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ABSTRACT. We generalize the respective “double recurrence” results of Bour-
gain and of the second author, which established for pairs of L∞ functions
on a finite measure space the a.e. convergence of the discrete bilinear ergodic
averages and of the discrete bilinear Hilbert averages defined by invertible
measure-preserving point transformations. Our generalizations are set in the
context of arbitrary sigma-finite measure spaces and take the form of a.e. con-
vergence of such discrete averages, as well as of their continuous variable
counterparts, when these averages are defined by Lebesgue space isometries
and act on Lp1 × Lp2 (1 < p1, p2 < ∞, p−1

1 + p−1
2 < 3

2 ). In the setting of an
arbitrary measure space, this yields the a.e. convergence of these discrete bi-
linear averages when they act on Lp1 × Lp2 and are defined by an invertible
measure-preserving point transformation.
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1. INTRODUCTION

For an arbitrary measure space (X, σ), we shall denote by A(σ) the algebra
under pointwise operations consisting of all complex-valued σ-measurable func-
tions on X (identified modulo equality σ-a.e. on X). The class of all real-valued
functions belonging to A(σ) will be denoted by <(A(σ)). In this setting we shall
use the following terminology and notation.

DEFINITION 1.1. Let T be a linear bijection of A(σ) onto A(σ). For each
real number r > 1, we shall denote the integer part of r by [r], and for f ∈
A(σ), g ∈ A(σ), we define the corresponding discrete bilinear ergodic average
Ar,T( f , g) and the corresponding discrete bilinear Hilbert average Hr,T( f , g) by



456 EARL BERKSON AND CIPRIAN DEMETER

writing pointwise on X,

Ar,T( f , g) =
1
[r]

[r]−1

∑
n=0

(Tn f )(T−ng);(1.1)

Hr,T( f , g) = ∑
0<|n|6[r]

(Tn f )(T−ng)
n

.(1.2)

Our principal concern will be to generalize the double recurrence theorem
of Bourgain for discrete bilinear ergodic averages [3] and its counterpart for dis-
crete bilinear Hilbert averages (recently established in Theorem 1.2 of [4]), whose
statements are reproduced as the following theorem.

THEOREM 1.2. Suppose that (X,ρ) is a finite measure space, and φ is an invertible
measure-preserving point transformation of (X,ρ) onto (X,ρ). Let T : A(ρ) → A(ρ)
denote composition with φ. Then for every f ∈ L∞(ρ), and every g ∈ L∞(ρ), each of the
sequences {Ak,T ( f , g)}∞

k=1 and {Hk,T ( f , g)}∞
k=1 converges ρ-a.e. on X to a correspond-

ing function belonging to A(ρ).

Our main result, which is stated as follows, generalizes Theorem 1.2 in the
direction of Lp-isometries for sigma-finite measure spaces. (See Theorem 5.2 in
Section 5 below for the continuous variable version of this generalization.)

THEOREM 1.3. Suppose that (Ω, µ) is a sigma-finite measure space, and let U
be a bijective linear mapping of A(µ) onto A(µ) such that the following two conditions
hold:

(i) Whenever {gk}∞
k=1 ⊆ A(µ), g ∈ A(µ), and gk → g µ-a.e. on Ω, it follows that

as k→ ∞, U (gk)→ U (g) µ-a.e. on Ω, and U−1 (gk)→ U −1(g) µ-a.e. on Ω.
(ii) The restriction U|Lp(µ) is a surjective linear isometry of Lp(µ) onto Lp(µ) for

0 < p 6 ∞.
Suppose further that

1 < p1, p2 < ∞;(1.3)

1
p1

+
1
p2

=
1
p3

<
3
2

.(1.4)

Then for every f ∈ Lp1(µ), and every g ∈ Lp2(µ), each of the sequences

{Ak,U( f , g)}∞
k=1, {Hk,U( f , g)}∞

k=1

converges µ-a.e. on Ω and in the metric topology of Lp3(µ) to a corresponding function
belonging to A(µ).

Although the proof of Theorem 1.3 will be deferred to Section 4, the hy-
potheses of Theorem 1.3 on (Ω, µ) and U will remain in effect henceforth. Theo-
rem 1.3 has the following corollary, which is valid for arbitrary measure spaces,
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and which likewise obviously implies Theorem 1.2, since in the setting of any fi-
nite measure space (X,ρ), the inclusion L∞(ρ) ⊆ L2(ρ) holds. (A variant of this
result, likewise valid for all measure spaces, is described below for the continuous
variable averages in Corollary 5.3.)

COROLLARY 1.4. Suppose that (X, σ) is an arbitrary measure space, and let τ be
an invertible measure-preserving point transformation of (X, σ) onto (X, σ). Suppose
also that p1, p2, p3 satisfy (1.3) and (1.4), and let f ∈ Lp1(σ), g ∈ Lp2(σ). Then each of
the sequences {1

k

k−1

∑
n=0

f (τn)g(τ−n)
}∞

k=1
,
{

∑
0<|n|6k

f (τn)g(τ−n)
n

}∞

k=1

converges σ-a.e. on X and in the metric topology of Lp3(σ) to a corresponding function
belonging to A(σ).

Proof. Since f ∈ Lp1(σ), we can write {x ∈ X : | f (x)| > 0} =
∞⋃

j=1
Ej, where

σ(Ej) < ∞, for each j ∈ N. Putting

Y =
⋃

n∈Z

∞⋃
j=1

τn(Ej),

we see that for all n ∈ Z: τn(Y) = Y, and f (τn(x)) = 0 for all x ∈ X \ Y. So
in order to establish the desired σ-a.e. convergence on X it suffices to prove that

for σ-almost all x ∈ Y, each of the sequences
{

1
k

k−1
∑

n=0
f (τn(x))g(τ−n(x))

}∞

k=1
and{

∑
0<|n|6k

f (τn(x))g(τ−n(x))
n

}∞

k=1
is convergent. But this follows immediately upon

application of Theorem 1.3 to the sigma-finite measure space (Y, σ) and the com-
position operator corresponding to the restriction τ |Y.

Likewise for convergence in Lp3(X,σ), which can also be seen as follows. By
combining the reasoning regarding Y with the maximal estimates in the setting
of sigma-finite measure spaces of Theorems 9 and 10 in [2] (whose statements are
reproduced in Theorem 2.5 below), we see without difficulty that by dominated
convergence each of the following sequences converges in the metric of Lp3(σ):{1

k

k−1

∑
n=0

f (τn)g(τ−n)
}∞

k=1
,
{

∑
0<|n|6k

f (τn)g(τ−n)
n

}∞

k=1
.

REMARK 1.5. While our main concern will be with extensions of
Theorem 1.2 to spaces of infinite measure, we briefly comment here on aspects
in which Theorem 1.3 generalizes Theorem 1.2, when Theorem 1.3 is restricted to
the finite measure space setting. If (Ω0, µ0) is a finite measure space, then a bi-
jective linear mapping U of A(µ0) onto A(µ0) satisfying conditions (i) and (ii) of
Theorem 1.3 need not have any of its odd powers implemented by an invertible
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measure-preserving point transformation of Ω0 onto Ω0. Such an example is fur-
nished by Section 343J of [8], which, taken in conjunction with standard consid-
erations about measure-preserving set transformations (see pages 452–454 of [6]),
furnishes a complete, non-atomic, finite measure space (Ω̃0, µ̃0) whose measure
algebra is a separable metric space, together with a self-inverse algebra automor-
phism U0 of A(µ̃0) onto A(µ̃0) satisfying conditions (i) and (ii) of Theorem 1.3,
but is such that U0|L∞(µ̃0) cannot be expressed by composition with an invert-
ible measure-preserving point transformation of the measure space (Ω̃0, µ̃0) onto
(Ω̃0, µ̃0). So Theorem 1.2 does not directly apply here, although in this particu-
lar example, since U0 is self-inverse, the µ̃0-a.e. convergence from Theorem 1.3
will hold trivially — in fact, whenever f ∈ A(µ̃0) and g ∈ A(µ̃0). (For informa-
tion about the general relationships between measure-preserving set transforma-
tions and measure-preserving point transformations of non-atomic finite measure
spaces satisfying separability conditions, see Section 41 of [10] and [11].) In the
special case of Theorem 1.3 where the setting is an arbitrary finite measure space
(Ω0, µ0) and ( f , g) ∈ L∞(µ0) × L∞(µ0), the convergence µ0 -a.e. of the averages
{Ak,U( f , g)}∞

k=1 and {Hk,U( f , g)}∞
k=1 can be deduced directly from Theorem 1.2

in conjunction with maximal results from [2] (which are quoted as Theorem 2.5
below) by following G.-C. Rota’s “dilation” theory for measure spaces [7],[15] in
a spirit similar to that in Chapter IV, Section 4 of [16]. We omit the details of this
line of reasoning for the finite measure space setting, since we will be proving
Theorem 1.3 in full generality by following a different path.

The reasoning used in [4] to deduce the a.e. convergence of the discrete av-
erages Hk,T ( f , g) under the conditions of Theorem 1.2 above also furnished a
new proof of the result of [3] for the a.e. convergence of the discrete averages
{Ak,T ( f , g)}∞

k=1 in the same circumstances. Our strategy (particularly as regards
infinite measures) for treating the wider scope of Theorem 1.3 and for obtaining
its continuous variable counterpart will be to combine suitable modifications of
the unified coverage of {Ak,T ( f , g)}∞

k=1 and {Hk,T ( f , g)}∞
k=1 in [4] with the treat-

ment of the relevant bisublinear maximal operators in Theorems 9, 10, and 13 of
[2]. Accordingly, the remaining four sections of this article will be organized as
follows. In Section 2 we collect some background items that furnish key structural
tools for the demonstration in Section 4 of Theorem 1.3. In particular, Section 2
includes an expanded version of Lemma 3.1 of [4] aimed at providing, in the form
of a suitable oscillation estimate, an abstract sufficiency criterion for µ-a.e. con-
vergence (see Lemma 2.3 below). The way is then opened for proceeding from
Lemma 2.3 and the maximal bisublinear theorems of [2] to derive Theorem 1.3 in
Section 4 after the development in Section 3 of the relevant oscillation estimates,
which will take the form of general discretization and transference results. We
close by treating the continuous variable model in Section 5, which, in particular,
establishes the counterpart of Theorem 1.3 for one-parameter groups of Lebesgue
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space isometries associated with the arbitrary sigma-finite measure space (Ω, µ)
(see Theorem 5.2 below).

Henceforth, the following notation will be in effect. If A is a subset of a
given set Y, then, except where otherwise indicated, the characteristic function of
A, defined on Y, will be designated by χA, and the restriction to A of a function
F defined on Y will be written F|A. The collection of all mappings of a set E into
a set W will be denoted by WE. Lebesgue measure on R (respectively, counting
measure on Z) will be symbolized by mR (respectively, by mZ). Given an arbitrary
measure space (X, σ), and a function f ∈ A(σ), we shall denote by λ( f , σ; (·)) the
distribution function of f specified by:

(1.5) λ( f , σ; y) = σ({x ∈ X : | f (x)| > y}), for each real number y > 0,

and we shall follow standard notation by writing

‖ f ‖L1,∞(σ) = sup{yλ( f , σ; y) : y ∈ R, y > 0}.

Given a positive real number ξ and a function f : R→ C, we shall symbolize by
δξ f the dilation of f by ξ, which is defined by

(1.6) (δξ f )(x) =
1
ξ

f
( x

ξ

)
, for all x ∈ R.

The letter “C” with a (possibly empty) set of subscripts will signify a constant
which depends only on those subscripts, and which can change its value from
one occurrence to another.

2. BACKGROUND ITEMS

The following proposition, a version of Corollary 3.1 in [14] (see also Propo-
sition 5 and Remark 5(i) in [2]), describes the structure of the operator U in the
hypotheses of Theorem 1.3.

PROPOSITION 2.1. In the setting of the arbitrary sigma-finite measure space
(Ω, µ), let U be a bijective linear mapping of A(µ) onto A(µ) such that the condi-
tions (i) and (ii) in the hypotheses of Theorem 1.3 hold. Then there are unique sequences
{hj}∞

j=−∞ and {Φj}∞
j=−∞ such that for each j ∈ Z:

(i) hj ∈ A(µ), with |hj| = 1 on Ω, and Φj is an algebra automorphism ofA(µ) onto
A(µ);

(ii) for every f ∈ A(µ), U j f is expressed by the pointwise product on Ω of the
functions hj and Φj( f );

(iii) whenever { fk}∞
k=1 ⊆ A(µ), f ∈ A(µ), and fk → f µ-a.e. on Ω, it follows that

as k → ∞, Φj ( fk) → Φj ( f ) µ-a.e. on Ω. This unique sequence {Φj}∞
j=−∞ has the
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property that

µ(E) =
∫
Ω

Φj(χE) dµ, for each j ∈ Z, and each µ-measurable set E.

The sequences {hj}∞
j=−∞ and {Φj}∞

j=−∞ also enjoy the following properties for arbitrary
j ∈ Z, k ∈ Z:

Φj(g) > 0 for each g > 0 belonging to A(µ);(2.1)

|Φj( f )|α = Φj(| f |α), for f ∈ A(µ), and 0 < α < ∞;(2.2)

Φj+k( f ) = Φj(Φk( f )), for every f ∈ A(µ);(2.3)

hj+k(x) = hj(x)(Φjhk)(x), for µ-almost all x ∈ Ω.(2.4)

REMARK 2.2. (i) It is clear that for each j ∈ Z the restriction Φj|Lp(µ). is a
surjective linear isometry of Lp(µ) onto Lp(µ), for 0 < p 6 ∞.

(ii) By (2.1), Φj(g) is real-valued for each j ∈ Z, and each real-valued g belong-
ing to A(µ). Moreover, from (2.3) we see that Φ−j = Φ−1

j . Hence application
of (2.1) to Φj and to Φ−j shows that the restriction of Φj to the class <(A(µ))
consisting of the real-valued µ -measurable functions on Ω is a surjective order
isomorphism. It follows that for each finite sequence {gk}N

k=1 ⊆ <(A(µ)),

(2.5) Φj

(
sup

16k6N
gk

)
= sup

16k6N
Φj( gk).

(iii) It is readily seen from the foregoing considerations that each Φj preserves
distribution functions. That is, for f ∈ A(µ), each positive real number y, and
each j ∈ Z, we have, in the notation of (1.5),

(2.6) λ(Φj( f ), µ; y) = λ( f , µ; y).

The following expanded version of the sufficiency criterion for a.e. conver-
gence in Lemma 3.1 of [4] will play a pivotal role in our considerations.

LEMMA 2.3. Let (Ω, µ) be a sigma-finite measure space, and suppose that { fn}∞
n=1

is a sequence of complex-valued µ-measurable functions defined on Ω which has the fol-
lowing property: there is a positive real constant Θ such that for every positive integer
J > 2, and every sequence of positive integers u1 < u2 < · · · < uJ , we have

(2.7)
∥∥∥{ J−1

∑
j=1

sup
n∈N,

uj6n<uj+1

| fn − fuj+1 |
2
}1/2∥∥∥

L1,∞(µ)
6 ΘJ1/4.

Then there is a µ-measurable function f : Ω → C such that { fn}∞
n=1 converges to f µ

-a.e. on Ω.

Proof. In view of the sigma-finiteness of (Ω, µ) and the form of the hypoth-
esis (2.7), without loss of generality we can and shall assume henceforth in the
proof of this lemma that µ(Ω) < ∞. Putting L(x) = lim sup

n→∞
| fn(x)|, for all x ∈ Ω,
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and writing A = {x ∈ Ω : L(x) = ∞}, we claim that µ(A) = 0. For each j ∈ N,
let

Ej = {x ∈ Ω : | f1(x)| 6 j}.

For the claim that µ(A) = 0, it clearly suffices to show that µ(A ∩ Ej) = 0, for
each j ∈ N. Assume to the contrary that µ(A∩ Ej0) > 0, for some j0 ∈ N. Observe

that by Egoroff’s Theorem there is B ⊆ A ∩ Ej0 such that µ(B) >
µ(A∩Ej0 )

2 , and
such that the sequence {

min
16k6n

exp(−| fk|)
}∞

n=1

converges to the zero function uniformly on B. Accordingly, for each m ∈ N,
there is N ∈ N such that for all n > N,

sup
16k6n

| fk| > m + j0 on B.

For 1 6 ν 6 N, we have on Ω,

(2.8) | fν − f1| 6 | fν − fN+1|+ | fN+1 − f1| 6 2 sup
16k<N+1

| fk − fN+1|,

and it now follows that

µ(B)6µ
{

x∈Ω : sup
16k<N+1

| fk− f1|>m
}

6µ
{

x∈Ω : sup
16k<N+1

| fk− fN+1|>
m
2

}
.

This, together with an application of (2.7) (for J = 2, u1 = 1, u2 = N + 1), shows
that

mµ(A ∩ Ej0)
2

< mµ(B) 6 Θ25/4, for all m ∈ N.

Since m ∈ N is arbitrary, we can let m → ∞ in this to contradict the supposition
that µ(A ∩ Ej0) > 0, thereby establishing the claim that µ(A) = 0. Hence

µ
(

Ω \
∞⋃

k=1

{
x ∈ Ω : sup

n∈N
| fn(x)| 6 k

})
= 0,

and so by confining attention to each set
{

x ∈ Ω : sup
n∈N
| fn(x)| 6 k

}
separately,

we can assume (in addition to (2.7) and µ(Ω) < ∞) that { fn}∞
n=1 ⊆ L∞(Ω, µ),

with

sup
n∈N
‖ fn‖L∞(Ω,µ) < ∞.

From this point onwards, the proof of Lemma 2.3 is a straightforward adap-
tation of the proof sketched in [4] for Lemma 3.1 therein.
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REMARK 2.4. Given a sequence { fn}∞
n=1 ⊆ A(µ), a positive integer J > 2,

and any sequence of positive integers u1 < u2 < · · · < uJ , we can adapt the
elementary reasoning of (2.8) to infer readily that for 1 6 j 6 J − 1,

sup
n∈N,

uj6n<uj+1

| fn − fuj+1 | 6 2 sup
n∈N,

uj<n6uj+1

| fn − fuj |.

Consequently,∥∥∥{J−1

∑
j=1

sup
n∈N,

uj6n<uj+1

| fn− fuj+1 |
2
}1/2∥∥∥

L1,∞(µ)
62
∥∥∥{J−1

∑
j=1

sup
n∈N,

uj<n6uj+1

| fn− fuj |
2
}1/2∥∥∥

L1,∞(µ)
.

Similarly we also have

(2.9)
∥∥∥{J−1

∑
j=1

sup
n∈N,

uj<n6uj+1

| fn− fuj |
2
}1/2∥∥∥

L1,∞(µ)
62
∥∥∥{J−1

∑
j=1

sup
n∈N,

uj6n<uj+1

| fn− fuj+1 |
2
}1/2∥∥∥

L1,∞(µ)
.

Hence the minorant in (2.7) can be equivalently replaced by the minorant in (2.9).

In order to cover the µ-a.e. convergence for all f ∈ Lp1(µ) and all g ∈ Lp2(µ)
in the conclusion of Theorem 1.3, we shall require the following bisublinear max-
imal theorem for this setting (a combination of the statements of Theorems 9 and
10 in [2], which were obtained by discretizing and transferring Michael Lacey’s
bisublinear maximal theorems for the classical setting [13]).

THEOREM 2.5. Assume the hypotheses of Theorem 1.3 on (Ω, µ), U, p1, p2, and
p3. For f ∈ Lp1(µ) and g ∈ Lp2(µ), define the maximal functions HU( f , g) and
MU( f , g) by writing pointwise on Ω,

HU( f , g) = sup
j∈N
|Hj,U( f , g)| = sup

j∈N

∣∣∣ ∑
0<|n|6j

(Un f ) (U−ng)
n

∣∣∣;(2.10)

MU( f , g) = sup
j∈N

1
2j + 1

j

∑
n=−j

|Un f | |U−ng|.(2.11)

Then there are positive constants Mp1,p2 and Np1,p2 , each depending only on p1 and p2,
such that for all f ∈ Lp1(µ) and all g ∈ Lp2(µ):

‖HU( f , g)‖Lp3 (µ) 6 Mp1,p2 ‖ f ‖Lp1 (µ) ‖g‖Lp2 (µ);(2.12)

‖MU( f , g)‖Lp3 (µ) 6 Np1,p2 ‖ f ‖Lp1 (µ) ‖g‖Lp2 (µ).(2.13)

3. DISCRETIZED AND TRANSFERRED OSCILLATION ESTIMATES

In this section, we develop general discretization and transference results
that will implement the derivation of Theorem 1.3 by setting up suitable appli-
cations of Lemma 2.3 and Theorem 2.5. The first step in this process will be to
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discretize the following oscillation theorem for the real line (Theorem 1.4 of [4]),
which plays a seminal role in our considerations.

THEOREM 3.1. Let K : R→ R belong to L2(R), and suppose that its Fourier
transform K̂ satisfies the following conditions:

K̂ ∈ C∞(R \ {0});

sup
y∈R\{0}

(|K̂(y)|max{1, |y|}) < ∞;

sup
y∈R\{0}

(∣∣∣dn K̂(y)
dyn

∣∣∣max{|y|n−1, |y|n+1}
)

< ∞, for each n ∈ N.

Suppose that m ∈ N, and let dm = 21/m. Then there is a positive constant γK,m,
depending only on K and m, such that for every pair of compactly supported functions
f and g belonging to L∞(R), for each positive integer J > 2, and for each sequence
{uj}J

j=1 ⊆ Z such that u1 < u2 < · · · < uJ , we have, in terms of the notation (1.6) for
dilations,∥∥∥{ J−1

∑
j=1

sup
k∈Z,uj6k<uj+1

∣∣∣ ∫
R

f (x + y)g(x− y)((δdk
m

K)(y)− (δ
d

uj+1
m

K)(y))dy
∣∣∣2}1/2∥∥∥

L1,∞
x

6 γK,m J1/4 ‖ f ‖L2(R) ‖g‖L2(R).(3.1)

The discretization of Theorem 3.1 will be accomplished by making suitable
use of a general discretization tool for maximal functions (Lemma 3 of [2], whose
statement is reproduced below in Lemma 3.2). Before embarking on this course,
we introduce some auxiliary notions and notation in order to avoid digressions
later on. The closed interval [− 1

4 , 1
4 ] in R will be designated by I , and for each

n ∈ Z, we denote by In the interval I + n = [n− 1
4 , n + 1

4 ]. For each φ ∈ L1(R)
such that the support of φ is a subset of I , we define the linear mapping Pφ :
CZ → CR by putting

(Pφ({an}∞
n=−∞))(x)= ∑

n∈Z
anφ(x− n), for all {an}∞

n=−∞∈CZ, and all x∈R.(3.2)

When φ is specialized to be χI , the characteristic function, defined on R, of I , we
shall write P rather than Pφ. Clearly, if 0 < p 6 ∞, and if φ ∈ L1(R)∩ Lp(R) with
support contained in I , then

‖Pφ({an}∞
n=−∞)‖Lp(R)=‖φ‖Lp(R)‖{an}∞

n=−∞‖`p(Z), for all {an}∞
n=−∞∈`p(Z).(3.3)

Notice also that if φ ∈ L1(R) is a non-negative function with support contained
in I , if N ∈ N, if, for 1 6 j 6 N, a(j) ≡ {a(j)

n }∞
n=−∞ is a sequence of real numbers,

and if we put

a#
n = sup

16j6N
a(j)

n , for all n ∈ Z,
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then pointwise on R we have

(3.4) Pφ({a#
n}∞

n=−∞) = sup
16j6N

Pφ({a(j)
n }∞

n=−∞).

For a given F ∈ L1(R), we shall denote by SF the bilinear mapping of L2(R)×
L2(R) into L1(R) specified by

(3.5) (SF( f , g))(x) =
∫
R

f (x + y)g(x− y)F(y) dy.

Similarly, for a given W ≡{Wn}∞
n=−∞ ∈ `1(Z), we define the bilinear mapping

SW : `2(Z) × `2(Z) → `1(Z) by writing for all a ∈ `2(Z), all b ∈ `2(Z), and all
n ∈ Z,

(3.6) (SW (a, b))(n) =
∞

∑
k=−∞

an+kbn−kWk.

Using the foregoing notation, we can reproduce the statement of Lemma 3 from
[2] as follows.

LEMMA 3.2. Let N ∈ N, and suppose that {Fj}N
j=1 ⊆ L1(R) is such that for

1 6 j 6 N, and each n ∈ Z, the restriction (Fj|In) belongs to C1(In), and denote its
derivative by (Fj|In)′. For each n ∈ Z, let

Λn = sup{|(Fj|In)′(x)| : 1 6 j 6 N, x ∈ In},

and assume that the sequence Λ ≡ {Λn}∞
n=−∞ ∈ `1(Z). Let

(S(N)( f , g))(x)= sup
j∈N,

16j6N

|(SFj( f , g))(x)|, for all f , g∈L2(R), and all x∈R,(3.7)

and put

(S(N)(a, b))(m) = sup
16j6N

∣∣∣ ∞

∑
n=−∞

am+nbm−nFj(n)
∣∣∣,(3.8)

for all a, b ∈ `2(Z), and all m ∈ Z.

Further, let φ0 > 0 and φ1 > 0 be the functions defined on R by writing for each u ∈ R,

φ0(u) = 2
(1

4
− |u|

)
χI (u);(3.9)

φ1(u) =
(1

4
− |u|

)2
χI (u).(3.10)

Then for every pair a, b of finitely supported complex-valued sequences defined on Z, the
following inequality holds pointwise on R:

(3.11) Pφ0(S
(N)(a, b)) 6 S(N)(Pa, Pb) + Pφ1(SΛ(|a|, |b|)).
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This discussion has paved the way for our discretization of Theorem 3.1 in
the following form. (n.b. In Section 4, we shall need to modify the proof of this
discretization theorem in order to obtain a variant of its conclusion for a certain
kernel lacking compact support. For the sake of this subsequent modification we
shall keep careful track of the constants involved in the present proof — particu-
larly as regards the parameters each of them depends on.)

THEOREM 3.3. Suppose that K : R→ R belongs to C∞(R) and has compact sup-
port. We put

αK = min{n ∈ N : K(x) = 0 whenever |x| > n}; βK = sup
x∈R
|K′(x)|.(3.12)

Let m ∈ N, and put dm = 21/m. For each j ∈ N, let Kj,m ∈ C∞(R) be the compactly
supported function specified by writing (in accordance with the notation for dilations
defined in (1.6)) Kj,m = δ

dj
m

K , and let Qj,K,m : CZ ×CZ → CZ be the bilinear mapping

defined for all v ∈ CZ and all w ∈ CZ by

(3.13) (Qj,K,m(v, w))(n) =
∞

∑
k=−∞

v(n + k)w(n− k)Kj,m(k), for all n ∈ Z.

(Notice, in particular, that if v and w are finitely supported, then so is the sequence
Qj,K,m(v, w).) Then for every pair of finitely supported sequences a ∈ CZ and b ∈ CZ,
for every integer R > 2, and for each sequence of positive integers u1 < u2 < · · · < uR,
we have: ∥∥∥{ R−1

∑
r=1

sup
j∈N,

ur6j<ur+1

|Qj,K,m(a, b)−Qur+1,K,m(a, b)|2
}1/2∥∥∥

`1,∞(Z)
(3.14)

6 cm(γK,m + αKβK)R1/4 ‖a‖`2(Z)‖b‖`2(Z),

where cm is a positive constant depending only on m, and γK,m is the positive constant
depending only on K and m that occurs in (3.1).

Proof. Until further notice we now fix r ∈ N such that 1 6 r 6 R− 1 . For
each j ∈ N such that ur 6 j < ur+1, define the compactly supported C∞(R)
function Fj,r by writing

(3.15) Fj,r = Kj,m − Kur+1,m.

Continuing with the notation used in Lemma 3.2, we now define the bilateral
sequence Λ(r,K,m) ≡ {Λ(r,K,m)

n }∞
n=−∞ by writing for each n ∈ Z,

(3.16) Λ
(r,K,m)
n = sup{|(Fj,r|In)′(x)| : ur 6 j < ur+1, x ∈ In}.

Notice that {Λ(r,K,m)
n }∞

n=−∞ is finitely supported, since K has compact support,
and so we can apply the conclusion (3.11) of Lemma 3.2 to the finite sequence of
functions {Fj,r}

ur+1−1
j=ur

and its corresponding sequence {Λ(r,K,m)
n }∞

n=−∞ specified
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by (3.16). This furnishes our present circumstances with the following pointwise
inequality on R:

Pφ0

(
sup
j∈N,

ur6j<ur+1

|Qj,K,m(a, b)−Qur+1,K,m(a, b)|
)

(3.17)

6 sup
j∈N

ur6j<ur+1

|SFj,r (Pa, Pb)|+ Pφ1(SΛ(r,K,m)(|a|, |b|)),

where the bilinear form SΛ(r,K,m) : `2(Z) × `2(Z) → `1(Z) is defined in accord
with (3.6), and thus satisfies

(3.18) (SΛ(r,K,m)(|a|, |b|)) =
{ ∞

∑
k=−∞

|an+kbn−k|Λ
(r,K,m)
k

}∞

n=−∞
.

Before letting r ∈ N run through all values 1 6 r 6 R − 1 as on the left side
of (3.14), we first estimate ‖Λ(r,K,m)‖`1(Z) for a fixed r in this range. For j ∈ N
satisfying ur 6 j < ur+1, we have Fj,r(x) = 0, whenever |x| > αKdur+1

m , and
consequently

(3.19) Λ
(r,K,m)
n = 0, for all n ∈ Z such that |n| > αKdur+1

m +
1
4

.

Suppose that s ∈ N with ur 6 s < ur+1. Then for all j ∈ N such that s 6 j < ur+1,
we have for all x ∈ R,

|K′j,m(x)− K′ur+1,m(x)| =
∣∣∣ 1

d2j
m

K′
( x

dj
m

)
− 1

d2ur+1
m

K′
( x

dur+1
m

)∣∣∣(3.20)

6 βK

( 1
d2s

m
+

1

d2ur+1
m

)
.

Moreover, if n ∈ Z and satisfies

(3.21) |n| > αKds
m +

1
4

,

then for all x ∈ In and for all j ∈ N such that j < s,

(3.22) K′j,m(x) = 0.

Combining this with (3.20) we infer that for each s ∈ N satisfying ur 6 s < ur+1,
the following estimate is valid:

(3.23) Λ
(r,K,m)
n 6 βK

( 1
d2s

m
+

1

d2ur+1
m

)
, for all n ∈ Z such that |n| > αKds

m +
1
4

.
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Consequently, we see with the aid of (3.19) that

∑
{

Λ
(r,K,m)
n : n ∈ Z, |n| > αKdur

m +
1
4

}
(3.24)

6 ∑
s∈N

ur6s<ur+1

∑
{

Λ
(r,K,m)
n : n ∈ Z, αKds+1

m +
1
4

> |n| > αKds
m +

1
4

}

6 2αKβKdm ∑
s∈N

ur6s<ur+1

( 1
d2s

m
+

1

d2ur+1
m

)
ds

m

6
(2αKβKd2

m
dm − 1

) 1
dur

m
+ 2αKβKdm

ur+1

dur+1
m

.

By specializing the value of s in (3.20) to be ur, we see that for all n ∈ Z,

Λ
(r,K,m)
n 6 βK

( 1

d2ur
m

+
1

d2ur+1
m

)
.

Hence

∑
{

Λ
(r,K,m)
n : n ∈ Z, |n| 6 αKdur

m +
1
4

}
(3.25)

6 βK

( 1

d2ur
m

+
1

d2ur+1
m

)(
2αKdur

m +
3
2

)
6 2αKβK

( 1
dur

m
+

1
dur+1

m

)
+

3
2

βK

( 1

d2ur
m

+
1

d2ur+1
m

)
.

Upon combining (3.24) and (3.25), we deduce that for each r ∈ N such that 1 6
r 6 R− 1,

(3.26) ‖Λ(r,K,m)‖`1(Z) 6 αKβKCm

( 1
dur

m
+

ur+1

dur+1
m

)
.

We next square both sides of (3.17). In view of the definitions of φ0 and φ1
in (3.9) and (3.10) this gives us the following inequality, valid pointwise on R.

4Pφ1

(
sup
j∈N,

ur6j<ur+1

|Qj,K,m(a, b)−Qur+1,K,m(a, b)|2
)

(3.27)

6
{

sup
j∈N

ur6j<ur+1

|SFj,r (Pa, Pb)|+ Pφ1(SΛ(r,K,m)(|a|, |b|))
}2

.
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After summing this inequality for 1 6 r 6 R − 1, we deduce with the aid of
Minkowski’s inequality for `2 that the following holds pointwise on R.

Pφ0

({ R−1

∑
r=1

(
sup
j∈N,

ur6j<ur+1

|Qj,K,m(a, b)−Qur+1,K,m(a, b)|2
)}1/2)

(3.28)

6
{ R−1

∑
r=1

sup
j∈N

ur6j<ur+1

|SFj,r (Pa, Pb)|2
}1/2

+ Pφ1

( R−1

∑
r=1

SΛ(r,K,m)(|a|, |b|)
)

.

For each n ∈ Z, φ0(x − n) > 1
4 provided |x − n| 6 1

8 . It follows readily that, in
terms of distribution functions (taken with respect to Lebesgue measure mR on R
and counting measure mZ on Z), we have for each positive real number y,

1
4

λ
({R−1

∑
r=1

(
sup
j∈N,

ur6j<ur+1

|Qj,K,m(a, b)−Qur+1,K,m(a, b)|2
)}1/2

, mZ; y
)

(3.29)

6λ
(
Pφ0

({R−1

∑
r=1

(
sup
j∈N,

ur6j<ur+1

|Qj,K,m(a, b)−Qur+1,K,m(a, b)|2
)}1/2)

, mR;
y
4

)
.

From (3.28) and (3.29) we see at once that

1
4

λ
({ R−1

∑
r=1

(
sup
j∈N,

ur6j<ur+1

|Qj,K,m(a, b)−Qur+1,K,m(a, b)|2
)}1/2

, mZ; y
)

(3.30)

6 λ
({ R−1

∑
r=1

sup
j∈N

ur6j<ur+1

|SFj,r (Pa, Pb)|2
}1/2

, mR;
y
8

)

+ λ
(

Pφ1

( R−1

∑
r=1

SΛ(r,K,m)(|a|, |b|)
)

, mR;
y
8

)
.

Moreover, an application of Theorem 3.1 shows that

λ
({R−1

∑
r=1

sup
j∈N

ur6j<ur+1

|SFj ,r(Pa, Pb)|2
}1/2

, mR;
y
8

)
6

4γK,m R1/4‖a‖`2(Z) ‖b‖`2(Z)

y
.(3.31)

Applying Chebychev’s inequality to the function Pφ1

( R−1
∑

r=1
SΛ(r,K,m)(|a|, |b|)

)
, we

find with the aid of (3.26) that

(3.32) λ
(

Pφ1

( R−1

∑
r=1

SΛ(r,K,m)(|a|, |b|)
)

, mR;
y
8

)
6

αKβKCm‖a‖`2(Z) ‖b‖`2(Z)

y
.

The desired conclusion (3.14) is an immediate consequence of (3.30), (3.31), and
(3.32).
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The next theorem and its included corollary of Theorem 3.3 (see Corol-
lary 3.5 below) furnish key applications of Lemma 2.3 by using the “isometric”
transformation U in the hypotheses of Theorem 1.3 to transfer discrete oscillation
estimates such as (3.14) of Theorem 3.3 to the setting of the arbitrary sigma-finite
measure space (Ω, µ). (Compare the transference reasoning in [4] and [5] that
targeted averages defined by the invertible measure-preserving point transfor-
mations of finite measure spaces.) The notation of Proposition 2.1 will now be in
effect, and it will be convenient to observe that since each Φk, k ∈ Z, is multiplica-
tive onA(µ), it follows from Proposition 2.1(ii), together with (2.3) and (2.4), that
for all F ∈ A(µ), G ∈ A(µ), n1 ∈ Z, and n2 ∈ Z, we have µ -a.e. on Ω,

Φk((Un1 F)(Un2 G)) = Φk(hn1) Φk+n1(F) Φk(hn2) Φk+n2(G)(3.33)

= h−2
k (Uk+n1 F) (Uk+n2 G).

THEOREM 3.4. Suppose that (Ω, µ) is a sigma-finite measure space, and let U
be a bijective linear mapping of A(µ) onto A(µ) such that conditions (i) and (ii) in the
hypotheses of Theorem 1.3 hold. For each j ∈ N, let sj : Z→ C be finitely supported, and
define the bilinear mappings Tj : CZ × CZ → CZ and Tj : A(µ) × A(µ)→ A(µ) as
follows:

(Tj(v, w))(k)=
∞

∑
n=−∞

v(k+n)w(k−n)sj(n), for each v∈CZ, each w∈CZ, and all k∈Z;

Tj(F, G) =
∞

∑
n=−∞

(UnF) (U−nG)sj(n), for all F ∈ A(µ), and all G ∈ A(µ).

Suppose that there is a positive real constant ζ such that for every pair of finitely sup-
ported sequences a ∈ CZ and b ∈ CZ, for every integer R > 2, and for each sequence of
positive integers u1 < u2 < · · · < uR, we have:

∥∥∥{R−1

∑
r=1

sup
j∈N,

ur6j<ur+1

|Tj(a, b)−Tur+1(a, b)|2
}1/2∥∥∥

`1,∞(Z)
6ζR1/4 ‖a‖`2(Z)‖b‖`2(Z).(3.34)

Then for every f ∈ L2(µ), every g ∈ L2(µ), every integer R > 2, and each sequence of
positive integers u1 < u2 < · · · < uR, we have:

∥∥∥{R−1

∑
r=1

sup
j∈N,

ur6j<ur+1

|Tj( f , g)−Tur+1( f , g)|2
}1/2∥∥∥

L1,∞(µ)
6ζR1/4 ‖ f ‖L2(µ)‖g‖L2(µ).(3.35)

Hence by Lemma 2.3, for every f ∈ L2(µ) and every g ∈ L2(µ) the sequence
{Tj( f , g)}∞

j=1 converges µ -a.e. on Ω to a corresponding function belonging to A(µ).
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Proof. For convenience, put

(3.36) ∆ =
{ R−1

∑
r=1

sup
j∈N,

ur6j<ur+1

|Tj( f , g)− Tur+1( f , g)|2
}1/2

.

Applying (2.6) to the distribution function of ∆, we see that for each k ∈ Z, and
each real number y > 0,

(3.37) λ(∆, µ; y) = λ(Φk(∆), µ; y).

From the properties of Φk in (2.1), (2.2), and (2.5) we deduce that

Φk(∆) =
{ R−1

∑
r=1

sup
j∈N,

ur6j<ur+1

|Φk(Tj( f , g))−Φk(Tur+1( f , g))|2
}1/2

(3.38)

=
{ R−1

∑
r=1

sup
j∈N,

ur6j<ur+1

|h2
kΦk(Tj( f , g))− h2

kΦk(Tur+1( f , g))|2
}1/2

.

For every ν ∈ N, we have by virtue of (3.33),

(3.39) h2
kΦk(Tυ( f , g)) =

∞

∑
n=−∞

(Uk+n f ) (Uk−ng)sυ(n).

Using (3.39) to substitute in (3.38), we find that for each k ∈ Z,

Φk(∆) =
{ R−1

∑
r=1

sup
j∈N,

ur6j<ur+1

∣∣∣ ∞

∑
n=−∞

(Uk+n f ) (Uk−ng)sj(n)− · · ·(3.40)

−
∞

∑
n=−∞

(Uk+n f ) (Uk−ng)sur+1(n)
∣∣∣2}1/2

.

Now let N0 be the least positive integer N such that sj(n) = 0 whenever 1 6
j 6 uR and |n| > N, temporarily fix an arbitrary L ∈ N, and let CL,N0 denote the
characteristic function, defined on Z, of

{n ∈ Z : |n| 6 L + N0}.

For each x ∈ Ω, we define the finitely supported sequences φx : Z→ C and
ψx : Z→ C by writing for each n ∈ Z,

φx(n) = CL,N0(n) ((Un f )(x)); ψx(n) = CL,N0(n) ((Ung)(x)).

In terms of this notation, we can use (3.40) to write for each k ∈ Z such that
−L 6 k 6 L, and for each x ∈ Ω,

(Φk(∆))(x) =
{ R−1

∑
r=1

sup
j∈N,

ur6j<ur+1

|(Tj(φx, ψx))(k)− (Tur+1(φx, ψx))(k)|2
}1/2

.(3.41)
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From (3.37) we have for each real number y > 0,

(3.42) (2L + 1)λ(∆, µ; y) =
L

∑
k=−L

λ(Φk(∆), µ; y).

Temporarily fix an arbitrary positive real number y, and for each k ∈ Z with
−L 6 k 6 L, denote by χk the characteristic function, defined on Ω, of the set Ek
specified by

Ek = {x ∈ Ω : (Φk(∆))(x) > y}.
This permits us to rewrite (3.42) in the form

(3.43) (2L + 1)λ(∆, µ; y) =
∫
Ω

( L

∑
k=−L

χk(x)
)

dµ(x).

With the aid of (3.41) we see that at each x ∈ Ω, the integrand in (3.43) can be
expressed in terms of counting measure mZ on Z by:

L

∑
k=−L

χk(x)=mZ{k ∈ Z : −L 6 k 6 L, and x ∈ Ek}

6mZ
{

k∈Z :
{R−1

∑
r=1

sup
j∈N,

ur6j<ur+1

|(Tj(φx, ψx))(k)−(Tur+1(φx, ψx))(k)|2
}1/2

>y
}

.

Application to this of the hypothesis (3.34) shows that for each x ∈ Ω,

L

∑
k=−L

χk(x) 6
ζR1/4‖φx‖`2(Z) ‖ψx‖`2(Z)

y

=
ζR1/4

y

{ L+N0

∑
n=−L−N0

|(Un f )(x)|2
}1/2 { L+N0

∑
n=−L−N0

|(Ung)(x)|2
}1/2

.

Using this on the right of (3.43) and then invoking Cauchy–Schwarz, we find,
since U|L2(µ) is a surjective linear isometry, that:

λ(∆, µ; y)6
ζR1/4

y(2L+1)

∫
Ω

{ L+N0

∑
n=−L−N0

|(Un f )|2
}1/2{ L+N0

∑
n=−L−N0

|(Ung)|2
}1/2

dµ(3.44)

6
ζR1/4

y

(2L + 2N0 + 1
2L + 1

)
‖ f ‖L2(µ)‖g‖L2(µ).

In view of the definition of ∆ in (3.36), we can immediately arrive at (3.35) by
letting L→ ∞ on the right of ( 3.44).

The following corollary results directly from Theorem 3.3 and Theorem 3.4.

COROLLARY 3.5. Suppose that (Ω, µ) is a sigma-finite measure space, and let U
be a bijective linear mapping of A(µ) onto A(µ) such that conditions (i) and (ii) in the
hypotheses of Theorem 1.3 hold. Suppose that K : R→ R belongs to C∞(R) and has
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compact support. Let m ∈ N, and put dm = 21/m. For each j ∈ N, let Kj,m ∈ C∞(R) be
the compactly supported function given by Kj,m = δ

dj
m

K, and define the bilinear mapping
Aj,K,m,U of A(µ) × A(µ) into A(µ) by writing for all F ∈ A(µ), and all G ∈ A(µ),

Aj,K,m,U(F, G)=
∞

∑
n=−∞

(UnF)(U−nG)Kj,m(n)=
1

dj
m

∞

∑
n=−∞

(UnF)(U−nG)K
( n

dj
m

)
.(3.45)

Then for every f ∈ L2(µ), every g ∈ L2(µ), every integer R > 2, and each sequence of
positive integers u1 < u2 < · · · < uR, we have:

∥∥∥{ R−1

∑
r=1

sup
j∈N,

ur6j<ur+1

|Aj,K,m,U( f , g)−Aur+1,K,m,U( f , g)|2
}1/2∥∥∥

L1,∞(µ)
(3.46)

6 ΓK,mR1/4 ‖ f ‖L2(µ)‖g‖L2(µ),

where ΓK,m denotes the constant cm(γK,m + αKβK) that occurs in (3.14). Hence for every
f ∈ L2(µ) and every g ∈ L2(µ), the sequence {Aj,K,m,U( f , g)}∞

j=1 converges µ-a.e. on
Ω to a corresponding function belonging to A(µ).

4. PROOF OF THEOREM 1.3

In view of Theorem 2.5 and dominated convergence, we need only demon-
strate the conclusions of Theorem 1.3 regarding the existence of µ-a.e. limits. By
Theorem 2.5 and the Multilinear Banach Principle (see, e.g., Proposition 1 of [2]
for the latter), it suffices for the demonstration of Theorem 1.3 to show that each of
the sequences {Ak,U( f , g)}∞

k=1 and {Hk,U( f , g)}∞
k=1 (as defined by (1.1) and (1.2))

converges µ-a.e. on Ω when we specialize f and g to be µ-integrable simple func-
tions such that ‖ f ‖L∞(µ) = ‖g‖L∞(µ) = 1. This will be carried out in two parts.
(In the ensuing discussion, we shall use without explicit mention the convenient
fact that, since U|L∞(µ) is a surjective linear isometry, we have for all n ∈ Z,

‖Un f ‖L∞(µ) = ‖Ung‖L∞(µ) = 1.

Part (i). We first prove the µ-a.e. convergence of {Ak,U( f , g)}∞
k=1 for such

f and g. Let M be an arbitrary positive real number, and choose a real-valued
function K(M) ∈ C∞(R) such that: K(M) vanishes on (−∞,− 1

M ] ∪ [1 + 1
M , ∞);

K(M) = 1 on [0, 1]; K(M) is increasing on [− 1
M , 0]; K(M) is decreasing on [1, 1 + 1

M ].
By Corollary 3.5, for each m ∈ N, the sequence {Aj,K(M),m,U( f , g)}∞

j=1 correspond-

ing to f , g , K(M), and m in accordance with (3.45) converges µ-a.e. on Ω. For each
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j ∈ N, we have

Aj,K(M),m,U( f , g)(4.1)

=∑
{
(Un f )(U−ng)K(M)

j,m (n) : −2j/m

M
< n < 2j/m

(
1 +

1
M

)}
=∑

{
(Un f )(U−ng)K(M)

j,m (n) : −2j/m

M
<n<0

}
+

1
2j/m

[2j/m ]

∑
n=0

(Un f )(U−ng)

+ ∑
{
(Un f )(U−ng)K(M)

j,m (n) : 2j/m < n < 2j/m
(

1 +
1
M

)}
.

But for each n ∈ Z such that − 2j/m

M < n < 0 or 2j/m < n < 2j/m(1 + 1
M
)
,

0 6 K(M)
j,m (n) 6

1
2j/m ,

and so ∣∣∣∑{
(Un f )(U−ng)K(M)

j,m (n) : −2j/m

M
< n < 0

}∣∣∣ 6 1
2j/m

(2j/m

M

)
=

1
M

;(4.2) ∣∣∣∑{
(Un f )(U−ng)K(M)

j,m (n) : 2j/m <n<2j/m
(

1+
1
M

)}∣∣∣6( 1
M

+
1

2j/m

)
.

Since {Aj,K(M),m,U( f , g)}∞
j=1 converges µ-a.e. on Ω for arbitrary m ∈ N, and arbi-

trary positive M ∈ R, it follows readily from (4.1) and (4.2) that for each m ∈ N
the sequence {Ã2j/m ,U( f , g)}∞

j=1 specified by

Ã2j/m ,U( f , g) =
1

2j/m

[2j/m ]−1

∑
n=0

(Un f )(U−ng), for each j ∈ N,

converges µ-a.e. on Ω. So for Part (i) of the proof it remains to show that the µ-
a.e. convergence of {Ã2j/m ,U( f , g)}∞

j=1 for each fixed m ∈ N can be converted into
µ-a.e. convergence of the sequence {Ak,U( f , g)}∞

k=1. Given m ∈ N, k ∈ N, with
k > 2, let j = j(k, m) ∈ N satisfy

(4.3) 2j/m 6 k < 2(j+1)/m.

Hence for some absolute constant η we have

(4.4) 0 6
k− 2j/m

k
6

k− 2j/m

2j/m < 21/m − 1 6
η

m
,

and consequently we have pointwise on Ω,

|Ak,U( f , g)− Ã2j/m ,U( f , g)|(4.5)

6
( k− 2j/m

2j/mk

) [2j/m ]−1

∑
n=0

|(Un f )| |U−ng|+ 1
k

k−1

∑
n=[2j/m ]

|(Un f )| |U−ng|

6 2
( k− 2j/m

k

)
+

2j/m − [2j/m]
k

6
2η

m
+

1
k

.
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It follows from (4.5) and the µ-a.e. convergence for each m ∈ N of the sequence
{Ã2j/m ,U( f , g)}∞

j=1 that the sequence {Ak,U( f , g)}∞
k=1 is pointwise Cauchy µ-a.e

on Ω.
Part (ii). To complete the demonstration of Theorem 1.3, it will suffice (as

noted above) to establish the µ-a.e. convergence of the averages {Hk,U( f , g)}∞
k=1

for µ-integrable simple functions f , g such that ‖ f ‖L∞(µ) = ‖g‖L∞(µ) = 1. For this
purpose, we shall follow the main outlines of the proof for Theorem 1.2 of [4].
We start by letting M be an arbitrary integer such that M > 2, and then choosing,
as the relevant kernel for applying Theorem 3.1, an odd C∞(R) function K〈M〉 :
R→ R such that:

K〈M〉(x) =
1
x

, for |x| > 1;(4.6)

K〈M〉(x) = 0, for |x| 6 1− 1
M

;(4.7)

|K〈M〉(x)| 6 2, for |x| 6 1.(4.8)

Notice that by virtue of (4.6), the successive derivatives dnK〈M〉(x)
dxn , for n ∈ N, all

belong to L1(R)
⋂

L∞(R), and this fact is helpful in seeing by elementary con-
siderations that K〈M〉 satisfies the hypotheses of Theorem 3.1, which thereby fur-
nishes us with the following oscillation estimate, valid for each integer M > 2,
each m ∈ N, each integer J > 2, each sequence of positive integers u1 < u2 <
· · · < uJ , and every pair of compactly supported functions F and G belonging to
L∞(R). ∥∥∥{ J−1

∑
j=1

sup
k∈N,

uj6k<uj+1

∣∣∣ ∫
R

F(x + y)G(x− y)((δdk
m
K〈M〉)(y)(4.9)

− (δ
d

uj+1
m

K〈M〉)(y)) dy
∣∣∣2}1/2∥∥∥

L1,∞
x

6 CM,m J1/4 ‖F‖L2(R) ‖G‖L2(R).

However, since the kernel K〈M〉 lacks compact support and does not belong to
L1(R), its exploitation of the oscillation estimate (4.9) will require extra care. In
this regard, it is convenient to observe that because of (4.6) K〈M〉 has the following
“quasi-stability” under dilations: for each positive real number ξ,

(δξK
〈M〉)(x) =

1
x

, whenever |x| > ξ .

Hence if 0 < ξ1 6 ξ2, then (δξ1K
〈M〉)(x) = (δξ2K

〈M〉)(x) = 1
x , for |x| > ξ2. In

particular, for 1 6 j 6 J − 1, and uj 6 k < uj+1,

(4.10) (δdk
m
K〈M〉 − δ

d
uj+1
m

K〈M〉)(x) = 0, whenever |x| > d
uj+1
m .
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Consequently, although the C∞(R) kernel K〈M〉 itself lacks compact support (and
so is not automatically covered by the discretization result in Theorem 3.3), the
discretization methods in the proof of Theorem 3.3 can nevertheless go forward
from (4.9) by straightforward adjustments which rely on the compact supports
of the relevant difference kernels in accordance with (4.10). This procedure dis-
cretizes (4.9) by yielding the following result. For each integer M > 2, for each
m ∈ N, for every pair of finitely supported sequences a ∈ CZ and b ∈ CZ, for ev-
ery integer R > 2, and for each sequence of positive integers u1 < u2 < · · · < uR,∥∥∥{ R−1

∑
r=1

sup
j∈N,

ur6j<ur+1

|Kj,M,m(a, b)−Kur+1,M,m(a, b)|2
}1/2∥∥∥

`1,∞(Z)
(4.11)

6 CM,m R1/4 ‖a‖`2(Z)‖b‖`2(Z),

where for each ν ∈ N, and each k ∈ Z,

(4.12) (Kν,M,m(a, b))(k) =
∞

∑
n=−∞

a(k + n) b(k− n)
dν

m
K〈M〉

( n
dν

m

)
.

(Since a and b are finitely supported, the sum on the right of (4.12) has only finitely
many non-zero terms, and also Kν,M,m(a, b) is finitely supported.)

In order to obtain a transferred counterpart of (4.11) to which we can apply
Theorem 3.4, we shall first recast (4.11) so that it becomes completely expressed
in terms of finitely supported discrete kernels (rather than the present discrete
kernels of the form (δdν

mK〈M〉)|Z). The method for doing so will be taken from
the proof for Theorem 1.2 in [4]. Specifically, for each j ∈ N, we define Aj,M,m :
Z→ R, Hj,m : Z→ R and Dj,M,m : Z→ R by writing:

Aj,M,m(n) =

{
1

dj
m
K〈M〉

(
n

dj
m

)
if |n| 6 dj

m ,

0 otherwise;
(4.13)

Hj,m(n) =

{
1
n if 0 < |n| 6 dj

m,
0 otherwise;

Dj,M,m(n) = Aj,M,m(n)−Hj,m(n), for all n ∈ Z.

Then it is easy to verify from definitions that whenever j ∈ N and ν ∈ N, we have
for all n ∈ Z,

1

dj
m

K〈M〉
( n

dj
m

)
− 1

dν
m

K〈M〉
( n

dν
m

)
= Dj,M,m(n)−Dν,M,m(n).

For each ν ∈ N, we define the bilinear mapping Dν,M,m : CZ × CZ → CZ by
writing for all v ∈ CZ , all w ∈ CZ, and all k ∈ Z,

(Dν,M,m(v, w))(k) =
∞

∑
n=−∞

v(k + n) w(k− n) Dν,M,m(n) .
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We can now use the finitely supported discrete kernels Dj,M,m to rewrite the in-
equality (4.11) in the following form, valid for each integer M > 2, each m ∈ N,
every pair of finitely supported sequences a ∈ CZ and b ∈ CZ, every integer
R > 2, and each sequence of positive integers u1 < u2 < · · · < uR.∥∥∥{ R−1

∑
r=1

sup
j∈N,

ur6j<ur+1

|Dj,M,m(a, b)− Dur+1,M,m(a, b)|2
}1/2∥∥∥

`1,∞(Z)
(4.14)

6 CM,m R1/4 ‖a‖`2(Z)‖b‖`2(Z).

After applying Theorem 3.4 to (4.14), we infer that for each integer M > 2, for
each m ∈ N, and for the above-described µ-integrable simple functions f , g, the
sequence

(4.15)
{

∑
|k|6dn

m

(Uk f ) (U−kg)Dn,M,m(k)
}∞

n=1
converges µ-a.e. on Ω.

For each n ∈ N, it is clear from definitions and the notation of (1.2) that the
following identity holds pointwise on Ω.

(4.16) ∑
|k|6dn

m

(Uk f )(U−kg)Dn,M,m(k)= ∑
|k|6dn

m

(Uk f )(U−kg)An,M,m(k)−Hdn
m ,U( f , g).

Moreover, (4.13), taken in conjunction with (4.7) and (4.8), shows that for each
integer M > 2, each m ∈ N, and each n ∈ N,

∑
|k|6dn

m

(Uk f )(U−kg)An,M,m(k)

= ∑
{
(Uk f ) (U−kg)

1
dn

m
K〈M〉

( k
dn

m

)
:
(

1− 1
M

)
dn

m < |k| 6 dn
m

}
,

and so we have pointwise on Ω,∣∣∣ ∑
|k|6dn

m

(Uk f ) (U−kg)An,M,m(k)
∣∣∣ 6 4

( 1
M

+
1

dn
m

)
= 4

( 1
M

+
1

2n/m

)
.

Since the integer M > 2 is arbitrary, it follows from this, (4.15 ), and (4.16) that for
each m ∈ N,

(4.17) {H2n/m ,U( f , g)}∞
n=1 converges µ-a.e. on Ω.

The µ-a.e. convergence of the averages {Hk,U( f , g)}∞
k=1 can now be deduced from

(4.17) by reasoning analogous to that used to complete Part (i) of the proof.

5. THE CONTINUOUS VARIABLE COUNTERPART OF THEOREM 1.3

This brief final section features Theorem 5.2 below, which is the counter-
part of Theorem 1.3 for averages defined by one-parameter groups of Lebesgue
space isometries associated with the arbitrary sigma-finite measure space (Ω, µ).
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These continuous variable averages do not require any discretization for oscilla-
tion estimates based on Theorem 3.1, and in this respect their treatment is sim-
pler than that for the discrete averages. Moreover, Theorem 5.2 below can be
established by techniques which, though at times involving measure-theoretic
technicalities, are transparently analogous to those used in the preceding sec-
tions for the discrete averages. In particular, for the relevant transferred maximal
estimates (repectively, relevant transferred oscillation estimates) in the present
setting, we need only replace the role of Theorem 2.5 (respectively, Theorem 3.4)
by suitable reasoning based on Section 6 of [2] so as to transfer from R to the
(Ω, µ) context Michael Lacey’s classical estimates [13] for the bisublinear Hardy–
Littlewood maximal operator and the bisublinear maximal Hilbert transform (re-
spectively, oscillation estimates of the form (3.1) of Theorem 3.1). In view of this
state of affairs, the discussion below will, for expository reasons, omit detailed
arguments.

In order to formulate the results for the continuous variable setting, we be-
gin by describing the main ingredients of the discussion. Our transference vehi-
cle for defining the relevant averages on the measure space side will be a one-
parameter group U ≡ {Ut : t ∈ R} consisting of linear bijections of A(µ) onto
A(µ). Thus,

(5.1) Us+t( f ) = Us(Ut f ), for all s ∈ R, t ∈ R, f ∈ A(µ).

The one-parameter group U ≡ {Ut : t ∈ R}will be required to satisfy the follow-
ing conditions:

(1) For each t ∈ R, lim
k→∞

(Utgk) = Utg µ-a.e. on Ω, whenever {gk}∞
k=1 ⊆ A(µ),

g ∈ A(µ), and lim
k→∞

gk = g µ-a.e. on Ω.

(2) For 0 < p < ∞, and each s ∈ R, Lp(µ) is invariant under Us, and the
restrictions {Ut|Lp(µ) : t ∈ R} form a strongly continuous one-parameter group
of surjective linear isometries of Lp(µ) onto Lp(µ).

(3) For each f ∈ A(µ), the expression (Ut f )(x), where (t, x) runs through
R × Ω, can be regarded as being a jointly measurable version with respect to the
product of linear Lebesgue measure mR and the measure µ. In other words, there
exists a complex-valued (mR × µ)-measurable function F f on R × Ω such that
for each t ∈ R, F f (t, ·) belongs to the equivalence class (modulo equality µ -a.e.
on Ω) of Ut f . (For convenience, we shall denote such a function F f by (Ut f )(x).)

REMARK 5.1. (i) We observe here that for f ∈ A(µ), any two jointly measur-
able versions F

(1)
f and F

(2)
f representing (Ut f )(x) on R × Ω in accordance with

condition (3) would automatically have the additional property that for µ-almost
all x ∈ Ω,

(5.2) F
(1)
f (t, x) = F

(2)
f (t, x), for mR-almost all t ∈ R.
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For this reason among other obvious reasons, the particular choice of jointly mea-
surable version of (Ut f )(x) on R × Ω will be immaterial in all our considerations
below.

(ii) As is well-known (see, e.g., Proposition 5 in [2]), the above conditions (1)
and (2) can be shown to imply that for each t ∈ R , Ut|L∞(µ) is a surjective linear
isometry of L∞(µ) onto L∞(µ). Hence, in view of condition (3), for every f ∈
L∞(µ), we have for µ-almost all x ∈ Ω,

(5.3) ‖(U(·) f )(x)‖L∞(R) 6 ‖ f ‖L∞(µ).

In terms of the foregoing notation, our continuous variable version of Theo-
rem 1.3 takes the following form. (In particular, the variable limits of integration
of the indefinite integrals occurring below are continuous rather than discrete
variables.)

THEOREM 5.2. Let (Ω, µ) be a sigma-finite measure space, let U ≡ {Ut : t ∈ R}
be a one-parameter group of linear bijections of A(µ) onto A(µ) satisfying the above
conditions (1), (2), and (3), and let p1, p2, p3 satisfy (1.3) and (1.4). Then for every pair
of functions f ∈ Lp1(µ)∩ L2(µ) and g ∈ Lp2(µ)∩ L2(µ), the following assertions hold:

(i) Each of the following two limits exists µ-a.e. on Ω, as well as with respect to the
metric topology of the space Lp3(µ):

(EU ,∞( f , g))(x) ≡ lim
r→∞

1
r

r∫
0

(Ut f )(x)(U−tg)(x) dt;(5.4)

(EU ,0( f , g))(x) ≡ lim
r→0+

1
r

r∫
0

(Ut f )(x)(U−tg)(x) dt.(5.5)

Moreover,

(5.6) max{‖EU ,0( f , g)‖Lp3 (µ),‖EU ,∞( f , g)‖Lp3 (µ)} 6 Cp1,p2‖ f ‖Lp1 (µ) ‖g‖Lp2 (µ).

(ii) For µ-almost all x ∈ Ω, the (Cauchy principal value) improper integral

(5.7)
∫

ε6|t|

(Ut f )(x)(U−tg)(x)
t

dt ≡ lim
ς→∞

∫
ε6|t|6ς

(Ut f )(x)(U−tg)(x)
t

dt

exists in C for every ε > 0, and (Hε,U ( f , g))(x) ≡
∫

ε6|t|

(Ut f )(x)(U−tg)(x)
t dt approaches

a limit (HU ( f , g))(x) ∈ C, as ε → 0+. We also have the following two limit relations
with respect to convergence in the metric topology of the space Lp3(µ):

Hε,U ( f , g) = lim
ς→∞

∫
ε6|t|6ς

(Ut f )(·)(U−tg)(·)
t

dt, for each ε > 0;(5.8)

HU ( f , g) = lim
ε→0+

Hε,U ( f , g).(5.9)
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Moreover,

(5.10) ‖HU ( f , g)‖Lp3 (µ) 6
∥∥∥ sup

ε>0
|Hε,U ( f , g)|

∥∥∥
Lp3 (µ)

6 Cp1,p2‖ f ‖Lp1 (µ) ‖g‖Lp2 (µ).

We come now to a discussion of the convergence properties exhibited by
the one-parameter (continuous variable) averages in the setting of an arbitrary
measure space (X, σ). Although the measure σ need not be sigma-finite, this
context does offer a notion of joint measurability with respect to the measurable
spaces of mR and σ for complex-valued functions defined on R × X (as in, e.g.,
Section 33 of [10]), but a product measure of mR and σ (in the sense of the ab-
stract Fubini’s theorem, as in, e.g., Section Section 35, 36 of [10]) is lacking, and
this lack imposes technical constraints on attempts to mirror the general mea-
sure space results for the a.e. convergence of the discrete averages induced by
measure-preserving point transformations (Corollary 1.4). For example, we no
longer have a route to compatibility conditions like (5.2), and so the framing of
σ-a.e. convergence questions in the continuous variable framework can become
refractory. In view of these circumstances we shall, for convenience, forgo discus-
sion of σ-a.e. convergence for the one-parameter averages in favor of studying the
convergence in Lp(σ) of their Bochner integral formulations.

The transference vehicle for the present framework will be a one-parameter
group (under composition of mappings) P ≡ {ψt : t ∈ R} consisting of invertible
measure-preserving point transformations of (X, σ) — thus, for all x ∈ X, all s ∈
R, and all t ∈ R, ψs+t(x) = ψs(ψt(x)). In this setup, we postulate the following
two properties for P ≡ {ψt : t ∈ R}, thereby endowing V ≡ {Vt : t ∈ R}, the
one-parameter group of corresponding composition operators on A(σ), with the
counterpart of the conditions (1), (2), and (3) that were imposed on U ≡{Ut : t ∈
R} at the outset of this section.

(A) lim
t→t0

σ((ψt(E))∆(ψt0(E))) = 0, for each set E ⊆ X such that σ(E) < ∞, and

each t0 ∈ R, where ∆ denotes the symmetric difference of sets.
(B) For each f ∈ A(σ), there exists a complex-valued function E f on R × X

such that E f is jointly measurable with respect to the measurable spaces of mR
and σ, and for each t ∈ R, E f (t, •) belongs to the equivalence class (modulo
equality σ-a.e. on X) of Vt f . (For convenience, we shall denote such a function E f
by (Vt f )(x) ≡ f (ψt(x)).)

In view of (A) and Cauchy–Schwarz, for each f ∈ L2(σ) and each g ∈
L2(σ), the pointwise product f (ψt)g(ψ−t) qua function of t ∈ R moves con-
tinuously in L1(σ). So for each F ∈ L1(R), the L1(σ)-valued Bochner integral∫
R

f (ψt)g(ψ−t)F(t) dt exists and clearly satisfies

∥∥∥ ∫
R

f (ψt)g(ψ−t)F(t) dt
∥∥∥

L1(σ)
6 ‖F‖L1(R)‖ f ‖L2(σ)‖g‖L2(σ).
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With due attention to technical details arising in this context, one can de-
duce, as a corollary of Theorem 5.2, the following continuous variable variant of
Corollary 1.4.

COROLLARY 5.3. Suppose that (X, σ) is an arbitrary measure space, and let P ≡
{ψt : t ∈ R} be a one-parameter group of invertible measure-preserving point transfor-
mations of (X, σ) onto (X, σ) which has the properties (A) and (B) listed above. Let p1,
p2, p3 satisfy (1.3) and (1.4). Then for each pair of functions f ∈ Lp1(σ)∩ L2(σ) and
g ∈ Lp2(σ)∩ L2(σ), the following assertions are valid:

(i) The L1(σ)-valued Bochner integrals
r∫

0
f (ψt)g(ψ−t) dt (r > 0) belong to Lp3(σ),

and have the property that both the following limits exist with respect to the metric topol-
ogy of the space Lp3(σ).

EP ,∞( f , g) ≡ lim
r→∞

1
r

r∫
0

f (ψt)g(ψ−t) dt;(5.11)

EP ,0( f , g) ≡ lim
r→0+

1
r

r∫
0

f (ψt)g(ψ−t) dt.(5.12)

Moreover,

(5.13) max{‖EP ,0( f , g)‖Lp3 (σ), ‖EP ,∞( f , g)‖Lp3 (σ)} 6 Cp1,p2‖ f ‖Lp1 (σ) ‖g‖Lp2 (σ).

(ii) For each ε > 0, the L1(σ)-valued Bochner integrals
∫

ε6|t|6ς

f (ψt)g(ψ−t)t−1 dt

(ε < ς) belong to Lp3(σ), and have the property that, with respect to the metric topology
of the space Lp3(σ),

Hε,P ( f , g) ≡ lim
ς→∞

∫
ε6|t|6ς

f (ψt)g(ψ−t)t−1 dt

exists. We also have, with respect to the metric topology of the space Lp3(σ), the exis-
tence of

HP ( f , g) ≡ lim
ε→0+

Hε,P ( f , g).

Moreover,

‖HP ( f , g)‖Lp3 (σ) 6 sup
ε>0
‖Hε,P ( f , g)‖Lp3 (σ) 6 Cp1,p2‖ f ‖Lp1 (σ) ‖g‖Lp2 (σ).

We close with the following example, which illustrates Theorem 5.2 in the
realm of harmonic analysis on groups.

EXAMPLE 5.4. The context of this example will be Helson’s classic theory of
generalized analyticity and invariant subspaces, which we first describe in order
to set the stage. (For a full discussion of this context and its generalizations, we
refer the reader to [1], [12].) Let Γ be a dense subgroup of the additive group R
of all real numbers. Endow Γ with the discrete topology and the order it inherits
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from R, and let K be the dual group of Γ. (Equivalently, K can be characterized
as a compact abelian group other than {0} or the unit circle T such that the dual
group of K is archimedean ordered.) Denote the normalized Haar measure of
K by mK, and for each t ∈ R, let et ∈ K be specified by writing for all γ ∈ Γ,
et(γ) = eitγ. A cocycle on K is a Borel measurable function A : R×K → T such
that

A(t + u, x) = A(t, x)A(u, x + et), for all t ∈ R, all u ∈ R, and all x ∈ K.

Every cocycle A on K automatically has the property that the mapping t→
A(t, ·) is continuous from R into Lp(mK) for 0 < p < ∞ (see Lemma VII.12.1 of
[9]). We denote by C the class of all cocycles on K (identified modulo equality
(mR × mK)-a.e. on R×K), and we associate with each A ∈ C the following one-
parameter group U (A) ≡ {U(A)

t : t ∈ R} of linear bijections of A(mK): for each
t ∈ R and each f ∈ A(mK),

(U(A)
t f )(x) = A(t, x) f (x + et), for mK -almost all x ∈ K.

It is readily seen that Theorem 5.2 applies to U (A) ≡ {U(A)
t : t ∈ R}. Briefly put,

Helson’s classic theory of generalized analyticity and invariant subspaces uses
the spectral decomposability of the one-parameter unitary groups {U(A)

t |L2(mK) :
t ∈ R}, A ∈ C, to establish a one-to-one correspondence between the cocycles A
on K and the normalized simply invariant subspaces of L2(mK). This state of af-
fairs has been generalized to Lp(mK), 1 6 p < ∞, as follows (see Sections 2 and
3 of [1]): the one-parameter group U (A) ≡ {U(A)

t : t ∈ R} transfers the Hilbert
transform for R to a weak type (1, 1) operator H(A) : L1(mK) → A(mK) which is
specified by taking

(H(A) f )(x) = lim
n→∞

∫
n−16|t|6n

(U(A)
−t f )(x)

πt
dt, for mK-almost all x ∈ K,

and H(A) furnishes, via generalized Hardy spaces, a cocycle characterization
of the normalized simply invariant subspaces of Lp(mK). For 1 < p < ∞,
H(A)|Lp(mK) is a continuous linear mapping of Lp(mK) into itself. Clearly, Theo-
rem 5.2 above, when specialized to {U(A)

t : t ∈ R}, provides the bilinear counter-
part for H(A) (and, in contrast, the transferred bilinear Hilbert transform
HU (A)(·, ·) is bounded even in the instances where the index p3 of the target space
Lp3(mK) satisfies 2

3 < p 6 1 ).
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