is continuous on U therefore, lim

µ
‖θa(πµ)− θa(π)‖ = 0

and hence |〈θa(πµ)ξµ, ηµr〉 − 〈θa(π)ξ, η〉| → 0. Thus lim
µ

ϕµ(a) = (ρ ◦Φπ ◦ π)(a)

∀a ∈ A and so, ϕ = ρ ◦ (Φπ ◦ π). Now Φπ ◦ π : A → Mn(C) is a surjective
∗-homomorphism of C∗-algebras and ρ is a pure functional on Mn(C), therefore,
ρ ◦ (Φπ ◦ π) is a pure functional of A. Hence ϕ ∈ G(A) and so G(A) = G(A).

THEOREM 2.2. Suppose A is a non-unital homogeneous C∗-algebra. Then G(A)
= G(A) ∪ {0}.

Proof. Let ϕ ∈ G(A), then there exists a net (ϕα) in G(A) such that ϕα → ϕ.
Since ϕα ∈ G(A) therefore there exist an irreducible represention πα ∈ Â and
unit vectors ξα, ηα ∈ Hπα such that ϕα = 〈πα(·)ξα, ηα〉. Now either (i) there exists
a compact set K in Â such that (πα) is frequently in Â, or (ii) for every compact
set K in Â eventually πα 6∈ K.

Case (i). In this case (πα) has a subnet in K, but K is compact so there exists
a further subnet (πµ) in K such that πµ converges to some π in K. Now as A
is homogeneous and π ∈ Â, arguing as in the proof of Theorem 3.1, we find a
ρ ∈ G(π(A)) such that ϕµ → ρ ◦ π and hence ϕ = ρ ◦ π ∈ G(A).

Case (ii). For every compact set K ⊆ Â eventually πα 6∈ K, that is, for
every compact set K ⊆ Â there exists α0 such that πα /∈ K for all α > α0.
Choose an a ∈ A and an ε > 0. Then, since the set {σ ∈ Â : ‖σ(a)‖ > ε}
is compact, there exists α0 such that for α > α0, ‖πα(a)‖ < ε. Now since, for
α > α0, |ϕα(a)| = |〈πα(a)ξα, ηα〉| 6 ‖πα(a)‖ < ε therefore lim

α
ϕα(a) = 0 for all

a ∈ A and hence ϕ(a) = 0 for all a ∈ A, that is, ϕ = 0. Thus from cases (i) and (ii)
we get G(A) ⊆ G(A) ∪ {0}. On the other hand since A is non-unital, by 2.12.13
of [6], 0 ∈ P(A) (⊆ G(A)), and therefore G(A) ∪ {0} ⊆ G(A). Consequently, we
get G(A) = G(A) ∪ {0}. Hence the theorem follows.
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Let A =
⊕

n>1
An (c0-sum) where each An is a C∗-algebra. Define Φn : A→ An

by Φn(~a) = an where ~a ∈ A. Let ϕ ∈ A∗n. Define ϕ̃ : A → C by ϕ̃(~a) = ϕ(an),

then ϕ̃ = ϕ ◦Φn. Let G̃(An) := {ϕ̃ : ϕ ∈ G(An)} and G̃(An) := {ϕ̃ : ϕ ∈ G(An)}.
With these notations we have the following lemma:

LEMMA 2.3. Let A =
⊕

n>1
An (c0-sum) where each An is a C∗-algebra. Then:

(i) G(A) =
⋃

n>1
G̃(An);

(ii) G̃(An) = G̃(An).

Proof. (i) Let ϕ ∈ G(An), then ϕ̃ ∈ G(A). Since G̃(An) ⊆ G(A) ∀n > 1,

therefore
⋃

n>1
G̃(An) ⊆ G(A). Conversely, suppose ρ ∈ G(A), then there exists

an irreducible representation π ∈ Â and unit vectors ξ, η ∈ Hπ such that ρ =
〈π(·)ξ, η〉. Define Jn = {~x ∈ A : ~x = (0, 0, . . . , xn, 0, 0, . . .), xn ∈ An}. Then Jn is
a closed two sided ideal of A and for m 6= n, Jm Jn = {0}. Since Jm Jn ⊆ ker π
and ker π is prime so either π(Jm) = {0} or π(Jn) = {0}. This shows that there
is at most one value of n such that π(Jn) 6= {0}. We show that there is a value
of n such that π(Jn) 6= {0}. For this, suppose π(Jn) = {0} for all n > 1 and
choose ~a ∈ A and an ε > 0. Since A is the c0-sum of An’s there exist n0 such
that, for n > n0, ‖an‖ < ε. Hence ‖π(~a)‖ = max

i>n0+1
‖ai‖ 6 ε and so ‖π(~a)‖ = 0

for all~a ∈ A. But this implies that π = 0, a contradiction to the fact that π 6= 0.
Thus there exists precisely one value of n, say N, such that π(JN) 6= {0}. Now
let KN = ker ΦN . Then KN JN = {0}, and so KN ⊆ ker π, (since ker π is prime).
Hence there exists an irreducible representation π0 of AN on Hπ such that π =
π0 ◦ ΦN . Define ϕ = 〈π0(·)ξ, η〉, then ϕ ∈ G(AN). Hence ϕ ◦ ΦN = ρ. That is

ρ = ϕ̃ and so ρ ∈ G̃(AN) and thus ρ ∈ ⋃
n>1

G̃(An). Therefore G(A) ⊆ ⋃
n>1

G̃(An).

Combining the two inclusions we get G(A) =
⋃

n>1
G̃(An).

(ii) We show that G̃(An) ⊆ G̃(An) ⊆ G̃(An). Let ρ ∈ G̃(An), then there
exists a net (ϕα) in G(An) such that ϕ̃α → ρ. Let ~x ∈ ker Φn then since ρ(~x) =
lim ϕ̃α(~x) = lim ϕα(Φn(~x)) = 0, we get ρ(ker Φn) = {0}. Hence there exists
ϕ ∈ A∗n such that ρ = ϕ ◦Φn. Therefore ρ = ϕ̃, and ϕ = lim

α
ϕα ∈ G(An) and so

ρ ∈ G̃(An). Thus G̃(An) ⊆ G̃(An). Conversely, suppose ρ ∈ G̃(An), then there
exists ϕ ∈ G(An) such that ρ = ϕ ◦ Φn, that is, ρ = ϕ̃. Since ϕ ∈ G(An) there
exists a net (ϕα) in G(An) such that ϕα → ϕ. Let~a ∈ A then since ϕ̃α(~a)− ϕ̃(~a) =
(ϕα ◦ Φn)(~a) − (ϕ ◦ Φn)(~a) = ϕα(an) − ϕ(an) → 0 we get ϕ̃α → ϕ̃. Therefore

ϕ̃ ∈ G̃(An). Hence rG̃(An) ⊆ G̃(An).
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In the remaining part of this section we consider the class of C∗-algebras A
satisfying the equivalent conditions of Theorem 1.1. In particular, we consider
those A such that G(A) is closed, and those A such that G(A) = G(A) ∪ {0}.
Such algebras turn out to be the finite (respectively c0) direct sum of homoge-
neous C∗-algebras.

THEOREM 2.4. Suppose a C∗-algebra A is the finite direct-sum of unital homo-

geneous C∗-algebras, that is there exists a positive integer N such that A =
N
∑

n=1
⊕An,

where each An is a unital homogeneous C∗-algebra. Then G(A) = G(A).

Proof. Suppose A ∼=
N
∑

n=1

⊕
An where each An is a unital homogeneous C∗-

algebra. Then by Lemma 2.3 and Theorem 2.1, we get G(A) =
N⋃

n=1
G̃(An) =

N⋃
n=1

G̃(An) =
N⋃

n=1
G̃(An) =

N⋃
n=1

G̃(An) = G(A).

THEOREM 2.5. Let a C∗-algebra A be the c0-sum of homogeneous C∗-algebras,
that is, A=

⊕
n>1

An where each An is either zero or a non-zero homogeneous C∗-algebra

and either at least one An is non-unital or infinitely many An are non-zero. Then
G(A) = G(A) ∪ {0}.

Proof. A non-unital implies that 0 ∈ P(A) ⊆ G(A). Therefore we get
G(A) ∪ {0} ⊆ G(A). Conversely, suppose ψ ∈ G(A) then there exists a net

(ψα) in G(A) such that ψα → ψ. But by Lemma 2.3(i), G(A) =
⋃

n>1
G̃(An), so

ψα ∈ G̃(Anα) for some nα ∈ N and hence there exist some ϕα ∈ G(Anα ) such that
ψα = ϕ̃α (see Section 3.3?????where from?). Now (nα) is a net in (the compact set)
N ∪ {∞}, so by passing to a subnet, say, (nµ) we have: either (i) nµ → ∞, or (ii)
nµ → n for some n ∈ N.

Case (i). In this case for ~x ∈ A and ε > 0 there exists some µ0 such that
for µ > µ0, ‖Φnµ(~x)‖ = ‖xnµ‖ < ε. Therefore ‖Φnµ(~x)‖ → 0. Since |ψµ(~x)| 6
‖Φnµ(~x)‖, therefore |ψµ(~x)| → 0 and hence ψµ → 0. Thus ψ = 0.

Case (ii). In this case there exists a µ0 such that nµ = n for µ > µ0. Therefore
Φnµ(~x) = Φn(~x), for µ > µ0. Let~a ∈ ker Φn then for µ > µ0, |ψµ(~a)| 6 ‖Φn(~a)‖
and so ψ(ker Φn) = {0}. Therefore there exists ϕ ∈ A∗n such that ϕ ◦Φn = ψ (and
‖ϕ‖ = ‖ψ‖). Since for~a ∈ A and µ > µ0, |ϕµ(an)− ϕ(an)| = |ψµ(~a)− ψ(~a)| → 0,
ϕ ∈ G(An). But An is homogeneous, so by Theorem 2.2 G(An) ⊆ G(An) ∪ {0}.
Therefore ϕ ∈ G(An) ∪ {0} and hence ψ ∈ G̃(An) ∪ {0}. But by Lemma 2.3(i)

G(A) =
( ⋃

m>1
G̃(Am

)
. Therefore ψ ∈ G(A) ∪ {0}, and hence G(A) ⊆ G(A) ∪

{0}.
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LEMMA 2.6. A is a continuous trace C∗-algebra and P(A) ⊆ P(A) ∪ {0} if and
only if A ∼=

⊕
n>1

An (c0 -sum) where each An is either zero or non-zero homogeneous

C∗-algebra.

Proof. Suppose A ∼=
⊕

n>1
An (c0-sum) where each An is either zero or non-

zero homogeneous C∗-algebra. Since each An has continuous trace, so does A.
By the proof of Theorem 2.5, G(A) ⊆ G(A) ∪ {0}. Since P(A) ⊆ G(A) and
G(A) ∩QS(A) = P(A), so P(A) ⊆ P(A) ∪ {0}.

Conversely, suppose A has continuous trace and P(A) ⊆ P(A)∪ {0}. Then,
by page 106 line 8 of [6], the self-adjoint ideal

m(A) = {x ∈ A : σ→ tr(σ(x)) is finite and continuous on Â}

is dense in A. Note that A ∈ [FIN], that is, dim(σ) < ∞ ∀σ ∈ Â. For, suppose
dim(σ) is not finite for some σ ∈ Â. Since P(A) ⊇ P(σ(A)) = P(K(Hσ)) and, by
Glimm’s Vector State Space Theorem, P(K(Hσ)) = {tωξ |K(Hσ): t ∈ [0, 1], ‖ξ‖ =
1} we get a contradiction because P(A) ⊆ P(A) ∪ {0}. For n > 1, define Un =
{σ ∈ Â : dim(σ) = n}. We show that Un is clopen. It is enough to show that

every Un is open. Suppose some Un is not open. Then, since
n−1⋃
i=1

Ui is closed by

3.6.3(i) of [6] there exist a π ∈ Un and a net (πα) in Â \
( n⋃

i=1
Ui

)
with πα → π.

Since π is Fell-regular there exists e ∈ A+ and a neighbourhood V of π in Â such
that σ(e) is a rank-one projection for all σ ∈ V. So there exists α0 such that for
α > α0 πα(e) is a rank-one projection (since eventually πα ∈ V).

Choose unit vectors ξ
(α)
1 ∈Hπα and ξ1∈Hπ such that πα(e)ξ

(α)
1 = ξ

(α)
1 , π(e)ξ1

= ξ1. Let ϕ
(α)
1 = 〈πα(·)ξ

(α)
1 , ξ

(α)
1 〉, and ϕ1 = 〈π(·)ξ1, ξ1〉. We show that ϕ

(α)
1 → ϕ 1.

Let x ∈ A, then, since π(e) is a one dimensional projection, π(exe) = ϕ1(x)π(e).
Since |ϕ(α)

1 (x) − ϕ1(x)| 6 ‖πα(exe − ϕ1(x)e)‖ → 0 (as Â is Hausdorff) we get

ϕ
(α)
1 → ϕ1. Now extend ξ

(α)
1 to an orthonormal set {ξ(α)

1 , ξ
(α)
2 , . . . , ξ

(α)
n+1} in Hπα

and define ϕ
(α)
i = 〈πα(·)ξ

(α)
i , ξ

(α)
i 〉 (2 6 i 6 n + 1). The set QS(A) is weak∗-

compact, so by passing to successive subnets we get ϕ
(µ)
i → ϕi for some ϕi ∈

QS(A) (2 6 i 6 n + 1). But ϕi is the limit of pure states so ϕi ∈ P(A) ⊆ P(A) ∪
{0}. Note that ϕi(ker π) = {0} for all i. Therefore there exist a ϕ′i ∈ P(π(A)) ∪
{0} such that ϕi = ϕ′i ◦ π (2 6 i 6 n + 1). Since π is finite-dimensional, ϕi =
ωξi ◦ π where either ‖ξi‖ = 1 or ξi = 0 (2 6 i 6 n + 1).

Suppose that 1 6 i < j 6 n + 1 and that ‖ξi‖ = ‖ξ j‖ = 1. We show
that ξi ⊥ ξ j. Since A has continuous trace, by Theorem 2.3 of [4] the (transition
probability) map 〈·, ·〉 : R(A) → [0, 1], (ϕ, ψ) 7→ 〈ϕ, ψ〉 (where R(A) = {(ϕ, ψ) ∈
P(A)× P(A) : ϕ is equivalent ψ}) is continuous. Therefore (ϕ

(µ)
i , ϕ

(µ)
j )→ (ϕi, ϕj)
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implies 〈ϕ(µ)
i , ϕ

(µ)
j 〉 → 〈ϕi, ϕj〉. But 〈ϕ(µ)

i , ϕ
(µ)
j 〉 = |〈ξ(µ)

i , ξ
(µ)
j 〉|

2 = 0, therefore

〈ϕi, ϕj〉 = 0. Hence |〈ξi, ξ j〉|2 = 0, that is, ξi ⊥ ξ j.
Since dim(π) = n there is space for only n orthogonal pure states. Therefore

at least one ϕj = 0 (j = 2, 3, . . . , n + 1). We have shown that ϕ1 is a pure state of

A such that ϕ
(α)
1 → ϕ1, so we get ϕ

(µ)
1 → ϕ1, ϕ

(µ)
j → 0. Let ζµ =

ξ
(µ)
1 +ξ

(µ)
j√

2
. Define

ψµ = 〈πµ(·)ζµ, ζµ〉 ∈ P(A). Let a ∈ A, and consider

ψµ(a) = 〈πµ(a)ζµ, ζµ〉 =
〈

πµ(a)
( ξ

(µ)
1 + ξ

(µ)
j√

2

)
,
( ξ

(µ)
1 + ξ

(µ)
j√

2

)〉
=

1
2
{ϕ

(µ)
1 (a) + ϕ

(µ)
j (a) + 2Re〈πµ(a)ξ

(µ)
1 , ξ

(µ)
j 〉} →

ϕ1(a)
2

.

This is because |〈πµ(a)ξ
(µ)
1 , ξ

(µ)
j 〉|

2 6 ‖πµ(a∗)ξ j
(µ)‖2 = ϕ

(µ)
j (aa∗) → 0. Thus

ψµ → ϕ1/2 ∈ P(A) ⊆ P(A) ∪ {0} a contradiction as ϕ1/2 is of norm equal to
1/2. Therefore Un is open in Â ∀n > 1 (but possibly empty).

Observe that Un = Â \ ⋃
m 6=n

Um. Then Un is closed ∀n > 1 (and so clopen). So

by 3.2.2 of [6] there exists a closed two sided ideal An of A such that Ân = Un. Ob-
serve that Â =

⋃
n>1

Ân and An 6= {0} ⇔ Ân 6= ∅. If An 6= {0} then, by definition

of Un, An is a homogeneous C∗-algebra of degree n. Let A :=
⊕

n>1
An (c0-sum).

Define χn : Â → [0, 1] by χn(π) =

{
1 if π ∈ Ân,
0 if π 6∈ Ân.

Clearly χn is a bounded con-

tinuous function on Â. Temporarily fix a ∈ A. By the Dauns–Hoffman theorem
there exists an an ∈ A such that

(2.1) π(an) = χn(π)π(a) (π ∈ Â).

If π ∈ Â \ Ân then π(an) = 0 and so an ∈ An. Let ε > 0, then by 3.3.7 of [6] the
set K = {π ∈ Â : ‖π(a)‖ > ε} is compact in Â and hence is covered by a finite
number of open sets in the sequence (Ân). Hence there exists a finite m ∈ N such

that K ⊆
m⋃

n=1
Ân. Let n > m then K ∩ Ân = ∅ so that, by (2.1), when π ∈ Ân we

have ‖π(an)‖ = ‖π(a)‖ < ε. Therefore, we get

(2.2) ‖an‖ = max
π∈Ân

‖π(an)‖ < ε (n > m)

([6], 3.3.6). Define â ∈ A by â(n) = an. Now define θ : A → A by θ(a) = â. It is
routine to check that θ is a ∗-isomorphism from A onto A.

The following well-known lemma is the special case of Lemma 2.6. Recall
that if 0 /∈ P(A) then A is unital ([6], 2.12.13).
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LEMMA 2.7. A is a continuous trace C∗-algebra and P(A) = P(A) if and only if

A =
N
∑

n=1

⊕
An, where each An is either zero or non-zero unital homogeneous C∗-algebra.

THEOREM 2.8. Let A be a unital C∗-algebra. Then the following are equivalent:
(i) P(A) = P(A);

(ii) A ∈ [FIN], Â Hausdorff and at singular points π ∈ Â, π(A) is one dimensional;
(iii) G(A) = G(A) ∪ {λϕ : |λ| 6 1, ϕ ∈ P(A) with GNS representation πϕ

singular};
(iv) Â is Hausdorff and there exists a two sided closed ideal J of A such that J is a

(finite or c0) direct sum of homogeneous C∗-algebras with A/J abelian and its spectrum
(̂A/J) is the set of singular points of Â.

Proof. (i) ⇔ (ii). This follows from Theorem 6 of [8] and the fact that A is
unital.

(ii) ⇒ (iv) Suppose that (ii) holds. The set U of Fell points of Â is always

open and so U = Ĵ for some closed two sided ideal J of A. By construction, (̂A/J)
is the set of singular popints of Â. If π ∈ (̂A/J) then π(A/J) is one dimensional
and hence A/J is abelian.

Since Ĵ is a Hausdorff and every point of Ĵ is a Fell point, J has continuous
trace. Let ϕ ∈ P(J). Then there is a net (ϕα) in P(J) such that ϕα → ϕ in the σ(J∗,
J) topology. For each α there is a unique ψα ∈ P(A) such that ψα|J = ϕα. Since
S(A) is compact, there is a subnet ( ψα(µ)) of (ψα ) convergent to some ψ ∈ S(A).

By (i), ψ ∈ P(A). But ϕ = ψ|J , so ϕ ∈ P(J) ∪ {0}. Thus P(J) ⊆ P(J) ∪ {0}. By
Lemma 2.6, J is a direct sum of homogeneous C∗-algebras.

(iv)⇒ (ii) Suppose that (iv) holds. If π ∈ Ĵ then π is finite dimensional and

if π ∈ (̂A/J) then π is one dimensional. Hence A ∈ [FIN]. If π ∈ Â is singular

then π ∈ (̂A/J) and hence π is one dimensional because A/J is abelian.
(ii)⇒ (iii) Suppose A ∈ [FIN], Â Hausdorff and at singular points π ∈ Â,

π(A) is one dimensional. Let ϕ ∈ G(A) then there exists a net (ϕα) in G(A) such
that ϕα → ϕ. Since ϕα ∈ G(A) there exists πα ∈ Â and unit vectors ξα, ηα ∈ Hπα

such that ϕα = 〈πα(·)ξα, ηα〉. Since A is unital, Â is compact, so by passing to a
subnet (πµ) we get πµ → π for some π ∈ Â. Note that ϕ(ker π) = {0}, because
Â is Hausdorff. Either (i) π is singular or (ii) π is not singular.

Case (i). Suppose π is singular. Then Hπ is one dimensional, and there is a
unique pure state ψ of A associated with π, such that ϕ = λψ for some λ ∈ C
with |λ| 6 1.

Case (ii). Suppose π is not singular. Since A is liminal and Â is Hausdorff,
by [10], π is Fell-regular. So π ∈ Ĵ where J is as in the proof of (ii) ⇒ (iv). As
previously shown in (ii) ⇒ (iv), J is a direct sum of homogeneous C∗-algebras
and so G(J) ⊆ G(J) ∪ {0} by Theorems 2.4 and 2.5. Eventually πµ ∈ Ĵ and
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hence ϕµ|J ∈ G(J). Hence ϕ|J ∈ G(J) ∪ {0}. If ϕ|J ∈ G(J) then ϕ ∈ G(A). If
ϕ(J) = {0} then ϕ(A) = ϕ(J + ker π) = {0} since ker π is a maximal closed two
sided ideal and does not contain J. This completes case (ii).

For the reverse inclusion we need only show that λψ ∈ G(A) where ψ ∈
P(A), πψ is singular and |λ| 6 1, λ ∈ C. Let ϕ = λψ where ψ ∈ P(A) with
πψ singular and |λ| 6 1. Since A ∈ [FIN] and Â is Hausdorff, singularity of πψ

implies that there exists an element e ∈ A+, a neighbourhood U of πψ and a net
(πα) in U convergent to πψ such that:

(a) πψ(e) is the rank one projection fixing ξψ,
(b) σ(e) is a projection for all σ ∈ U, and
(c) rank(πα(e)) > 2 ∀α.

In fact πψ(e) is the identity since πψ is one dimensional. By (c) choose, for
each α, orthogonal unit vctors ξα, ηα ∈ πα(e)Hπα and define

ϕα =
〈

πα(·)ξα, λξα +
√

1− |λ|2ηα

〉
∈ G(A).

Let a ∈ A. Since πψ(e) is the 1-dimensional projection fixing ξψ, πψ(eae) =
ψ(a)πψ(e). Since Â is Hausdorff, the map Â → R+ defined by σ 7→ ‖σ(a)‖ is
continuous for all a ∈ A. Therefore ‖πα(eae− ψ(a)e)‖ → ‖πψ(eae− ψ(a)e)‖ = 0.
Now since ϕα(e) = λ we have

|ϕα(a)− ϕ(a)| = |ϕα(eae− ψ(a)e)| 6 ‖πα(eae− ψ(a)e)‖ → 0.

Hence ϕα → ϕ ∈ G(A). Thus the desired implication follows.
(iii)⇒ (i) Suppose that (iii) holds. Then by Theorem 1.1, every limit of pure

states is a multiple of a pure state. Since A is unital, P(A) = P(A). This completes
the proof.

Here we give an example of a C∗-algebra A for which P(A) is weak*-closed
but G(A) is not. Let A = {x = (xn) : xn ∈ M2(C), xn →n diag(λ(x), λ(x))},
i.e, A is the C∗-algebra of sequences of 2× 2 complex matrices such that xn →n
diag(λ(x), λ(x)). One can see that A is unital and satisfies all of the Glimm’s
conditions, therefore P(A) = P(A). But G(A) * G(A), for example λ/

√
2 ∈

G(A) which is not a pure functional.

COROLLARY 2.9. Suppose A is a C∗-algebra. If G(A) = G(A), then A is a finite
direct-sum of unital homogeneous C∗-algebras.

Proof. Suppose G(A) = G(A), then P(A) = P(A). Hence A is unital, for
otherwise 0 ∈ P(A) a contradiction. Part (ii) and (iii) of Theorem 2.8 implies
that Â is Hausdorff and has no singular points. So A is a C∗-algebra with con-
tinuous trace and by Lemma 2.7, A is a finite direct-sum of unital homogeneous
C∗-algebras.
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THEOREM 2.10. Let A be a non-unital C∗-algebra. Then the following are equiv-
alent:

(i) P(A) ⊆ P(A) ∪ {0} ∪ {λϕ : λ ∈ [0, 1], ϕ ∈ P(A) with GNS representation
πϕ singular};

(ii) G(A) = G(A) ∪ {0} ∪ {λϕ : |λ| 6 1, ϕ ∈ G(A) with GNS representation
π|ϕ| singular};

(iii) Â is Hausdorff and there exists a two sided closed ideal J of A such that J is a
(finite or c0) direct sum of homogeneous C∗-algebras with A/J abelian and its spectrum
(̂A/J) is the set of singular points of Â.

Proof. (i)⇒ (ii) Suppose that (i) holds. Let ψ ∈ G(A) then there exists a net
(ψα) in G(A) such that ψ α → ψ . We have two cases: (i) ψ = 0, and (ii) ψ 6= 0.

Case (i). Suppose ψ = 0. Then ψ belongs to the right hand side of (ii).
Case (ii). Suppose ψ 6= 0. By 1.1 of [5], |ψα| is a pure state of A. Now (|ψα|)

is a net in QS(A) which is compact so by passing to a subnet we can assume that
|ψα| → ρ for some ρ ∈ QS(A). But ρ is the limit of pure states, so ρ ∈ P(A) ⊆
P(A) ∪ {0} ∪ {λϕ : λ ∈ [0, 1], ϕ ∈ P(A) with GNS representation πϕ singular}.

Therefore ρ ∈ P(A) ⊆ G(A) or ρ = 0 or ρ = λϕ where λ ∈ [0, 1], ϕ ∈ P(A)
with GNS πϕ singular. From 3.3 of [7] we have

(2.3) |ψα(a)|2 6 |ψα|(a∗a), ∀a ∈ A.

Now because ψ α → ψ and |ψα| → ρ, the inequality (2.3) is preserved for the
limits:

(2.4) |ψ(a)|2 6 ρ(a∗a), ∀a ∈ A.

Now if ρ ∈ P(A) then by (2.4), |ψ(a)| 6 ‖πρ(a)ξρ‖ hence by page 400 last 4 lines
of [7] there exist a unit vector η ∈ Hπϕ such that ψ(a) = 〈πρ(a)ξρ, η〉 and so ψ ∈
G(A). Since ψ 6= 0, ρ 6= 0 by (2.4). Finally, if ρ = λϕ where λ ∈ [0, 1], ϕ ∈ P(A)
with GNS πϕ singular, then by page 400 last 4 lines of [7] there exist a vector
η ∈ Hπϕ with ‖η‖ 6

√
λ 6 1 such that for a ∈ A,

ψ(a) = 〈πϕ(a)ξϕ, η〉 = ‖η‖〈πϕ(a)ξϕ, η/‖η‖〉 = ‖η‖ω(a)

where ω ∈ G(A) and |ω| = ϕ, so that π|ω| is singular. Note that because ψ

6= 0, ‖η‖ 6= 0. This completes the proof that G(A) is contained in the right hand
side of (ii).

Conversely, let ψ = λϕ where ϕ ∈ G(A) with π|ϕ| singular and |λ| 6 1.
As in the proof of Theorem 2.8 (ii) ⇒ (iii) we obtain that λ|ϕ| = lim ϕα where
ϕα ∈ G(A). There exists a unitary element u ∈ A + C1 such that ϕ = |ϕ|(u ·).
Hence λϕ = lim ϕα(u ·) ∈ G(A). This completes the proof that (ii) holds.

(ii) ⇒ (i). Suppose that (ii) holds. Then by Corollary 1.2, every singular
element of Â is one dimensional. Let ψ ∈ P(A) ⊆ G(A). By (ii), either ψ ∈
G(A) ∩ QS(A) = P(A), or ψ = 0 or ψ = λϕ where 0 < |λ| 6 1, ϕ ∈ G(A) and
π|ϕ| is singular. In the latter case, ϕ = µ|ϕ| where |µ| = 1 because π|ϕ| is one
dimensional. So ψ = λµ|ϕ|. Since ψ > 0 and ψ 6= 0, we get 0 < λµ 6 1.
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(i) ⇒ (iii). Suppose that (i) holds. By Theorem 6 of [8] A is liminal, Â is
Hausdorff and every singular element of Â is one dimensional. As in the proof
of Theorem 2.8 (ii) ⇒ (iv), we obtain a closed two sided ideal J of A with Ĵ the
set of Fell points of Â, hence (̂A/J) is the set of singular points of Â, and A/J is
abelian. Since Ĵ is Hausdorff and each point of Ĵ is Fell, J has continuous trace.

Let ϕ ∈ P(J) then (as in the proof of Theorem 2.8 (ii) ⇒ (iv), ϕ = ψ|J for
some ψ ∈ P(A). By (i), either ψ ∈ P(A) ∪ {0} (in which case ϕ ∈ P(J) ∪ {0})
or ψ = λρ where 0 < λ < 1, ρ ∈ P(A) and πρ is singular. In the latter case,

πρ ∈ (̂A/J) and so ϕ = λ ρ|J = 0. Thus P(J) ⊆ P(J) ∪ {0}. By Lemma 2.6, J is a
direct sum of homogeneous C∗-algebras.

(iii) ⇒ (i). Suppose that (iii) holds. Suppose that ϕ = lim ϕα, where ϕα ∈
P(A) has GNS representation πα. Arguing as in the proof of Theorem 2.2, we see
that either ϕ = 0 or (by passing to a subnet) πα → π for some π ∈ Â. In the
latter case, ϕ(ker π) = {0} because Â is Hausdorff (note that if a ∈ ker π then
‖πα(a)‖ → ‖π(a)‖ = 0).

Suppose that π is singular, i.e, π ∈ (̂A/J). Then π is one dimensional
because A/J is abelian. Thus ϕ is a multiple of a pure state which has a singular
GNS representation.

Finally, suppose that π ∈ Ĵ. Since ϕα|J → ϕ|J , it follows from Theorems 2.4
and 2.5 that ϕ|J ∈ (G(J) ∪ {0}) ∩ QS(J) = P(J) ∪ {0}. If ϕ|J ∈ P(J) then ϕ ∈
P(A). If ϕ|J = {0} then, since J * ker π, ϕ(A) = ϕ(J + ker π) = {0} (by (iii), A
is liminal and so ker π is a maximal closed two sided ideal of A). Thus ϕ = 0.

REMARK 2.11. Note that condition (ii) of Theorem 2.10 is equivalent to
(ii’) G(A) = G(A) ∪ {0} ∪ {λϕ : |λ| 6 1, ϕ ∈ P(A) with πϕ singular}.

The reason for this is that both (ii) and (ii’) force any singular element of Â
to be one dimensional (by Corollary 1.2).

COROLLARY 2.12. Let A be a C∗-algebra. If G(A) = G(A) ∪ {0} then A is the
c0-sum of homogeneous C∗-algebras, that is, A =

⊕
n>1

An where each An is either zero or

a non-zero homogeneous C∗-algebra and either at least one An is non-unital or infinitely
many An are non-zero.

Proof. Suppose G(A) = G(A)∪ {0}, then P(A) ⊆ P(A)∪ {0}. So condition
(i) of Theorem 2.10 holds and hence condition (ii) holds. These two conditions
together with G(A) = G(A) ∪ {0}, tell us that Â has no singular points and so
A is a continouous trace C∗-algebra. Therefore by Lemma 2.6 A is a direct sum
of homogeneous C∗-algebras. If A is a finite direct sum of unital homogeneous
C∗-algebras then, by Theorem 2.4, G(A) = G(A), a contradiction. Hence A has
the required form.

EXAMPLE 2.13. (i) Let A be the C∗-subalgebra of C([0, 1], M2) consisting of
those f for which lim

t→0
f (t) = 0 and lim

t→1
f (t) = diag(ρ( f ), ρ( f )) where ρ( f ) ∈ C.
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Then ρ is a singular point of Â, P(A) = P(A) ∪ {0} (so the inclusion in Theo-
rem 2.10(i) is strict) and G(A) = G(A) ∪ {λρ : |λ| 6 1}.

(i) Let A be the C∗-subalgebra of C([0, 1], M3) consisting of those f for which
lim
t→1

f (t) = diag(ρ( f ), ρ( f ), 0) where ρ( f ) ∈ C Then ρ is a singular point of Â,

P(A) = P(A) ∪ {λρ : 0 6 λ 6 1} (so that equality holds in Theorem 2.10(i)) and
G(A) = G(A) ∪ {λρ : |λ| 6 1}.
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