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operator tuples. These dilations are joint dilations of the families of oper-
ators satisfying relations encoded by the graph structure which we call Λ-
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INTRODUCTION

The starting point of classical dilation theory was the construction of a di-
lation of a contractive operator on a Hilbert space to a unitary by B. Sz.-Nagy
in 1953 [25]. Under a certain minimality condition this dilation is unique up to
unitary equivalence. There exists also a minimal isometric dilation whose adjoint
leaves the original Hilbert space invariant. In particular, this provides a quick
proof of von Neumann’s celebrated inequality for Hilbert space contractions.

There is a connection between Sz.-Nagy’s and Stinespring’s Theorems: a
contraction defines a completely positive map and using this it turns out that
the existence of minimal isometric dilations of contractions can be derived from
Stinespring’s theorem. This idea links dilation theory of contractions to represen-
tations of the Toeplitz algebra and plays a key role in the more recent develop-
ments of dilation theory for tuples of operators.

In 1989 G. Popescu proved in [12] a result analogous to Sz.-Nagy’s for a row-
contraction, that is a (finite or infinite) sequence of contractions (Ti)n

i=1 on a Hilbert
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space H such that
n
∑

i=1
TiT∗i 6 IH. Building on the earlier work of A.E. Frazho

and J. Bunce he showed that each such object can be dilated to a row-isometry,
which in turn provides a representation of the Cuntz algebra On. This may be

regarded as a dilation of the completely positive map X 7→
n
∑

i=1
TiXT∗i . In a series

of further papers G. Popescu unveiled the whole array of connections between
row-contractions, their dilations, operator algebras related to free semigroups on
n-generators, completely positive maps on B(H) and their dilations to endomor-
phisms. This led him to develop a theory which can be justifiably called noncom-
mutative (free) complex analysis (see for example [16] and references therein),
with concrete operators on a full Fock space playing the role of certain classes of
analytic functions; in particular, it allowed to establish a von Neumann inequal-
ity for row contractions. His most important tool is a noncommutative Poisson
transform (introduced in [14] and later used in [4]).

This C∗-algebraic formulation of dilation theory for row contractions has
subsequently also been used to construct dilations of tuples preserving symmetry
conditions. In [2] W. Arveson constructed a universal commuting row contrac-
tion (given by shifts on the symmetric Fock space) and a corresponding Toeplitz
C∗-algebra. He studied dilations of commuting row contractions via dilating the
corresponding completely positive maps to representations of this Toeplitz al-
gebra. Similar theories have been developed for q-commuting tuples by S. Dey
[7] and for tuples verifying conditions analogous to these satisfied by the gen-
erators of Cuntz–Krieger algebras by B.V.R. Bhat, S. Dey and the second named
author [3].

Each algebra occuring in these dilation theories is generated by a family
of operators forming a single row contraction. A very general class of algebras
generated in this way is the class of graph C∗-algebras which has been studied
intensively in recent years. Initially inspired by the Cuntz–Krieger algebras, it
was soon shown to provide a rich source of new examples of C∗-algebras and
also allowed to view and analyse certain known algebras from a new perspective.
An even more general class is the one of higher rank graph algebras introduced
by A. Kumjian and D. Pask in [9]. These were inspired by the higher rank Cuntz–
Krieger algebras of G. Robertson and T. Steger [22]. Graph algebras are usually
defined as certain universal objects or algebras related to groupoids.

Note however that exactly as the Cuntz algebra On is a quotient of the con-
crete Toeplitz-type algebra acting on the full Fock space of Cn, the same remains
true for its graph generalisations; the graph Cuntz-type algebra OΛ arises as a
quotient of a certain concrete algebra of operators TΛ, acting on the L2-space of
the higher rank graph Λ. In this picture On arises from a graph which has one
vertex and n edges. For an exhaustive outline of the theory of the graph alge-
bras we refer to the book [19] and references therein. Note that a rank r-graph
algebra (r ∈ N) can be thought of as an algebra generated by r row contractions
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with specific commutation relations encoded by the higher rank graph. The rel-
evant generators may thus be regarded as higher rank tuples or higher rank row
contractions.

The aim of this paper is to develop a dilation theory in the framework of
higher rank tuples. To stress the dependence on Λ we call the basic objects of
our dilation theory Λ-contractions. Λ-contractions are families of contractions on
a Hilbert space H indexed by paths of Λ encoding the relevant graph structure.
The set of vertices of Λ is understood to induce the decomposition of H into or-
thogonal subspaces, and an operator corresponding to a path λ is assumed to act
nontrivially only between the subspaces corresponding to the source and range
of λ. The additional constraints correspond to the row-contraction-type condi-
tion. If the rank of the graph is greater than one, we may think of edges as having
various colours. Then the conditions defining Λ-contractions encode also certain
commutation relations between the operators corresponding to edges of varying
colours. In the rank-1 case certain dilation results for objects of that type were
established by M.T. Jury and D.W. Kribs in [8]. Their starting point was however
different: putting it in our language they consider a given row contraction and
then look at the class of potential graphs Λ for which the row contraction in ques-
tion may be viewed as a Λ-contraction (the procedure involves incorporating for
each Λ an appropriate family of vertex projections). This led them to introduce a
certain partial ordering on the class of resulting dilations. It is not clear how to
extend their approach to higher-rank cases.

The basic tool for the analysis of Λ-contractions will be a generalisation of
the Popescu–Poisson transform introduced in [14]. Already in that paper the
transform is constructed for certain higher-rank objects but restricted to tensor
products of standard Cuntz (respectively Cuntz–Toeplitz) algebras. As a Λ-con-
traction (of rank r) allows to define r commuting completely positive contrac-
tions, thus defining a canonical semigroup of completely positive maps (σV ), our
dilation problem amounts to finding a particular dilation of this semigroup. It
is known from the classical theory that one cannot expect joint dilations of three
(or more) commuting contractions to hold without any additional assumptions.
This explains why it was necessary in [14] to restrict attention to the families of
operators satisfying the condition (P). We introduce an analogous constraint for
Λ-contractions and call it the Popescu condition (see Definition 1.4). It is shown
that every Λ-contraction satisfying the Popescu condition admits a dilation to a
Toeplitz–Cuntz–Krieger family, which is essentially a family of contractions arising
as a representation of the Toeplitz-type algebra TΛ. Similarly each Λ-isometry
admits a dilation to a Cuntz–Pimsner family, a family of contractions arising as a
representation of the Cuntz-type algebra OΛ. These dilations may be thought of
as joint dilations of (higher rank) tuples satisfying certain commutation relations
in such a way that the commutation relations are preserved. Graph versions of
the Popescu–Poisson transform also allow to establish two types of commutant
lifting theorems, one related to the commutant of a given Λ-contraction V and
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another to the fixed point space of the semigroup of completely positive maps
associated with V . Following the methods used by G. Popescu, K. Davidson and
D. Pitts used for the noncommutative H∞ algebras associated to free semigroups
([13] and [5]), we can further compute the character spaces of the Hardy-type Ba-
nach algebras AΛ and HΛ and show that AΛ is never amenable (when nontriv-
ial). Finally the GNS construction relative to a state on OΛ is given an alternative
description in terms of “cyclic” Λ-isometries, and, as was done in [4] for the stan-
dard Cuntz algebras, purity of the state is characterised in terms of the ergodicity
of the associated semigroup of completely positive maps.

The detailed plan of the paper is as follows. In Section 1 we recall the def-
inition of higher-rank graphs, introduce their associated concrete operator alge-
bras (and comment on relations with the universal ones), define Λ-contractions,
Λ-isometries and the Popescu condition. Section 2 contains the definition and
basic properties of the Toeplitz–Poisson and Cuntz–Poisson transforms includ-
ing a von Neumann inequality for Λ-contractions. In Section 3 we show that the
minimal Stinespring construction for the Toeplitz–Poisson transform associated
with a given Λ-contraction V yields a minimal dilation of V to a Toeplitz–Cuntz–
Krieger family and that if V is a Λ-isometry then the dilation automatically forms
a Cuntz–Pimsner family. Our two different commutant lifting theorems are also
established in this section. Finally Section 4 contains a number of applications
of our Poisson-type transforms. We use them to describe the character spaces
of the algebras AΛ and HΛ, to prove nonamenability of AΛ for all nontrivial
graphs Λ and to characterise pure states on OΛ in terms of certain corresponding
Λ-isometries.

1. NOTATION AND BASIC DEFINTIONS

In this section we begin with recalling the definition of higher-rank graphs,
Toeplitz–Cuntz–Krieger and Cuntz–Pimsner families and related concrete graph
operator algebras. We proceed to introduce the crucial concept of Λ-contractions
and Λ-isometries and discuss the Popescu condition.

HIGHER-RANK GRAPHS. Higher rank graphs were introduced in [9] as a tool for
constructing C∗-algebras generalising higher rank Cuntz–Krieger algebras de-
fined in [22]. In this paper we mostly follow the notation in [19] some of which
we recall briefly.

Let N0 = N ∪ {0}. For r ∈ N the canonical “basis” in Nr
0 will be denoted by

(e1, . . . , er), and we write e =
r
∑

i=1
ei. The componentwise maximum of n, m ∈ Nr

0 is

denoted by n ∨m and we write |n| = n1 + · · ·+ nr. Throughout the paper Λ will
denote a rank-r graph, that is a small category with set of objects Λ0 and shape
functor σ : Λ → Nr (where Nr is viewed as the category with one object and
morphisms Nr

0) satisfying the factorisation property defined in [9]. If n ∈ Nr
0 the set
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of morphisms in Λ of shape n is denoted by Λn. For λ ∈ Λ we write |λ| = |σ(λ)|.
The morphisms in Λ may be thought of as paths in a “multi-coloured” graph
with vertices indexed by the set Λ0. The range and source maps are respectively
denoted by r : Λ → Λ0 and s : Λ → Λ0 (called origin and terminus in [22]). The
factorisation property says that if m, n ∈ Nr

0 then every morphism λ ∈ Λm+n is a
unique product λ = µν of a µ ∈ Λm and ν ∈ Λn, where s(µ) = r(ν). To simplify
the language we will assume that Λ is countable. In fact all the results remain
valid if this assumption is dropped.

A rank-r graph Λ is called finitely aligned if for each λ, µ ∈ Λ the set of
minimal common extensions of λ and µ, that is MCE(λ, µ) := {ν ∈ Λ : ∃α,β∈Λν =
λα = µβ, σ(λα) = σ(λ) ∨ σ(µ)}, is finite. It is called row-finite if for each a ∈ Λ0

and n ∈ Nr
0 the set Λn

a := {λ ∈ Λ : r(λ) = a, σ(λ) = n} of paths of shape n
ending at a is finite. When a, b ∈ Λ0, n ∈ Nr

0, we also write Λn
b,a := {λ ∈ Λ :

r(λ) = a, s(λ) = b, σ(λ) = n}. Finally we call the graph Λ finite if Λn is finite for
any n ∈ Nr

0 (note that it does not mean that Λ is finite as a set). It is immediate
that finite graphs are row-finite, and row-finite graphs are finitely aligned. Λ is
said to have no sources if for each n ∈ Nr

0 and a ∈ Λ0 there exists λ ∈ Λn such that
r(λ) = a, equivalently Λn

a 6= ∅ (there are arbitrarily long paths ending at a). A
weaker condition is the following: Λ is said to be cofinal if for every a ∈ Λ0 there
is λ ∈ Λ with σ(λ) 6= 0 and r(λ) = a.

The following definition was introduced in [20]. Note that we use a different
convention to the one used in that paper when it comes to labelling target and
initial projections of the partial isometries in question (to maintain compatibility
with [19] source and range are exchanged).

DEFINITION 1.1. Suppose that Λ is finitely aligned. A family of partial
isometries {xλ : λ ∈ Λ} in a C∗-algebra B is called a Toeplitz–Cuntz–Krieger Λ-
family if the following are satisfied:

(i) {xa : a ∈ Λ0} is a family of mutually orthogonal projections;
(ii) xλxµ = xλµ if λ, µ ∈ Λ, s(λ) = r(µ);

(iii) x∗λxλ = xs(λ) if λ ∈ Λ;
(iv) if n ∈ Nr

0 \ {0}, a ∈ Λ0 and F ⊂ Λn
a is finite then xa > ∑

λ∈F
xλx∗λ;

(v) x∗µxν = ∑
µα=νβ∈MCE(µ,ν)

xαx∗β for all µ, ν ∈ Λ.

If Λ is row finite and instead of (iv) a stronger condition

xa = ∑
λ∈Λn

a

xλx∗λ

is satisfied for all n ∈ Nr
0 \ {0} and a ∈ Λ0 then {xλ : λ ∈ Λ} is called a Cuntz–

Pimsner Λ-family.
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CONCRETE OPERATOR ALGEBRAS ASSOCIATED WITH Λ. Consider the creation
operators on a Hilbert space l2(Λ) (where Λ is equipped with the counting mea-
sure) defined by

Lλδµ =
{

δλµ if s(λ) = r(µ),
0 if s(λ) 6= r(µ),

λ, µ ∈ Λ.

Further we follow the convention that δλµ := 0 and Lλµ := 0 if s(λ) 6= r(µ). It
is easily seen that all Lλ are partial isometries. If Λ is finitely aligned they form
a Toeplitz–Cuntz–Krieger family (in B(l2(Λ))). The space l2(Λ) may be viewed
as a Fock space associated with the graph Λ. In particular if r = 1 and the graph
Λ has only one vertex with k edges, l2(Λ) is naturally isometrically isomorphic
to the free Fock space over Ck. We will consider the following concrete operator
algebras contained in B(l2(Λ)):

TΛ=C∗({Lλ : λ∈Λ}), AΛ=ALG({I, Lλ : λ∈Λ}), HΛ=ALGw({I, Lλ : λ∈Λ}),

where ALG(S) (respectively, ALGw(S)) denotes the smallest norm (respectively
ultraweakly) closed subalgebra generated by the set S. The algebras above can
be respectively interpreted as noncommutative higher-rank graph versions of the
Toeplitz C∗-algebra, disc algebra, and H∞. Note that TΛ is unital if and only
if the set Λ0 is finite. If this is not the case we will occasionally consider the
natural unitisation T 1

Λ := C∗(I, TΛ). It is important in the sequel to note that
TΛ = Lin{LµL∗ν : µ, ν ∈ Λ} when Λ is finitely aligned. This is an immediate
consequence of equality (iii) in Definition 1.1.

Denote by Pj (j ∈ {1, . . . , r}) the projection onto the span of those δλ for
which σ(λ)j = 0. Note that if Λ is finite then

Pj = I − ∑
λ∈Λ

ej

LλL∗λ = ∑
a∈Λ0

La − ∑
λ∈Λ

ej

LλL∗λ,

so that each Pj belongs to TΛ. In this case we denote by J the ideal of TΛ gener-
ated by all Pj and define the Cuntz-type algebra

OΛ = TΛ/J .

The canonical generators in OΛ, obtained by quotienting from the creation oper-
ators Lλ, will be denoted by sλ. These form a Cuntz–Pimsner Λ-family.

It is natural to ask whether the Toeplitz- and Cuntz-type algebras intro-
duced above coincide with “universal” graph algebras considered in [9], [20]
and [21]. Recall that the latter are defined as universal objects respectively for
Toeplitz–Cuntz–Krieger and Cuntz–Pimsner families. When Λ is finitely aligned,
Corollary 7.7 of [20] implies that TΛ coincides with the corresponding universal
object. For the Cuntz-type algebra the situation is a little more complicated, but if
Λ is finite and has no sources one can exploit in the usual way the gauge unique-
ness theorem. Define first for each z ∈ Tr a unitary Uz ∈ B(l2(Λ)) by the linear



POISSON TRANSFORM FOR HIGHER-RANK GRAPH ALGEBRAS 431

continuous extension of the formula

Uz(δλ) = zσ(λ)δλ, λ ∈ Λ,

where for all z ∈ Tr, n ∈ Nr
0 we write zn := zn1

1 · · · z
nr
r . The formula

αz(x) = UzxU∗z , x ∈ TΛ

is easily seen to define an automorphism of TΛ. As we have αz(Lλ) = zσ(λ)Lλ

for each λ ∈ Λ, it is also easy to see that α yields a (pointwise norm) continuous
action of Tr on TΛ. For Λ finite each αz leaves the ideal J invariant, so that the
action of α descends canonically to OΛ. Now it remains to observe that if Λ has
no sources then each of the generators sa (a ∈ Λ0) is non-zero. Indeed, it is easy
to see that whenever µ, ν, α, β ∈ Λ, and j ∈ {1, . . . , r} then for all γ ∈ Λ such that
σ(γ)j > σ(β)j − σ(α)j

LµL∗νPjLαL∗βδγ = 0.

On the other hand for any n ∈ Nr
0 we can find γ ∈ Λn

a such that Laδγ = δγ.
As the set of finite linear combinations of operators of the form LµL∗νPjLαL∗β is
norm dense in J , we see that d(La,J ) = 1. Theorem 3.4 of [9] implies that OΛ is
isomorphic to the universal object C∗(Λ).

It is clear from the discussion above that J may be viewed as the ideal of
all operators of “finite length in at least one direction” in TΛ. If Λ0 is infinite, TΛ

may not contain any operators of that type. Providing Fock space models for OΛ

becomes more complicated in this situation.

Λ-CONTRACTIONS AND Λ-ISOMETRIES. In Section 3 we will be interested in joint
dilations of families of operators to Toeplitz–Cuntz–Krieger or Cuntz–Pimsner
families. The definitions below encapsulate the conditions we would impose on
the families we expect to dilate.

DEFINITION 1.2. Let H be a Hilbert space. A family V = {Vλ : λ ∈ Λ} of
operators in B(H) is called a Λ-contraction if the following conditions are satisfied:

(i) ∀λ,µ∈Λ,s(λ) 6=r(µ)VλVµ = 0;
(ii) ∀λ,µ∈Λ,s(λ)=r(µ)VλVµ = Vλµ;

(iii) ∀n∈Nr
0

∑
λ∈Λn

VλV∗λ 6 I;

(iv) each Va (a ∈ Λ0) is an orthogonal projection and ∑
a∈Λ0

Va = I.

All infinite sums of Hilbert space operators here and in what follows are
understood in the strong operator topology.

The definition above is not optimal — condition (iv) is in a sense redundant.
If V = {Vλ : λ ∈ Λ} is a family of operators satisfying (i)–(iii) above then con-
ditions (ii) and (iii) imply that each Va for a ∈ Λ0 is a contractive idempotent,
hence a projection. Further (i) shows that VaVb = 0 if b ∈ Λ0 and a 6= b. De-
noting by p the sum ∑

a∈Λ0
Va we see that Vλ = pVλ p (by (i) and (ii)). Therefore

even if the second part of the condition (iv) is not satisfied at the outset, we can
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to all aims and purposes analyse the obvious Λ-contraction on pH. Following the
convention introduced earlier we define Vλµ := 0 if s(λ) 6= r(µ).

DEFINITION 1.3. A Λ-contraction is called a Λ-isometry if the following
holds:

(v) ∀n∈Nr
0

∑
λ∈Λn

VλV∗λ = I.

Following on the theme of non-optimality of the definitions above, in condi-
tions (iii) and (v) above it is enough to assume that the inequalities (respectively,
equalities) hold only for n of the form ej, j ∈ {1, . . . , r}.

We point out that the existence of nontrivial Λ-isometries imposes condi-
tions on the graph Λ. Indeed, ∑

λ∈Λn
VλV∗λ = I for n ∈ Nr

0 implies Va =Va ∑
λ∈Λn

VλV∗λ
= ∑

λ∈Λn
a

VλV∗λ so that if only Va is nonzero, Λn
a 6= ∅. This implies that if H

is nontrivial, then Λ has to be cofinal, and if each of the vertex projections Va
is non-zero then Λ has no sources. Conversely, if Λ has no sources then non-
trivial Λ-isometries exist (just consider the canonical Cuntz–Pimsner Λ-family in
B(l2(Λ))).

One may think of Λ-contractions as generated by r sets of row-contractions,
each corresponding to a “coordinate” of Λ, with certain commutation relations
imposed on them. In particular when the graph Λ is finite, a Λ-contraction is
generated by a finite set of operators satisfying a combination of inequalities and
commutation relations. This is related to the way of seeing higher-rank graphs as
product systems of usual graphs over {1, . . . , r}, as analysed by I. Raeburn and
A. Sims in [20].

DEFINITION 1.4. Let V be a Λ-contraction and define for s ∈ (0, 1) the defect
operator

(1.1) ∆s(V) = ∑
µ∈Λ,σ(µ)6e

(−s2)|µ|VµV∗µ .

The family V is said to satisfy the Popescu condition (or condition (P)) if there
exists ρ ∈ (0, 1) such that for all s ∈ (ρ, 1) the operator ∆s(V) is positive.

Each Λ-isometry V satisfies the Popescu condition, as then for each s ∈
(0, 1) one can easily compute ∆s(V) = ∑

µ∈Λ,σ(µ)6e
(−s2)|µ| I = (1− s2)r I. Another

case when the Popescu condition is automatically satisfied is the one of doubly
commuting Λ-contractions. Here a Λ-contraction V is doubly commuting if and
only if for all i, j ∈ {1, . . . , r}, λ ∈ Λei , µ ∈ Λej , there is

V∗λ Vµ = ∑
α∈Λei ,β∈Λ

ej ,λβ=µα

VβV∗α .
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Indeed, for a doubly commuting Λ-contraction V

∆s(V) =
r

∏
j=1

(
I − s2 ∑

µ∈Λ
ej

VµV∗µ
)

,

and the right hand side of the above expression is positive as the product of com-
muting positive operators for all s ∈ (0, 1).

2. THE POISSON TRANSFORM FOR Λ-CONTRACTIONS

In this section we define and introduce basic properties of the Poisson trans-
form associated to a higher-rank graph which is the main tool to be applied in the
following sections. The techniques of the proofs are similar to the ones in [14], but
the graph formalism not only yields a far-reaching generalisation of the results of
that paper but also allows for more concise, and (in our opinion) more transpar-
ent proofs.

LEMMA 2.1. Let V be a Λ-contraction (on H) and recall the operator ∆s(V) de-
fined by (1.1). Then for any s ∈ (0, 1) the following holds

(2.1) ∑
λ∈Λ

s2|λ|Vλ∆s(V)V∗λ = IH.

In particular if the operator ∆s(V) is positive then the map Ws(V) ∈ B(H; l2(Λ)⊗ H)
defined by

(2.2) Ws(V)(ξ) = ∑
λ∈Λ

δλ ⊗ s|λ|∆s(V)1/2V∗λ ξ

(ξ ∈ H) is an isometry.

Proof. Compute:

∑
λ∈Λ

s2|λ|Vλ∆s(V)V∗λ = ∑
λ∈Λ

s2|λ|Vλ

(
∑

µ∈Λ,σ(µ)6e
(−s2)|µ|VµV∗µ

)
V∗λ

= ∑
λ∈Λ

∑
µ∈Λ,σ(µ)6e

s2(|λ|+|µ|)(−1)|µ|VλµV∗λµ = ∑
γ∈Λ

s2|γ|CγVγV∗γ ,

where Cγ ∈ R (γ ∈ Λ) are certain constants. To determine Cγ we have to consider
all factorisations γ = αµ with σ(µ) 6 e. If σ(γ) = 0, then the only way γ can be
written as the composition of two elements is γ = γγ, so Cγ = (−1)0 = 1.

Suppose now that for some k ∈ {1, . . . , r} and some non-empty set I =
{i1, . . . , ik} ⊂ {1, . . . , r} of indices σ(γ)i > 0 for i ∈ I and σ(γ)j = 0 for j ∈
{1, . . . , r} \ I . Let m ∈ Nr

0, m 6 e. Then γ can be written (in a unique way) as αµ
for some α ∈ Λ and µ ∈ Λm if and only if m 6 ei1 + · · ·+ eik . This implies that

Cγ =
1

∑
i1,...,ik=0

(−1)i1+···+ik = 0.
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Combination of the above shows that

∑
λ∈Λ

s2|λ|Vλ∆s(V)V∗λ = ∑
γ∈Λ0

VγV∗γ = IH.

The second part of the lemma follows from the first.

With the above in hand we are ready to establish the main theorem of this
section.

THEOREM 2.2. Let Λ be finitely aligned and let V be a Λ-contraction (on H)
satisfying the Popescu condition. Then there exists a unique continuous linear map
RV : TΛ → B(H) satisfying

RV (LλL∗µ) = VλV∗µ , λ, µ ∈ Λ.

The map RV will be called the Λ-Poisson transform (associated with V). It is completely
positive and contractive, unital if TΛ is unital. If TΛ is not unital, RV has a unique unital
extension to T 1

Λ , which is also completely positive. In any case RV |AΛ
is multiplicative.

Proof. Let ρ ∈ (0, 1) be such that for all s ∈ (ρ, 1) the operator ∆s(V) is
positive. Define for each such s a map Rs,V : TΛ → B(H) by the formula

Rs,V (x) = Ws(V)∗(x⊗ IH)Ws(V),

where Ws(V) is the isometry defined in the last lemma (note that the above for-
mula obviously makes sense for any x ∈ B(l2(Λ))). It is clear that Rs,V is com-
pletely positive and contractive. Moreover for any µ, ν ∈ Λ

(2.3) Rs,V (LµL∗ν) = s|µ|+|ν|VµV∗ν .

Indeed, let µ, ν ∈ Λ and ξ, η ∈ H. Then, using the convention Vαβ := 0 if s(α) 6=
r(β), we have

〈η, Rs,V (LµL∗ν)ξ〉=〈Ws(V)η, (LµL∗ν ⊗ IH)Ws(V)ξ〉

=
〈

∑
λ∈Λ

δλ⊗s|λ|∆s(V)1/2V∗λ η, (LµL∗ν⊗ IH)∑
γ∈Λ

δγ⊗s|γ|∆s(V)1/2V∗γ ξ
〉

=
〈

∑
λ∈Λ

δλ ⊗ s|λ|∆s(V)1/2V∗λ η, ∑
α∈Λ

δµα ⊗ s|α|+|ν|∆s(V)1/2V∗ναξ
〉

=
〈

∑
β∈Λ

δµβ⊗s|µ|+|β|∆s(V)1/2V∗µβη, ∑
α∈Λ

δµα⊗s|α|+|ν|∆s(V)1/2V∗ναξ
〉

=s|µ|+|ν| ∑
α∈Λ

s2|α|〈∆s(V)1/2V∗µαη, ∆s(V)1/2V∗ναξ〉

=s|µ|+|ν|
〈

V∗µ η,
(

∑
α∈Λ

s2|α|V∗α ∆s(V)Vα

)
V∗ν ξ

〉
.

Now (2.1) implies that the above is actually equal to s|µ|+|ν|〈V∗µ η, V∗ν ξ〉, and the
equality (2.3) is established. As the set {LµL∗ν : µ, ν ∈ Λ} is total in TΛ, it follows
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by standard arguments that for each x ∈ TΛ the limit lim
s→1−

Rs,V (x) exists (in the

norm topology), and moreover the map RV : TΛ → B(H) defined by

RV (x) = lim
s→1−

Rs,V (x), x ∈ TΛ

satisfies all the requirements of the theorem. Uniqueness is again a consequence
of the totality of the set {LµL∗ν : µ, ν ∈ Λ} in TΛ. All the statements concerning
unitality and multiplicativity are now easy to prove.

REMARK 2.3. Note that if we are only interested in the operator algebraAΛ,
to obtain the existence of the completely contractive map RV : AΛ → B(H) with
all the properties above we do not need to assume that Λ is finitely aligned. The
latter condition is only necessary to prove uniqueness in the C∗-case.

Suppose again that Λ is finitely aligned. For each operator polynomial
p(L) ∈ B(`2(Λ)) in noncommuting variables Lµ and L∗λ there exist finitely many
complex coefficients {ακ,ν ∈ C : κ, ν ∈ Λ} such that

(2.4) p(L) = ∑
κ,ν∈Λ

ακ,νLκ L∗ν .

Following [14] for any Λ-contraction on a Hilbert space H we define the operator
p(V) ∈ B(H) by

p(V) = ∑
κ,ν∈Λ

ακ,νVκV∗ν .

The following von Neumann type inequality is now an immediate consequence
of Theorem 2.2. Note that it implies in particular that the definition of p(V) does
not depend on the representation chosen in (2.4).

COROLLARY 2.4. Let Λ be finitely aligned, V be a Λ-contraction satisfying the
Popescu condition and let p be a polynomial in noncommuting variables indexed by Λ×
Λ. Then the following von Neumann type inequality holds:

‖p(V)‖ 6 ‖p(L)‖.
When Λ is finite with no sources and V is a Λ-isometry, the Poisson trans-

form associated to V may be regarded as a map on OΛ:

THEOREM 2.5. Let Λ be finite and without sources and let V be a Λ-isometry.
Then there exists a unique unital completely positive map TV : OΛ → B(H) satisfying

TV (sλs∗µ) = VλV∗µ , λ, µ ∈ Λ.

Proof. It is enough to check that the map RV constructed in the previous
theorem vanishes on the ideal J . To this end consider an operator of the form
xPjy, where x, y ∈ TΛ, j ∈ {1, . . . , r}. We can assume that x = LλL∗ν , y = LαL∗β
(λ, ν, α, β ∈ Λ). Further we can also assume that in fact xPjy = LµPjL∗ν : an op-
erator PjLα is non-zero only if σ(α)j = 0, and then PjLα = LαPj. But then, as
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Pj = I − ∑
γ∈Λ

ej
LγL∗γ, there is

RV (xPjy) = RV
(

LµL∗ν − ∑
γ∈Λ

ej

LµγL∗νγ

)
= VµV∗ν − ∑

γ∈Λ
ej

VµγV∗νγ

= VµV∗ν −Vµ

(
∑

γ∈Λ
ej

VγV∗γ
)

V∗ν = 0.

The following corollary will be of use for the analysis of states on OΛ in
Section 3.

COROLLARY 2.6. Let Λ be finite without sources and let V = {Vλ : λ ∈ Λ} be
a family of operators satisfying conditions (i)–(ii) of Definition 1.2. Let D ∈ B(H) be a
positive operator such that

(2.5) ∀n∈Nr
0 ∑

λ∈Λn
VλDV∗λ = D.

Then there exists a unique completely positive map TV ,D : OΛ → B(H) satisfying

TV ,D(sλs∗µ) = VλDV∗µ , λ, µ ∈ Λ.

Proof. Following [4] in the rank 1 case assume for the moment that D has a
bounded inverse. Consider the Λ-isometry given by the family {D−1/2VλD1/2 :
λ ∈ Λ}. The construction from the previous theorem yields the unital completely
positive map T : OΛ → B(H) such that

T(sλs∗µ) = D−1/2VλDV∗µ D−1/2, λ, µ ∈ Λ.

It is easy to see that the map defined by

TV ,D(x) = D1/2T(x)D1/2, x ∈ OΛ,

satisfies the condition in the corollary.
In the general case we may modify (following [15] in the rank 1 case) the

defect operator and Poisson transform as follows. Define

∆s,D(V)= ∑
µ∈Λ,σ(µ)6e

(−s2)|µ|VµDV∗µ=∑
n6e

(−s2)|n| ∑
µ∈Λn

VµDV∗µ=∑
n6e

(−s2)|n|D=(1−s2)D

which is positive for all s ∈ (0, 1). The same arguments as before show that

∑
λ∈Λ

s2|λ|Vλ∆s,D(V)V∗λ = D

so that Ws,D : H → `2(Λ)⊗ H given by Ws,D(ξ) = ∑
λ∈Λ

δλ ⊗ s|λ|∆1/2
s,DV∗λ ξ verifies

W∗s,DWs,D = D and TV ,D(x) = lim
s→1

W∗s,D(x ⊗ I)Ws,D is the required completely

positive map.

Note that (2.5) may be interpreted as the statement that the operator D is
left invariant by certain natural completely positive maps acting on B(H). This
will be exploited later.
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3. DILATION AND COMMUTANT LIFTING THEOREMS FOR Λ-CONTRACTIONS

In this section we construct (minimal) dilations of Λ-contractions satisfying
the Popescu condition and of Λ-isometries. Related commutant lifting theorems
are also discussed and canonical unital completely positive maps associated to a
given Λ-isometry introduced.

DILATIONS. The Poisson transform in conjunction with the Stinespring Theorem
provides a dilation of Λ-contractions (or Λ-isometries) to Toeplitz–Cuntz–Krieger
(or Cuntz–Pimsner) families. This can be thought of as a dilation of a family of
contractions satisfying certain commutation relations to a family of partial isome-
tries which will not only satisfy the initial commutation relations but also extra
conditions involving their adjoints. As is well known, although the dilation of
a triple of commuting contractions to commuting isometries may not be pos-
sible, it may always be constructed as long as the contractions in question are
doubly commuting. This is reflected in our context by the requirement that the
Λ-contractions we are dilating are supposed to satisfy the Popescu condition.

THEOREM 3.1. Let Λ be finitely aligned and let V be a Λ-contraction on a Hilbert
space H satisfying the Popescu condition. There exists a Hilbert space K ⊃ H and a Λ-
contraction W on K consisting of partial isometries forming a Toeplitz–Cuntz–Krieger
family such that for each λ ∈ Λ

W∗λ |H = V∗λ .

One may assume that K = Lin{WλH : λ ∈ Λ}; under this assumption the familyW is
unique up to unitary equivalence and is called the minimal dilation of V (to a Toeplitz–
Cuntz–Krieger family).

Proof. Consider the minimal Stinespring dilation of the Poisson transform
RV constructed in Theorem 2.2. This provides us with a Hilbert space K, a repre-
sentation π : TΛ → B(K) and an operator V ∈ B(H; K) such that for all x ∈ TΛ

RV (x) = V∗π(x)V

and K = Lin{π(x)Vξ : x ∈ TΛ, ξ ∈ H}. We may assume that V is an isometry, as
even when Λ0 is infinite we can “make” RV and π unital by passing to T 1

Λ . This
allows us to view H as a subspace of K. Define for each λ ∈ Λ

Wλ = π(Lλ).

It is clear that the family {Wλ : λ ∈ Λ} is a Toeplitz–Cuntz–Krieger family, so in
particular a Λ-contraction. Let λ, µ, ν ∈ Λ and ξ, η ∈ H. Then

〈W∗λξ, π(LµL∗ν)η〉 = 〈ξ, WλWµW∗ν η〉 = 〈ξ, WλµW∗ν η〉
= 〈ξ, VλµV∗ν η〉 = 〈V∗λ ξ, VµV∗ν η〉 = 〈V∗λ ξ, π(LµL∗ν)η〉

and by minimality this implies that each W∗λ leaves H invariant and W∗λ |H = V∗λ .
The minimality condition may be therefore written as K = Lin{Wλξ : λ ∈ Λ, ξ ∈
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H}. The uniqueness claim follows since one can easily check that if W ′ is a Λ-
contraction on a Hilbert space K′ satisfying the requirements in the theorem, then
the continuous linear extension of the map Wλξ 7→W ′λξ (λ ∈ Λ, ξ ∈ H) yields the
intertwining unitary from K to K′.

Note that this dilation result in particular subsumes the dilation theorem for
contractive A-relation tuples obtained in [3]. It is also closely connected to general
dilation theory for completely contractive representations of product systems of
C∗-correspondences [24]. For the description of these connections we refer to [23],
where it is in particular established that every rank-2 contraction can be dilated
to a Toeplitz type family.

If V is a Λ-isometry it is natural to expect that it can be dilated to a Cuntz–
Pimsner Λ-family. The theorem below shows that this is automatically verified
for the minimal dilation to a Toeplitz–Cuntz–Krieger Λ-family.

THEOREM 3.2. Assume that Λ is row-finite. Then the minimal dilation of a Λ-
isometry is a Cuntz–Pimsner Λ-family.

Proof. Let V be a Λ-isometry on H. As row-finite higher rank graphs are
finitely aligned and Λ-isometries satisfy the Popescu condition, we can apply
Theorem 3.1 to V to obtain its minimal dilationW on a Hilbert space K ⊃ H. By
minimality it suffices to show the following

(3.1) 〈Wγξ, WaWνη〉 = ∑
λ∈Λn

a

〈WλW∗λWγξ, WaWνη〉

for all γ, ν ∈ Λ, a ∈ Λ0, n ∈ Nr
0 and ξ, η ∈ H. We can assume that r(ν) = a.

Moreover, using the fact thatW is a Toeplitz–Cuntz–Krieger family, we see that
WaWλW∗λ = 0, whenever λ ∈ Λ and r(λ) 6= a (using Definition 1.1(i) and (iii)).
This, together with Definition 1.1(v) implies that the right hand side of (3.1) is
equal to

∑
λ∈Λn
〈W∗λWγξ, W∗λWνη〉 = ∑

λ∈Λn
∑

λα=γβ∈MCE(λ,γ)
〈WαW∗β ξ, W∗λWνη〉

= ∑
λ∈Λn

∑
λα=γβ∈MCE(λ,γ)

〈W∗β ξ, W∗λαWνη〉

= ∑
λ∈Λn

∑
λα=γβ∈MCE(λ,γ)

∑
λαµ=νκ∈MCE(λα,ν)

〈W∗β ξ, WµW∗κ η〉

= ∑
λ∈Λn

∑
λα=γβ∈MCE(λ,γ)

∑
λαµ=νκ∈MCE(λα,ν)

〈W∗βµξ, W∗κ η〉

= ∑
λ∈Λn

∑
λα=γβ∈MCE(λ,γ)

∑
λαµ=νκ∈MCE(λα,ν)

〈V∗βµξ, V∗κ η〉.
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Suppose that σ(γ) = m, σ(ν) = p. Then the factorisation property implies that
the sum above can be rewritten as follows:

∑
λ∈Λn
〈W∗λWγξ, W∗λWνη〉 = ∑

β∈Λn∨m−m ,r(β)=s(γ)
∑

γβµ=νκ∈MCE(γβ,ν)
〈V∗βµξ, V∗κ η〉

= ∑
β∈Λn∨m−m ,r(β)=s(γ)

∑
γδ=νκ∈Λn∨m∨p

〈V∗δ ξ, V∗κ η〉

= ∑
γα′=νβ′∈MCE(γ,ν)

∑
κ′∈Λn∨m∨p−n∨m

〈V∗κ′V
∗
α′ξ, V∗κ′V

∗
β′η〉

= ∑
γα′=νβ′∈MCE(γ,ν)

〈
∑

κ′∈Λn∨m∨p−n∨m
Vκ′V

∗
κ′V
∗
α′ξ, V∗β′η

〉
.

As V is a Λ-isometry we finally obtain

∑
λ∈Λn
〈W∗λWγξ, W∗λWνη〉 = ∑

γα′=νβ′∈MCE(γ,ν)
〈V∗α′ξ, V∗β′η〉.

Using again condition (v) in the definition of a Toeplitz–Cuntz–Krieger family it
is easy to check that the sum above is equal to the expression on the right hand
side of (3.1).

As W is a Cuntz–Pimsner Λ-family, to show that it is a Λ-isometry it is
enough to prove that ∑

a∈Λ0
Wa = IH. This follows immediately from the minimal-

ity condition, as for all γ ∈ Λ, and ξ ∈ H

∑
a∈Λ0

WaWγξ = Wr(γ)Wγξ = Wγξ.

A similar result for rank-2 graphs with one vertex has been established in
Lemma 5.2 of [6]. Theorem 3.2 implies the following corollary.

COROLLARY 3.3. Let Λ be finite and let V be a Λ-isometry on a Hilbert space
H. There exists a Hilbert space K ⊃ H and a Λ-isometry W on K consisting of partial
isometries forming a Cuntz–Pimsner family such that for each λ ∈ Λ

W∗λ |H = V∗λ .

One may assume that K = Lin{WλH : λ ∈ Λ}; under this assumption the familyW is
unique up to unitary equivalence.

Note that if Λ is additionally assumed to have no sources the corollary can
be proved directly along identical lines as Theorem 3.1, this time exploiting the
version of the Poisson transform obtained in Theorem 2.5.

COMMUTANT LIFTING THEOREMS. Our first commutant lifting theorem concerns
dilations of Λ-contractions. It is an immediate consequence of Arveson’s commu-
tant lifting result (Theorem 1.3.1 of [1]) exploiting the way in which the dilations
were constructed (see also [14]). Whenever V is a Λ-contraction on a Hilbert
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space H we will write V ′ = {T ∈ B(H) : ∀λ∈ΛTVλ = VλT}. V ′ is generally a non-
selfadjoint operator algebra, whereas (V ∪ V∗)′ = V ′ ∩ (V∗)′ is a von Neumann
algebra, further by a slight abuse of language called the commutant of V .

THEOREM 3.4. Let Λ be finitely aligned and let V be a Λ-contraction on H sat-
isfying the Popescu condition. Let W be its minimal dilation to a Toeplitz–Cuntz–
Krieger family acting on a Hilbert space K ⊃ H and let P ∈ B(K) denote the or-
thogonal projection onto H. For any X ∈ V ′ ∩ (V∗)′ ⊂ B(H) there exists a unique
X̃ ∈ (W ∪W∗)′ ∩ {P}′ such that X̃|H = X. The correspondence X 7→ X̃ is a normal
∗-isomorphism of the von Neumann algebras (V ∪ V∗)′ and (W ∪W∗ ∪ {P})′.

Before we formulate the second of our commutant lifting theorems we need
to discuss natural families of unital completely positive maps arising from Λ-
isometries, which generalise familiar endomorphisms of B(H) associated with
representations of Cuntz algebras on a Hilbert space H.

DEFINITION 3.5. Suppose that Λ is cofinal and V is a Λ-contraction on a
Hilbert space H. Define for each n ∈ Nr

0 and X ∈ B(H)

σV (n)(X) = ∑
λ∈Λn

VλXV∗λ

(cofinality assures that each Λn is non-empty). Each σV (n) is a completely posi-
tive contraction on B(H) and moreover for all n, m ∈ Nr

0

σV (n + m) = σV (n) ◦ σV (m).

The resulting action of Nr
0 on B(H) will be denoted by σV . It is unital if and only

if V is a Λ-isometry. We also introduce a selfadjoint subspace of operators left
invariant by the action:

Fix σV = {X ∈ B(H) : ∀n∈Nr
0
σV (n)(X) = X}.

Note that Fix σV ⊂
r⋂

j=1
Fix σV (ej) and an operator in

r⋂
j=1

Fix σV (ej) belongs

to Fix σV if and only if it is “diagonal” with respect to the decomposition H =⊕
a∈Λ0

VaH. In fact the inclusion above is an equality except in degenerate cases. As

it is often implicitly used in what follows we formulate it as a lemma.

LEMMA 3.6. Suppose that Λ is cofinal and V is a Λ-contraction on H. Then

Fix σV =
r⋂

j=1
Fix σV (ej).

Proof. Suppose that X ∈ Fix σV (ej) for all j ∈ {1, . . . , r} so that X =
∑

λ∈Λ
ej

VλXV∗λ . Thus we have

∑
a∈Λ0

VaXVa = ∑
λ∈Λ

ej , a∈Λ0

VaVλX(VaVλ)∗ = ∑
λ∈Λ

ej

VλXV∗λ = X,
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so that X = ∑
a∈Λ0

VaXVa = σV (0)(X) and in particular X is diagonal with re-

spect to the decomposition H =
⊕

a∈Λ0
VaH. Moreover, σV (n)(X) = σV (n1e1) ◦ · · · ◦

σV (nrer)(X) = X for all n ∈ Nr
0.

The next lemma generalises a well known result on connections between
the space of fixed points of an endomorphism of B(H) and the commutant of the
corresponding representation of a Cuntz algebra On.

LEMMA 3.7. Suppose that Λ is finite and has no sources. Let (π, K) be a represen-
tation ofOΛ and let V be the Λ-isometry given by Vλ = π(sλ). Then Fix σV = π(OΛ)′.

Proof. Let X ∈ Fix σV and ν ∈ Λ. Then XVν = ∑
λ∈Λσ(ν)

VλXV∗λ Vν = VνX.

Moreover as Fix σV is selfadjoint, we also get XV∗ν = V∗ν X, hence X ∈ π(OΛ)′.
The inclusion π(OΛ)′ ⊂ Fix σV is obvious.

The following lemma is an extension of the well known result concerning
states and GNS representations (see for example Proposition 3.10 in [26]). It fol-
lows from results in Section 1.4 of [1]. We include a short proof for the readers
convenience.

LEMMA 3.8. Let A be a unital C∗-algebra, H be a Hilbert space and suppose we are
given two completely positive maps Ψ, Φ : A→ B(H). Assume that Φ is unital, Φ−Ψ
is completely positive and let Φ = V∗π(·)V be the minimal Stinespring decomposition
of Φ (so that (π, K) is a representation of A, V : H → K is an isometry and K =
Lin{π(a)Vξ : a ∈ A, ξ ∈ H}). Then there exists a unique operator X ∈ π(A)′ ⊂ B(K)
such that

(3.2) Ψ(a) = V∗(Xπ(a))V, for all a ∈ A.

Moreover 0 6 X 6 I.

Proof. Consider the quadratic form on K = Lin{π(a)Vξ : a ∈ A, ξ ∈ H}
given by

B
( k

∑
i=1

π(ai)Vξi

)
=

k

∑
i,j=1
〈ξi, Ψ(a∗i aj)ξ j〉,

k ∈ N, a1, . . . , ak ∈ A, ξ1, . . . ξk ∈ H. Note that as Ψ is completely positive, B is
positive-definite. Moreover, as Φ−Ψ is completely positive∥∥∥ k

∑
i=1

π(ai)Vξi

∥∥∥2
− B

( k

∑
i=1

π(ai)Vξi

)
=

k

∑
i,j=1
〈ξi, (Φ−Ψ)(a∗i aj)ξ j〉 ≥ 0,

so that B is actually well-defined. Its associated sesquilinear form B′ : K×K→ C
is given by

B′
(

k

∑
i=1

π(ai)Vξi,
k

∑
j=1

π(bj)Vηj

)
=

k

∑
i,j=1
〈ξi, Ψ(a∗i bj)ηj〉,
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(k ∈ N, a1, . . . , ak, b1, . . . , bk ∈ A, ξ1, . . . ξk, η1, . . . ηk ∈ H) and represents a bounded
operator X on K. More precisely, there exists a unique X ∈ B(K) such that for all
ζ1, ζ2 ∈ K

〈ζ1, Xζ2〉 = B′(ζ1, ζ2).

It is now elementary to check that X is a positive contraction in π(A)′ satisfying
(3.2).

Note that it is not enough to assume in the lemma above that Φ−Ψ is pos-
itive; it is possible to find examples of completely positive maps Φ, Ψ such that
Φ−Ψ is positive but not completely positive. In such case it is clearly impossible
to have a representation as in (3.2) for a positive X ∈ π(A)′.

We are now ready to state and prove the second of the commutant lifting
theorems in this section. It concerns dilations of Λ-isometries (as opposed to Λ-
contractions). When V is a Λ-isometry on H, Theorem 3.4 implies that the commu-
tant of V is isomorphic to the intersection of the commutant of the representation
of OΛ induced by the minimal dilation of V with the algebra of operators diag-
onal with respect to the decomposition of the dilation space: K = H⊕ (K	 H).
The theorem below shows that we can actually find an alternative representation
of the selfadjoint part of the whole commutant of the afore-mentioned represen-
tation of OΛ. The way to do it is suggested by the Lemma 3.7, which shows that
there is a close connection between the commutants we are interested in and fixed
points of the relevant completely positive maps. As the fixed point subspaces of
completely positive maps do not have to be closed under multiplication, it is nat-
ural that here the identification obtained may be valid only in the category of
operator systems (i.e. a ∗-homomorphism is replaced by an isometric order iso-
morphism). For more discussion on this topic we refer the reader to the paper [4].

THEOREM 3.9. Suppose that Λ is finite without sources. Let V be a Λ-isometry
on a Hilbert space H and let W be its minimal dilation to a Cuntz–Pimsner family on
K. Let P : K → H denote the projection onto H and let (π, K) be the representation of
OΛ determined by W . Then the map X 7→ PXP yields a complete order isomorphism
between the commutant π(OΛ)′ and the operator system Fix σV .

Proof. Suppose that X ∈ π(OΛ)′. To show that PXP ∈ Fix σV notice that by
Corollary 3.3 we have PWλ = PVλP = VλP for all λ ∈ Λ hence

σV (n)(PXP) = ∑
λ∈Λn

VλPXPV∗λ = ∑
λ∈Λn

PWλXW∗λ P = ∑
λ∈Λn

PWλW∗λ XP = PXP

for n ∈ Nr
0.

Conversely suppose that D ∈ Fix σV , and assume first 0 6 D 6 IH. Corol-
lary 2.6 implies the existence of completely positive maps TV ,I−D, TV ,D : OΛ →
B(H) such that

TV ,D(sλs∗µ) = VλDV∗µ , TV ,I−D(sλs∗µ) = Vλ(I − D)V∗µ , λ, µ ∈ Λ.
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It is easy to see that TV ,I−D = TV − TV ,D. Recall that the minimal dilation of
V to a Λ-isometry was achieved via the Stinespring dilation of the map TV . By
Lemma 3.8 there exists a unique operator X ∈ π(OΛ)′ such that 0 6 X 6 IK and

〈ξ, TV ,D(S)η〉 = 〈ξ, Xπ(S)η〉, S ∈ OΛ, ξ, η ∈ H.

Comparing the formulas above yields the equality

〈ξ, VλDV∗µ η〉 = 〈ξ, WλXW∗µ η〉,

for arbitrary λ, µ ∈ Λ and ξ, η ∈ H, so that D = PXP.
The fact that the correspondence X 7→ PXP preserves order and norm when

restricted to respective selfadjoint parts may be now established exactly as in
Proposition 4.1 of [4].

A unital isometric order isomorphism φh between selfadjoint parts of two
operator systems Y1 and Y2 has a unique extension to a complex linear map φ :
Y1 → Y2. It is easy to check that φ is a (Banach space) isomorphism; moreover, as
it is positive and unital, it has to be contractive. The same argument applied to
the inverse of φ shows that actually φ has to be isometric.

It remains to show that all the above properties of the map P 7→ PXP remain
valid when we pass to its matrix liftings mapping Mn(π(OΛ)′) → Mn(Fix σV )
(n ∈ N).

To this end fix n ∈ N and consider the Λ-contraction V (n) on H⊕n defined by
V(n)

λ = Vλ ⊕ · · · ⊕Vλ, (λ ∈ Λ). The minimal dilation of V (n) to a Cuntz–Pimsner
family can be identified with the Λ-contraction W (n). Let P(n) : K⊕n → H⊕n be
the relevant orthogonal projection and let π(n) denote the representation ofOΛ on
K⊕n associated withW (n). From the first part of the proof it follows that the map
X(n) 7→ P(n)X(n)P(n) is an isometric unital order isomorphism of (π(n)(OΛ))′

and Fix σV (n) . It remains to note that actually (π(n)(OΛ))′ = (In ⊗ π(OΛ))′ =
Mn ⊗ π(OΛ)′, Fix σV (n) = Mn(Fix σV ) and the map X(n) 7→ P(n)X(n)P(n) is equal
to the matrix lifting of P 7→ PXP. This ends the proof.

The theorem above is a generalisation of Theorem 5.1 in [4]. Using the meth-
ods identical to the ones of that paper we can establish the following corollary.

COROLLARY 3.10. Let Λ be finite without sources. Suppose that V and Ṽ are
Λ-isometries on a Hilbert space H and let W , W̃ be their respective minimal dilations
to Cuntz–Pimsner families (acting respectively on Hilbert spaces K and K̃). There is a
completely isometric correspondence between the set of intertwiners betweenW and W̃
(i.e. operators U ∈ B(K; K̃) such that for each λ ∈ Λ there is UWλ = W̃λU) and the set
of operators X ∈ B(H; H̃) such that for all n ∈ Nr

0

∑
λ∈Λn

VλXṼ∗λ = X.
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4. APPLICATIONS TO NON-SELFADJOINT HIGHER-RANK GRAPH OPERATOR ALGEBRAS
AS WELL AS STATES ON HIGHER RANK GRAPH ALGEBRAS

In this last section we present several applications of the Poisson-type trans-
forms to the analysis of the structure of the related graph operator algebras. In
particular we discuss character spaces of the Hardy-type algebras related to a
higher-rank graph Λ and characterise purity of a state on OΛ in terms of the re-
lated families of unital completely positive maps.

CHARACTER SPACES OF AΛ AND HΛ. We denote by CΛ the set of all Λ-contrac-
tions on the one dimensional Hilbert space C. Note that if V ∈ CΛ, then the
condition (iv) in Definition 1.2 implies that there exists a ∈ Λ0 such that Va = 1,
Vb = 0 for b ∈ Λ0, b 6= a. Moreover condition (ii) forces Vλ = 0 unless r(λ) =
s(λ) = a. This together with the remarks after Definition 1.3 means that each
element of CΛ can be identified with a tuple: (a, (α

(1)
λ )λ∈J1 , . . . , (α

(r)
λ )λ∈Jr ), where

a ∈ Λ0, for j ∈ {1, . . . , r} the sequence of complex numbers (α
(j)
λ )Jj (where the

index set Jj := Λ
ej
a,a) satisfies ∑

λ∈Jj

|α(j)
λ |

2 6 1, and for i, j ∈ {1, . . . , r}, i 6= j, there

are commutation relations between α
(j)
λ and α

(i)
µ enforced by the structure of Λ. To

understand the situation it is essentially sufficient to determine what happens if Λ
has only one vertex (as we are concerned with each a separately). If additionally
r = 2 and Λ is finite we are exactly in the framework considered in [17].

It is easy to see from the above discussion that CΛ equipped with the topol-
ogy of pointwise convergence (that is a net of Λ-contractions V (i) converges to a
Λ-contraction V if and only if V(i)

λ converges to Vλ for each λ ∈ Λ) is a compact
Hausdorff space. Due to the identifications above, CΛ can be actually homeomor-
phically embedded into the disjoint union of Hilbert spaces l2(Jj), j ∈ {1, . . . , r},
with each factor equipped with the weak topology. In particular if Λ is finite,
CΛ may be identified with a subset of Cn for some n ∈ N. The analysis of the
resulting set has been crucial for the full classification of operator algebrasAΛ as-
sociated with a rank-2 graph having one vertex and finitely many edges of each
colour carried out in [10] and [17].

THEOREM 4.1. Suppose that Λ0 is finite. Then the character space of the Banach
algebra AΛ is homeomorphic to CΛ.

Proof. Suppose first that f : AΛ → C is a character and put V f
λ = f (Lλ)

(λ ∈ Λ). We claim that the family V f (where complex numbers are viewed as
operators on C) is a Λ-contraction. The only condition that has to be checked is
whether ∑

λ∈Λn
|V f

λ |
2 6 1 for all n ∈ Nr

0. This is easy to see if we remember that
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every character is completely contractive. Let k ∈ N and λ1, . . . , λk ∈ Λn. Then

( k

∑
i=1
|V f

λi
|2
)1/2

=

∥∥∥∥∥∥∥∥



V f
λ1

0 · · ·
...

... 0
V f

λk
0 · · ·



∥∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥ f (k)


Lλ1 0 · · ·

...
...

...
Lλk 0 · · ·



∥∥∥∥∥∥∥

6

∥∥∥∥∥∥∥
Lλ1 0 · · ·

...
...

...
Lλk 0 · · ·


∥∥∥∥∥∥∥ =

∥∥∥ k

∑
i=1

Lλi L
∗
λi

∥∥∥1/2
6 1.

Given a Λ-contraction V ∈ CΛ, define a functional on Lin{Lλ : λ ∈ Λ} by
fV (Lλ) = Vλ. Corollary 2.4 implies that fV is bounded by 1, and the last statement
in Theorem 2.2 (together with Remark 2.3) shows that its continuous extension to
AΛ is a character.

The correspondences above are in an obvious way inverses of each other
(so that V fV = V , fV f = f ). It is easy to see that the one mapping the character
space into CΛ is continuous. By compactness of the sets in question it has to be
the desired homeomorphism.

When Λ0 is infinite, it may happen that f (La) = 0 for all a ∈ Λ0 and yet
f ∈ A∗Λ, f (1) = 1. The following is an easy observation which can be proved
using the same methods as for the theorem above.

COROLLARY 4.2. Suppose that Λ0 is infinite. The character space of the Banach
algebra AΛ is homeomorphic to the disjoint topological union CΛ ∪ { f0}, where f0 is a
point representing the character given by f0(1) = 1, f0(Lλ) = 0 for λ ∈ Λ.

In the next theorem we characterise the space of all weakly-operator contin-
uous (wo-continuous) characters onHΛ.

THEOREM 4.3. There is a one-to-one correspondence between the wo-continuous
characters onHΛ and those Λ-contractions V in CΛ for which

(4.1) κj := ∑
λ∈Λ

ej

|Vλ|2 < 1

for each j ∈ {1, . . . , r}.
Proof. Note first that the class of wo-continuous characters on HΛ, denoted

further by CΛw, is a subclass of the family of all continuous characters on AΛ. If
Λ0 is infinite, the special character f0 is not wo-continuous, so that it remains to
check which of the elements in CΛ determine characters in CΛw. To this end we
will apply the method from [18].
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Suppose first that V ∈ CΛ satisfies (4.1). Let a ∈ Λ0 be such that Va = 1. As
for each n ∈ Nr

0

∑
λ∈Λn

a,a

|Vλ|2 = ∑
λ1∈Λ

n1e1
a,a

· · · ∑
λr∈Λnrer

a,a

|Vλ1 · · ·Vλr |
2

=
(

∑
λ1∈Λ

e1
a,a

|Vλ1 |
2
)n1
· · ·
(

∑
λr∈Λer

a,a

|Vλr |
2
)nr

= κn1
1 · · · κ

nr
r ,

we have

∑
λ∈Λa,a

|Vλ|2 = ∑
n∈Nr

0

∑
λ∈Λn

a,a

|Vλ|2 = ∑
n∈Nr

0

κn1
1 · · · κ

nr
r =

r

∏
i=1

(1− κi)−1.

Define ξ ∈ l2(Λ) by
ξ = ∑

λ∈Λa,a

Vλδλ

and let ξ̃ = ξ
‖ξ‖ . It is now easy to check that, in the notation of Theorem 4.1,

(4.2) fV = 〈ξ̃, ·ξ̃〉.

Indeed, if µ ∈ Λ \Λa,a then Lµξ = 0 or L∗µξ = 0 and therefore

〈ξ̃, Lµ ξ̃〉 = 0 = fV (Lµ).

If µ ∈ Λa,a then

〈ξ, Lµξ〉 = ∑
λ∈Λa,a

∑
γ∈Λa,a

〈Vλδλ, VγLµδγ〉 = ∑
α∈Λa,a

∑
γ∈Λa,a

〈Vµαδµα, Vγδµγ〉

= ∑
α∈Λa,a

Vµ|Vα|2 = Vµ‖ξ‖2 = f (Lµ)‖ξ‖2.

This shows that the formula (4.2) holds and therefore fV ∈ CΛw.
Suppose now that V ∈ CΛ and fV ∈ CΛw and let again a ∈ Λ0 be such

that Va = 1. By the arguments similar to those of [18] we can show that for
each j ∈ {1, . . . , r} restrictions of fV to the wo-closed algebras generated by I and
{Lλ : λ ∈ Λ

ej
a,a} yield wo-continuous characters on isomorphic copies of the non-

commutative analytic Toeplitz algebras of the type considered in [5]. Theorem 2.3
of that paper implies that V has to satisfy (4.1).

The theorems above may be used to show that many non-selfadjoint higher-
rank graph algebras are not isomorphic [13], [10].

AMENABILITY OF AΛ. To analyse amenability of the operator algebra AΛ we
use the characterisation of bounded derivations with values in C equipped with
a certain natural AΛ-bimodule structure, obtained by G. Popescu in [13] (and
exploited also in [14]). The main difference here is that in our context we can
consider several bimodule structures on C.
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Let a, b∈Λ0. Note that the formulas Va =1, Vλ =0 for λ∈Λ \ {a} define a Λ
contraction V ∈CΛ. We will denote the character fV (see the proof of Theorem 4.1)
simply by fa. Let Ca,b denote C equipped with the following actions of AΛ:

x · λ = fa(x)λ, λ · x = λ fb(x), x ∈ AΛ, λ ∈ C.

It is immediate to check that Ca,b equipped with these actions is a (dual, normal)
Banach bimodule.

Denote Λ1
a,b = {λ ∈ Λ : |σ(λ)| = 1, r(λ) = a, s(λ) = b}.

LEMMA 4.4. Let a, b ∈ Λ0, a 6= b. Every derivation δ : AΛ → Ca,b is given by a
linear extension of the formula

δ(Lλ) = αλ, λ ∈ Λ1
a,b,

δ(Lb) = −δ(La) = αb,

δ(1) = δ(Lλ) = 0, λ ∈ Λ \ {Λ1
a,b ∪ {a, b}},

where αa ∈ C, and the family {αλ ∈ C : λ ∈ Λ1
a,b} is such that ∑

λ∈Λ1
a,b

|αλ|2 <

∞. Conversely, every α ∈ C and square integrable family {αλ : λ ∈ Λ1
a,b} define a

derivation via the formulas above. The same remains true for a = b, except that αb = 0.

Proof. Suppose first that a 6= b and we are given a bounded derivation δ :
AΛ → Ca,b. Then the formulas

0 = δ(0) = δ(LaLb) = δ(La) + δ(Lb),

0 = δ(LcLb) = δ(Lc)1 + 0δ(Lb), c ∈ Λ0, c /∈ {a, b},
δ(Lµν) = δ(Lµ)0 + 0δ(Lν) = 0, µ, ν ∈ Λ \Λ0,

δ(Lµ) = 0Lµ + Lr(µ)0 = 0, µ ∈ Λ, |σ(µ)| = 1, r(µ) 6= a,

δ(Lµ) = Lµ0 + 0Ls(µ) = 0, µ ∈ Λ, |σ(µ)| = 1, s(µ) 6= b,

imply that δ(Lλ) = 0 unless λ ∈ Λ1
a,b ∪ {a, b}. Put αb = δ(Lb), αλ = δ(Lλ) for

λ ∈ Λ1
a,b. Choose j ∈ {1, . . . , r} and consider the set Λ

ej
a,b := {λ ∈ Λej : r(λ) =

a, s(λ) = b}. As δ is bounded we have in particular for each finite set F ⊂ Λ
ej
a,b

and all coefficients γλ ∈ C (λ ∈ F)∣∣∣ ∑
λ∈F

γλαλ

∣∣∣ =
∣∣∣δ( ∑

λ∈F
γλLλ

)∣∣∣ 6 ‖δ‖∥∥∥ ∑
λ∈F

γλLλ

∥∥∥.

It remains to compute the norm on the right hand side. This however is easy if
we note that due to the factorisation property the operator ∑

λ∈F
γλLλ has a certain

block structure with respect to the orthogonal decomposition l2(Λ) =
⊕

n∈Nr
0

Λn.
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More precisely, for any ξ ∈ l2(Λ), ξ = ∑
µ∈Λ

βµδµ we have

∥∥∥ ∑
λ∈F

γλLλ(ξ)
∥∥∥2

=
∥∥∥ ∑

λ∈F
γλLλ

(
∑

µ∈Λ

βµδµ

)∥∥∥2
=
∥∥∥ ∑

λ∈F,µ∈Λ

γλβµδλµ

∥∥∥2

= ∑
λ∈F,µ∈Λ

|γλβµ|2 = ∑
λ∈F
|γλ|2 ∑

µ∈Λ

|βµ|2 = ∑
λ∈F
|γλ|2‖ξ‖2.

This implies that ∣∣∣ ∑
λ∈F

γλαλ

∣∣∣ 6 ‖δ‖( ∑
λ∈F
|γλ|2

)1/2
.

But this means that ∑
λ∈F
|αλ|2 6 ‖δ‖2, and as F was an arbitrary finite subset of

Λ
ej
a,b, and Λ1

a,b =
r⋃

j=1
Λ

ej
a,b we proved that ∑

λ∈Λ1
a,b

|αλ|2 6 r‖δ‖2.

The converse implication is even easier to establish. Suppose that we are
given αb ∈ C and a square summable family {αλ : λ ∈ Λ1

a,b}. Define a map δ by
the (linear extension of the) formulas in the lemma. As it is easy to check that δ is a
derivation, it remains to show that it is bounded. To this end let {γλ : λ ∈ Λ} be a
finitely supported family of complex numbers and consider f = ∑

λ∈Λ
γλLλ ∈ AΛ.

As ‖ f (δb)‖ =
∥∥∥ ∑

λ∈Λ:s(λ)=b
γλδλ

∥∥∥ =
(

∑
λ∈Λ:s(λ)=b

|γλ|2
)1/2

we have

‖ f ‖ >
(

∑
λ∈Λ:s(λ)=b

|γλ|2
)1/2

.

Analogously

‖ f ‖ >
(

∑
λ∈Λ:s(λ)=a

|γλ|2
)1/2

.

This allows us to obtain the following estimate:

|δ( f )| =
∣∣∣γbαb − γaαb + ∑

λ∈Λ1
a,b

γλαλ

∣∣∣
6 |γbαb|+

(
∑

λ∈Λ1
a,b∪{a}

|αλ|2
)1/2(

∑
λ∈Λ1

a,b∪{a}
|γλ|2

)1/2

6
(
|αb|+

(
∑

λ∈Λ1
a,b∪{a}

|αλ|2
)1/2)

‖ f ‖.

This ends the proof in the case a 6= b.
It is easy to see that if a = b, then αb above has to be equal 0, and all the

other arguments need not be changed.
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COROLLARY 4.5. Let a, b ∈ Λ0. Then the first continuous cohomology group
H1

c (AΛ, Ca,b) is isomorphic to the space l2(Λ1
a,b).

Proof. The corollary follows from the lemma above and the fact that all inner
derivations δ : AΛ → Ca,a are trivial, and for a 6= b all inner derivations δ : AΛ →
Ca,b are given by the formula

δ(La) = −δ(Lb) = α,

δ(Lλ) = 0, λ ∈ Λ \ {a, b},

where α ∈ C.

This gives the following result:

THEOREM 4.6. Suppose that Λ is finitely aligned and nontrivial (i.e. there exists
λ ∈ Λ such that σ(λ) 6= 0). Then the algebra AΛ is not amenable.

Proof. Follows immediately from the lemma above.

Note that this provides a wide family of examples of both finite- and infinite-
dimensional non-amenable algebras (the simplest being given by a subalgebra of
M3(C) constructed from a rank-one graph with two vertices and a connecting
edge).

STATES ON OΛ. The first result is a natural generalisation of Theorem 2.1 of [4].
For its formulation we introduce a global neutral element ∅ for Λ verifying λ∅ =
λ for all λ ∈ Λ.

THEOREM 4.7. Let Λ be finite and with no sources. There is a 1-1 correspondence
between the following objects:

(i) states ω : OΛ → C;
(ii) positive definite kernels k : (Λ∪ {∅})× (Λ∪ {∅})→ C such that k(∅, ∅) = 1

and for all µ, ν ∈ Λ∪ {∅}, n ∈ Nr
0

∑
λ∈Λn

k(µλ, νλ) = k(µ, ν);

(iii) unitary equivalence classes of the triples (K, Ω,V), where K is a Hilbert space,
Ω ∈ K has norm 1, V is a Λ-isometry on K and K = Lin{V∗λ Ω : λ ∈ Λ}.

The correspondence is given by the formulas

(4.3) ω(sλs∗µ) = k(λ, µ) = 〈V∗λ Ω, V∗µ Ω〉, (V∅ := IK, s∅ := 1OΛ
).

Proof. It is clear that whenever a state ω on OΛ or a triple (K, Ω,V) satisfy-
ing the conditions in (iii) are given, the function k : (Λ∪ {∅})× (Λ∪ {∅}) → C
defined via the formulas in (4.3) is a positive definite kernel. Given a positive
definite kernel k as in (ii), the standard Kolmogorov construction (see for ex-
ample [11]) yields a Hilbert space K (unique up to an isomorphism) and a map
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T : (Λ∪ {∅})→ K such that

〈T(λ), T(µ)〉 = k(λ, µ), λ, µ ∈ Λ∪ {∅},

and K = Lin{T(λ) : λ ∈ Λ∪ {∅}}. Define for each µ ∈ Λ

S(µ)(T(λ)) = T(λµ), λ ∈ Λ∪ {∅}

(with the convention that if λ ∈ Λ and s(µ) 6= r(λ) then T(µλ) = 0). The linear
extension of S(µ) is contractive: let n = σ(µ), k ∈ N, λ1, . . . , λk ∈ Λ ∪ {∅},
α1, . . . , αk ∈ C, and compute:∥∥∥Sµ

( k

∑
i=1

αiT(λi)
)∥∥∥2

=
∥∥∥ k

∑
i=1

αiT(λiµ)
∥∥∥2

=
k

∑
i,j=1

αiαj〈T(λiµ), T(λjµ)〉 =
k

∑
i,j=1

αiαjk(λiµ, λjµ)

6
k

∑
i,j=1

∑
γ∈Λn

αiαjk(λiγ, λjγ)=
k

∑
i,j=1

αiαjk(λi, λj)=
∥∥∥ k

∑
i=1

αiT(λi)
∥∥∥2

(note that in the inequality above we used the fact that k is a positive-definite
kernel). Put Vµ = S(µ)∗ and Ω = T(∅). Then V is a Λ-isometry and the triple
(K, Ω,V) satisfies the conditions in (iii) and is compatible with k (satisfies one of
the equalities in (4.3)).

It remains to show that every triple (K, Ω,V) in (ii) yields a state on OΛ.
This however is immediate via the Poisson transform from Theorem 2.5: define
ω by the formula

ω(X) = 〈Ω, TV (X)Ω〉, X ∈ OΛ.

It is easy to check that the compatibility conditions in (4.3) hold.

As noted in [4], there is a direct way of constructing the triple (K, Ω,V)
corresponding to a given state ω on OΛ. It is described in the next remark.

REMARK 4.8. Let Λ be finite and with no sources. Suppose that ω is a state
onOΛ. Let (π, Hω, Ω) be the corresponding GNS triple and define the Λ-isometry
W on Hω by putting Wλ = π(sλ) (λ ∈ Λ). Let K = Lin{W∗λΩ : λ ∈ Λ} and let
P denote the orthogonal projection from Hω onto K. Put Vλ = PWλP for λ ∈ Λ.
Then it is easy to check that the resulting family V is a Λ-isometry on K. For
example if λ, µ ∈ Λ then for arbitrary ν, γ ∈ Λ

〈W∗ν Ω, VλVµW∗γΩ〉 = 〈V∗µ W∗νλΩ, W∗γΩ〉 = 〈(WλWµ)∗W∗νλΩ, W∗γΩ〉.

Now the latter is equal 0 if r(µ) 6= s(λ) and if r(µ) = s(λ)

〈W∗ν Ω, VλVµW∗γΩ〉 = 〈(Wλµ)∗W∗νλΩ, W∗γΩ〉 = 〈W∗νλΩ, VλµW∗γΩ〉,

which implies that VλVµ = Vλµ if r(µ) = s(λ) and VλVµ = 0 otherwise. In par-
ticular this implies that each Va (a ∈ Λ0) is an idempotent (as it is obviously a
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contraction, it has to be a selfadjoint projection). MoreoverW is the minimal di-
lation of V to a Cuntz–Pimsner Λ-family. This follows immediately from the fact
that each element in Hω can be approximated by linear combinations of vectors
of the type WλW∗µ Ω (λ, µ ∈ Λ) and the latter are obviously linear combinations
of vectors of the form Wλξ (λ ∈ Λ, ξ ∈ K).

The following lemma is an immediate consequence of Theorem 3.9 and the
discussion above. We use the notation introduced in Definition 3.5.

LEMMA 4.9. Suppose that Λ is finite and has no sources. Let ω be a state on
OΛ and let (π, Hω, Ω), K, P, W and V be defined as in Remark 4.8. Then the map
X −→ PXP yields a completely isometric complete order isomorphism between π(OΛ)′

and the operator system Fix σV .

The following theorem extends the characterisation of pure states on the
Cuntz algebras Od given in [4]. The states are characterised in terms of the prop-
erties of a corresponding Λ-isometry.

THEOREM 4.10. Suppose that Λ is finite and has no sources. Let ω : OΛ → C
be a state, let (π, H, Ω) be the GNS triple for ω, let W be the Λ-isometry given by
Wλ = π(sλ)(λ ∈ Λ). Denote the closed subspace spanned by W∗λΩ (λ ∈ Λ) by K,
let P denote the orthogonal projection from H to K and let V be the Λ-isometry on K
constructed according to Remark 4.8. The following are equivalent:

(i) ω is pure;
(ii) Fix σW = CIH;

(iii) Fix σV = CIK;
(iv) V acts irreducibly on K and P ∈ π(OΛ)′′.

Proof. The state ω is pure if and only if π(OΛ)′ = CIH. By Lemma 3.7
the latter is equivalent to Fix σW = CIH. Similarly by Lemma 4.9 π(OΛ)′ =
CIH if and only if the selfadjoint part of Fix σV is one-dimensional (over reals).
This happens if and only if Fix σV = CIK and the equivalences (i)⇔(ii)⇔(iii)
have been proved. If (i) holds then π(OΛ)′′ = B(H) and the commutant of V is
contained in Fix σV so by (iii) has to be trivial. Thus (i) and (iii) imply (iv).

Suppose finally that (iv) holds. Since P ∈ π(OΛ)′′ it is easy to see that
Pπ(OΛ)′P is an algebra. By Lemma 4.9 Fix σV = Pπ(OΛ)′P. Suppose that p ∈
B(K) is a projection. Note that as Fix σV =

r⋂
j=1

Fix σV (ej) ∩ Fix σV (0) and the

commutant of V is the intersection of the commutants of the sets {Vλ, V∗λ : λ ∈
Λej} (j ∈ {1, . . . , r}) and the commutant of {Va : a ∈ Λ0}, Lemma 3.3 of [4]
implies that p belongs to Fix σV if and only if it belongs to the commutant of
V . This implies that the largest von Neumann subalgebra (or, equivalently here,
the largest ∗-subalgebra) of Fix σV coincides with the commutant of V . As we
established before that Fix σV is an algebra, (iii) follows.
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In Section 7 of [4] a version of Theorem 4.7 was used to construct transla-
tionally invariant states on two-sided quantum spin chains. The construction can
be generalised to our framework. Given a triple (K, Ω,V) as in Theorem 4.7 (iii)
we obtain a state on OΛ and thus also a state on the canonical AF algebra FΛ

(assume Λ is finite) arising as a fixed point subalgebra for the gauge action on
OΛ (see [9] for the details). The resulting state can be interpreted as being trans-
lationally invariant with respect to the shifts in each of the r available directions.
Note however that already for basic rank-2 examples the situation becomes very
subtle. When Λ is rank-2 graph which has one vertex, two “red” edges e1, e2 and
two “green” edges f1, f2 with the factorisation rules e1 f2 = f1e2, e2 f1 = f2e1,
the algebra OΛ is isomorphic to C(T)⊗O2, and FΛ ≈ UHF(2∞). It is easy to see
that the states on UHF(2∞) arising via the construction described above are quite
different to those produced in [4].
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