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ABSTRACT. Let H be a separable Hilbert space with a fixed orthonormal basis
(en)n>1 and B(H) be the full von Neumann algebra of the bounded linear
operators T : H → H. Identifying `∞ = C(βN) with the diagonal operators,
we consider C(βN) as a subalgebra of B(H). For each t ∈ βN, let [δt] be the set
of the states of B(H) that extend the Dirac measure δt. Our main result shows
that, for each t in βN, the set [δt] either lies in a finite dimensional subspace of
B(H)∗ or else it must contain a homeomorphic copy of βN.
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INTRODUCTION

Let H be a separable infinite dimensional Hilbert space with a fixed or-
thonormal basis (en)n>1. Let B(H) be the full von Neumann algebra of the
bounded linear operators T : H → H. Identifying each bounded sequence with
a diagonal operator, we can consider `∞ as a C∗-subalgebra of B(H). The famous
Kadison–Singer problem asks the following:

Problem (KS): Does every pure state of `∞ extend in a unique way to a pure
state of B(H) [14]?

This 50 year old problem has turned out to be a basic problem related to a
dozen other important problems [9]. An apparently more general problem, which
is extensively studied in the papers [4], [5], [6], [8] and [7], is the following one:

Problem (A): Let A ⊆ B be two C∗-algebras, A being a C∗-subalgebra of B.
When does every pure state of A extend in a unique way to a pure state of B?

Problem (KS), and also partially Problem (A), may be generalized as fol-
lows.

Problem (B): Let K be a compact Hausdorff space and Y be a Banach space
such that C(K) ⊆ Y (i.e. Y contains C(K) as a closed subspace). When does every
Dirac measure δt, for t ∈ K extend in a unique way to a functional on Y?
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Hoping that this general problem may shed some light on the Kadison–
Singer problem, we want to study Problem (B) under various hypotheses. Sup-
pose for a moment that, for each t ∈ K, the Dirac measure δt has a unique Hahn–
Banach extension to an element δt of Y∗. Then ‖ δt‖ = 1 and, as one can easily see
(see Lemma 1 in [8]), the mapping t 7→ δt is a weak∗-continuous function from
K into Y∗. Whether δt extends to Y uniquely or not, the set [δt] of all the Hahn–
Banach extensions of δt of norm 1 is a weak∗-compact convex subset of Y∗ and,
for t 6= s, the sets [δt] and [δs] are disjoint. So we can always choose (by the axiom
of choice) an element from each of these sets. In this way we define a "selection
mapping" ρ : K → Y∗ such that for each t ∈ K, ρ(t) is a norm preserving exten-
sion of the functional δt to Y. If such a function ρ exists and is weak∗-continuous,
we say that the pair (K, Y) has the continuous extension property. Of course there
is no reason why such a continuous ρ should exist. However, for instance, if the
multi-valued mapping t 7→ [δt] is lower semi-continuous in the weak∗ topology
of Y∗ then, by Michael’s Selection Theorem [15], such a continuous ρ exists. Also,
if the space Y∗ has the Kadec–Klee property (i.e. on the unit sphere ‖y∗‖ = 1 of Y∗

the weak* and the norm topologies agree) then again such a continuous ρ exists.
The first main result of the paper says that the pair (K, Y) has the contin-

uous extension property if and only if the space C(K) is complemented in the
space Y by a contractive projection. Concerning Problem (B), the main result is
the following: Suppose that the space Y∗ has the property (V) of Pelczynski and
C(K) does not contain an isomorphic copy of `∞. Then the pair (K, Y∗) has the
continuous extension property if and only if K is finite. The third main result of
the paper is the result stated in the abstract.

1. PRELIMINARIES

In this section we recall the definitions of the Banach space properties used
in the subsequent sections. Throughout this section X and Y will be two arbitrary
Banach spaces and T : X → Y a bounded linear operator. We always regard X as
naturally embedded into its second dual X∗∗.

Weakly unconditionally Cauchy series. A series
∞
∑

n=0
xn in the Banach space X is

said to be wuC if, for each f ∈ X∗,
∞
∑

n=0
| f (xn)| < ∞.

Unconditionally converging operators. The operator T : X → Y is said to be
unconditionally converging if it transforms wuC series in X into unconditionally
converging series in Y.

Pelczynski’s property (V). We recall that the space X has property (V) if and
only if any unconditionally converging linear operator from X into any other
Banach space is weakly compact [16]. Any nonreflexive Banach space having the
property (V) contains an isomorphic copy of c0 [16].
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Grothendieck property. The Banach space X is said to have the Grothendieck
property if any weak* convergent sequence in X∗ converges weakly.
Grothendieck proved that the space `∞ has this property [11]. As proved by
Pfitzner [18], actually any von Neumann algebra has the property (V), so the
Grothendieck property as well. We recall that any dual space having the prop-
erty (V) has the Grothendieck property [10].

2. MAIN RESULTS

Let Y be an arbitrary Banach space and K be any compact Hausdorff space.
Suppose that Y contains an isometric copy of the space C(K) so that we can and
do consider C(K) as a subspace of Y. Let us recall that the pair (K, Y) is said to
have the continuous extension property if there is a continuous mapping ρ from K
into (Y∗, w∗) such that, for each t ∈ K, ρ(t) is a norm preserving extension of the
functional δt to an element of Y∗.

The next result gives us some information about the question when the pair
(K, Y) has the continuous extension property.

LEMMA 2.1. Let Y be a Banach space and K be any compact Hausdorff space. Sup-
pose that Y contains C(K) as a closed subspace. Then the pair (K, Y) has the continuous
extension property if and only if there is a contractive projection from Y onto C(K).

Proof. Suppose first that the pair (K, Y) has the continuous extension prop-
erty. So we have a mapping ρ : K → Y∗, which is continuous for the weak* topol-
ogy of Y∗ and such that, for a ∈ C(K), 〈a, ρ(t)〉 = 〈a, δt〉 = a(t). Let ϕ : Y → C(K)
be the mapping defined by

ϕ(y)(t) = 〈y, ρ(t)〉.

The operator ϕ sends the space Y into C(K) since ρ is continuous for the weak*
topology of Y. Moreover ϕ is linear and continuous. The restriction of ϕ to the
subspace C(K) of Y is just the identity mapping on C(K). Hence ϕ is a bounded
projection from Y onto C(K). As ‖ϕ‖ 6 1 (actually ‖ϕ‖ = 1 since ϕ(1K) = IK),
the projection ϕ is a contractive projection.

Conversely, let P : Y → C(K) be a contractive projection. Then its adjoint
P∗ : M(K) → Y∗ is continuous in the weak* topologies of the corresponding
spaces and, for each t ∈ K , ‖P∗(δt)‖ = 1. Since on the Gelfand spectrum {δt :
t ∈ K} of C(K), the weak* topology induced by σ(M(K), C(K)) is the same as
the original topology of K, the mapping ρ : K → Y∗, defined by ρ(t) = P∗(δt), is
continuous from K into (Y∗, w∗). Moreover, for a ∈ C(K),

〈ρ(t), a〉 = 〈P∗(δt), a〉 = 〈δt, P(a)〉 = 〈δt, a〉 = a(t)

so that ρ is a continuous extension mapping. Hence the pair (K, Y) has the con-
tinuous extension property.
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Let us recall that a bounded projection P : Y → Y is said to be an M-
projection if, for each y ∈ Y, ‖y‖ = max{‖P(y)‖, ‖y − P(y)‖}. If P : Y → Y
is an M-projection and Q is any contractive projection on Y with P(Y) = Q(Y)
then P = Q. ([13], p. 2, Proposition 1.2). From this fact the next result follows
immediately.

COROLLARY 2.2. If C(K) is the range of an M-projection P : Y→Y then the
mapping ρ : K→Y∗, ρ(t)=P∗(δt), is the only continuous extension map from K into Y∗.

To proceed we need the following result.

LEMMA 2.3. Let X and Y be two Banach spaces. If the space Y does not contain an
isomorphic copy of `∞ then every bounded linear operator T : X∗ → Y is unconditionally
converging. In particular every bounded linear operator T : X∗ → Y is weakly compact
if X∗ has the property (V) and Y does not contain an isomorphic copy of `∞.

Proof. Suppose that Y does not contain an isomorphic copy of `∞. Let T :
X∗ → Y be a bounded linear operator. If T is not unconditionally converging
then X∗ has a subspace M isomorphic to c0 such that the restriction of T to M is
an isomorphism from M onto T(M) [16]. Let i : M → X∗ be the natural injec-
tion. Then, since M∗∗ is isomorphic to `∞ and Y does not contain an isomorphic
copy of `∞, by a result of Rosenthal ([19], Proposition 1.2), the linear operator
T ◦ P ◦ i∗∗ : M∗∗ → X∗∗∗ → X∗ → Y is weakly compact. Here P : X∗∗∗ → X∗ is
the natural (i.e. restriction) projection. It follows that the restriction of the map-
ping T ◦ P ◦ i∗∗ to M, which is just the restriction of T to M, is weakly compact.
As the restriction of T to M is an isomorphism, it cannot be weakly compact. This
contradiction proves that T is unconditionally converging. The last assertion fol-
lows from the characterizations of the spaces having the property (V) given by
Pelczynski in [16].

As proved by Pfitzner [18], every von Neumann algebra B has the property
(V), hence the Grothendieck property. That is, the weak* convergent sequences
in B∗ converge weakly. Actually it is possible to extract from Pfitzner’s work [18]
a considerably stronger result. Apparently, this result has not been previously
observed.

THEOREM 2.4. Let B be a von Neumann algebra and K a weak* compact subset of
B∗. Then K is weakly compact if and only if it does not contain a homeomorphic copy of
βN.

Proof. If K is weakly compact then it cannot contain a homeomorphic copy
of βN since the weakly compact subsets of any Banach space are weakly sequen-
tially compact whereas the space βN does not contain any convergent infinite
sequence. Conversely, suppose that K does not contain a homeomorphic copy
of βN. Then the space C(K) does not contain an isomorphic copy of `∞ ([12],
p. 67, second Remark). Now let ϕ : B → C(K) be the linear operator defined by
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ϕ(m)( f ) = 〈m, f 〉. Since the space C(K) does not contain an isomorphic copy of
`∞, by the preceding lemma, ϕ is unconditionally converging. Hence, since B has
the property (V), ϕ is weakly compact. For f ∈ K, let δ f be the Dirac measure
at f . Then ϕ∗(δ f ) = f , so that K ⊆ ϕ∗(X). Here X is the closed unit ball of the
Banach space M(K) of the regular Borel measures on K, the dual space of C(K).
It follows that K is weakly compact.

Since Card(βN) = 2c ([21], p. 140) (here c = Card(R)), the preceding the-
orem implies that any weak* compact subset K of the dual of a von Neumann
algebra with Card(K) < 2c is weakly compact. Thus every net ( fα)α∈I in the
dual of a von Neumann algebra B that lies in a weak* compact subset K of B∗

with Card(K) < 2c has a weakly convergent subnet. It is clear from the proof of
the preceding theorem that the conclusion of Theorem 2.4 is not special to von
Neumann algebras. It is also valid for any dual Banach space that has the prop-
erty (V).

It is well-known that c0 is not complemented in `∞. As a general version
of this result we give the following corollary. This result extends some known
results (see e.g. Theorem 6 of [8] and Lemma 3.5 of [7]).

COROLLARY 2.5. Let B be a von Neumann algebra and A be a C∗-subalgebra of
B which does not contain an isomorphic copy of `∞. Then there is a bounded projection
from B onto A if and only if the dimension of A is finite.

Proof. Let P : B → A be a bounded projection of B onto A. As the algebra
A does not contain an isomorphic copy of `∞, by Lemma 2.3 above, P is weakly
compact. Then, since P is onto, by the Open Mapping Theorem, the closed unit
ball of the algebra A is weakly compact. Hence A is reflexive. In particular A is
weakly sequentially complete. Hence, by Proposition 2 of [20], the dimension of
A is finite. The converse is trivial.

For pairs of C∗-algebras (A, B), where A is a C∗ -subalgebra of B, such that
there is a unique projection of norm one from B onto A, we refer the reader to the
papers of Archbold mentioned above.

As a result related to Theorem 2.4 we mention the following result of An-
derson. In Theorem 6 of [2], Anderson proves under the Continuum Hypothesis
that βN has an infinite compact subset K such that, for each t ∈ K, the Dirac mea-
sure δt has a unique state (so pure state) extension δt to B(H). So the mapping
ρ : K → B(H)∗, ρ(t) = δt, is a continuous extension mapping. By the Tietze
Extension Theorem, the restriction mapping from C(βN) onto C(K) is a bounded
surjective linear operator. As this mapping is onto, so not weakly compact, by
Lemma 2.3, the space C(K) contains an isomorphic copy of `∞. Combined with
Theorem 2.4, this result of Anderson shows that although the space C(K) contains
an isomorphic copy of the space `∞, every pure state of C(K) extends in a unique
way to a pure state of B(H). In the opposite direction, again under Continuum
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Hypothesis, C. Akemann and N. Weaver have proved in [1] that there exists a
pure state f ∈ B(H)∗ whose restriction to any masa is not pure.

We also recall the following result. We include a proof for the sake of com-
pleteness.

LEMMA 2.6. Let X and Y be two Banach spaces such that X is a subspace of Y∗.
If X is complemented in Y∗ then X is complemented in its second dual X∗∗.

Proof. Let p be the natural projection from Y∗∗∗ = Y∗ ⊕ Y⊥ onto Y∗. Let
q : Y∗ → X be a bounded projection. We consider X∗∗ as naturally embedded
into the space Y∗∗∗.. Then the composition p ◦ q∗∗ is a projection that sends X∗∗

onto X.

The second main result of this paper is the following result, which is very
closely related to the above mentioned result of Anderson.

THEOREM 2.7. Let Y be a Banach space and K an infinite compact Hausdorff
space. Suppose that Y∗ contains C(K) as a closed subspace. If the pair (K, Y∗) has the
continuous extension property, then the space C(K) is complemented in its second dual.
In particular, in this case the space C(K) has the Grothendieck property and contains an
isomorphic copy of `∞.

Proof. The assertion that C(K) is complemented in its second dual follows
directly from the preceding lemma and Lemma 2.1. As C(K)∗∗ has the
Grothendieck property, any complemented subspace of it, in particular C(K), has
the Grothendieck property. If the space C(K) did not contain an isomorphic copy
of `∞, any bounded projection from C(K)∗∗ onto C(K) would be weakly compact
by Lemma 2.3. This is not possible unless C(K) is reflexive, which is not the case
since K is infinite. This contradiction proves that C(K) contains an isomorphic
copy of `∞.

REMARK 2.8. In [12], Haydon has constructed a compact Hausdorff space
K such that the space C(K) has the Grothendieck property and yet the space C(K)
does not contain an isomorphic copy of `∞. However if the space C(K) contains
an isomorphic copy of `∞ then the compact K contains a homeomorphic copy of
βN ([12], p. 67, second Remark).

REMARK 2.9. Even if a compact Hausdorff space K contains a homeomor-
phic copy of βN, the space C(K) may not contain an isomorphic copy of `∞ (see
p. 67 of [12] and related reference there). So in the unique extension problem of
the pure states of the algebra C(K) to a larger von Neumann algebra, the essen-
tial hypothesis is not the existence of a homeomorphic copy of βN in K but the
existence of an isomorphic copy of `∞ in C(K).
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3. THE KADISON–SINGER PROBLEM

In this section we present a result directly related to the Kadison–Singer
problem. To this end, let H be a separable Hilbert space with a fixed orthonormal
basis (ei)i∈N . For a bounded sequence λ = (λn)n∈N , let Tλ : H → H be the

bounded linear operator that sends an element x =
∞
∑

n=0
xiei of H to the element

Tλ(x) =
∞
∑

n=0
λixiei. The correspondence λ 7→ Tλ is an ∗-isometry from `∞ into

B(H). Identifying `∞ with its image under this isometry, we can and do consider
`∞ as a von Neumann subalgebra of B(H). The mapping D : B(H)→ `∞, defined
by D(T) = (〈T(en), en〉)n∈N , is a contractive positive projection: P(T∗) = P(T)
and P(T∗T) is a positive sequence in `∞. Further, we identify the space `∞ with
the abelian C∗-algebra C(βN). For each t in βN, let δt be the Dirac measure at t.
Then D∗(δt) is given by

D∗(δt)(T) = lim
t
〈T(en), en〉.

The right hand side of the preceding equality denotes the limit of the bounded
sequence (〈T(en), en〉)n∈N over the ultrafilter t . Since the projection D is positive
and contractive, for each t ∈ βN, D∗(δt) is a state (actually pure state [2]) exten-
sion of the Dirac measure δt to B(H) and the function ρ : βN → B(H)∗, defined
by ρ(t) = D∗(δt), is a continuous extension mapping. The projection D induces the
decomposition

B(H) = `∞ ⊕ B0(H),

where B0(H) is the kernel of D. It follows that B(H)∗ decomposes as

B(H)∗ = `∞∗ ⊕ `∞⊥ ,

where `∞⊥ is the annihilator of `∞ in B(H)∗.
Fix now an element t in βN. Since B(H)∗ = `∞∗⊕ `∞⊥ , every extension of δt

to B(H) is of the form ρ = δt + λ. Here λ ∈ `∞⊥ so that λ vanishes on the diagonal
operators. For each t ∈ βN, by [δt] we denote the set of all the state extensions of
δt to the algebra B(H). The subset [δt] of B(H)∗ is convex and weak* compact.

To proceed we need some preliminary results.
Let A be an arbitrary C∗-algebra. By P(A) we denote the set of the pure

states of A. For τ ∈ P(A), let Nτ = {a ∈ A : τ(a∗a) = 0}. The set Nτ is a maximal
modular left ideal and Nτ + N∗τ = Ker(τ), where N∗τ = {a∗ : a ∈ Nτ}. The ideal
Nτ has a bounded right approximate identity consisting of an increasing net of
positive elements in the closed unit ball of Nτ . It follows that the left ideal Nτ

∗∗

(the second dual of Nτ considered as an ideal in the von Neumann algebra A∗∗)
has a right unit, denoted eτ . This eτ is a positive idempotent, so a projection, in
the von Neumann algebra A∗∗. Also, Ker(τ)∗∗ = {m ∈ A∗∗ : 〈m, τ〉 = 0}. Here
Ker(τ)∗∗ denotes the second dual of the Banach space Ker(τ), which is identified
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with the weak*-closure of Ker(τ) in A∗∗. Let 1 denote the unit element of the von
Neumann algebra A∗∗. Since eτ ∈ N∗∗τ , we have 〈eτ , τ〉 = 0. Moreover, since
eτ is self-adjoint and a right unit in N∗∗τ , for m ∈ N∗∗τ , we have m · eτ = m and
eτ · m∗ = m∗. These facts will be used in the proof of the next lemmas. See also
3.3.16 of [17] and Lemma 5 of [8].

LEMMA 3.1. For each τ ∈ P(A), there is a minimal projection e ∈ A∗∗ such that
〈τ, e〉 = 1. If for some other pure state τ′, we have 〈τ′, e〉 = 1, then τ = τ′.

Proof. We fix a pure state τ ∈ P(A). Then, with the above notation, 〈τ, 1−
eτ〉 = 1. Our first aim is to prove that the projection e = 1 − eτ is a minimal
projection in A∗∗. To this end, first observe that, for a ∈ Nτ , we have eae = ea(1−
eτ) = 0. Similarly, for a ∈ Nτ , we have ea∗e = (1− eτ)a∗e = 0. Hence, for each
a ∈ Ker(τ), we have eae = 0. Since the multiplication in A∗∗ is separately weak*-
continuous, by the weak*-density of Ker(τ) into Ker(τ)∗∗, we obtain eme = 0, for
all m ∈ Ker(τ)∗∗. Since A∗∗ = Ker(τ)∗∗ ⊕ Ce, we conclude that e is a minimal
projection in A∗∗.

Now for a ∈ A,

|〈τ, aeτ〉|2 6 〈τ, eτ〉 · τ(a∗a) = 0,

so that 〈τ, aeτ〉 = 0. Hence

〈τ, ae〉 = 〈τ, a(1− eτ)〉 = 〈τ, a〉.

Similarly, 〈τ, ea〉 = 〈τ, a〉. Thus, for all a ∈ A,

〈τ, eae〉 = 〈τ, ea〉 = 〈τ, a〉.

Since 〈τ′, e〉 = 1 by hypothesis, we also have 〈τ′, eae〉 = 〈τ′, a〉. As e is a minimal
projection in A∗∗, for each a ∈ A, we have eae = λe for some constant λ. Hence,
for all a ∈ A,

〈τ, a〉 = 〈τ, eae〉 = λ〈τ, e〉 = λ = λ〈τ′, e〉 = 〈τ′, eae〉 = 〈τ′, a〉,

so that τ = τ′.

LEMMA 3.2. Let B be a unital C∗-algebra and B a C∗-subalgebra of B sharing the
same unit. Consider A∗∗ as a von Neumann subalgebra of B∗∗, and let τ be a pure state
of A. Then, in the notation of the paragraph preceding Lemma 3.1, the set of all states
of B that restrict to τ on A is exactly the set of states f of B such that f (1 − eτ) =
1. Further, this set spans a finite dimensional subspace of B∗ if and only if the space
(1 − eτ)B∗∗(1 − eτ) is finite dimensional. Finally, the pure state τ has unique state
extension to B if and only if the space (1− eτ)B∗∗(1− eτ) is one dimensional (so that
(1− eτ)B∗(1− eτ) contains a unique state).

Proof. Since (1− eτ)A∗∗(1− eτ) is one dimensional (as shown above), then
clearly f (1− eτ) = 1 implies that f |A = τ. The converse is also immediate, and
the rest of the lemma is also clear.
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The third main result of the paper is a dichotomy theorem that classify the
sets [δt] as "small" and "very large".

THEOREM 3.3. For each t ∈ βN, either the set [δt] lies in a finite dimensional
subspace of B(H)∗ or it contains a homeomorphic copy of βN.

Proof. Using Theorem 2.4, it will suffice to show that the set [δt] is not weakly
compact if it does not lie in a finite dimensional subspace of B(H)∗. So suppose
that the set [δt] does not lie in a finite dimensional subspace of B(H)∗. Using
the notation developed in the previous two lemmas, we need only show that
the set [δt] contains a sequence of pure states τn that are orthogonal in the sense
that their supporting projections eτn ’s in B(H)∗∗ are orthogonal. Since the set
[δt] does not lie in a finite dimensional subspace of B(H)∗, by the last lemma,
the space (1 − eτ)B(H)∗(1 − eτ) is infinite dimensional. Thus the set of states
in that subspace spans an infinite dimensional subspace also. Since that set is
weak*-closed (see Proposition 3.11.9 in [17]), the Krein–Milman theorem implies
that the set of pure states in (1 − eτ)B(H)∗(1 − eτ) must also span an infinite
dimensional space. Since each pure state is supported by a minimal projection,
this means that the set of minimal projections spans an infinite dimensional sub-
space of (1− eτ)B(H)∗∗(1− eτ). Consequently there is a sequence of orthogonal
minimal projections in (1− eτ)B(H)∗∗(1− eτ), and each such minimal projection
supports a pure state τn. The theorem follows.

We here remark that in the case where [δt] lies in a finite dimensional sub-
space of B(H)∗, it is norm compact, so norm separable. After this theorem the
following question becomes crucial.

Question. How to prove that, for a given t ∈ βN, the set [δt] is weakly
compact; or equivalently, does not contain a homeomorphic copy of βN?

Now let t ∈ βN be a given ultrafilter and ρ = δt + λ be a pure state of B(H)
extending δt. Then the set

Nρ = {T ∈ B(H) : ρ(T∗T) = 0}

is the closed maximal left ideal associated to the pure state ρ. The ideal Nρ is in
general neither weak*-closed nor has a right unit. But it always has a positive
bounded right approximate identity (Ui)i∈I . For certain δt, (t ∈ βN), as in the
case of δn (n ∈ N), Nρ may have a bounded right approximate identity consisting
of positive diagonal operators. So it is not unreasonable to expect that, for certain
ρ′s, each Ui is a diagonal operator. Actually we have the following result, which
follows directly from Lemma 3.2 above.

THEOREM 3.4. Let t ∈ βN be a given point, and let ρ = δt + λ be a pure state
extension of δt to B(H). Then the maximal left ideal Nρ has a positive bounded right
approximate identity (Ui)i∈I consisting of diagonal operators if and only if the set [δt] is
a singleton so that, in this case, ρ = δt is the unique pure state extension of δt to B(H).
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Next we want to study some topological properties of the union of the
sets [δt].

Let E be the set of those t ∈ βN such that the set [δt] is weakly (so norm)
compact. The set E is nonempty since it contains the set of integers. If the Contin-
uum Hypothesis is assumed, then the set E contains much more than the integers.
Let ∑ =

⋃
t∈E

[δt] be the union of all the sets [δt] for t ∈ E. On the set ∑ we put the

metric induced by the norm of B(H)∗. We denote this metric by d.

LEMMA 3.5. The metric space (∑ , d) is complete and locally compact. Moreover,
for each subset F of E, the set ∑′ =

⋃
t∈F

[δt] is both open and closed in ∑ .

Proof. For t 6= s (t, s in βN), there exists (by Urysohn Lemma) a diagonal
operator T such that ‖T‖ = 1, 〈δt, T〉 = 1 and 〈δs, T〉 = −1. So, for any ρ ∈ [δt]
and ρ′ ∈ [δs],

‖ρ− ρ′‖ > |〈δt + λ− δs − λ′, T〉| = 2.

Hence, the metric distance d(([δt], [δs])) between the closed sets [δt] and [δs] is 2.
It follows that the set ∑ is norm-closed in the space B(H)∗. So, the metric space
(∑ , d) is complete. Moreover, for the same reasons, for any nonempty subset F of
E, the set ∑′ =

⋃
t∈F

[δt] is also closed in B(H)∗, so in ∑ . Since the complement of

∑′ in ∑ is also open in ∑ , the set ∑′ is both open and closed in ∑ . In particular,
for each t ∈ E, the set [δt] is both compact and open in ∑ . This in turn shows that
each ρ ∈ ∑ has a compact neighborhood so that the metric space (∑ , d) is locally
compact.

Let ∑ be as in the preceding lemma. Since the metric space (∑ , d) is locally
compact, we can consider its Stone–Cech compactification β ∑ . Take a t ∈ βN for
which the set [δt] does not contain a homeomorphic copy of βN. Then the set [δt]
is a compact-open subset of ∑ . So it is also compact and open in the space β ∑ .
Hence the characteristic function of each set [δt] is in the space C(β ∑ ). Thus
the space C([δt]) is a complemented ideal of the C∗-algebra C(β ∑), so that we
have a bounded projection P : C(β ∑) → C([δt]). The compact [δt] being metric,
the C∗-algebra C([δt]) is separable. So if the space C(β ∑) has the Grothendieck
property the projection P is weakly compact. This implies that the C∗-algebra
C([δt]) is finite dimensional, which in turn implies that the set [δt] is finite. As
this set is convex, this is possible only if it contains a single point. Thus, if the
space C(β ∑) has the Grothendieck property, then the sets [δt] are one-point sets
whenever they do not contain βN homeomorphically.

Whence the questions

Question 1: Does the space C(β ∑) have the Grothendieck property ?

Question 2: Is the set E closed in βN?
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