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ABSTRACT. Using an action of the unit circle, we construct a conditional ex-
pectation from the tensor product of two graph algebras, C∗(E1) ⊗ C∗(E2),
onto a defined subalgebra B. In addition, we make precise the required hy-
potheses for this subalgebra B to be isomorphic to the graph algebra C∗(E) for
the graph E defined using the Cartesian products of the vertex and edge sets
of the graphs E1 and E2. We study two concrete examples of the conditional
expectation constructed for the general case, and we discuss the ideas of index
and Paschke crossed product by an endomorphism.
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1. INTRODUCTION

In 1977, J. Cuntz first introduced the C∗-algebras known as the Cuntz alge-
bras On for 2 6 n 6 ∞ in [3]. Cuntz C∗-algebras are generated by isometries and
are purely infinite, simple, separable, nuclear C∗-algebras, and these C∗-algebras
have proved very important over the years in classifying all C∗-algebras of this
type (see [9]). In 1980, M. Enomoto and Y. Watatani introduced the notion of C∗-
algebras associated to directed graphs represented by the adjacency matrices (see
[4]), and the concept of graph C∗-algebras has been developed further in interven-
ing years by A. Kumjian, D. Pask, and I. Raeburn, among others (see [6]). In the
past few years, the notion of k-graph algebras has been introduced for k > 2, and
the general topic of graph C∗-algebras has become of such interest that I. Raeburn
gave an entire CBMS lecture series on them, resulting in the reference [8].

In [3], Cuntz showed that each of the C∗-algebras On had a very natural
UHF subalgebra. He constructed directly a conditional expectation from the C∗-
algebra On onto its UHF subalgebra. As the theory of graph C∗-algebras devel-
oped further, it was shown that for finite n, the On were all examples of graph
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algebras. Moreover, the UHF algebras were special cases of so-called “core” sub-
algebras of graph algebras, which were AF-algebras. In this more general setting,
the conditional expectation could be constructed by viewing each core subalge-
bra as the invariant subalgebra under the “gauge” action of the circle group T.
This was an important observation, as in general it is not always true that there
exists a conditional expectation of a C∗-algebra onto a subalgebra. For an exam-
ple of a case in which such a conditional expectation does not exist, see [5]. Once
one has a conditional expectation of a C∗-algebra onto a subalgebra, it is possible
to evaluate the “index” of the subalgebra in the original C∗-algebra, a concept for
C∗-algebras generalizing the Jones index for von Neumann algebras, first defined
by Y. Watatani in [10].

Cuntz showed that the algebras On were generated by the core UHF subal-
gebra and a single isometry that normalized the subalgebra. In [7], W. Paschke
formalized the notion of the crossed product of a C∗-algebra by an endomor-
phism, which was further studied by many authors. In particular, in [2], M. Choda
gave a necessary condition for a crossed product of a simple C∗-algebra by an en-
domorphism to itself to be simple.

All of the above topics aroused our interest in the embedding of a certain
subalgebra isomorphic to Od1d2 into the tensor product Od1 ⊗Od2 . Some natural
questions come to mind. First, is there a conditional expectation from Od1 ⊗Od2
onto this subalgebra? If so, what is the index of the subalgebra in the containing
C∗-algebra? Thirdly, in our setting, canOd1 ⊗Od2 be written as the crossed prod-
uct of this subalgebra by an endomorphism in the sense of Paschke, and if so, is
this related in any way to the work of Choda mentioned above? Finally, if the
answer to any of the above questions is positive, can similar results be obtained
for more general graph algebras? This article will address all of these questions.

Throughout this article, isometries and projections play a key role. Already
in [1], O. Bratteli and P. Jorgensen had noticed that the isometries used to con-
struct the Cuntz algebras On were very relevant to the study of wavelets. From
their work, we know that a set of low and high-pass filters that lead to a wavelet
family for dilation by the positive integer d1 > 1 on L2(R) can be used to de-
fine d1 isometries that satisfy the Cuntz relations for Od1 . Applying the Bratteli-

Jorgensen construction to the dilation matrix
[

d1 0
0 d2

]
on L2(R× R) leads to

a representation of Od1d2 , which is not isomorphic to Od1 ⊗ Od2 . This some-
what counterintuitive result led us to search for a conditional expectation from
Od1 ⊗Od2 to its subalgebra isomorphic to Od1d2 .

In Section 2 of this article we present a general result involving a conditional
expectation from the tensor product of graph algebras to a subalgebra B, which
we define, and we apply this general result to find our desired conditional ex-
pectation from Od1 ⊗Od2 to its subalgebra isomorphic to Od1d2 . In Section 3 we
examine the subalgebra B more closely and investigate when B might be a graph
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algebra itself. In Section 4 we give another example of an application of the gen-
eral result, showing that B is not always a graph algebra of the form defined in
Section 3 . In Section 5 we show that Od1 ⊗Od2 is the crossed product of Od1d2
by an endomorphism, and we conclude in Section 6 with a brief discussion of
the index of a conditional expectation, giving the index of each of the examples
discussed in this article.

2. A CONDITIONAL EXPECTATION ON THE TENSOR PRODUCT OF GRAPH ALGEBRAS

2.1. DEFINITION OF THE ALGEBRA AND SUBALGEBRA. We begin by stating the
definition of conditional expectation used in this paper.

DEFINITION 2.1. Let A be a unital C∗-algebra and B be a unital C∗-sub-
algebra of A. A map φ from A onto B is a projection of norm one if φ is linear,
φ(x) = x for all x ∈ B, and ‖φ(x)‖ 6 ‖x‖.

DEFINITION 2.2. A conditional expectation from a C∗-algebra A onto a C∗-
subalgebra B of A is a projection of norm one from A onto B.

Given an algebra A and a subalgebra B, it is not always true that there is a
conditional expectation ofA onto B. However, if we have a compact group action
on a C∗-algebra, it automatically follows that there is a conditional expectation
onto the fixed point subalgebra. Also, we know that there is a gauge action of
the unit circle on any graph algebra. With these facts in mind, it becomes of
interest, given an algebra A and a subalgebra B, to find, if it exists, the compact
group action on A whose fixed point algebra is exactly B. Then, we will have
a conditional expectation from A onto B. In this paper we examine the case in
which A is the tensor product of two graph algebras.

Now, given a directed graph E = (E0, E1, r, s), the graph algebra C∗(E)
associated to E is the universal C∗-algebra generated by a family of partial isome-
tries and projections satisfying certain properties, making it into a Cuntz–Krieger
E-family. These properties are listed in the following definition.

DEFINITION 2.3. Associate to each e ∈ E1 a partial isometry Se and to each
vertex v ∈ E0 a projection Pv. If this family of partial isometries and projections
{Pv, Se : v ∈ E0, e ∈ E1} satisfies the following relations, then the collection is
called a Cuntz–Krieger E-family:

(i) Se
∗S f = 0 for e, f ∈ E1 with e 6= f .

(ii) Se
∗Se = Ps(e) where s(e) is the source of the edge e.

(iii) If v is not a source, ∑
e∈r−1(v)

SeSe
∗ = Pv.

It has been shown that

C∗(E) = span{SµS∗ν : s(µ) = s(ν)},
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where µ = µ1µ2 · · · µn and ν = ν1ν2 · · · νk are paths in E with the same source,
and Sµ = Sµ1 · · · Sµn . Here we denote the length of the path µ by |µ| = n.
Also, any graph algebra is nuclear, as I. Raeburn remarks in Chapter 4 of [8],
and so C∗(E1) ⊗ C∗(E2) is nuclear for any directed graphs E1 and E2. This im-
plies that there is a unique C∗-norm on the tensor product C∗(E1)⊗ C∗(E2). Let
A = C∗(E1)⊗ C∗(E2) and let B be the subalgebra

(2.1) span{SµS∗ν ⊗ S̃αS̃∗β : s(µ) = s(ν) , s(α) = s(β), |µ| − |ν| = |α| − |β|}.

If we can show that there is an action of the circle group T onAwhose fixed
point subalgebra is B, then we will be able to construct our desired conditional
expectation of A onto B.

2.2. CONSTRUCTION OF THE CONDITIONAL EXPECTATION.

LEMMA 2.4. There exists an action of the circle group T on A whose fixed point
subalgebra is B.

Proof. We know there exists a gauge action γ of T on C∗(E1) such that
γz(Se) = zSe for each edge e of E1 and γz(Pv) = Pv for each vertex v of E1 (see
[8]). Similarly, there is such a gauge action γ′ on C∗(E2). Form the tensor product
of these actions in the usual way, obtaining an action γ⊗ γ′ of the product group
T× T on C∗(E1)⊗ C∗(E2). Let αz be the action of T on A obtained by restricting
γ⊗ γ′ to the closed subgroup {(z, z) : z ∈ T}. Our action acts on the generators
of A as follows:

αz(SµS∗ν ⊗ S̃αS̃∗β) = z|µ|−|ν|−(|α|−|β|)SµS∗ν ⊗ S̃αS̃∗β.

Clearly the generators of A remaining fixed under this action are those elements
SµS∗ν ⊗ S̃αS̃∗β for which |µ| − |ν| = |α| − |β|, that is, the generators of B. So, the
fixed point subalgebra of this action is precisely B.

This action of T onA leads us to the construction of our desired conditional
expectation.

THEOREM 2.5. : There exists a conditional expectation of A onto B.

Proof. Define Φ : A → B by Φ(a) =
∫
T

αz(a) dz. Then

Φ(SµS∗ν ⊗ S̃αS̃∗β) =
∫
T

z|µ|−|ν|−(|α|−|β|)SµS∗ν ⊗ S̃αS̃∗β dz

=
1∫

0

e2πit[|µ|−|ν|−(|α|−|β|)]SµS∗ν ⊗ S̃αS̃∗β dz

=

{
SµS∗ν ⊗ S̃αS̃∗β if |µ| − |ν| = |α| − |β|,
0 else.
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FIGURE 1. Graph Associated with Od

So, Φ maps A onto B.

2.3. EXAMPLE: A CONDITIONAL EXPECTATION FROM Od1 ⊗Od2 ONTO A SUBAL-
GEBRA ISOMORPHIC TO Od1d2 . One application of the above result is to the ten-
sor product of Cuntz algebras. We know that Od

∼= C∗(E) where E is the graph
shown in Figure 1. Then Od1

∼= C∗(E1) and Od2
∼= C∗(E2) where E1 and E2 are

graphs similar to the one shown in Figure 1, with d1 and d2 edges respectively.
Then by Theorem 2.5, there exists a conditional expectation from Od1 ⊗Od2 onto
the subalgebra B defined by (2.1). In this case, B turns out to be isomorphic to a
Cuntz algebra itself, which we know implies it is a graph algebra. This prompts
us to investigate the subalgebra B more closely, which we will do in the next
section. First, let us show that in this case B is isomorphic to a Cuntz algebra.

Since the set of generators of B is closed under the operations of multiplica-
tion and of taking stars, we have

(2.2) B = C∗({SµS∗ν ⊗ S̃αS̃∗β : s(µ) = s(ν) , s(α) = s(β), |µ| − |ν| = |α| − |β|}).

Using the following lemmas, we will show that B ∼= Od1d2 .

LEMMA 2.6. Let B be defined as in (2.2), and let B′ = C∗({Si ⊗ S̃j : 0 6 i 6
d1 − 1, 0 6 j 6 d2 − 1}). Then B = B′.

Proof. Clearly B′ ⊆ B. To show that B ⊆ B′ it needs to be shown that
each element SµS∗ν ⊗ S̃αS̃∗β can be written as a polynomial in the generators {Si ⊗
S̃j} of B′. This can be done by first showing that generating elements of B of
the form SµS∗ν ⊗ Ĩd with |µ| = |ν| and Id ⊗ S̃αS̃β with |α| = |β| can be written
as polynomials in the generating elements of B. The argument extends to an
arbitrary element of the generating set of B.

LEMMA 2.7. B′ ∼= Od1d2 .
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Proof. Each Si is a generator of Od1 and each S̃j is a generator of Od2 . So the
sets {Si : 0 6 i 6 d1− 1} and {S̃j : 0 6 j 6 d2− 1} consist of isometries satisfying
the Cuntz relations for Od1 and Od2 respectively. With this in mind, it can easily
be shown that {Si ⊗ S̃j : 0 6 i 6 d1− 1, 0 6 j 6 d2− 1} is a set of d1d2 isometries
satisfying the Cuntz relations for Od1d2 .

PROPOSITION 2.8. Let A = Od1 ⊗Od2 . The conditional expectation defined in
Theorem 2.5 maps onto a subalgebra of Od1 ⊗Od2 that is isomorphic to Od1d2 .

Proof. This follows immediately from Theorem 2.5 and Lemmas 2.6
and 2.7.

Given graphs E1 and E2, define the graph E as follows: E = (E0, E1, r, s)
where E0 = {(v, w) : v ∈ E0

1 , w ∈ E0
2} and E1 = {(e, f ) : e ∈ E1

1, f ∈ E1
2} with

s(e, f ) = (s(e), s( f )) and r(e, f ) = (r(e), r( f )). Since the edge set of E is simply
the Cartesian product of the edge sets of E1 and E2, E has d1d2 edges, all starting
and ending at the same vertex.

Od1d2
∼= C∗(E), and so with this definition of E , we can see that our condi-

tional expectation maps onto a subalgebra of C∗(E1)⊗ C∗(E2) that is isomorphic
to C∗(E).

The deep results of E. Kirchberg and M. Rørdam (see [9]) show that if gcd(d1
−1, d2 − 1) = 1, then Od1 ⊗Od2 is isomorphic to Ogcd(d1−1,d2−1)+1. With this in
mind, as well as Proposition 2.8, we note the following corollary.

COROLLARY 2.9. Suppose that gcd(d1 − 1, d2 − 1) = 1. There is an embedding
of Od1d2 onto a subalgebra B of Ogcd(d1−1,d2−1)+1 such that there exists a conditional
expectation from Ogcd(d1−1,d2−1)+1 onto B.

3. DISTINCTION BETWEEN B AND C∗(E)

Given the tensor product of graph algebras A, we have proven that there
exists a conditional expectation Φ that maps A onto the subalgebra B defined in
(2.1). Let E1 and E2 be row-finite directed graphs such that every cycle has an
entry, and form the graph E . We would like to investigate the conditions under
which B is isomorphic to C∗(E).

It can be shown that the directed graph E is row-finite and every cycle has
an entry. In addition, we assume that any Cuntz–Krieger E1-family {S, P} of
partial isometries and projections is such that Pv 6= 0 for all v ∈ E0

1. Similarly, we
assume any Cuntz–Krieger E2-family {S̃, P̃} is such that P̃w 6= 0 for all w ∈ E0

2.
We need these conditions so that we can apply the Cuntz–Krieger Uniqueness
Theorem in the upcoming lemmas. We state it here for reference. (See [8]).

THEOREM 3.1 (Cuntz–Krieger Uniqueness Theorem). Suppose that E is a row-
finite directed graph such that every cycle has an entry. Suppose that {Qv, Te : v ∈
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E0, e ∈ E1} is a Cuntz–Krieger E-family in a C∗-algebra B such that Qv 6= 0 for all
v ∈ E0. Then the homomorphism φ : C∗(E)→ B is an injection.

Before we can investigate the question of when B ∼= C∗(E), we need to
verify that C∗(E) is actually isomorphic to a subalgebra of C∗(E1)⊗ C∗(E2).

LEMMA 3.2. There is a Cuntz–Krieger E -system in C∗(E1)⊗ C∗(E2).

Proof. C∗(E) is generated by projections P(v,w) for v ∈ E0
1 , w ∈ E0

2 and
partial isometries S(e, f ) for e ∈ E1

1 , f ∈ E1
2 . C∗(E1)⊗ C∗(E2) is generated by pro-

jections Pv ⊗ P̃w and partial isometries Se ⊗ S̃ f . Let π be a map from the gener-
ating set of C∗(E) to the generating set of C∗(E1)⊗ C∗(E2) such that π(P(v,w)) =
Pv ⊗ P̃w and π(S(e, f )) = Se ⊗ S̃ f . Extend the map π so that it preserves stars.
We claim that the image of π satisfies the three relations found in Definition 2.3,
making it into a Cuntz–Krieger E -family.

We have [π(S(e, f ))]∗[π(S(e, f ))] = [Se
∗ ⊗ S̃∗f ][Se ⊗ S̃ f ] = Se

∗Se ⊗ S̃∗f S̃ f =

Ps(e)⊗ P̃s( f ) = π(P(s(e),s( f )) = π(Ps(e, f )). Therefore, the image of π satisfies 2.3(ii).
Also

∑
{(e, f ):r(e, f )=(v,w)}

[π(S(e, f ))][π(S(e, f ))]
∗ = ∑

{(e, f ):r(e, f )=(v,w)}
(Se ⊗ S̃ f )(Se

∗ ⊗ S̃∗f )

= ∑
{e:r(e)=v}

∑
{ f :r( f )=w}

SeSe
∗ ⊗ S̃ f S̃∗f

= ∑
{e:r(e)=v}

SeSe
∗ ⊗ ∑

{ f :r( f )=w}
S̃ f S̃∗f

= Pv ⊗ P̃w = π(P(v,w)).

Therefore, 2.3(iii) is satisfied.
Now, it remains to be shown that the projections are mutually orthogonal. If

(v1, w1) 6= (v2, w2) then either v1 6= v2 or w1 6= w2. Suppose without loss of gen-
erality that v1 6= v2. We have [π(P(v1,w1))][π(P(v2,w2))] = (Pv1 ⊗ P̃w1)(Pv2 ⊗ P̃w2) =
0⊗ P̃w1 P̃w2 = 0 (since Pv1 and Pv2 are mutually orthogonal, being projections in
the original Cuntz–Krieger E1-family.) Then 2.3(i) is satisfied.

LEMMA 3.3. There is a subalgebra of C∗(E1)⊗ C∗(E2) isomorphic to C∗(E).

Proof. By lemma 3.2, the image of π is a Cuntz–Krieger E system sitting in-
side of C∗(E1)⊗C∗(E2). By the universality of graph algebras, π can be extended
to a homomorphism π : C∗(E)→ C∗(E1)⊗C∗(E2) such that π(P(v,w)) = Pv⊗ P̃w

and π(S(e, f )) = Se ⊗ S̃ f . Then we have an onto homomorphism π : C∗(E) →
π(C∗(E)). If the hypotheses of Theorem 3.1 are satisfied, this homomorphism π
will be injective and we will have that π is an isomorphism. But, recall that E
is a row-finite graph in which every cycle has an entry. Also, we have a Cuntz–
Krieger E -family {π(P(v,w)), π(S(e, f ))} such that π(P(v,w)) = Pv ⊗ P̃w 6= 0, since,
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by assumption, we have that Pv 6= 0 and P̃w 6= 0. Then, our hypotheses for the
Cuntz–Krieger uniqueness theorem are satisfied, and we have that π : C∗(E) →
π(C∗(E)) is an injection. Therefore π is an isomorphism onto its image.

We have a subalgebra of C∗(E1)⊗ C∗(E2) that is isomorphic to C∗(E). It is
our desire to show that if E has no sources, then this subalgebra is precisely B.

PROPOSITION 3.4. Let E1 and E2 be row-finite directed graphs, and form the
graph E . If E has no sources and B is the subalgebra defined in (2.2), then B ∼= C∗(E).

Proof. Recall that C∗(E) ∼= π(C∗(E)), so if we can show that B = π(C∗(E)),
then we are done. Clearly π(C∗(E)) ⊆ B. To show that B ⊆ π(C∗(E)) it needs
to be shown that SµS∗ν ⊗ S̃αS̃∗β can be written as a polynomial in the generators
of π(C∗(E)). This can be done by first showing that generating elements of B of
the form SµS∗ν ⊗ P̃v with |µ| = |ν| for each v ∈ E0

2 and Pv ⊗ S̃αS̃β with |α| = |β|
for each v ∈ E0

1 can be written as polynomials in the generating elements of
π(C∗(E)). With these results it can be shown that this is also true for an arbitrary
element of the generating set of B.

To summarize, we state the following theorem.

THEOREM 3.5. Let E1 and E2 be row-finite directed graphs such that every cycle
has an entry. Let {Pv, Se} be the Cuntz–Krieger E1-system corresponding to C∗(E1) and
let {P̃w, S̃ f } be the Cuntz–Krieger E2-system corresponding to C∗(E2). Further, assume
that Pv 6= 0 for every v ∈ E0

1 and P̃w 6= 0 for every w ∈ E0
2. If E has no sources, then

there exists a conditional expectation from C∗(E1) ⊗ C∗(E2) to a subalgebra B that is
isomorphic to C∗(E). If E has sources, then we can still find a conditional expectation
from C∗(E1)⊗ C∗(E2) onto B, but B need not be isomorphic to C∗(E).

The requirement that E has no sources is necessary for B to be isomorphic
to C∗(E). We give an example in the next section in which B ) C∗(E).

4. AN EXAMPLE WITH SOURCES

Let E be the graph as in Figure 2.
From Proposition 1.18 in [8] we know that C∗(E) ∼= M4(C). We would like

to find a conditional expectation from C∗(E)⊗ C∗(E) ∼= M4(C)⊗M4(C) to the
subalgebra B. As we typically do, let us form the graph E , shown in Figure 3.
This directed graph has sources, namely vertices v2w, v1w, v0w, ww, wv0, wv1,

and wv2. We know that C∗(E) ∼= M10(C) ⊕ C ⊕ C ⊕ C ⊕ C ⊕ C ⊕ C, a space
that is 106-dimensional. So, is the C∗-algebra B, the image of our conditional
expectation, 106-dimensional?

By Theorem 2.5, our conditional expectation Φ maps to the subalgebra B.
Let us find the generators of B by brute force. Table 1 (see the end of the paper)
shows the elementary tensors serving as the generators of our subalgebra B. The
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FIGURE 2. Graph E
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FIGURE 3. Graph E

rows represent (µ, α) and the columns (ν, β), where each block represents the
element SµSν

∗ ⊗ SαSβ
∗. A block is marked with an “X” if it is an element of the

generating set of the subalgebra B, that is if |µ| − |ν| = |α| − |β|. For ease of
notation we write Sei = Si.

From the table, we see that our C∗-algebra B is isomorphic to M10(C) ⊕
M3(C) ⊕ M3(C), which is 118-dimensional. Thus the image of our conditional
expectation is 118-dimensional, but C∗(E) is 106-dimensional. This is an example
of why the requirement in Proposition 3.4 is a necessary one. We have shown
explicitly that, in this case, B 6∼= C∗(E). This is because in the proof of Proposi-
tion 3.4, we use the third Cuntz–Krieger relation 2.3(iii). This relation only applies
to vertices that are not sources.

It is interesting to note that B has precisely 12 more dimensions than C∗(E).
We already know that π(C∗(E)) ⊆ B, and we can show that the 12 extra di-
mensions come exactly from the 12 entries off of the diagonal in the two 3× 3
submatrices in Table 1. For notation, let Table 1 be called matrix A = (aij) where
1 6 i, j 6 16. The extra dimensions of B come from the set of entries

S = {a11,12, a11,13, a12,11, a12,13, a13,11, a13,12, a14,15, a14,16, a15,14, a15,16, a16,14, a16,15}.

Let us show that no element of S is in π(C∗(E)) by showing that the other 106 ele-
ments of the generating set of B are in π(C∗(E)). Since C∗(E) is 106-dimensional,
that will imply that none of the elements of S are in π(C∗(E)).

Vertex v0 is not a source, and the only edge that v0 receives is e0. Then by
2.3(iii), S0S0

∗ ⊗ P̃w P̃∗w = Pv0 ⊗ P̃w P̃∗w. Similarly, S1S1
∗ ⊗ P̃w P̃∗w = Pv1 ⊗ P̃w P̃∗w, and

S2S2
∗ ⊗ P̃w P̃∗w = Pv2 ⊗ P̃w P̃∗w. Also, the elements PwPw

∗ ⊗ S̃0S̃0
∗
, PwPw

∗ ⊗ S̃1S̃1
∗
,
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and PwPw
∗ ⊗ S̃2S̃2

∗
reduce to PwP∗w ⊗ P̃v0 , PwP∗w ⊗ P̃v1 , and PwP∗w ⊗ P̃v2 respec-

tively. Now, π(C∗(E)) is generated by projections {Ps ⊗ P̃t : (s, t) ∈ E0} and
partial isometries {Sg ⊗ S̃h : (g, h) ∈ E1}. Then the six elements on the diagonals
of the two 3× 3 submatrices are in π(C∗(E)). It is interesting to note that these
six elements are in one-to-one correspondence with the isolated points of E . Note
also that each element in the 10× 10 submatrix is either of the form PvPv

∗⊗ P̃v P̃v
∗

or of the form SiSj
∗ ⊗ S̃kS̃l

∗
for 0 6 i, j, k, l 6 2. Clearly Pv ⊗ P̃v is a projection

in π(C∗(E)). Also, SiSj
∗ ⊗ S̃kS̃l

∗
is a product of generators of π(C∗(E)). So, the

elements of the 10× 10 submatrix are in π(C∗(E)). Therefore, all of the 106 ele-
ments of the generating set of π(C∗(E)) have been counted. Thus, the remaining
12 elements in S ⊆ B must not be in π(C∗(E)).

We should remark that, in this case, sinceB and C∗(E) are finite-dimensional,
there is an obvious conditional expectation Φ′ from B onto π(C∗(E)). Hence,
Φ′ ◦Φ gives a conditional expectation from C∗(E1)⊗ C∗(E2) onto π(C∗(E)).

5. EXPRESSING Od1 ⊗Od2 AS A CROSSED PRODUCT OF Od1d2 BY AN ENDOMORPHISM

In the process of developing the conditional expectation defined previously,
we came across the very interesting result that it is possible to express Od1 ⊗Od2
as a crossed product of Od1d2 by an endomorphism. The notion of the crossed
product of a C∗-algebra by an endomorphism was introduced by W. Paschke in
[7] and developed further by M. Choda in [2]. In [3], J. Cuntz proved that On is
the crossed product of the core UHF algebra by an endomorphism.

DEFINITION 5.1 (W. Paschke). Let A be a C∗-subalgebra of B(H) whereH is
a separable Hilbert space, and let ω be a non-unitary isometry in B(H) such that
ωAω∗ ⊂ A and ω∗Aω ⊂ A. The map ρ : A → A defined by ρ(a) = ωaω∗ is an
endomorphism of A into itself, and we call the C∗-subalgebra of B(H) generated
by A and ω the spatial or Paschke crossed product of A by the endomorphism ρ. We
will use the notation for such a crossed product as is used in [2]. That is, we will
write the crossed product of A by the endomorphism ρ as A / 〈ρ〉.

For one example of such a crossed product by an endomorphism, we will
cite an example pointed out by W. Paschke in [7]. He observed that Cuntz’s con-
struction showed that any representation of On on a Hilbert space is the spatial
crossed product of a UHF algebra by an endomorphism, where the UHF algebra

in question is
∞⋃

n=1

C∗({SµSν
∗ : |µ| = |ν| = n}). Below we show thatOd1 ⊗Od2 is a

crossed product of Od1d2 by an endomorphism using a similar type of argument.

THEOREM 5.2. Let d1 and d2 be two positive integers greater than or equal to 2.
Let πi : Odi

→ B(Hi) be faithful representations of Odi
on Hi for i = 1, 2. Form

the tensor product representation π1 ⊗ π2 of Od1 ⊗ Od2 on the Hilbert space tensor
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product H1 ⊗ H2. Let B be the subalgebra of Od1 ⊗ Od2 isomorphic to Od1d2 as in
Lemma 2.7. Then π1 ⊗ π2(Od1 ⊗Od2) can be expressed as the Paschke crossed product
of π1 ⊗ π2(B) by an endomorphism.

Proof. For simplicity of notation, we will write π1⊗π2(Od1 ⊗Od2) asOd1 ⊗
Od2 and π1 ⊗ π2(B) as Od1d2 .

Let ρ(a) = ωaω∗ where ω = S0 ⊗ Id. ρ is an endomorphism on Od1d2 . To
see this, note how ρ works on the generators of Od1d2 . Let SµSν

∗ ⊗ S̃αS̃∗β with
|µ| − |ν| = |α| − |β| be an element of the generating set of Od1d2 . (Recall that
Od1d2 is isomorphic to the C∗-algebra linearly generated by such elements.) Then
ρ(SµSν

∗⊗ S̃αS̃∗β) = (S0⊗ Id)(SµSν
∗⊗ S̃αS̃∗β)(S0⊗ Id)∗ = Sµ′Sν′

∗⊗ S̃αS̃∗β where µ′

is the path µ with the edge corresponding to S0 added and similarly for ν′. Then
|µ′| − |ν′| = |µ|+ 1− (|ν|+ 1) = |µ| − |ν| = |α| − |β|. Thus, the image of ρ is
also in our subalgebraOd1d2 and ρ is an endomorphism ofOd1d2 intoOd1d2 . From
this fact, the result that ωOd1d2 ω∗ ⊆ Od1d2 follows.

Also, ω∗Od1d2 ω ⊆ Od1d2 . Observe that ω∗(Si ⊗ S̃j)ω = (S0
∗ ⊗ Id)(Si ⊗

S̃j)(S0 ⊗ Id) = (S0
∗Si ⊗ S̃j)(S0 ⊗ Id). From 2.3(i), S0

∗Si = 0 if i 6= 0 and S0
∗Si =

Id if i = 0. Then, ω∗(Si ⊗ S̃j)ω = 0 if i 6= 0 and ω∗(Si ⊗ S̃j)ω = (Id⊗ S̃j)(S0 ⊗
Id) = S0 ⊗ S̃j if i = 0.

To show thatOd1 ⊗Od2 = Od1d2 / 〈ρ〉, it needs to be shown thatOd1 ⊗Od2 =
C∗(Od1d2 , S0⊗ Id). Od1d2 ⊆ Od1 ⊗Od2 and S0⊗ Id is an element of the generating
set of Od1 ⊗Od2 . Thus C∗(Od1d2 , S0 ⊗ Id) ⊆ Od1 ⊗Od2 .

We now just need to show thatOd1 ⊗Od2 ⊆ C∗(Od1d2 , S0⊗ Id). We proceed
by showing that each of the generators {Si ⊗ Id : 0 6 i 6 d1 − 1} ∪ {Id⊗ S̃j :
0 6 j 6 d2 − 1} is an element of C∗(Od1d2 , S0 ⊗ Id). First, consider the elements
of the form Id⊗ S̃j for 0 6 j 6 d2 − 1 and note that Id⊗ S̃j = (S0 ⊗ Id)∗(S0 ⊗ S̃j)
by 2.3(i). But, (S0 ⊗ Id)∗ = ω∗ and S0 ⊗ S̃j is a generator of Od1d2 . Therefore,
Id⊗ S̃j is a product of elements in C∗(Od1d2 , ω). Next, consider the elements of

the form Si ⊗ Id for 0 6 i 6 d1 − 1. By 2.3(ii), Si ⊗ Id = Si ⊗
d2−1

∑
k=0

S̃kS̃k
∗
. This is

a finite sum and so, using the properties of tensor products, we have Si ⊗ Id =
d2−1

∑
k=0

(Si ⊗ S̃k)(Id ⊗ S̃k)∗. But, the elements Si ⊗ S̃k are generators of Od1d2 and

elements of the form (Id ⊗ S̃k)∗ are in C∗(Od1d2 , ω) since elements of the form
Id⊗ S̃k are in there by the first part. Therefore Si ⊗ Id is a sum of elements in
C∗(Od1d2 , ω). Then, we have Od1 ⊗Od2 = C∗(Od1d2 , S0 ⊗ Id), and so Od1 ⊗Od2
is a crossed product of Od1d2 by an endomorphism.

COROLLARY 5.3. IfOd1 ⊗Od2 is isomorphic toOd, where d = gcd(d1− 1, d2−
1) + 1, then Od can be expressed as the crossed product of Od1d2 by an endomorphism.
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In [2], M. Choda gives conditions on a C∗-algebra A such that the crossed
product A / 〈ρ〉 of A by an endomorphism ρ will be simple. Theorem 5.2 gives an
example of a crossed product of a simple C∗-algebra by an endomorphism such
that the crossed product is also simple.

6. ON THE INDEX OF A CONDITIONAL EXPECTATION

The concept of index was introduced by Y. Watatani, motivated by the suc-
cess of V. Jones for von Neumann algebras. Watatani developed the concepts
of a conditional expectation of a C∗-algebra onto a C∗-subalgebra and the index
of a conditional expectation. Let us discuss the index of each of the examples
of conditional expectations given in this paper. The definition of the index of a
conditional expectation as described in [10] is stated below.

DEFINITION 6.1. Let φ be a conditional expectation from A onto B. A fi-
nite family {(ui, vi) : i = 1, . . . , n} ⊆ A × A is a quasi-basis for the conditional
expectation φ if

n

∑
i=1

uiφ(via) = a =
n

∑
i=1

φ(aui)vi for all a ∈ A.

DEFINITION 6.2. A conditional expectation φ : A → B is of index-finite type
if there exists a quasi-basis for φ. Otherwise we say is is not of index-finite type.

DEFINITION 6.3. If a conditional expectation φ is of index-finite type, then
the index of φ is

Index φ =
n

∑
i=1

uivi.

Y. Watatani has indicated to us in a private communication, [11], that the
conditional expectation φ : Od1 ⊗Od2 → B is not of index-finite type. The con-
ditional expectation in Example 4 is of index-finite type with index 3Id16. In this
paper we constructed a conditional expectation from a tensor product of graph
algebras onto the subalgebra B. It would be of interest to study index in this
general case.
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Pw , Pw S0 , S0 S1 , S0 S2 , S0 S0 , S1 S1 , S1 S2 , S1 S0 , S2 S1 , S2 S2 , S2 S0 , Pw S1 , Pw S2 , Pw Pw , S0 Pw , S1 Pw , S2

Pw , Pw X X X X X X X X X X
S0 , S0 X X X X X X X X X X
S1 , S0 X X X X X X X X X X
S2 , S0 X X X X X X X X X X
S0 , S1 X X X X X X X X X X
S1 , S1 X X X X X X X X X X
S2 , S1 X X X X X X X X X X
S0 , S2 X X X X X X X X X X
S1 , S2 X X X X X X X X X X
S2 , S2 X X X X X X X X X X
S0 , Pw X X X
S1 , Pw X X X
S2 , Pw X X X
Pw , S0 X X X
Pw , S1 X X X
Pw , S2 X X X

TABLE 1. Generators of the Subalgebra B of C∗(E1)⊗ C∗(E2) ∼=
M4(C)⊗M4(C)
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