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ABSTRACT. Mimicking the von Neumann version of Kustermans and Vaes’
locally compact quantum groups, Franck Lesieur has introduced a notion of
measured quantum groupoid, in the setting of von Neumann algebras. In this
article, we suppose that the basis of the measured quantum groupoid is cen-
tral; in that case, we prove that a specific sub-C∗-algebra is invariant under all
the data of the measured quantum groupoid; moreover, this sub-C∗-algebra is
a continuous field of C∗-algebras; when the basis is central in both the mea-
sured quantum groupoid and its dual, we get that the measured quantum
groupoid is a continuous field of locally compact quantum groups. On the
other hand, using this sub-C∗-algebra, we prove that any abelian measured
quantum groupoid comes from a locally compact groupoid.
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1. INTRODUCTION

1.1. In two articles ([41], [42]), J.-M. Vallin has introduced two notions (pseudo-
multiplicative unitary, Hopf-bimodule), in order to generalize, up to the groupoid
case, the classical notions of multiplicative unitary [2] and of Hopf–von Neumann
algebras [19], which were introduced to describe and explain duality of groups,
and led to appropriate notions of quantum groups ([19], [45], [47], [2], [27], [46],
[22], [23], [28]).

In another article [20], J.-M. Vallin and the author have constructed, from
a depth 2 inclusion of von Neumann algebras M0 ⊂ M1, with an operator-
valued weight T1 verifying a regularity condition, a pseudo-multiplicative uni-
tary, which leaded to two structures of Hopf bimodules, dual to each other. More-
over, we have then constructed an action of one of these structures on the algebra
M1 such that M0 is the fixed point subalgebra, the algebra M2 given by the basic
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construction being then isomorphic to the crossed-product. We constructed on
M2 an action of the other structure, which can be considered as the dual action.

If the inclusion M0 ⊂ M1 is irreducible, we recovered quantum groups, as
proved and studied in former papers ([18], [12]).

Therefore, this construction leads to a notion of "quantum groupoid", and a
construction of a duality within "quantum groupoids".

1.2. In a finite-dimensional setting, this construction can be much simplified, and
is studied in [29], [5], [6], [36], [43], [44], and examples are described. In [30],
the link between these "finite quantum groupoids" and depth 2 inclusions of II1
factors is given.

1.3. Franck Lesieur introduced ([25]) a notion of "measured quantum groupoids",
in which a modular hypothesis on the basis is required. Mimicking in a wider
setting the techniques of Kustermans and Vaes [22], he obtained then a pseudo-
multiplicative unitary, which, as in the quantum group case, "contains" all the
information of the object (the von Neuman algebra, the coproduct, the antipode,
the co-inverse). Unfortunately, the axioms chosen by Lesieur don’t fit perfectely
with the duality (namely, the dual object does not fit the modular condition on
the basis chosen in [25]), and, in order to get a perfect symmetry, Lesieur gave
the name of "measured quantum groupoid" to a wider class ([26]). In [14] it has
been shown that, with suitable conditions, the objects constructed in [20] from
depth 2 inclusions, were "measured quantum groupoids" in this new sense. The
axioms given in [26] were very complicated, and there was a serious need for
simplification. This was made in [17], and recalled in [15] in an appendix.

1.4. All these constructions have been made in a von Neumann setting, which
was natural, once we are dealing with (or thinking of) depth 2 inclusions of von
Neumann algebras. But, as for quantum groups, a C∗-version of this theory is to
be done, at least to obtain quantum objects similar to locally compact groupoids.
Many difficulties exist in that direction: how to define a relative C∗-tensor prod-
uct ? how to define the analog of operator-valued weights at the C∗ level ?

A first attempt in that direction is due to T. Timmermann who defined a
relative C∗-tensor product and C∗-pseudo-multiplicative unitaries ([38]).

This article is another step in that direction, and is devoted only to the spe-
cial case when the basis of the measured quantum groupoid is central. A first
version has been given in [16].

In this case, we get closed links with the theory of continuous fields of C∗-
algebras, as studied by Etienne Blanchard; using this theory and formalism, we
then obtain some results at the C∗ level for measured quantum groupoids hav-
ing a central basis. This will allow to prove that a measured quantum groupoid
whose underlying von Neumann algebra is commutative comes from a locally
compact groupoid. Applying this result to the measured quantum groupoid ob-
tained from a measured groupoid, we obtain Ramsay’s theorem on measured
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groupoids (which says, roughly speaking, that a measured quantum groupoid is
equivalent, with respect to the product, the inverse and the measure, to a locally
compact groupoid). A similar result is obtained for measured fields of locally
compact quantum groups.

1.5. The paper is organized as follows: in Section 2, we give all the prelimi-
naries needed for this theory, mostly Connes–Sauvageot relative tensor product,
weights on C∗-algebras and continuous fields of C∗-algebras; in Section 3 is re-
called the notion of pseudo-multiplicative unitary, and the Hopf-bimodules asso-
ciated, and the notion of measured quantum groupoid. In Section 4, we construct
a sub-C∗-algebra of a measured quantum groupoid, which is an invariant for all
the data of the measured quantum groupoid.

In Sections 5 and 6, we deal with the particular case of a measured quantum
groupoid whose basis is central; in that case, we obtain, in Section 5, properties
of the restrictions of the coproduct and the weights to this sub-C∗-algebra; in Sec-
tion 6, we prove that this sub-C∗-algebra is, in two different ways, a continuous
field of C∗-algebras, and that the restriction of the coproduct sends this sub-C∗-
algebra into the multiplier algebra of the min tensor product of these continuous
fields, as introduced by Blanchard in [3].

In particular, in Section 7, we look after a measured quantum groupoid,
whose underlying von Neuman algebra itself is abelian; it is then proved that
we obtain, in that case, a locally compact groupoid. Applying that result to the
abelian measured quantum groupoid constructed from a measured groupoid, we
recover Ramsay’s theorem.

In Section 8, we define a notion of a measured field of locally compact quan-
tum groups, and use this construction to get that it is equivalent to a continuous
one, in a way which is similar to Ramsay’s theorem; all that was underlying in
Blanchard’s work [4]; these are exactly the measured quantum groupoids with
central basis, and with a dual which has also a central basis. Blanchard’s exam-
ples are recalled.

We finish this article (Section 9) by giving De Commer’s example [10] of a
measure quantum groupoid with a central basis C2, which is not central in the
dual.

2. PRELIMINARIES

In this section are mainly recalled definitions and notations about Connes’
spatial theory and the fiber product construction (Subsection 2.1) which are the
main technical tools of the theory of measured quantum groupoids. In Subsec-
tion 2.5 are recalled classical results about weights on C∗-algebras, and a standard
procedure for going from C∗-algebra weight theory to von Neumann weight the-
ory and vice versa. In Subsection 2.6 is recalled the definition of a continuous
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field of C∗-algebras, and E. Blanchard’s results on the minimal tensor product of
two continuous fields of C∗-algebras.

2.1. SPATIAL THEORY AND RELATIVE TENSOR PRODUCTS OF HILBERT SPACES

([8],[35],[37]). Let N be a von Neumann algebra, ν a normal semi-finite faith-
ful weight on N; we shall denote by Hν, Nν, etc the canonical objects of the
Tomita–Takesaki theory associated to the weight ν; let α be a nondegenerate faith-
ful representation of N on a Hilbert space H; the set of ν-bounded elements of the
left-module αH is:

D(αH, ν) = {ξ ∈ H : ∃C < ∞, ‖α(y)ξ‖ 6 C‖Λν(y)‖, ∀y ∈ Nν}.
Then, for any ξ in D(αH, ν), there exists a bounded operator Rα,ν(ξ) from Hν to
H, defined, for all y in Nν by:

Rα,ν(ξ)Λν(y) = α(y)ξ

which intertwines the representations of N.
If ξ, η are bounded vectors, we define the operator product:

〈ξ, η〉α,ν = Rα,ν(η)∗Rα,ν(ξ)

which belongs to πν(N)′, which, thanks to Tomita–Takesaki theory, will be iden-
tified to the opposite von Neumann algebra No, on which is defined a canonical
weight νo.

If now β is a nondegenerate faithful antirepresentation of N on a Hilbert
space K, we define the relative tensor product K β⊗α

ν

H as the completion of the

algebraic tensor product K� D(αH, ν) by the scalar product defined, if ξ1, ξ2 are
in K, η1, η2 are in D(αH, ν), by the following formula:

(ξ1 � η1|ξ2 � η2) = (β(〈η1, η2〉α,ν)ξ1|ξ2).

If ξ ∈ K, η ∈ D(αH, ν), we shall denote ξ β⊗α
ν

η the image of ξ � η into K β⊗α
ν

H,

and, writing ρ
β,α
η (ξ) = ξ β⊗α

ν

η, we get a bounded linear operator from H into

K β⊗α
ν

H, which is equal to 1K ⊗ν Rα,ν(η).

One should bear in mind that, if we start from another faithful semi-finite
normal weight ν′, we get another Hilbert space H β⊗α

ν′
K; there exists an isomor-

phism Uν,ν′
β,α from H β⊗α

ν

K to H β⊗α

ν′
K, which is unique up to some functorial

property ([35], 2.6) (but this isomorphism does not send ξ β⊗α
ν

η on ξ β⊗α

ν′
η !).

The relative tensor product K β⊗πν
ν

Hν is canonically identified with K

([35], 2.4(a)).
The linear set generated by operators θα,ν(ξ, η) = Rα,ν(ξ)Rα,ν(η)∗, for all ξ,

η in D(αH, ν), is a weakly dense ideal in α(N)′. We shall denote by Kα,ν the norm
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closure of this set of operators, which is a C∗-algebra, and also a a weakly dense
ideal of α(N)′.

Moreover, there exists a family (ei)i∈I of vectors in D(αH, ν) such that the
operators θα,ν(ei, ei) are 2 by 2 orthogonal projections (θα,ν(ei, ei) being then the
projection on the closure of α(N)ei). Such a family is called an orthogonal (α, ν)-
basis of H.

We shall denote σν the relative flip, which is a unitary sending K β⊗α
ν

H onto

H α⊗β
νo

K, defined, for any ξ in D(Kβ, νo), η in D(αH, ν), by:

σν(ξ β⊗α
ν

η) = η α⊗β
νo

ξ.

If ξ ∈ D(Hβ, νo) and η ∈ K, we can then define a bounded linear operator λ
β,α
ξ

from K into K β⊗α
ν

H such that λ
β,α
ξ = ξ β⊗α

ν

η.

If x ∈ β(N)′, y ∈ α(N)′, it is possible to define an operator x β⊗α
ν

y on

K β⊗α
ν

H, with natural values on the elementary tensors. It is easy to get that this

operator does not depend upon the weight ν and it will be denoted x β⊗α
N

y. Let

A be a C∗-algebra of operators acting on H, such that A ⊂ α(N)′, and B a C∗-
algebra of operators acting on K, such that B ⊂ β(N)′; the linear space generated
by the set of operators x β⊗α

N
y, with x ∈ B and y ∈ A, is clearly an involutive

algebra, and its norm closure a C∗-algebra, that we shall denote by B β⊗α
N

A.

Let us suppose now that H is a N-N1-bimodule; that means that there exists
a von Neumann algebra N1, and a nondegenerate normal anti-representation ε
of N1 on H, such that ε(N1) ⊂ α(N1)

′. We shall write then αHε. If y is in N1,
we have seen that it is possible to define then the operator 1K β⊗α

N
ε(y) on K β⊗α

ν

H, and we define this way a nondegenerate normal antirepresentation of N1 on
K β⊗α

ν

H, that we shall call again ε for simplification. If K is a N2-N-bimodule,

then K β⊗α
ν

H becomes a N2-N1-bimodule (Connes’ fusion of bimodules).

Taking a faithful semi-finite normal weight ν1 on N1, and a left N1-module
γL (i.e. a Hilbert space L and a normal nondegenerate representation γ of N1
on L), it is possible then to define (K β⊗α

ν

H) ε⊗γ
ν1

L. Of course, it is possible

also to consider the Hilbert space K β⊗α
ν

(H ε⊗γ
ν1

L). It can be shown that these

two Hilbert spaces are isomorphic as β(N)′-γ(N1)
′o-bimodules. (In 2.1.3 of [41],

the proof, given for N = N1 abelian can be used, without modification, in that
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wider hypothesis). We shall write then K β⊗α
ν

H ε⊗γ
ν1

L without parenthesis, to

emphazise this coassociativity property of the relative tensor product.
Dealing now with that Hilbert space K β⊗α

ν

H ε⊗γ
ν1

L, there exist different

flips, and it is necessary to be careful with notations. For instance, 1 β⊗α
ν

σν1 is the

flip from this Hilbert space onto K β⊗α
ν

(L γ⊗ε
νo

1

H), where α is here acting on the

second leg of L γ⊗ε
νo

H (and should therefore be written 1 γ⊗ε
νo

α, but this will not

be done for obvious reasons). Here, the parenthesis remains, because there is no
associativity rule, and to remind that α is not acting on L. The adjoint of 1 β⊗α

ν

σν1

is 1 β⊗α
ν

σνo
1
.

The same way, we can consider σν ε⊗γ
ν1

1 from K β⊗α
ν

H ε⊗γ
ν1

L onto (H α⊗β
νo

K) ε⊗γ
ν1

L.

Another kind of flip sends K β⊗α
ν

(L γ⊗ε
νo

1

H) onto L γ⊗ε
νo

1

(K β⊗α
ν

H). We shall

denote this application σ1,2
α,ε (and its adjoint σ1,2

ε,α ), in order to emphasize that we
are exchanging the first and the second leg, and the representations α and ε on
the third leg.

2.2. OPERATOR-VALUED WEIGHTS. Let M0 ⊂ M1 be an inclusion of von Neu-
mann algebras (for simplification, these algebras will be supposed to be σ-finite),
equipped with a normal faithful semi-finite operator-valued weight T1 from M1
to M0 (to be more precise, from M+

1 to the extended positive elements of M0;
cf. IX.4.12 of [37]). Let ψ0 be a normal faithful semi-finite weight on M0, and
ψ1 = ψ0 ◦ T1; for i = 0, 1, let Hi = Hψi , Ji = Jψi , ∆ i = ∆ψi be the usual objects
constructed by the Tomita–Takesaki theory associated to these weights.

Following 10.6 of [18], for x in NT1 , we shall define ΛT1(x) by the following
formula, for all z in Nψ0 :

ΛT1(x)Λψ0(z) = Λψ1(xz).

This operator belongs to HomMo
0
(H0, H1); if x, y belong to NT1 , then ΛT1(x)ΛT1(y)

∗

belongs to the von Neumann algebra M2 = J1M′0 J1, which is called the basic
construction made from the inclusion M0⊂M1, and ΛT1(x)∗ΛT1(y)=T1(x∗y)∈M0.

By Tomita–Takesaki theory, the Hilbert space H1 bears a natural structure
of M1-Mo

1 -bimodule, and, therefore, by restriction, of M0-Mo
0 -bimodule. Let us

write r for the canonical representation of M0 on H1, and s for the canonical an-
tirepresentation given, for all x in M0, by s(x) = J1r(x)∗ J1. Let us have now a
closer look to the subspaces D(H1s, ψo

0 ) and D(r H1, ψ0). If x belongs to NT1 ∩Nψ1 ,
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we easily get that J1Λψ1(x) belongs to D(r H1, ψ0), with

Rr,ψ0(J1Λψ1(x)) = J1ΛT1(x)J0

and Λψ1(x) belongs to D(H1s, ψ0), with

Rs,ψo
0 (Λψ1(x)) = ΛT1(x).

The subspace D(H1s, ψo
0 )∩D(r H1, ψ0) is dense in H1; more precisely, let Tψ1,T1 be

the algebra made of elements x in Nψ1 ∩NT1 ∩N∗ψ1
∩N∗T1

, analytic with respect to

ψ1, and such that, for all z in C, σ
ψ1
z (xn) belongs to Nψ1 ∩NT1 ∩N∗ψ1

∩N∗T1
. Then

([15], 2.2.1):

(i) The algebra Tψ1,T1 is weakly dense in M1; it will be called Tomita’s algebra
with respect to ψ1 and T1.

(ii) For any x in Tψ1,T1 , Λψ1(x) belongs to D(H1s, ψ0) ∩ D(r H1, ψ0).
(iii) For any ξ in D(H1s, ψo

0 )), there exists a sequence xn in Tψ1,T1 such that
ΛT1(xn) = Rs,ψo

0 (Λψ1(xn)) is weakly converging to Rs,ψo
0 (ξ) and Λψ1(xn) is con-

verging to ξ.

More precisely, in 2.3 of [14] was constructed an increasing sequence of pro-
jections pn in M1, converging to 1, and elements xn in Tψ1,T1 such that Λψ1(xn) =
pnξ. We then get that:

T1(x∗nxn)=〈Rs,ψo
0 (Λψ1(xn)), Rs,ψo

0 (Λψ1(xn))〉s,ψo
0
=〈pnξ, pnξ〉s,ψo

0
=Rs,ψo

0 (ξ)∗pnRs,ψo
0 (ξ)

which is increasing and weakly converging to 〈ξ, ξ〉s,ψo
0
. Moreover, if M0 is abelian,

and if we write X for the spectrum of the C∗-algebra generated by all elements of
the form 〈η1, η2〉s,ψo

0
, we can identify ψ0 as a positive Radon measure on X, and

M0 with L∞(X, ψ0); using now Dini’s theorem on C0(X), we get that T1(x∗nxn) is
norm converging to 〈ξ, ξ〉s,ψo

0
, and that the following is converging to 0:

‖ΛT1(xn)− Rs,ψo
0 (ξ)‖2 = ‖T1(x∗nxn)− 〈ξ, ξ〉s,ψo

0
‖.

2.3. FIBER PRODUCTS OF VON NEUMANN ALGEBRAS AND SLICE MAPS ([20], [13]).
Let’s go on with the notations of Subsection 2.1. If P is a von Neumann algebra
on H, with α(N) ⊂ P, and Q a von Neumann algebra on K, with β(N) ⊂ Q, then
we define the fiber product Q β∗α

N
P as {x β⊗α

N
y, x ∈ Q′, y ∈ P′}′.

Moreover, this von Neumann algebra can be defined independently of the
Hilbert spaces on which P and Q are represented; if (i = 1, 2), αi is a faithful
nondegenerate homomorphism from N into Pi, βi is a faithful nondegenerate
antihomomorphism from N into Qi, and Φ (respectively Ψ) an homomorphism
from P1 to P2 (respectively from Q1 to Q2) such that Φ ◦ α1 = α2 (respectively
Ψ ◦ β1 = β2), then it is possible to define an homomorphism Ψ β1∗α1

N
Φ from

Q1 β1∗α1
N

P1 into Q2 β2∗α2
N

P2.
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Let A be in Q β∗γ
N

P, and let ξ1, ξ2 be in D(Hβ, νo); define (ωξ1,ξ2 β∗γ
ν

id)(A)

as a bounded operator on K, which belongs to P, such that:

((ωξ1,ξ2 β∗γ
ν

id)(A)η1|η2) = (A(ξ1 β⊗γ
ν

η1)|ξ2 β⊗γ
ν

η2).

One should note that (ωξ1,ξ2 β∗γ
ν

id)(1) = γ(〈ξ1, ξ2〉β,νo).

Let us define the same way, for any η1, η2 in D(γK, ν) the following which
belongs to Q:

(id β∗γ
ν

ωη1,η2)(A) = (ρ
β,γ
η2 )∗Aρ

β,γ
η1 .

Let φ be a normal semi-finite weight on Q+; we may define an element of
the extended positive part of P, denoted (φ β∗γ

ν

id)(A), such that, for all η in

D(γK, ν), we have:

‖(φ β∗γ
ν

id)(A)1/2η‖2 = φ(id β∗γ
ν

ωη)(A).

Moreover, if ψ is a normal semi-finite weight on P+, we have then:

ψ(φ β∗γ
ν

id)(A) = φ(id β∗γ
ν

ψ)(A)

and if ωi∈Q∗ such that φ1=sup
i

ωi, we have (φ1 β∗γ
ν

id)(A)=sup
i
(ωi β∗γ

ν

id)(A).

Let now Q1 be a von Neuman algebra such that β(N) ⊂ Q1 ⊂ Q, and P1 be
a von Neuman algebra such that γ(N) ⊂ P1 ⊂ P and let T (respectively T′) be
a normal faithful semi-finite operator valued weight from Q to Q1 (respectively
from P to P1); then, there exists an element (T β∗γ

ν

id)(A) of the extended positive

part of Q1 β∗γ
N

P, such that ([13], 3.5), for all η in D(γK, ν), and ξ in H, we have:

‖(T β∗γ
ν

id)(A)1/2(ξ β⊗γ
ν

η)‖2 = ‖T[(id β∗γ
ν

ωη)(A)]1/2ξ‖2.

If φ1 is a normal semi-finite weight on P1, we have:

(φ1 ◦ T β∗γ
ν

id)(A) = (φ1 β∗γ
ν

id)(T β∗γ
ν

id)(A).

We define the same way an element (id β∗γ
ν

T′)(A) of the extended positive part

of Q γ∗β
N

P1, and we have:

(id β∗γ
ν

T′)((T β∗γ
ν

id)(A)) = (T β∗γ
ν

id)((id β∗γ
ν

T′)(A)).

Considering now an element x of Q β∗πν
ν

πν(N), which can be identified to Q ∩

β(N)′ (thanks to the identification of K β⊗πν
ν

Hν with K), we get that, for e in Nν,
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we have
(idβ ∗

ν
πν ωJνΛν(e))(x) = β(ee∗)x.

Therefore, by increasing limits, we get that (idβ ∗
ν

πν ν) is the injection of Q∩ β(N)′

into Q. More precisely, if x belongs to Q ∩ β(N)′, we have:

(id β∗πν
ν

ν)(xβ ⊗
ν

πν 1) = x.

Therefore, if T′ is a normal faithful semi-finite operator-valued weight from P
onto γ(N), we get that:

(idβ ∗
ν

γν ◦ T′)(A)β ⊗
ν

γ1 = (idβ ∗
ν

γT′)(A).

If α(N) ⊂ Z(P), and β(N) ⊂ Z(Q), the von Neumann algebra Q β∗α
N

P is clearly

the weak closure of the C∗-algebra Q β⊗α
N

P we have defined in 2.1.

2.4. NOTATIONS. Let M be a von Neuman algebra, and α an action from a locally
compact group G on M, i.e. a homomorphism from G into AutM, such that, for all
x ∈ M, the function g 7→ αg(x) is σ-weakly continuous. Let us denote by C∗(α)
the set of elements x of M, such that this function t 7→ αg(x) is norm continuous.
It is ([32], 7.5.1) a sub-C∗-algebra of M, invariant under the αg, generated by the
elements (x ∈ N, f ∈ L1(G)):

α f (x) =
∫
R

f (s)αs(x)ds.

More precisely, we get that, for any x in M, α f (x) is σ-weakly converging to x
when f goes in an approximate unit of L1(G), which proves that C∗(α) is σ-
weakly dense in M, and that x ∈ M belongs to C∗(α) if and only if this file is
norm converging.

If αt and γs are two one-parameter automorphism groups of M, such that,
for all s, t in R, we have αt ◦ γs = γs ◦ αt, by considering the action of R2 given
by (s, t) 7→ γs ◦ αt, we obtain a dense sub-C∗-algebra of M, on which both α and
γ are norm continuous, which we shall denote C∗(α, γ).

2.5. WEIGHTS ON C∗-ALGEBRAS. Let A be a C∗-algebra, and ϕ a lower semi-
continuous, densely defined non zero weight on A ([7]). We shall use all classical
notations, and, in particular, we shall denote (Hϕ, Λϕ, πϕ) the GNS construction
for ϕ; if ϕ is faithful, so is πϕ; let us denote M=πϕ(A)′′ and ϕ the semi-finite
normal weight on M+, constructed by Corolarlly 9 of [1], which verifies ϕ◦πϕ=ϕ.

Let us recall that if the C∗-algebra A is unital, any densely defined weight ϕ
is everywhere defined, and therefore finite.

Following [7], we shall say that ϕ is KMS if there exists a norm-continuous
one parameter group of automorphisms σt of A such that, for all t ∈ R, ϕ = ϕ ◦ σt,
and such that ϕ verifies the KMS conditions with respect to σ. (For an equivalent
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definition of these conditions, see 1.3 of [22]). One can find in 1.35 of [22], the
proof that every KMS weight extends to a faithful extension ϕ on M+, and that
we have then πϕ ◦ σt = σ

ϕ
t ◦ πϕ, where σ

ϕ
t is the modular automorphism group

of M given by the Tomita–Takesaki theory of the faithful semi-finite weight ϕ on
M. This leads easily to the uniqueness of the one-parameter group σt, which we
shall emphasize by writing it σ

ϕ
t .

Moreover, it is well known that the set of elements x in A such that the
function t 7→ σ

ϕ
t (x) extends to an analytic function in A is a dense involutive

subalgebra of A (see for instance 0.3.2 and 0.3.4 of [40]).
Let now ψ be a normal semi-finite faithful weight on a von Neumann alge-

bra N. We shall write C∗(ψ) the sub-C∗-algebra of C∗(σψ) generated by elements
σ

ψ
f (x), with f ∈ L1(R) and x ∈Mψ. The weak closure of C∗(ψ) contains Mψ, and,

therefore, C∗(ψ) is weakly dense in N; moreover, it is straightforward to see that
the restriction of ψ to that C∗-algebra is densely defined, lower semi-continuous
and KMS. If 1 ∈ C∗(ψ), then the restriction of ψ to C∗(ψ) is finite, so ψ(1) < ∞
and C∗(ψ) = C∗(σψ). If ψ is a trace, then C∗(ψ) is the norm closure of Mψ, and
M(C∗(ψ)) = N.

If γt is one-parameter group of N, such that ψ ◦ γt = ψ, for all t ∈ R, we
may as well define the C∗-algebra C∗(ψ, γ) generated by all elements:∫

R2

f (s)g(t)σψ
s ◦ γt(x)dsdt

where f , g belong to L1(R), and x belongs to Mψ; this C∗-algebra C∗(ψ, γ) is
weakly dense in N, invariant under γ, the restriction of ψ to this C∗-algebra is
densely defined, lower semi-continuous and KMS, and the restriction of γ to this
C∗-algebra is norm-continuous. If ψ is a trace, we have M(C∗(ψ, γ)) = C∗(γ).

2.6. CONTINUOUS FIELDS OF C∗-ALGEBRAS. Let X be a locally compact space;
following [21], we shall say that a C∗-algebra A is a C0(X)-C∗-algebra if there
exists an injective nondegenerate ∗-homomorphism α from C0(X) into Z(M(A)).
If x ∈ X, let us write Cx(X) for the ideal of C0(X) made of all functions in C0(X)
with value 0 at x, and let us consider α(Cx(X))A, which is an ideal in A; let us
write Ax for the quotient C∗-algebra A/α(Cx(X))A. For any a in A, let us write
ax for its image in Ax. Then, we have ([4], 2.8):

‖a‖ = sup
x∈X
‖ax‖.

By definition ([11]), we shall say that A is a continuous field over X if, for all a in
A, the function x 7→ ‖ax‖ is continuous.

Let A be a C0(X)-C∗-algebra, and E be a C0(X)-Hilbert module; let π be a
C0(X)-linear morphism π from A to L(E), which means that the specialization πx
is a representation of A on the Hilbert space Ex whose kernel contains α(Cx(X))A.
We say that π is a continuous field of faithful representations if, for all x ∈ X, we
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have Kerπx = α(Cx(X))A. We may then, for all x ∈ X, consider πx as a faithful
representation of the C∗-algebra Ax on Ex. It is proved in ([4], 3.3) that, if A is a
separable C0(X)-C∗-algebra, the following are equivalent:

(i) A is a continuous field over X of C∗-algebras.
(ii) There exists a continuous field of faithful representations of A.

A continuous field of states on A is a positive C0(X)-linear application ω
from A into C0(X), such that, for all x ∈ X, the specialization ωx is a state on Ax.

Given two C0(X)-algebras A1 and A2, Blanchard ([3], 2.9) has defined the
minimal C∗-norm on the involutive algebra (A1�A2)/J(A1, A2), where A1�A2
is the algebraic tensor product of the algebras A1 and A2, and J(A1, A2) the invo-

lutive ideal in A1 � A2 made of finite sums
n
∑

i=1
ai ⊗ bi, with ai ∈ A1, bi ∈ A2, such

that
n
∑

i=1
ax

i ⊗ bx
i = 0, for all x ∈ X. This C∗-norm is given by:

∥∥∥ n

∑
i=1

ai ⊗ bi

∥∥∥
m
= sup

x∈X

∥∥∥ n

∑
i=1

ax
i ⊗ bx

i

∥∥∥
m

where, on the right hand of the formula, is taken the minimal tensor product of
the C∗-algebras Ax

1 and Ax
2 . The completion with respect to that norm will be

called the minimal tensor product of the C0(X)-algebras A1 and A2, and will be
denoted A1 ⊗m

C0(X) A2.
In the case of continuous fields of C∗-algebras, it is proved in ([4], 3.21) that

this C∗-algebra, equipped with the morphism f 7→ f ⊗m
C0(X) 1 = 1 ⊗m

C0(X) f is
equal to the C0(X)-C∗-algebra A1 ⊗C0(X) A2. (If π1 (respectively π2) is a faithful
nondegenerate C0(X)-representation on a C0(X)-Hilbert module E1 (respectively
E2), A1 ⊗C0(X) A2 is defined as operators on E1 ⊗C0(X) E2 ([4], 3.18) and does not
depend on the choice of the C0(X)-representations ([4], 3.20). Therefore, the ten-
sor product ⊗m

C0(X) is then associative ([3], 4.1).

3. MEASURED QUANTUM GROUPOIDS

In this section, we give a summary of the theory of Hopf-bimodules (Defi-
nition 3.1), pseudo-multiplicative unitaries (Definition 3.2), and measured quantum
groupoids ([25], [26], [17], [15]) (Definition 3.6, Theorem 3.7, Definition 3.3, The-
orem 3.10). We describe the canonical example of measured groupoids (Subsec-
tion 3.2, Example 3.11). Proposition 3.5 will be used in Theorem 5.7.
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DEFINITION 3.1. A quintuplet (N, M, α, β, Γ) will be called a Hopf-bimodule,
following [41] and 6.5 of [20], if N, M are von Neumann algebras, α a faith-
ful nondegenerate representation of N into M, β a faithful nondegenerate anti-
representation of N into M, with commuting ranges, and Γ an injective involutive
homomorphism from M into M β∗α

N
M such that, for all X in N:

(i) Γ(β(X)) = 1 β⊗α
N

β(X);

(ii) Γ(α(X)) = α(X) β⊗α
N

1;

(iii) Γ satisfies the co-associativity relation:

(Γ β∗α
N

id)Γ = (id β∗α
N

Γ)Γ.

This last formula makes sense, thanks to the two preceding ones and Subsec-
tion 2.3. The von Neumann algebra N will be called the basis of (N, M, α, β, Γ).

If (N, M, α, β, Γ) is a Hopf-bimodule, it is clear that (No, M, β, α, ςN ◦ Γ) is
another Hopf-bimodule, that we shall call the symmetrized of the first one. (Recall
that ςN ◦ Γ is a homomorphism from M to M r∗s

No
M).

If N is abelian, α = β, Γ = ςN ◦ Γ, then the quadruplet (N, M, α, α, Γ) is
equal to its symmetrized Hopf-bimodule, and we shall say that it is a symmetric
Hopf-bimodule.

Let G be a measured groupoid, with G(0) as its set of units, and let us denote
by r and s the range and source applications from G to G(0), given by xx−1 = r(x)
and x−1x = s(x). As usual, we shall denote by G(2) (or G(2)s,r ) the set of composable
elements, i.e.

G(2) = {(x, y) ∈ G2; s(x) = r(y)}.

Let (λu)u∈G(0) be a Haar system on G and ν a measure ν on G(0). Let us write µ

the measure on G given by integrating λu by ν:

µ =
∫

G(0)

λudν.

By definition, ν is said quasi-invariant if µ is equivalent to its image under the
inverse x 7→ x−1 of G (see [33], [34], II.5 of [9], [31] for more details and examples
of groupoids).

In [48] and [41] were associated to a measured groupoid G, equipped with
a Haar system (λu)u∈G(0) and a quasi-invariant measure ν on G(0) two Hopf-
bimodules:

The first one is (L∞(G(0), ν), L∞(G, µ), rG, sG, ΓG), where we define rG and sG
by writing , for g in L∞(G(0)):

rG(g) = g ◦ r, sG(g) = g ◦ s,
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and where ΓG( f ), for f in L∞(G), is the function defined on G(2) by (s, t) 7→ f (st);
ΓG is then an involutive homomorphism from L∞(G) into L∞(G2

s,r) (which can be
identified to L∞(G)s∗rL∞(G)).

The second one is symmetric; it is (L∞(G(0), ν),L(G), rG, rG, Γ̂G), where L(G)
is the von Neumann algebra generated by the convolution algebra associated to
the groupoid G, and Γ̂G has been defined in [48] and [41].

DEFINITION 3.2. Let N be a von Neumann algebra; let H be a Hilbert space
on which N has a nondegenerate normal representation α and two nondegener-
ate normal anti-representations β̂ and β. These three applications are supposed
to be injective, and to commute two by two. Let ν be a normal semi-finite faithful
weight on N; we can therefore construct the Hilbert spaces H β⊗α

ν

H and H α⊗β̂
νo

H.

A unitary W from H β⊗α
ν

H onto H α⊗β̂
νo

H will be called a pseudo-multiplicative uni-

tary over the basis N, with respect to the representation α, and the anti-representa-
tions β̂ and β (we shall write it is an (α, β̂, β)-pseudo-multiplicative unitary), if:

(i) W intertwines α, β̂, β in the following way:

W(α(X) β⊗α
N

1) = (1 α⊗β̂
No

α(X))W, W(1 β⊗α
N

β(X)) = (1 α⊗β̂
No

β(X))W,

W(β̂(X) β⊗α
N

1) = (β̂(X) α⊗β̂
No

1)W, W(1 β⊗α
N

β̂(X)) = (β(X) α⊗β̂
No

1)W.

(ii) The operator W satisfies:

(1H α⊗β̂
No

W)(W β⊗α
N

1H) = (W α⊗β̂
No

1H)σ
2,3
α,β(W β̂

⊗α

N

1)(1H β⊗α
N

σνo)(1H β⊗α
N

W).

Here, σ2,3
α,β goes from (H α⊗β̂

νo

H) β⊗α
ν

H to (H β⊗α
ν

H) α⊗β̂
νo

H, and 1H β⊗α
N

σνo goes

from H β⊗α
ν

(H α⊗β̂
νo

H) to H β⊗α
ν

H
β̂
⊗α

ν

H.

All the properties supposed in (i) allow us to write such a formula, which
will be called the pentagonal relation.

If W is an (α, β̂, β)-pseudo-multiplicative unitary, then the unitary σνW∗σν

from H
β̂
⊗α

ν

H to H α⊗β
νo

H is an (α, β, β̂)-pseudo-multiplicative unitary, called the

dual of W and denoted Ŵ.

3.1. ALGEBRAS AND HOPF-BIMODULES ASSOCIATED TO A PSEUDO-MULTIPLI-
CATIVE UNITARY. For ξ2 in D(αH, ν), η2 in D(H

β̂
, νo), the operator (ρ

α,β̂
η2 )∗Wρ

β,α
ξ2

will be written (id ∗ωξ2,η2)(W); we have, therefore, for all ξ1, η1 in H:

((id ∗ωξ2,η2)(W)ξ1|η1) = (W(ξ1 β⊗α
ν

ξ2)|η1 α⊗β̂
νo

η2)
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and, using the intertwining property of W with β̂, we easily get that (id∗ωξ2,η2)(W)

belongs to β̂(N)′.
If x belongs to N, we have:

(id ∗ωξ2,η2)(W)α(x) = (id ∗ωξ2,α(x∗)η2
)(W),

β(x)(id ∗ωξ2,η2)(W) = (id ∗ω
β̂(x)ξ2,η2

)(W).

We shall write An(W) (respectively Aw(W)) the norm (respectively weak) closure
of the linear span of these operators; An(W) and Aw(W) are right α(N)-modules
and left β(N)-modules. Applying 3.6 of [13], we get that An(W), An(W)∗, Aw(W)
and Aw(W)∗ are nondegenerate algebras (one should note that the notations
of [13] have been changed in order to fit with Lesieur’s notations). We shall
write A(W) the von Neumann algebra generated by Aw(W). We then have
A(W) ⊂ β̂(N)′.

For ξ1 in D(Hβ, νo), η1 in D(αH, ν), we shall write (ωξ1,η1 ∗ id)(W) for the

operator (λα,β̂
η1 )∗Wλ

β,α
ξ1

; we have, therefore, for all ξ2, η2 in H:

((ωξ1,η1 ∗ id)(W)ξ2|η2) = (W(ξ1 β⊗α
ν

ξ2)|η1 α⊗β̂
νo

η2)

and, using the intertwining property of W with β, we get that (ωξ1,η1∗id)(W)

belongs to β(N)′.

We shall write Ân(W) (respectively Âw(W)) the norm (respectively weak)

closure of the linear span of these operators. As Ân(W) = An(Ŵ)∗, it is clear
that these subspaces are nondegenerate algebras; following 6.1 and 6.5 of [20],

we shall write Â(W) the von Neumann algebra generated by Âw(W). We then

have Â(W) ⊂ β(N)′.
In 6.3 and 6.5 of [20], using the pentagonal equation, we got that (N,A(W),

α, β, Γ), and (N, Â(W), α, β̂, Γ̂) are Hopf-bimodules, where Γ and Γ̂ are defined,

for any x in A(W) and y in Â(W), by:

Γ(x) = W∗(1 α⊗β̂
No

x)W, Γ̂(y) = σνoW(y β⊗α
N

1)W∗σν.

(Here also, we have changed the notations of [20], in order to fit with Lesieur’s
notations.) In 6.1(iv) of [20], we had obtained that x in L(H) belongs to A(W)′ if
and only if x belongs to α(N)′ ∩ β(N)′ and verifies (x α⊗β̂

No

1)W = W(x β⊗α
N

1).

We obtain the same way that y in L(H) belongs to Â(W)
′

if and only if y belongs
to α(N)′ ∩ β̂(N)′ and verify (1 α⊗β̂

No

y)W = W(1 β⊗α
N

y). Moreover, we get that
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α(N) ⊂ A∩ Â, β(N) ⊂ A, β̂(N) ⊂ Â, and, for all x in N:

Γ(α(x)) = α(x) β⊗α
N

1, Γ(β(x)) = 1 β⊗α
N

β(x),

Γ̂(α(x)) = α(x)
β̂
⊗α

N

1, Γ̂(β̂(x)) = 1
β̂
⊗α

N

β̂(x).

3.2. FUNDAMENTAL EXAMPLE. Let G be a measured groupoid; let’s use all nota-
tions introduced in Definition 3.1. Let us note:

G2
r,r = {(x, y) ∈ G2, r(x) = r(y)}.

Then, it has been shown ([41]) that the formula WG f (x, y) = f (x, x−1y), where
x, y are in G, such that r(y) = r(x), and f belongs to L2(G(2)) (with respect to an
appropriate measure, constructed from λu and ν), is a unitary from L2(G(2)) to
L2(G2

r,r) (with respect also to another appropriate measure, constructed from λu

and ν).
Let us define rG and sG from L∞(G(0), ν) to L∞(G, µ) (and then considered

as representations on L(L2(G, µ)), for any f in L∞(G(0), ν), by rG( f ) = f ◦ r and
sG( f ) = f ◦ s.

We identify the Hilbert space L2(G(2)) with the relative Hilbert tensor prod-
uct L2(G, µ) sG⊗rG

L∞(G(0),ν)

L2(G, µ), and the Hilbert space L2(G2
r,r) with the relative

Hilbert tensor product L2(G, µ) rG⊗rG
L∞(G(0),ν)

L2(G, µ) ([48], 3.2.2). Moreover, the uni-

tary WG can be then interpreted ([42]) as a pseudo-multiplicative unitary over the
basis L∞(G(0), ν), with respect to the representation rG, and anti-representations
sG and rG (as here the basis is abelian, the notions of representation and anti-
representations are the same, and the commutation property is fulfilled). So, we
get that WG is a (rG, sG, rG) pseudo-multiplicative unitary.

Let us take the notations of Subsection 3.1; the von Neumann algebra A(WG)
is equal to the von Neumann algebra L∞(G, ν) ([42], 3.2.6 and 3.2.7); using 3.1.1 of
[42]), we get that the Hopf-bimodule homomorphism Γ defined on L∞(G, µ) by
WG is equal to the usual Hopf-bimodule homomorphism ΓG studied in [41], and

recalled in Definition 3.1. Moreover, the von Neumann algebra Â(WG) is equal to
the von Neumann algebra L(G) ([42], 3.2.6 and 3.2.7); using 3.1.1 of [42], we get
that the Hopf-bimodule homomorphism Γ̂ defined on L(G) by WG is the usual
Hopf-bimodule homomorphism Γ̂G studied in [48] and [41].

LEMMA 3.3. Let W be an (α, β̂, β)-pseudo-multiplicative unitary, ξ1 in D(Hβ, νo),
ξ2 in D(αH, ν), η in H; let ζi be in D(Hβ, νo) and ζ ′i be in H such that W∗(ξ2 α⊗β̂

νo

η) =

∑
i

ζi β⊗α
ν

ζ ′i ; then we have: ∑
i

α(〈ζi, ξ1〉β,νo)ζ ′i = (ωξ1,ξ2 ∗ id)(W)∗η.
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Proof. Let θ be in H; we have the following from which we get the result:

((ωξ1,ξ2 ∗ id)(W)∗η|θ) = (W∗(ξ2 α⊗β̂
νo

η)|ξ1 β⊗α
ν

θ) =
(

∑
i

ζi β⊗α
ν

ζ ′i |ξ1 β⊗α
ν

θ
)

=
(

∑
i

α(〈ζi, ξ1〉β,νo)ζ ′i |θ
)

.

LEMMA 3.4. Let W be an (α, β̂, β)-pseudo-multiplicative unitary, ξ1, ζ1 in
D(Hβ, νo), ξ in D(αH, ν) and η1, η2 in H. Let us consider the flip σ1,2

β̂,α
from

H β⊗α
ν

(H α⊗β̂
νo

H) onto H α⊗β̂
νo

(H β⊗α
ν

H). Then, we have:

(σ1,2
β̂,α

(1H β⊗α
N

W)(ξ1 β⊗α
ν

η1 β⊗α
ν

ξ)|η2 α⊗β̂
νo

(ζ1 β⊗α
ν

ζ2))

= (W(η1 β⊗α
ν

ξ)|η2 α⊗β̂
νo

α(〈ζ1, ξ1〉β,νo)ζ2)

Proof. We have the following from which we get the result:

(σ1,2
β̂,α

(1H β⊗α
N

W)(ξ1 β⊗α
ν

η1 β⊗α
ν

ξ)|η2 α⊗β̂
νo

(ζ1 β⊗α
ν

ζ2))

= (ξ1 β⊗α
ν

W(η1 β⊗α
ν

ξ)|ζ1 β⊗α
ν

(η2 α⊗β̂
νo

ζ2)).

PROPOSITION 3.5. Let W be an (α, β̂, β)-pseudo-multiplicative unitary, Γ the
coproduct constructed in Subsection 3.1, ξ in D(αH, ν), η in D(H

β̂
, νo). Let ξ1, η1 be in

D(Hβ, νo), ξ2, η2 in D(αH, ν); then, we have:

(Γ((id∗ωξ,η)(W))(ξ1 β⊗α
ν

η1)|ξ2 β⊗α
ν

η2) = ((ωξ1,ξ2 ∗ id)(W)(ωη1,η2 ∗ id)(W)ξ|η).

Proof. Using the definition of Γ (Definition 3.1), we get that

(Γ((id ∗ωξ,η)(W))(ξ1 β⊗α
ν

η1)|ξ1 β⊗α
ν

η2)

= ((1 α⊗β̂
νo

(id ∗ωξ,η)(W))W(ξ1 β⊗α
ν

η1)|W(ξ2 β⊗α
ν

η2))

= ((1 α⊗β̂
No

W)(W β⊗α
N

1)(ξ1 β⊗α
ν

η1 β⊗α
ν

ξ)|(W α⊗β̂
No

1)((ξ2 β⊗α
ν

η2) α⊗β̂
νo

η)

which, using the pentagonal equation (Definition 3.2), is equal to

(σ2,3
α,β(W β̂

⊗α

N

1)(1H β⊗α
N

σνo)(1H β⊗α
N

W)(ξ1 β⊗α
ν

η1 β⊗α
ν

ξ)|(ξ2 β⊗α
ν

η2) α⊗β̂
νo

η)

= ((W
β̂
⊗α

N

1)(1H β⊗α
N

σνo)(1H β⊗α
N

W)(ξ1 β⊗α
ν

η1 β⊗α
ν

ξ)|(ξ2 α⊗β̂
νo

η) β⊗α
ν

η2)

= (σ1,2
β̂,α

(1H β⊗α
N

W)(ξ1 β⊗α
ν

η1 β⊗α
ν

ξ)|η2 α⊗β̂
νo

(W∗(ξ2 α⊗β̂
ν

η))).
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Defining now ζi, ζ ′i as in Lemma 3.3, we get, using Lemma 3.4, that it is equal to

(W(η1 β⊗α
ν

ξ)|η2 α⊗β̂
νo

∑
i

α(〈ζi, ξ1〉β,νo)ζ ′i)

which, thanks to Lemma 3.3, is equal to

(W(η1 β⊗α
ν

ξ)|η2 α⊗β̂
νo

(ωξ1,ξ2 ∗ id)(W)∗η)

and, therefore, to the following which finishes the proof:

((ωη1,η2 ∗ id)(W)ξ|(ωξ1,ξ2 ∗ id)(W)∗η).

DEFINITION 3.6 ([25], [26]). Let (N, M, α, β, Γ) be a Hopf-bimodule, as de-
fined in Definition 3.1; a normal, semi-finite, faithful operator valued weight T
from M to α(N) is said to be left-invariant if, for all x ∈M+

T , we have

(id β∗α
N

T)Γ(x) = T(x) β⊗α
N

1

or, equivalently (Subsection 2.3), if we write Φ = ν ◦ α−1 ◦ T:

(id β∗α
N

Φ)Γ(x) = T(x).

A normal, semi-finite, faithful operator-valued weight T′ from M to β(N) will
be said to be right-invariant if it is left-invariant with respect to the symmetrized
Hopf-bimodule, i.e., if, for all x ∈M+

T′ , we have

(T′ β∗α
N

id)Γ(x) = 1 β⊗α
N

T′(x)

or, equivalently, if we write Ψ = ν ◦ β−1 ◦ T′:

(Ψ β∗α
N

id)Γ(x) = T′(x).

THEOREM 3.7 ([25], [26]). Let (N, M, α, β, Γ) be a Hopf-bimodule, as defined in
Definition 3.1, and let T be a left-invariant normal, semi-finite, faithful operator valued
weight from M to α(N); let us choose a normal, semi-finite, faithful weight ν on N, and
let us write Φ = ν ◦ α−1 ◦ T, which is a normal, semi-finite, faithful weight on M; let
us write HΦ, JΦ, ∆Φ for the canonical objects of the Tomita–Takesaki theory associated to
the weight Φ, and let us define, for x in N, β̂(x) = JΦα(x∗)JΦ.

(i) There exists an unique isometry U from HΦ α⊗β̂
νo

HΦ to HΦ β⊗α
ν

HΦ, such that,

for any (β, νo)-orthogonal basis (ξi)i∈I of (HΦ)β, for any a in NT ∩NΦ and for any v
in D((HΦ)β, νo), we have

U(v α⊗β̂
νo

ΛΦ(a)) = ∑
i∈I

ξi β⊗α
ν

ΛΦ((ωv,ξi β∗α
ν

id)(Γ(a))).

(ii) Let us suppose there exists a right-invariant normal, semi-finite, faithful operator
valued weight T′ from M to β(N); then this isometry is a unitary, and W = U∗ is an
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(α, β̂, β)-pseudo-multiplicative unitary from HΦ β⊗α
ν

HΦ to HΦ α⊗β̂
νo

HΦ which verifies,

for any x, y1, y2 in NT ∩NΦ:

(i ∗ωJΦΛΦ(y∗1 y2),ΛΦ(x))(W) = (id β∗α
N

ωJΦΛΦ(y2),JΦΛΦ(y1)
)Γ(x∗).

Clearly, the pseudo-multplicative unitary W does not depend upon the choice of the right-
invariant operator-valued weight T′, and, for any y in M, we have:

Γ(y) = W∗(1 α⊗β̂
No

y)W.

The proof is 3.51 and 3.52 of [26].

3.3. DEFINITIONS. Let us take the notations of Theorem 3.7; let us write Ψ =
ν ◦ β−1 ◦ T′. We shall say that ν is relatively invariant with respect to T and T′ if
the two modular automorphism groups associated to the two weights Φ and Ψ
commute; we then write down:

DEFINITION 3.8. A measured quantum groupoid is an octuplet (N, M, α, β, Γ, T,
T′, ν) such that:

(i) (N, M, α, β, Γ) is a Hopf-bimodule, as defined in Definition 3.1;
(ii) T is a left-invariant normal, semi-finite, faithful operator valued weight T

from M to α(N), as defined in Definition 3.6;
(iii) T′ is a right-invariant normal, semi-finite, faithful operator-valued weight

T′ from M to β(N), as defined in Definition 3.6;
(iv) ν is normal semi-finite faitfull weight on N, which is relatively invariant

with respect to T and T′.

REMARK 3.9. These axioms are not Lesieur’s axioms, given in 4.1 of [26].
The equivalence of these axioms with Lesieur’s axioms has been written down in
[17], and is recalled in the appendix of [15].

THEOREM 3.10 ([26], [15]). Let G = (N, M, α, β, Γ, T, T′, ν) be a measured
quantum groupoid in the sense of Subsection 3.3. Let us write Φ = ν ◦ α−1 ◦ T, which
is a normal, semi-finite faithful weight on M. Then:

(i) There exists a ∗-antiautomorphism R on M, such that R2 = id, R(α(n)) = β(n)
for all n ∈ N, and we have the following, where R will be called the co-inverse:

Γ ◦ R = ςNo(R β∗α
N

R)Γ.

(ii) There exists a one-parameter group τt of automorphisms of M, such that R ◦ τt =
τt ◦ R for all t ∈ R, and, for all t ∈ R and n ∈ N, τt(α(n)) = α(σν

t (n)), τt(β(n)) =
β(σν

t (n)) and we will have the following, where τt will be called the scaling group:

Γ ◦ τt = (τt β∗α
N

τt)Γ = (σΦ
t β∗α

N
σΦ◦R
−t )Γ, Γ ◦ σΦ

t = (τt β∗α
N

σΦ
t )Γ.
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(iii) The weight ν is relatively invariant with respect to T and RTR; moreover, R and
τt are still the co-inverse and the scaling group of this new measured quantum groupoid;
we shall denote:

G = (N, M, α, β, Γ, T, RTR, ν).

(iv) For any ξ, η in D(αHΦ, ν)∩D((HΦ)β̂
, νo), (id ∗ωξ,η)(W) belongs to D(τi/2),

and, if we define S = Rτ−i/2, we have:

S((id ∗ωξ,η)(W)) = (id ∗ωη,ξ)(W)∗.

More generally, for any x in D(S) = D(τ−i/2), we get that S(x)∗ belongs to D(S) and
S(S(x)∗)∗ = x; S will be called the antipode of G (or G), and, therefore, the co-inverse
and the scaling group, given by polar decomposition of the antipode, rely only on the
pseudo-multiplicative W.

(v) There exists a one-parameter group γt of automorphisms of N such that, for all
t ∈ R and n ∈ N, we have

σT
t (β(n)) = β(γt(n)).

Moreover, for all t ∈ R, we have ν ◦ γt = ν.
(vi) There exists a positive non-singular operator λ affiliated to Z(M), and a positive

non singular operator δ affiliated to M, such that

(DΦ ◦ R : DΦ)t = λit2/2δit

and, therefore, we have:
(DΦ ◦ σΦ◦R

s : DΦ)t = λist.

The operator λ will be called the scaling operator, and there exists a positive non-singular
operator q affiliated to N such that λ = α(q) = β(q). We have R(λ) = λ.

The operator δ will be called the modulus; we have R(δ) = δ−1, and τt(δ) = δ,
for all t ∈ R, and we can define a one-parameter group of unitaries δit

β⊗α
N

δit which acts

naturally on elementary tensor products, and verifies, for all t ∈ R,

Γ(δit) = δit
β⊗α

N
δit.

(vii) We have (DΦ ◦ τt : DΦ)s = λ−ist, which leads to define a one-parameter group
of unitaries Pit by, for any x ∈ NΦ:

PitΛΦ(x) = λt/2ΛΦ(τt(x)).

Moreover, for any y in M, we get

τt(y) = PityP−it

and it is possible to define one parameter groups of unitaries Pit
β⊗α

N
Pit and Pit

α⊗β̂
No

Pit

such that
W(Pit

β⊗α
N

Pit) = (Pit
α⊗β̂

No

Pit)W.
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Moreover, for all v∈D(P−1/2), w∈D(P1/2), p, q∈D(α HΦ, ν)∩D((HΦ)β̂
, νo), we have

(W∗(v α⊗β̂
νo

q)|w β⊗α
ν

p) = (W(P−1/2v β⊗α
ν

JΦ p)|P1/2w α⊗β̂
νo

JΦq).

We shall say that the pseudo-multiplicative unitary W is "manageable", with "manag-
ing operator" P, which implies (with the notations of Subsection 3.1) that Aw(W) =

A(W) = M and Âw(W) = Â(W).
As, for all s, t in R, we have τs ◦ σΦ

t = σΦ
t ◦ τs, we get that JΦPJΦ = P.

(viii) Let us write M̂ = Âw(W) = Â(W) and let us consider the coproduct Γ̂ on M̂,
then, by Subsection 3.1, (N, M̂α, β̂, Γ̂) is a Hopf-bimodule; moreover, there exists a ∗-
antiautomorphism R̂ on M̂, such that R̂2 = id, R̂ ◦ α = β̂, and Γ̂ ◦ R̂ = ςNo(R̂

β̂
∗α

N

R̂)Γ

and a left-invariant normal, semi-finite, faithful operator-valued weight T̂ from M̂ to
α(N).

(ix) (N, M̂, α, β̂, Γ̂, T̂, R̂T̂R̂, ν) is a measured quantum groupoid, called the dual mea-

sured quantum groupoid of G, that we shall denote Ĝ. Moreover, we have ̂̂G = G.

The proof is 3.8, 3.10 and 3.11 of [15].

EXAMPLE 3.11. Let G be a measured groupoid; using the notations intro-
duced in Definition 3.1 and Subsection 3.2, we have seen that (L∞(G(0), ν), L∞(G, µ),
rG, sG, ΓG) is a Hopf-bimodule; moreover, it is possible to prove that the for-
mula which gives, for all positive F in L∞(G, µ) the image by rG of the func-
tion u 7→

∫
G

Fdλu (respectively the image by sG of the function u 7→
∫
G

Fdλu)

defines a normal semi-finite faithful operator-valued weight from L∞(G, µ) onto
rG(L∞(G(0), ν)) (respectively sG(L∞(G(0), ν)), which is left-invariant (respectively
right-invariant) with respect to ΓG as defined in Definition 3.6; moreover, as
L∞(G, µ) is abelian, the measure ν defines a relatively invariant weight as de-
fined in Definition 3.3. So, we obtain a measured quantum groupoid (L∞(G(0), ν),

L∞(G, µ), rG, sG, ΓG, TG, T′G, ν), that we shall denote G(G). The dual Ĝ(G) is sym-
metric: it is (L∞(G(0), ν),L(G), rG, rG, T̂G, T̂G, ν), where T̂G is a normal semi-finite
faithful operator-valued weight from L(G) to rG(L∞(G(0), ν)) which is both left
and right-invariant ([26], 10).

4. A CANONICAL SUB-C∗-ALGEBRA OF A MEASURED QUANTUM GROUPOID

Be given a measured quantum groupoid G = (N, M, α, β, Γ, T, T′, ν), we
consider in this section the sub-C∗-algebra An(W)∩ An(W)∗ of M; we obtain that
it is dense in M (Proposition 4.3(i)), invariant by R (Theorem 4.4(i)), by σΦ

t and τt
(Corollary 4.5(i)). The results are more precise when N is abelian: in that case, this
C∗-algebra is equal to An(W) (Proposition 4.3(ii)) and the one-parameter group
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of automorphisms τt is norm continuous (Corollary 4.5(iv)). Moreover, we obtain
more complete results if the one-parameter group γt is trivial (which is the case
when α(N) ⊂ Z(M)); then, the modular groups σΦ

t and σΦ◦R
t are norm continu-

ous on An(W) (Corollary 4.5(ii) and (iii)).

LEMMA 4.1. Let G = (N, M, α, β, Γ, T, T′, ν) be a measured quantum groupoid,
and let’s use the notations of Theorem 3.10. Then, if p belongs to D(α HΦ, ν)∩
D((HΦ)β̂

, νo)∩D(P1/2) such that P1/2 p belongs to D(α HΦ, ν), and q belongs to

D(α HΦ, ν)∩D((HΦ)β̂
, νo)∩D(P−1/2) such that P−1/2q belongs to D((HΦ)β̂

, νo),
then we have

(id ∗ωJΦ p,JΦq)(W)∗ = (id ∗ωP1/2 p,P−1/2q)(W)

and, therefore, (id ∗ωJΦ p,JΦq)(W) belongs to An(W) ∩ An(W)∗.

Proof. Let us take v ∈ D(P−1/2), w ∈ D(P1/2); then, we have, using Theo-
rem 3.10(vii),

((id ∗ωJΦ p,JΦq)(W)∗v|w) = (v|(id ∗ωJΦ p,JΦq)(W)w) = (v α⊗β̂
νo

Jq|W(w β⊗α
ν

Jp))

= (W(P−1/2v β⊗α
ν

p)|P1/2w α⊗β̂
νo

q)

= (W(v β⊗α
ν

P1/2 p)|w α⊗β̂
νo

P−1/2q)

= ((id ∗ωP1/2 p,P−1/2q)(W)v|w)

which, by density, gives the result.

LEMMA 4.2. Let G = (N, M, α, β, Γ, T, T′, ν) be a measured quantum groupoid,
and let’s use the notations of Theorem 3.10. Then:

(i) For any p in D(α HΦ, ν), there exists a sequence pn in D(αHΦ, ν) ∩D(P1/2) ∩
D(P−1/2), such that P1/2 pn belongs to D(αHΦ, ν), and such that Rα,ν(pn) is weakly
converging to Rα,ν(p).

(ii) For any q∈D((HΦ)β̂
, νo), there exists qn∈D((HΦ)β̂

, νo)∩D(P1/2)∩D(P−1/2),

such that P−1/2 pn belongs to D((HΦ)β̂
, νo), and such that Rβ̂,νo

(pn) is weakly converg-

ing to Rβ̂,νo
(p).

Proof. Let us write:

pn =

√
n

π

∞∫
−∞

e−nt2
Pit pdt.
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It is a usual calculation to prove that pn belongs to D(P1/2)∩D(P−1/2); moreover,
we get, for any a in Nν,

α(a)pn =

√
n

π

∞∫
−∞

e−nt2
α(a)Pit pdt =

√
n

π

∞∫
−∞

e−nt2
Pitα(σν

−t(a))pdt

=

√
n

π

∞∫
−∞

e−nt2
PitRα,ν(p)∆−it

ν Λν(a)dt

from which we get that

‖α(a)pn‖ 6
√

n
π

∞∫
−∞

e−nt2‖Rα,ν(p)‖‖Λν(a)‖dt

which proves that pn belongs to D(αHΦ, ν) and that

‖Rα,ν(pn)‖ 6 ‖Rα,ν(p)‖.

Moreover, we have, going on the same calculation

Rα,ν(pn)Λν(a) =
1
π

∞∫
−∞

e−t2
Pit/

√
nRα,ν(p)∆−it/

√
n

ν Λν(a)dt

which, using Lebesgue’s theorem, is converging to Rα,ν(p)Λν(a). With the norm
majoration, we get this way the weak convergence of Rα,ν(pn) to Rα,ν(p), which
is (i). Part (ii) is obtained the same way.

PROPOSITION 4.3. Let G = (N, M, α, β, Γ, T, T′, ν) be a measured quantum
groupoid, and let’s use the notations of Theorem 3.10. Then:

(i) An(W) ∩ An(W)∗ is a nondegenerate C∗-algebra, which is weakly dense in M.
Moreover, if y ∈ N is analytic with respect to ν, then α(y) and β(y) belong to the
multipliers of this C∗-algebra.

(ii) If N is abelian, then An(W) is a nondegenerate C∗-algebra, which is weakly dense
in M; moreover, we have α(N) ⊂ M(An(W)) and β(N) ⊂ M(An(W)).

Proof. Let ξ and η be in D(α HΦ, ν) ∩ D((HΦ)β̂
, νo); then, using Lemma 4.2,

it is possible to construct sequences pn and qn such that Rβ̂,νo
(pn) is weakly con-

verging to Rβ̂,νo
(ξ) (or, equivalently, Rα,ν(JΦ pn) is weakly converging to Rα,ν(JΦξ))

and Rα,ν(qn) is weakly converging to Rα,ν(η) (or, equivalently, Rβ̂,νo
(JΦqn) is

weakly converging to Rβ̂,νo
(JΦη)), and such that, using Lemma 4.1, the opera-

tors (id ∗ωJΦ pn ,JΦqn)(W) belong to An(W) ∩ An(W)∗.
So, the element (id ∗ ωJΦξ,JΦη)(W) belongs to the weak closure of An(W) ∩

An(W)∗.
If ξ belongs to D(α HΦ, ν), and η to D((HΦ)β̂

, νo), then, using Subsection 2.2,
we obtain that the element (id ∗ ωξ,η)(W) belongs also to the weak closure of
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An(W) ∩ An(W)∗. So, with the notations of Subsection 3.1, we get that Aw(W) is
included in the weak closure of An(W) ∩ An(W)∗, and, using now The-
orem 3.10(vii), we get that M is equal to the weak closure of An(W) ∩ An(W)∗,
which is (i).

Let us now suppose that N is abelian; then the weight ν is a trace, and the
managing operator P defined in Theorem 3.10(vii) is affiliated to α(N)′ ∩ β̂(N)′.
Let us write

P =

∞∫
0

eλdeλ

and let us define pn =
n∫

1/n
deλ. Then pn is an increasing sequence of projections,

weakly converging to 1, in α(N)′ ∩ β̂(N)′. Let us take x in TΦ,T (with the no-
tations of 2.2); then the vectors pnΛΦ(x) belong to D(α HΦ, ν) ∩ D((HΦ)β̂

, νo) ∩
D(P1/2) ∩ D(P−1/2) and both P1/2 pnΛΦ(x) and P−1/2 pnΛΦ(x) satisfy the hy-
pothesis of Lemma 4.1. So, using Lemma 4.1, we get that, for x, y in TΦ,T , the
operator (id ∗ωJΦ pnΛΦ(x),JΦ pnΛΦ(y))(W) belongs to An(W) ∩ An(W)∗.

Using 10.5 of [13], we get, taking the norm limit, (id ∗ωJΦΛΦ(x),JΦΛΦ(y))(W)

belongs to An(W)∩An(W)∗ for any x, y in TΦ,T , or that (id∗ωΛΦ(x),ΛΦ(y))(W) be-
longs to An(W) ∩ An(W)∗. Using now Subsection 2.2, we get that (id ∗ωξ,η)(W)
belongs to An(W)∩ An(W)∗, for any ξ in D(αH, ν) and η in D(H

β̂
, νo), and, there-

fore, we get that its norm closure An(W) is also included in An(W) ∩ An(W)∗,
which finishes the proof.

THEOREM 4.4. Let G=(N, M, α, β, Γ, T, T′, ν) be a measured quantum groupoid;
then, for ξ, η in D(α HΦ, ν), for all t in R, we have:

(i) R((i ∗ωξ,JΦη)(W)) = (i ∗ωη,JΦξ)(W);
(ii) τt((i ∗ωξ,JΦη)(W)) = (i ∗ω∆−it

Φ ξ,∆−it
Φ JΦη)(W);

(iii) σΦ
t ((i∗ωξ,JΦη)(W))=(i∗ωδit JΦδ−it JΦ∆−it

Φ ξ,Pit JΦη)(W) and σΦ◦R
t ((i∗ωξ,JΦη)(W))

= (i ∗ωPitξ,δit JΦδ−it JΦ∆−it
Φ JΦη)(W).

Proof. Results (i) and (ii) are 4.6 of [26].
Let us take ξ = JΦΛΦ(y∗1y2), and η = JΦΛΦ(x), with x, y1, y2 in NT ∩NΦ;

then, using Theorem 3.7(ii) and Theorem 3.10(ii), we get

σΦ
t ((i ∗ωJΦΛΦ(y∗1 y2),ΛΦ(x))(W))

= (id β∗α
N

ωJΦΛΦ(y2),JΦΛΦ(y1)
◦ σΦ◦R

t )Γ(τt(x∗))

= (id β∗α
N

ωJΦΛΦ(λt/2σΦ◦R
−t (y2)),JΦΛΦ(λt/2σΦ◦R

−t (y1))
)Γ(τt(x∗))

= (id β∗α
N

ωJΦΛΦ(σΦ◦R
−t (y2)),JΦΛΦ(σΦ◦R

−t (y1))
)Γ(λtτt(x∗))
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which, using again Theorem 3.7(ii) and Theorem 3.10(ii), is equal to the following
which gives the first result of (iii), using Subsection 2.2:

(i ∗ωJΦΛΦ(σΦ◦R
t (y∗1 y2)),ΛΦ(λtτt(x)))(W) = (i ∗ωJΦδ−it JΦδit JΦ∆it

ΦΛΦ(y∗1 y2),PitΛΦ(x))(W).

By similar calculations, we obtain the following from which we obtain the
second result of (iii):

σΦ◦R
t ((i ∗ωJΦΛΦ(y∗1 y2),ΛΦ(x))(W))

= (id β∗α
N

ωJΦΛΦ(y2),JΦΛΦ(y1)
◦ τt)Γ(σΦ◦R

t (x∗))

= (id β∗α
N

ωJΦΛΦ(λt/2τt(y2),JΦΛΦ(λt/2τt(y1)
)Γ(σΦ◦R

t (x∗))

= (i ∗ωJΦΛΦ(λtτt(y∗1 y2)),ΛΦ(σΦ◦R(x)))(W).

COROLLARY 4.5. Let G = (N, M, α, β, Γ, T, T′, ν) be a measured quantum
groupoid, and γt the one-parameter group of automorphisms of N defined in Theo-
rem 3.10(v); let ξ, η be in D(α H, ν), then:

(i) We have R(An(W)) = An(W), and, for any t in R, we have σΦ
t (An(W)) =

An(W) and τt(An(W)) = An(W).
(ii) If 〈ξ, ξ〉oα,ν belongs to C∗(γ) and 〈η, η〉oα,ν to C∗(σν), then (i ∗ ωξ,JΦη)(W) be-

longs to C∗(σΦ); so, if N is abelian, and if γ = id, we have An(W) ⊂ C∗(σΦ).
(iii) If 〈ξ, ξ〉oα,ν belongs to C∗(σν) and 〈η, η〉oα,ν to C∗(γ), then (i ∗ ωξ,JΦη)(W) be-

longs to C∗(σΦ◦R); so, if N is abelian, and if γ = id, we have An(W) ⊂ C∗(σΦ◦R).
(iv) If 〈ξ, ξ〉oα,ν and 〈η, η〉oα,ν belong to C∗(σν), then (i ∗ωξ,JΦη)(W) belongs to C∗(τ);

so, if N is abelian, we have An(W) ⊂ C∗(τ).

Proof. By the weak continuity of x 7→ σΦ
t (x) and x 7→ τt(x), the first results

are simple corollaries of Theorem 4.4(ii) and (iii). Let now ∇ be the self-adjoint
positive operator defined on L2(N) defined, for all n in Nν and t in R by:

∇itΛν(n) = Λν(γt(n)).

We have then

Rα,ν(δit JΦδ−it JΦ∆−it
Φ ξ)Λν(n) = α(n)δit JΦδ−it JΦ∆−it

Φ ξ = σΦ◦R
−t (α(n))ξ = α(γt(n))ξ

= Rα,ν(ξ)∇itΛν(n)

from which we get that Rα,ν(δit JΦδ−it JΦ∆−it
Φ ξ) = Rα,ν(ξ)∇it and that

〈δit JΦδ−it JΦ∆−it
Φ ξ, δit JΦδ−it JΦ∆−it

Φ ξ〉oα,ν = γ−t(〈ξ, ξ〉oα,ν).

Therefore, if the function t 7→ γt(〈ξ, ξ〉o) is norm continuous, so is the function
t 7→ ‖Rα(δit JΦδ−it JΦ∆−it

Φ ξ)‖.
On the other hand, we have:

Rα,ν(∆−it
Φ ξ)Λν(n) = α(n)∆−it

Φ ξ = ∆−it
Φ α(σν

t (n))ξ = ∆−it
Φ Rα,ν(ξ)∆it

νΛν(n)
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from which we get that 〈∆−it
Φ ξ, ∆−it

Φ ξ〉oα,ν = σν
t (〈ξ, ξ〉oα,ν); from these results, using

Theorem 4.4(iii) and (ii), we get easily (ii), (iii) and (iv).

PROPOSITION 4.6. Let G = (N, M, α, β, Γ, T, T′, ν) be a measured quantum
groupoid, then:

(i) If x is in NT∩NΦ, and y is in NT∩NR◦T◦R∩NΦ, then (i∗ωJΦΛΦ(y∗y),ΛΦ(x∗x))(W)

belongs to M+
T ∩M+

Φ and we have:

Φ((i ∗ωJΦΛΦ(y∗y),ΛΦ(x∗x))(W)) = (R ◦ T ◦ R(y∗y)JΦΛΦ(x)|JΦΛΦ(x));

T((i ∗ωJΦΛΦ(y∗y),ΛΦ(x∗x))(W)) = α(〈T ◦ R(y∗y)JΦΛΦ(x), JΦΛΦ(x)〉α,ν)

6 ‖T ◦ R(y∗y)‖T(x∗x).

(ii) If x, y are in NT ∩NR◦T◦R ∩NΦ, then the operator (i ∗ωJΦΛΦ(y∗y),ΛΦ(x∗x))(W)

belongs to M+
T ∩M+

Φ ∩M+
R◦T◦T ∩M+

Φ◦R.
(iii) If x, y are in MT ∩MR◦T◦R ∩MΦ ∩MΦ◦R, then (i ∗ ωJΦΛΦ(y),ΛΦ(x))(W) be-

longs to MT ∩MΦ ∩MR◦T◦R ∩MΦ◦R.

Proof. Using Definition 3.6, we obtain that the operator (i∗ωJΦΛΦ(y∗y),ΛΦ(x∗x))

(W) is positive, and that

R ◦ T((i ∗ωJΦΛΦ(y∗y),ΛΦ(x∗x))(W)) = R ◦ T ◦ R((i ∗ωJΦΛΦ(x∗x),ΛΦ(y∗y))(W))

which, using Theorem 4.4(iii) and the right-invariance of R ◦ T ◦ R, is equal to

R ◦ T ◦ R((id β∗α
N

ωJΦΛΦ(x))Γ(y∗y)) = (id β∗α
N

ωJΦΛΦ(x))(1 β⊗α
N

R ◦ T ◦ R(y∗y))

= β(〈R ◦ T ◦ R(y∗y)JΦΛΦ(x), JΦΛΦ(x)〉α,ν)

from which we get (i); we then get (ii) by using Theorem 4.4(i), and (iii) is just
given by linearity.

LEMMA 4.7. Let G = (N, M, α, β, Γ, T, T′, ν) be a measured quantum groupoid;
let us define Φ = ν ◦ α−1 ◦ T; then, we have, for all x in NΦ:

ωJΦΛΦ(x) ◦ R = ωJΦ◦RΛΦ◦R(R(x∗)).

Proof. Let y be analytic with respect to both Φ and Φ ◦ R; we then get that

〈ωJΦΛΦ(x), y〉 = Φ(σΦ
i/2(y)x∗x)

and, therefore

〈ωJΦΛΦ(x) ◦ R, y〉 = Φ(σΦ
i/2(R(y))x∗x) = Φ(R(σΦ◦R

−i/2(y))x∗x)

= Φ ◦ R(R(x∗x)σΦ◦R
−i/2(y)) = Φ ◦ R(σΦ◦R

i/2 (y∗)R(x)R(x∗))

which, by a similar calculation, is equal to 〈ωJΦ◦RΛΦ◦R(R(x∗)), y∗〉; which gives the
result.
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LEMMA 4.8. Let G = (N, M, α, β, Γ, T, T′, ν) be a measured quantum groupoid,
and let us suppose that the von Neuman algebra N is abelian; let us use the notations of
Proposition 4.3(iv) and consider the C∗-subalgebra An(W) of M (Subsection 3.1, Propo-
sition 4.3(iv)); for any x in NT ∩NΦ, there exists xn in An(W) ∩MT ∩MΦ such that
ΛT(xn) is norm converging to ΛT(x).

Proof. As α(N) ⊂ M(An(W)) (Proposition 4.3(iv)), we get that T(An(W) ∩
MT) is an ideal of α(N), which, by normality of T, is weakly dense in N; let
en be a countable approximate unit of T(An(W) ∩MT); we have enT(x∗x) =
T(x∗enx), which is increasing to T(x∗x), and, using Dini’s theorem, is therefore
norm converging to T(x∗x). Let fn be positive in An(W) such that en = T( fn);
we have

enT(x∗x) = T(T(x∗x)1/2 fnT(x∗x)1/2) = T(x∗nxn)

where xn = f 1/2
n T(x∗x)1/2 belongs to An(W) ∩MT . We then get that ΛT(xn) is

norm converging to ΛT(x).

THEOREM 4.9. Let G=(N, M, α, β, Γ, T, T′, ν) be a measured quantum groupoid,
and let us suppose that the von Neuman algebra N is abelian; let us use the notations of
Proposition 4.3(iv) and consider the C∗-subalgebra An(W) of M (Subsection 3.1, Propo-
sition 4.3(iv)); then, for all x1, x2 in An(W)∩NT ∩NΦ, y1, y2 in An(W)∩NR◦T◦R ∩
NΦ◦R:

(i) We have

(id β∗α
N

ωJΦΛΦ(x1),JΦΛΦ(x2)
)Γ(An(W)) ⊂ An(W)

and the closed linear set generated by all elements of the form

(id β∗α
N

ωJΦΛΦ(x1),JΦΛΦ(x2)
)Γ(x)

where x is in An(W), x1, x2 in An(W) ∩NT ∩NΦ, is equal to An(W).
(ii) We have

(ωJΦ◦RΛΦ◦R(y1),ΛΦ◦R(y2) β∗α
N

id)Γ(An(W)) ⊂ An(W)

and the closed linear set generated by all elements of the form

(ωJΦ◦RΛΦ◦R(y1),ΛΦ◦R(y2) β∗α
N

id)Γ(y)

where y is in An(W), y1, y2 in An(W) ∩NR◦T◦R ∩NΦ◦R, is equal to An(W).

Proof. Let us take x, x1, x2 in NT ∩NΦ; we have, by Theorem 3.7(ii):

(id β∗α
N

ωJΦΛΦ(x1),JΦΛΦ(x2)
)Γ(x∗) = (id ∗ωJΦΛΦ(x∗1 x2),ΛΦ(x))(W).

If x is in An(W) ∩ NT ∩ NΦ; by the norm density of An(W) ∩ NT ∩ NΦ into
An(W), we get that, for any y in An(W), (id β∗α

N
ωJΦΛΦ(x1),JΦΛΦ(x2)

)Γ(y) belongs

to An(W), from which we get the first result of (i).
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Using Theorem 3.7(ii), we get that the closed linear set described in (i) con-
tains all elements of the form (id ∗ ωJΦΛΦ(x∗1 x2),ΛΦ(x))(W), where x, x1, x2 are in
An(W)∩NT ∩NΦ, and, by linearity, all elements of the form (id ∗ωJΦΛΦ(y),ΛΦ(x))

(W), where x is in An(W) ∩NT ∩NΦ and y is in An(W) ∩MT ∩MΦ; using then
Lemma 4.8, we get it contains all elements of the form (id ∗ ωJΦΛΦ(y),ΛΦ(x))(W),
where x, y belong to NT ∩NΦ; so, by Subsection 2.2, it contains all elements of
the form (i ∗ωξ,η)(W), where ξ is in D(αH, ν) and η is in D(H

β̂
, νo). Therefore, it

contains An(W), and, by the first result of (i), it is equal to An(W), which finishes
the proof of (i).

We have now, using Lemma 4.7, the following which gives (ii):

(ωJΦ◦RΛΦ◦R(x1),ΛΦ◦R(x2) β∗α
N

id)Γ(x)

= (ωJΦΛΦ(R(x∗2 ),JΦΛΦ(R(x∗1 ))
◦ R β∗α

N
id)Γ(x)

= R((id β∗α
N

ωJΦΛΦ(R(x∗2 )),JΦΛΦ(R(x∗1 ))
)Γ(R(x))).

5. MEASURED QUANTUM GROUPOIDS WITH A CENTRAL BASIS

We deal now with a measured quantum groupoid G=(N, M, α, β, Γ, T, T′, ν),
such that the von Neuman algebra α(N) is included into the center Z(M). Then,
we obtain first some results about the restrictions of Φ, Φ ◦ R, T and RTR to the
C∗-algebra An(W) (Theorem 5.3), and a Plancherel-like formula for the coprod-
uct Γ (Theorem 5.7), which gives that the coproduct sends the C∗-algebra An(W)
in the multiplier algebra of the C∗-algebra An(W) β⊗α

N
An(W). A summary of all

these properties of An(W) is given in Theorem 5.8.

LEMMA 5.1. Let G = (N, M, α, β, Γ, T, T′, ν) be a measured quantum groupoid;
then the following are equivalent:

(i) The von Neuman algebra α(N) is included into the center Z(M).
(ii) The von Neuman algebra β(N) is included into the center Z(M).

(iii) The representation β̂ is equal to α.

Proof. As β = R ◦ α, with R an anti-∗-isomomorphism of M, we see triv-
ially that (i) and (ii) are equivalent. Moreover, as, by definition, we have β̂(n) =
JΦα(n∗)JΦ, where Jφ is the canonical antilinear bijective and involutive isome-
try on HΦ constructed by the Tomita–Takesaki theory asociated to the weight
Φ = ν ◦ α−1 ◦ T on M, we get that (i) and (iii) are equivalent.

LEMMA 5.2. Let G = (N, M, α, β, Γ, T, T′, ν) be a measured quantum groupoid;
then:
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(i) ΛΦ(NΦ ∩ NT ∩ NΦ◦R ∩ NRTR) is dense in HΦ ([26], 6.5), and the subset of
elements x in MΦ ∩MT ∩MΦ◦R ∩MRTR which are analytic with respect both to Φ

and Φ ◦ R, and such that σΦ
z ◦ σΦ◦R

z′ (x) belongs to MΦ ∩MT ∩MΦ◦R ∩MRTR, for all
z, z′ ∈ C, is a ∗-algebra dense in M ([26], 6.6).

(ii) Let us suppose that α(N) is central in M; then, for any x ∈ NΦ ∩NT , there exists
xn in NΦ ∩NT ∩NΦ◦R ∩NRTR such that ΛT(xn) is norm converging to ΛT(x).

Proof. Thanks to 6.6 of [26], let’s take hn increasing to 1, with hn in MΦ ∩
MT ∩MΦ◦R ∩MRTR, hn analytic with respect both to Φ and Φ ◦ R, and such that
σΦ

z ◦ σΦ◦R
z′ (hn) belongs to MΦ ∩MT ∩MΦ◦R ∩MRTR, for all z, z′ ∈ C. For any x

in NΦ, we get that xn = xσΦ
−i/2(hn) belongs to NΦ ∩NT ∩NΦ◦R ∩NRTR, and we

get that ΛΦ(xσΦ
−i/2(hn)) = JΦhn JΦΛΦ(x) is converging to ΛΦ(x) (which gives an

alternate proof of 6.5 of [26], mostly inspired from the initial one, that we shall
use in the sequel of the proof of this lemma). Let us suppose now that α(N) is
central in M, and let’s take x ∈ NΦ ∩NT , and p ∈ Nν; we have

ΛT(xn)Λν(p)=ΛΦ(xσΦ
−i/2(hn)α(p))=ΛΦ(xα(p)σΦ

−i/2(hn))= JΦhn JΦΛT(x)Λν(p)

from which we get, by continuity, that ΛT(xn) = JΦhn JΦΛT(x), and that ΛT(xn)
is weakly converging to ΛT(x); more precisely, T(x∗nxn) = ΛT(x)JΦh2

n JΦΛT(x) is
increasing to T(x∗x); if we write X for the spectrum of the C∗-algebra generated
by T(MT), using Dini’s theorem in C0(X), we get that T(x∗nxn) is norm converg-
ing to T(x∗x); more precisely, as

‖ΛT(xn)−ΛT(x)‖2 = ‖T(x∗nxn)− T(x∗xn) + T(x∗nx)− T(x∗x)‖

and T(x∗xn) = ΛT(x)∗ JΦhn JΦΛT(x) = T(x∗nx), we get the result.

THEOREM 5.3. Let G=(N, M, α, β, Γ, T, T′, ν) be a measured quantum groupoid
and let us suppose that α(N) is central in M; then the restrictions of Φ and Φ ◦ R to the
C∗-algebra An(W) are faithful lower semi-continuous densely defined KMS weights.
Moreover, the restrictions of T and RTR to An(W) are densely defined.

Proof. We had in Proposition 4.6(iii) that the operator (i∗ωJΦΛΦ(y),ΛΦ(x))(W)
belongs to MT ∩MΦ ∩MΦ◦R ∩MRTR, for any x, y in MΦ ∩MT ∩MΦ◦R ∩MRTR;
using now Lemma 5.2 and Subsection 2.2, we see that this set of operators are
norm dense in the set of operators of the form (i ∗ ωJΦΛΦ(y′),ΛΦ(x′))(W), for all
x′, y′ in NΦ ∩NT ; using again 2.2, we see that it is norm dense again in the set
of operators of the form (i ∗ ωξ,η)(W), for ξ, η ∈ D(α HΦ, ν), and, therefore, by
definition, in An(W). Moreover, by Corollary 4.5(ii) and (iii), we get that the
modular groups σΦ

t and σΦ◦R
t are norm continuous on An(W).

LEMMA 5.4. In the situation of Lemma 5.1, let (ei)i∈I be an (α, ν)-orthogonal
basis of H; then, we have:
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(i) For all ξ, η2 in D(α H, ν), and η1 in D(α H, ν) ∩ D(Hβ, ν)

(ωη1,η2 ∗ id)(W)ξ = ∑
i

α(〈(id ∗ωξ,ei )(W)η1, η2〉α,ν)ei.

(ii) For all ξ1 in D(Hβ, ν), ξ2 in D(α H, ν) ∩ D(Hβ, ν) and η in D(α H, ν)

(ωξ1,ξ2 ∗ id)(W)∗η = ∑
i

α(〈ξ2, (id ∗ωei ,η)(W)ξ1〉β,ν)ei.

Proof. We have W(η1 β⊗α
ν

ξ) = ∑
i
(id ∗ ωξ,ei )(W)η1 α⊗α

ν
ei. Let now ζ be in

H; we have then the following, from which we get (i):

((ωη1,η2 ∗ id)(W)ξ|ζ) = ∑
i
((id ∗ωξ,ei )(W)η1 α⊗α

ν
ei|η2 α⊗α

ν
ζ)

=
(

∑
i

α(〈(id ∗ωξ,ei )(W)η1, η2〉α,ν)ei|ζ
)

.

We have W∗(ξ2 α⊗α
ν

η) = ∑
i
(id ∗ωei ,η)(W)∗ξ2 β⊗α

ν

ei. Let now ζ be in H; we

have then the following which finishes the proof:

((ωξ1,ξ2 ∗ id)(W)∗η|ζ) =
(

∑
i
(id ∗ωei ,η)(W)∗ξ2 β⊗α

ν

ei|ξ1 β⊗α
ν

ζ
)

=
(

∑
i

α(〈ξ2, (id ∗ωei ,η)(W)ξ1〉β,ν)ei|ζ
)

.

LEMMA 5.5. In the situation of Lemma 5.1, let (ei)i∈I be an (α, ν)-orthogonal
basis of H and J a finite subset of I; let us write pJ = ∑

i∈J
θα,ν(ei, ei); then, for all Ξ1, Ξ2

in H β⊗α
ν

H, the finite sum(
∑
i∈J

((id ∗ωei ,η)(W) β⊗α
N

(id ∗ωξ,ei )(W))Ξ1|Ξ2

)
is equal to

((σν α⊗α
N

1H)(1H α⊗α
N

W)σ1,2
α,α(1H β⊗α

N
(1 α⊗α

N
pJ)W)(Ξ1 β⊗α

ν

ξ)|Ξ2 α⊗α
ν

η).

Proof. Let ξ1 be in D(Hβ, ν), ξ2 in D(αH, ν) ∩ D(Hβ, ν), η1 in D(α H, ν) ∩
D(Hβ, ν) and η2 in D(α H, ν). If we take Ξ1 = ξ1 β⊗α

ν

η1 and Ξ2 = ξ2 β⊗α
ν

η2, the

scalar product we are dealing with is equal to:

∑
i∈J

(α(〈(id ∗ωei ,η)(W)ξ1, ξ2〉β,ν)(id ∗ωξ,ei )(W)η1|η2).

The commutativity of N gives α(〈ei, ei〉α,ν)(id∗ωξ,ei )(W)=(id∗ωξ,α(〈ei ,ei〉α,ν)ei
)(W),

thanks to the commutation relations of W, and the fact that α = β̂. But by Sub-
section 2.1, we know that α(〈ei, ei〉α,ν)ei = ei, and therefore

α(〈ei, ei〉α,ν)(id ∗ωξ,ei )(W) = (id ∗ωξ,ei )(W).



32 MICHEL ENOCK

So, this scalar product is equal to

∑
i∈J

(α(〈(id ∗ωei ,η)(W)ξ1, ξ2〉β,ν)(id ∗ωξ,ei )(W)η1 α⊗α
ν

ei|η2 α⊗α
ν

ei)

= ∑
i∈J

(α(〈(id ∗ωei ,η)(W)ξ1, ξ2〉β,ν〈(id ∗ωξ,ei )(W)η1, η2〉α,ν)ei|ei)

= ∑
i∈J

(α(〈(id ∗ωξ,ei )(W)η1, η2〉α,ν)ei|α(〈ξ2, (id ∗ωei ,η)(W)ξ1〉β,ν)ei)

= ((ωξ1,ξ2 ∗ id)(W)pJ(ωη1,η2 ∗ id)(W)ξ|η) (by Lemma 5.4(i) and (ii)).

Coming back to the calculations made in Proposition 3.5, we get it is equal to

(W(η1 β⊗α
ν

ξ)|η2 α⊗α
ν

pJ(ωξ1,ξ2 ∗ id)(W)∗η).

Defining now ζi, ζ ′i as in Lemma 3.3, we get that it is equal to:

(W(η1 β⊗α
ν

ξ)|η2 α⊗α
ν

∑
i

α(〈ζi, ξ1〉β,ν)pJζ
′
i)

=(σ1,2
α,α(1Hβ⊗α

N
W)(ξ1 β⊗α

ν

η1 β⊗α
ν

ξ)|η2α⊗α
ν

(1α⊗α
N

pJ)W∗(ξ2α⊗α
ν

η)) (Lemma 3.4)

=(σ1,2
α,α(1H β⊗α

N
(1 α⊗α

N
pJ)W)(ξ1 β⊗α

ν

η1 β⊗α
ν

ξ)|η2 α⊗α
ν

W∗(ξ2 α⊗α
ν

η))

from which we get the result, by linearity, continuity and density.

PROPOSITION 5.6. Let (N, M, α, β, Γ, T, T′, ν) be a measured quantum groupoid,
and let us suppose that the von Neuman algebra α(N) is included into the center Z(M);
let (ei)i∈I be an (α, ν)-orthogonal basis of H and J a finite subset of I; let us write pJ =

∑
i∈J

θα,ν(ei, ei); let k1, k2 be in Kα,ν, ξ in D(αH, ν), η in H; then, we have:

lim
J
‖(k2 α⊗α

N
(1− pJ))W(k1η β⊗α

ν

ξ)‖ = 0.

Proof. Let η1 be in D(α H, ν) ∩ D(Hβ, ν) and η2 in D(α H, ν); we have

Rα,ν(pJ(ωη1,η2 ∗ id)(W)ξ) = pJ(ωη1,η2 ∗ id)(W)Rα,ν(ξ)

and, therefore

〈pJ(ωη1,η2 ∗ id)(W)ξ, pJ(ωη1,η2 ∗ id)(W)ξ〉α,ν

= Rα,ν(ξ)∗(ωη1,η2 ∗ id)(W)∗pJ(ωη1,η2 ∗ id)(W)Rα,ν(ξ)

which is increasing with J towards

〈(ωη1,η2 ∗ id)(W)ξ, (ωη1,η2 ∗ id)(W)ξ〉α,ν.

Let X be the spectrum of C∗(ν), and let us identify C∗(ν) to C0(X); using then
Dini’s theorem, we get it is norm converging, from which we infer that

lim
J
‖Rα,ν((1− pJ)(ωη1,η2 ∗ id)(W)ξ)‖ = 0.
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But, by Lemma 5.4(i), we have

(1− pJ)(ωη1,η2 ∗ id)(W)ξ = ∑
i/∈J

α(〈(id ∗ωξ,ei )(W)η1, η2〉α,ν)ei

and, therefore

Rα,ν((1− pJ)(ωη1,η2 ∗ id)(W)ξ) = ∑
i/∈J

Rα,ν(ei)〈(id ∗ωξ,ei )(W)η1, η2〉α,ν;

‖Rα,ν((1− pJ)(ωη1,η2 ∗ id)(W)ξ)‖2

=
∥∥∥∑

i/∈J
〈(id ∗ωξ,ei )(W)η1, η2〉∗α,ν〈(id ∗ωξ,ei )(W)η1, η2〉α,ν

∥∥∥.

We have

〈(id ∗ωξ,ei )(W)η1, η2〉α,ν = Rα,ν(η2)
∗(ρα,α

ei
)∗Wρ

β,α
ξ Rα,ν(η1)

= (ρα,α
ei

)∗(Rα,ν(η2)
∗

α⊗α
N

1)Wρ
β,α
ξ Rα,ν(η1)

and, therefore

∑
i/∈J
〈(id ∗ωξ,ei )(W)η1, η2〉∗α,ν〈(id ∗ωξ,ei )(W)η1, η2〉α,ν

= Rα,ν(η1)
∗(ρ

β,α
ξ )∗W∗(θα,ν(η2, η2) α⊗α

N
(1− pJ))Wρ

β,α
ξ Rα,ν(η1)

and its norm is equal to

‖(θα,ν(η2, η2) α⊗α
N

(1− pJ))Wρ
β,α
ξ Rα,ν(η1)‖2.

So, we have that

lim
J
‖(θα,ν(η2, η2) α⊗α

N
(1− pJ))Wρ

β,α
ξ Rα,ν(η1)‖ = 0

and, therefore

lim
J
‖(θα,ν(η2, η2) α⊗α

N
(1− pJ))Wρ

β,α
ξ θα,ν(η1, η1)‖ = 0

and we get the following from which we get the result:

lim
J
‖(θα,ν(η2, η2) α⊗α

N
(1− pJ))W(θα,ν(η1, η1)η β⊗α

ν

ξ)‖ = 0.

THEOREM 5.7. Let (N, M, α, β, Γ, T, T′, ν) be a measured quantum groupoid,
and let us suppose that the von Neuman algebra α(N) is included into the center Z(M);
let (ei)i∈I be an (α, ν)-orthogonal basis of H; then, we have, for all ξ, η in D(α H, ν)

Γ((id ∗ωξ,η)(W)) = ∑
i
(id ∗ωei ,η)(W) β⊗α

N
(id ∗ωξ,ei )(W)

where the sum is weakly and strictly convergent.
Therefore, using the strict convergence, we get that Γ(An(W)) is included into the

multiplier algebra of the C∗-algebra An(W) β⊗α
N

An(W).
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Proof. Let ξ, η be in D(αH, ν). Using Lemma 5.5, for all finite J ⊂ I, we have:∥∥∥∑
i∈J

((id ∗ωei ,η)(W) β⊗α
N

(id ∗ωξ,ei )(W))
∥∥∥ 6 ‖Rα,ν(ξ)‖‖Rα,ν(η)‖.

Let ξ1 be in D(Hβ, ν), ξ2 in D(αH, ν) ∩ D(Hβ, ν), η1 in D(α H, ν) ∩ D(Hβ, ν) and
η2 in D(αH, ν); using Proposition 3.5 and Lemma 5.5, we have

(Γ((id ∗ωξ,η)(W))(ξ1 β⊗α
ν

η1)|ξ2 β⊗α
ν

η2)

= ((ωξ1,ξ2 ∗ id)(W)(ωη1,η2 ∗ id)(W)ξ|η)
= ∑

i
((id ∗ωei ,η)(W)ξ1 β⊗α

ν

(id ∗ωξ,ei )(W)η1|ξ2 β⊗α
ν

η2).

If we apply Subsection 2.2 to the inclusion α(N) ⊂ M̂ and the operator-valued
weight T̂, we get that D(αHΦ, ν)∩D((HΦ)β, ν) is dense in HΦ, and we obtain the
weak convergence of the sum ∑

i
((id ∗ ωei ,η)(W) β⊗α

ν

(id ∗ ωξ,ei )(W)) to

Γ((id ∗ωξ,η)(W)).
Moreover, we get, using Lemma 5.5 that, for any k1, k2 in Kα,ν∣∣∣(∑

i/∈J
(id ∗ωei ,η)(W)ξ1 β⊗α

ν

k∗1(id ∗ωξ,ei )(W)k2η1|ξ2 β⊗α
ν

η2

)∣∣∣
6 ‖(k2 α⊗α

N
(1− pJ))W(k1η β⊗α

ν

ξ)‖‖ξ1 β⊗α
ν

η1‖‖ξ2 β⊗α
ν

η2‖

= lim
J

∥∥∥∑
i/∈J

(id ∗ωei ,η)(W) β⊗α
N

k∗1(id ∗ωξ,ei )(W)k2

∥∥∥=0 (by Proposition 5.6).

Let now y1, y2, y3, y4 be in An(W), and ε positive; as An(W) ⊂ α(N)′ =
M(Kα,ν), there exists k ∈ Kα,ν such that ‖y1k − y1‖ 6 ε, and ‖y2k − y2‖ 6 ε.
Moreover, there exists a finite subset J ⊂ I such that∥∥∥∑

i/∈J
(id ∗ωei ,η)(W) β⊗α

N
k∗y∗1(id ∗ωξ,ei )(W)y2k

∥∥∥ 6 ε.

As, for any finite J′ such that J ∩ J′ = ∅, we have proved that∥∥∥ ∑
i∈J′

(id ∗ωei ,η)(W) β⊗α
N

(id ∗ωξ,ei )(W)
∥∥∥ 6 ‖Rα,ν(ξ)‖‖Rα,ν(η)‖

and, as ∑
i∈J′

y∗3(id ∗ωei ,η)(W)y4 β⊗α
N

y∗1(id ∗ωξ,ei )(W)y2 is equal to

[y∗3 β⊗α
N

(y∗1 − k∗y∗1)]
[

∑
i∈J′

(id ∗ωei ,η)(W) β⊗α
N

(id ∗ωξ,ei )(W)
]
[y4 β⊗α

N
y2]

+ [y∗3 β⊗α
N

k∗y∗1 ]
[

∑
i∈J′

(id ∗ωei ,η)(W) β⊗α
N

(id ∗ωξ,ei )(W)
]
[y4 β⊗α

N
(y2 − ky2)]

+ [y∗3 β⊗α
N

k∗y∗1 ]
[

∑
i∈J′

(id ∗ωei ,η)(W) β⊗α
N

(id ∗ωξ,ei )(W)
]
[y4 β⊗α

N
ky2]
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and we get the following which gives the result:∥∥∥ ∑
i∈J′

y∗3(id ∗ωei ,η)(W)y4 β⊗α
N

y∗1(id ∗ωξ,ei )(W)y2

∥∥∥
6 ‖y2‖‖y3‖‖y4‖‖Rα,ν(ξ)‖‖Rα,ν(η)‖ε

+ ‖y1‖‖y3‖‖y4‖‖Rα,ν(ξ)‖‖Rα,ν(η)‖ε + ‖y3‖‖y4‖ε.

THEOREM 5.8. Let G=(N, M, α, β, Γ, T, T′, ν) be a measured quantum groupoid,
such that the von Neuman algebra α(N) is included into the center Z(M); then, the C∗-
algebra An(W) bear the following properties:

(i) We have α(N) ⊂ Z(M(An(W))), and β(N) ⊂ Z(M(An(W))).
(ii) We have Γ(An(W)) ⊂ M(An(W) β⊗α

N
An(W)).

(iii) An(W) is globally invariant under the co-inverse R and the scaling group τt;
moreover, the restriction of τt to An(W) is a one-parameter norm continuous group of
∗-automorphisms of An(W).

(iv) The restrictions of Φ and Φ ◦ R to An(W) are faithful lower semi-continuous
densely defined KMS weights on An(W); the restrictions of T and RTR to An(W) are
densely defined.

Proof. Result (i) has been obtained in Proposition 4.3(ii), result (ii) in Theo-
rem 5.7, result (iii) in Corollary 4.5(i) and (iv), and result (iv) in Theorem 5.3.

6. MEASURED QUANTUM GROUPOIDS WITH A CENTRAL BASIS
AND CONTINUOUS FIELDS OF C∗-ALGEBRAS

In this section, we go on with a measured quantum groupoid (N, M, α, β,
Γ, T, T′, ν) such that α(N) is included in the center Z(M); writing X for the spec-
trum of the C∗-algebra C∗(ν) (which is the norm closure of Mν, and whose mul-
tiplier algebra is the von Neumann algebra N), we show that the restrictions of
α and β to An(W) make, in two different ways, An(W) be a C0(X)-C∗-algebra
(Theorem 6.1(i)), and, more precisely, a continuous field of C∗-algebras (Theo-
rem 6.1(v)), because the restriction of T to An(W) gives a field of lower semi-
continuous faithful weights ϕx (Theorem 6.1(ii)), whose representations πϕx form
a continuous field of faithful representations of An(W) (Theorem 6.1(iv)). More-
over, the C∗-algebra An(W) β⊗α

N
An(W) can be interpreted as the Blanchard’s

min tensor product An(W) β⊗m
α

C0(X)

An(W) of these two fields of C∗-algebras (Corol-

lary 6.3), and the restriction of Γ to An(W) sends therefore An(W) into the multi-
plier algebra of this min tensor product (Theorem 6.4), which is here associative.
All these results are summarized in Theorem 6.5.
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THEOREM 6.1. Let G=(N, M, α, β, Γ, T, T′, ν) be a measured quantum groupoid,
such that the von Neuman algebra α(N) is included into the center Z(M), and let X be
the spectrum of C∗(ν); we shall identify ν with a positive Radon measure on X, and N
with L∞(X, ν) = Cb(X) (by Subsection 2.5, we have N = M(C∗(ν))), and the positive
extension of N can be identified with lower semi-continuous functions on X, with values
in [0,+∞]. Then:

(i) Thanks to the ∗-homomorphism α|C0(X) (respectively β|C0(X)), the C∗-algebra
An(W) is a C0(X)-C∗-algebra, in the sense of Kasparov–Blanchard ([21], [3]).

(ii) The restriction of the weight Φ to the C∗-algebra An(W) can be disintegrated into
a measurable field of lower semi-continuous faithful weights ϕx, invariant under σΦ

t ,
satisfying the KMS conditions for σΦ

t , and such that, for any a ∈ An(W)+:

Φ(a) =
∫
X

ϕx(a)dν(x).

Moreover, we can identify T(a) with the (image by α of the) function x 7→ ϕx(a), which
is therefore lower semi-continuous (and bounded continuous is a ∈M+

T ).
(iii) For any f ∈ Cb(X)+ and a ∈ An(W)+, we have ϕx(α( f )a) = f (x)ϕx(a), and

ϕx(a) = 0 if and only if a ∈ α(Cx(X))An(W).
(iv) The representations πϕx form a continuous field of faithful representations of

An(W).
(v) Thanks to the ∗-homomorphism α|C0(X) (respectively β|C0(X)), the C∗-algebra

An(W) is a continuous field over X of C∗-algebras.
(vi) We have:

HΦ =
∫
X

⊕
Hϕx dν(x), M =

∫
X

⊕
πϕx (An(W)/α(Cx(X))An(W))”dν(x),

Φ =
∫
X

⊕
ϕxdν(x),

where ϕx is the faithful semi-finite normal extension to πϕx (An(W)/α(Cx(X))An(W))”
recalled in Subsection 2.5, and we have the following where a =

∫
X

⊕axdν(x) ∈ M+
T :

T
(∫

X

⊕
axdν(x)

)
= (x 7→ ϕx(ax)).

(vii) Let R be the co-inverse of G; then R|An(W) can be disintegrated into a continuous
field

Rx : An(W)/α(Cx(X)An(W)→ An(W)/β(Cx(X)An(W))

and we have

HΦ◦R =
∫
X

⊕
Hϕx◦Rx dν(x), M =

∫
X

⊕
πϕx◦Rx (An(W)/β(Cx(X)An(W))”dν(x),
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Φ ◦ R =
∫
X

⊕
ϕx ◦ Rxdν(x),

where ϕx ◦ Rx is the faithful semi-finite normal extension to πϕx◦Rx (An(W)/β(Cx(X)

An(W))”, and we have the following where b =
∫
X

⊕bxdν(x) ∈M+
RTR:

RTR
(∫

X

⊕
bxdν(x)

)
= (x 7→ ϕx ◦ Rx(bx)).

Proof. By Proposition 4.3(iv), we get that α(C∗(ν))⊂ M(An(W)), and with
the hypothesis, we get that α(C∗(ν))⊂ Z(M(An(W)), which gives the first part
of (i); the same holds if we take β instead of α, which finishes the proof of (i). The
first part of (ii) is given by 4.11 of [37]; moreover, the application which sends
Y ∈ M+ on the image under α of the function x 7→ ϕx(Y) (with the notations
of Subsection 2.5) is a normal semi-finite operator-valued weight T′ from M onto
α(N), such that ν ◦ α−1 ◦ T′ = Φ = ν ◦ α−1 ◦ T, from which we infer that T = T′;
taking now the restrictions to An(W)+, we finish the proof of (ii).

The first result of (iii) is just the operator-valued weight property of T′ dis-
cussed in the proof of (ii); let now a ∈ An(W)+ such that ϕx(a) = 0; then T(a) is a
the image under α of the lower semi-continuous function x 7→ ϕx(a) = f (x); and
let us write fp = [inf(1, f )]1/p; then fp ∈ N = Cb(X), α( fp) ∈ M(An(W)), and
α( fp)A is included into α(Cx(X))An(W); but α( fp) is increasing to suppT(a) (in
α(N)); therefore, α( fp)a is increasing to a×suppT(a), which is less than a; but, as

T(a× suppT(a)) = T(a)× suppT(a) = T(a)

using the faithfullness of T, we get that a × suppT(a) = a, and, therefore, that
α( fp)a is increasing to a; let B be the abelian C∗-algebra generated by α(Cb(X))
and a, and let Y be the spectrum of B; then, we can identify B with C(Y), and,
using Dini’s theorem on Y, we get that α( fp)a is norm converging to a, and, there-
fore, that a belongs to α(Cx(X))An(W), which finishes the proof of (iii).

Let a ∈ NT , b ∈ M be analytic with respect to Φ; then, by 2.2.2 of [15], ab
belongs to NT , and ΛT(ab) = JΦσΦ

−i/2(b
∗)JΦΛT(a), from which we get

T(b∗a∗ab) = ΛT(a)∗ JΦσΦ
−i/2(b

∗)∗σΦ
−i/2(b

∗)JΦΛT(a) or

T((σΦ
−i/2(b

∗)∗a∗aσΦ
−i/2(b

∗)) = ΛT(a)∗ JΦb∗bJΦΛT(a).

Let us take now a family bk ∈ An(W) ∩MT increasing to 1 (which exists, thank
to Proposition 4.6(i) and Theorem 4.9(i)). Then, the elements

ck =

√
1
π

+∞∫
−∞

e−t2
σΦ

t (bk)dt

are in An(W) ∩MT , analytic with respect to Φ, and such that σΦ
z (ck) belongs to

An(W) for any z ∈ C, and the family ck is increasing to 1. So, we get that the
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sequence
T(σΦ

−i/2(c
∗
k )
∗a∗aσΦ

−i/2(c
∗
k )
∗)

is increasing to T(a∗a). By Dini’s theorem (in C0(X)), we get that it is norm con-
verging, and therefore, we have, for all x ∈ X

lim
k

ϕx(σΦ
−i/2(c

∗
k )
∗a∗aσΦ

−i/2(c
∗
k )
∗) = ϕx(a∗a)

and, therefore, for any x ∈ X

lim
k
‖πϕx (a)Λϕx (σΦ

−i/2(c
∗
k ))‖

2 = ϕx(a∗a).

So, if a ∈ NT is in the kernel of πϕx , we get that ϕx(a∗a) = 0, which, by (iii),
implies that a∗a belongs to α(Cx(X))A. Let now eλ be an approximate unit of
MT ∩ An(W); we get that aeλ is in MT ∩ An(W), and in the kernel of πϕx , and,
therefore, by polarisation, belongs to α(Cx(X))A. As aeλ is norm converging to
a, we get that a ∈ α(Cx(X))A, which gives (iv). Then, the first part of (v) is
given by 3.3 of [4], and the proof for β is made the same way. The proof of (vi)
is then standard. Let’s apply (vi) to the opposite measured quantum groupoid
Go = (No, M, β, α, ςN Γ, RTR, T, νo) and we get (vii).

DEFINITION 6.2. The left An(W)-module An(W) ∩ NT is, using α|Cb(X)

(Proposition 4.3(ii)), a right Cb(X)-module, and, equipped with the inner product
(a, b) 7→ T(b∗a), is a inner-product Cb(X)-module in the sense of [24]. (We write
inner products left linear).

We can see its completion EΦ as the norm closure of the set {ΛT(a), a ∈
NT ∩ An(W)}; then the left-An(W)-module structure of EΦ gives that the restric-
tion of πΦ to An(W) can be considered as a Cb(X)-linear morphism from An(W)
into L(EΦ). Taking the specialization at the point x ∈ X, we obtain a Hilbert
space (EΦ)x, which is the completion of the inner product in An(W) ∩NT given
by (a, b) 7→ ϕx(b∗a); from which we get that (EΦ)x = Hϕx , and that the repre-
sentation πx obtained by the specialization of πΦ|An(W) is equal to πϕx . We have
obtained in Theorem 6.1(iii) that ϕx is faithful on Ax, and in Theorem 6.1(iv) that
πϕx is a continuous field of faithful representations of A ([4], 2.11).

Moreover, we had got in 10.1 of [13] that HΦ can be written as
∫
X

⊕Hxdν(x),

where the Hilbert spaces Hx are defined, by separation and completion, from the
sesquilinear positive form defined on D(αHΦ, ν) by (ξ, η) 7→ 〈ξ, η〉α,ν(x). It is
then straightforward to get that Hx = Hϕx , and that πΦ =

∫
X

⊕
πϕx dν(x). Then, it

is clear, if ξ belongs to D(α HΦ, ν), and ‖ξ‖ = 1, that the application a 7→ 〈aξ, ξ〉α,ν
is a continuous field of states on An(W).

Using β, we get another C0(X)-Hilbert module EΦ◦R, and that πΦ◦R|An(W)

is a Cb(X)-linear morphism from An(W) into L(EΦ◦R).

COROLLARY 6.3. Let G=(N, M, α, β, Γ, T, T′, ν) be a measured quantum groupoid,
such that the von Neuman algebra α(N) is included into the center Z(M). Let X be the
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spectrum of C∗(ν); using Theorem 6.1(i), let us denote An(W) β⊗m
α

C0(X)

An(W) the mini-

mal tensor product of the C0(X)-C∗-algebras An(W) (via β) and An(W) (via α), which
is then isomorphic to An(W) β⊗α

C0(X)

An(W) and associative (Subsection 2.6). Then:

(i) The C∗-algebra An(W) β⊗m
α

C0(X)

An(W) has a faithful representation v on the Hilbert

space HΦ β⊗α
ν

HΦ such that, for all a1 and a2 in An(W), we have

v(a1 ⊗ a2) = a1 β⊗α
N

a2.

(ii) For any finite sum with ai and bi in An(W), we have∥∥∥ n

∑
i=1

ai ⊗ bi

∥∥∥
m
=
∥∥∥ n

∑
i=1

ai β⊗α
N

bi

∥∥∥.

(iii) If x, y are in An(W), the application x⊗ y 7→ ‖x β⊗α
N

y‖ extends to a C∗-semi-

norm on the algebraic tensor product An(W)� An(W) and to a C∗-norm on the quotient
of this algebraic tensor product by the ideal generated by the operators of the form

{xβ( f )⊗ y− x⊗ α( f )y, x, y ∈ An(W), f ∈ N}.
Therefore, the C∗-algebra An(W) β⊗α

N
An(W) can be considered as the min tensor prod-

uct of the C0(X)-C∗-algebra An(W) (via β) with the C0(X)-C∗-algebra An(W) (via α).
(iv) If ξ ∈ D(α HΦ, ν) let us denote ωξ the continuous field of states on An(W) intro-

duced in Subsection 2.6 (which is the restriction of the spatial state ωξ on An(W)); then it
is possible to define a positive linear bounded application id β⊗m

α
C0(X)

ωξ from

An(W) β⊗m
α

C0(X)

An(W) to An(W), (and from M(An(W) β⊗m
α

C0(X)

An(W)) to M(An(W))),

which is the restriction of the conditional expectation id β⊗α
N

ωξ to An(W) β⊗m
α

C0(X)

An(W).

(v) The application from C0(X) into M(An(W) β⊗m
α

C0(X)

An(W)) defined by

f 7→ β( f ) β⊗m
α

C0(X)

1 = 1 β⊗m
α

C0(X)

α( f )

gives to An(W) β⊗m
α

C0(X)

An(W) a structure of a continuous field of C∗-algebras.

Proof. Using 4.1 of [3], we get that there exists a faithful C0(X)-linear rep-
resentation of An(W) β⊗m

α
C0(X)

An(W) on the Hilbert An(W)-module EΦ◦R ⊗C0(X)

An(W), which sends the finite sum
n
∑

i=1
ai⊗bi on the operator

n
∑

i=1
πΦ◦R(ai)⊗C0(X)bi

on EΦ◦R⊗C0(X) An(W). Let’s have a closer look at this last operator, and let’s take
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finite families xj ∈ NΦ◦R, cj ∈ NΦ (j = 1, . . . , m). With a repeated use of Cauchy–
Schwartz inequality, and with the same arguments as in 1.2 of [25], one gets that
the weight Φ applied to〈 i=n,j=m

∑
i=1,j=1

πΦ◦R(ai)ΛRTR(xj)⊗C0(X) bicj,
i=n,j=m

∑
i=1,j=1

πΦ◦R(ai)ΛRTR(xj)⊗C0(X) bicj

〉
is less than∥∥∥ n

∑
i=1

πΦ◦R(ai)⊗C0(X) bi

∥∥∥Φ
(〈 m

∑
j=1

ΛRTR(xj)⊗C0(X) cj,
m

∑
j=1

ΛRTR(xj)⊗C0(X) cj

〉)
.

But, we easily get that

Φ
(〈 m

∑
j=1

ΛT(xj)⊗C0(X) cj,
m

∑
j=1

ΛT(xj)⊗C0(X) cj

〉)
= Φ

(
∑

j
α ◦ β−1RTR(x∗j xj)c∗j cj

)
=
∥∥∥ m

∑
j=1

ΛΦ◦R(xj) β⊗α
ν

ΛΦ(cj)
∥∥∥2

and, therefore, we get that∥∥∥ i=n,j=m

∑
i=1,j=1

πΦ◦R(ai)ΛΦ◦R(xj) β⊗α
ν

πΦ(bi)ΛΦ(cj)
∥∥∥2

6
∥∥∥ n

∑
i=1

πΦ◦R(ai)⊗C0(X) bi

∥∥∥2∥∥∥ m

∑
j=1

ΛΦ◦R(xj) β⊗α
ν

ΛΦ(cj)
∥∥∥2

6
∥∥∥ n

∑
i=1

ai ⊗ bi

∥∥∥2

m
‖ΛΦ◦R(xj) β⊗α

ν

ΛΦ(cj)‖2 (by 4.1 of [3]).

From which we deduce the following, which gives (i):∥∥∥ n

∑
i=1

πΦ◦R(ai) β⊗α
N

πΦ(bi)
∥∥∥ 6 ∥∥∥ n

∑
i=1

ai ⊗ bi

∥∥∥
m

.

Let us suppose now that
n
∑

i=1
πΦ◦R(ai) β⊗α

N
πΦ(bi) = 0; with the same cal-

culation as above, using the faithfulness of Φ, we get that, for any finite families
(xj)j=1,...,m and (cj)j=1,...,m, we have

i=n,j=m

∑
i=1,j=1

πΦ◦R(ai)ΛRTR(xj)⊗C0(X) bicj = 0

which gives that the operator
n
∑

i=1
πΦ◦R(ai) ⊗C0(X) bi on EΦ◦R ⊗C0(X) An(W) is

equal to 0. By the faithfulness of the representation constructed in 4.1 of [3], we
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get that ∥∥∥ n

∑
i=1

ai ⊗ bi

∥∥∥
m
= 0

and, therefore, that
n
∑

i=1
ai ⊗ bi belongs to the ideal J(An(W), An(W)) introduced

in 2.1 of [3]. As the semi-norm
n
∑

i=1
ai ⊗ bi 7→

∥∥∥ n
∑

i=1
ai ⊗ bi

∥∥∥
m

is the minimal semi-

norm on (An(W)� An(W))/J(An(W), An(W)) ([3], 2.9), we get (iii). Now (iv) is
given by 3.1 of [3], and Theorem 6.1(v), and (v) is trivial.

Let’s use (iv) and consider An(W)β⊗m
α

C0(X)

An(W) as a C∗-algebra on HΦβ⊗α
ν

HΦ,

which is a sub-C∗-algebra of M β∗α
N

M; on this von Neumann algebra, the slice

map (id β⊗α
N

T) defines a normal faithful operator-valued weight from M β∗α
N

M

onto Mβ∗α
N

α(N) = Mβ⊗α
N

1; then, composing with RTR, we get a normal faithful

operator-valued weight RTRβ⊗α
N

T from M β∗α
N

M on β(N)β⊗α
N

1=1β⊗α
N

α(N).

Let A be in M+
T , A =

∫
X

⊕axdν(x), and B be in M+
RTR, B =

∫
X

⊕bxdν(x);

using Theorem 6.1(vi) and (vii), we get that (RTR β⊗α
N

T)(B α⊗β
N

A) is equal to the

function x 7→ ϕx ◦ Rx(bx)ϕx(ax), from which we get that this operator-valued
weight RTR β⊗α

N
T is semi-finite.

Let now C ∈ An(W) β⊗m
α

C0(X)

An(W) ∩M+
(RTRβ⊗α

N
T); (RTR β⊗α

N
T)(C) is an el-

ement of N+, and therefore a positive bounded continuous function f on X;
let us suppose that f (x) = 0; let us write, as in the proof of Theorem 6.1(iv),
fp = [inf(1, f )]1/p; then fp ∈ N = Cb(X), and, as in Theorem 6.1, we shall obtain
that C belongs to the ideal in An(W) β⊗m

α
C0(X)

An(W) generated by 1 β⊗m
α

C0(X)

α(Cx(X)) =

β(Cx(X)) β⊗m
α

C0(X)

1. Taking now C ∈ An(W) β⊗m
α

C0(X)

An(W) ∩N(RTRβ⊗α

N
T), in the ker-

nel of πϕx◦Rx β⊗m
α

C0(X)

πϕx , we shall obtain, using similar arguments, that C belongs

also to that ideal; finally, using again an approximate unit, we shall obtain the
same result for C ∈ An(W) β⊗m

α
C0(X)

An(W) in the kernel πϕx◦Rx β⊗m
α

C0(X)

πϕx ; therefore,

we get that πϕx◦Rx β⊗m
α

C0(X)

πϕx is a continuous field of faithful representations of

An(W) β⊗m
α

C0(X)

An(W), which proves (vi).
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THEOREM 6.4. Let (N, M, α, β, Γ, T, T′, ν) be a measured quantum groupoid,
and let us suppose that the von Neuman algebra α(N) is included into the center Z(M);
then, for all x in the C∗-algebra An(W), Γ(x) belongs to the multipliers of the C∗-algebra
An(W) β⊗α

N
An(W); using Corollary 6.3, we get that the restriction of Γ to An(W)

sends An(W) into M(An(W) β⊗m
α

C∗(ν)
An(W)).

Proof. Let ξ, η∈D(α H, ν); using Theorem 5.7, the operator Γ((id∗ωξ,η)(W))
is a strict limit of elements in An(W) β⊗α

N
An(W), and therefore belongs to

M(An(W) β⊗α
N

An(W)), from which we get the result, by definition of An(W).

THEOREM 6.5. Let G=(N, M, α, β, Γ, T, T′, ν) be a measured quantum groupoid,
and let us suppose that the von Neuman algebra α(N) is included into the center Z(M);
let X be the spectrum of C∗(ν), and, for x ∈ X, let Cx(X) be the subalgebra of C0(X)
made of functions which vanish at x; let R be the co-inverse of G; then:

(i) Thanks to the ∗-homomorphism α|C0(X) (respectively β|C0(X)), the C∗-algebra
An(W) is a continuous field over X of C∗-algebras; therefore, ([3], 4.1), Blanchard’s
minimal tensor product An(W) β⊗m

α
C0(X)

An(W) is associative.

(ii) The restriction of the coproduct to An(W) sends An(W) into
M(An(W) β⊗m

α
C0(X)

An(W)).

(iii) For any a ∈ An(W)+, we can identify T(a) with the (image by α of the) function
x 7→ ϕx(a), which is lower semi-continuous (and bounded continuous is a ∈M+

T ).
(iv) For any f ∈ Cb(X)+ and a ∈ An(W)+, we have ϕx(α( f )a) = f (x)ϕx(a), and

ϕx(a) = 0 if and only if a ∈ α(Cx(X))An(W).
(v) The representations πϕx form a continuous field of faithful representations of

An(W), when considered, thanks to α, as a continuous field over X of C∗-algebras.
(vi) There exists a linear anti-∗-isomorphism Rx from An(W)/α(Cx(X))An(W) onto

An(W)/β(Cx(X))An(W), and, considering, thanks to β, An(W) as a continuous field
over X of C∗-algebras, ϕx ◦ Rx is then a field of lower continuous faithful weights, such
that πϕx◦Rx form a continuous field of faithful representations of An(W).

(vii) The representations πϕx◦Rx β⊗m
α

C0(X)

πϕx form a continuous field of faithful represen-

tations of An(W) β⊗m
α

C0(X)

An(W), which gives to that C∗-algebra a structure of contin-

uous field over X of C∗-algebra, thanks to the application which sends f ∈ C0(X) on
1 β⊗m

α
C0(X)

α( f ) = β( f ) β⊗m
α

C0(X)

1.
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(viii) For any a ∈ An(W)+ ∩MT , and η ∈ D((HΦ)β, ν), such that ‖η‖ = 1, we
have, for all x ∈ X

ϕx[(ωη β⊗m
α

C0(X)

id)Γ(a)] = ϕx(a).

Proof. (i), (iii), (iv), (v) are taken from Theorem 6.1(v), (ii), (iii) and (iv); (ii) is
Theorem 6.4; (vi) is an easy corollary, (vii) was obtained in Corollary 6.3(vi), and
(vii) is just given by restriction of the formula on M+

T .

7. ABELIAN MEASURED QUANTUM GROUPOIDS

We consider now the case of an "abelian" measured quantum groupoid (i.e.
a measured quantum groupoid G = (N, M, α, β, Γ, T, T′, ν) where the underlying
von Neuman algebra itself is abelian); then we prove that it is possible to put on
the spectrum of the C∗-algebra An(W) a structure of a locally compact groupoid,
whose basis is the spectrum of C∗(ν) (Proposition 7.1). Starting from a measured
groupoid equipped with a left-invariant Haar system, we recover Ramsay’s the-
orem which says that this groupoid is measure-equivalent to a locally compact
one (Ramsay’s Theorem 7.2).

PROPOSITION 7.1. Let G = (N, M, α, β, Γ, T, T′, ν) be a measured quantum
groupoid, and let us suppose that the von Neuman algebra M is abelian; let us write
G for the spectrum of the C∗-algebra An(W), and G(0) for the spectrum of the C∗-algebra
C∗(ν). Then:

(i) There exists a continuous open application r from G onto G(0), such that, for all
f ∈ C0(G

(0)), we have α( f ) = f ◦ r; there exists a continous open application s from G

onto G(0), such that, for all f ∈ C0(G
(0)), we have β( f ) = f ◦ s.

(ii) There exists a partially defined multiplication on G, which gives to G a structure
of locally compact groupoid, with G(0) as set of units.

(iii) The application defined for all F continuous, positive, with compact support in G,
by F 7→ α−1(T(F))(u), defines a positive Radon measure λu on G, whose support is Gu.
The measures (λu)u∈G(0) are a Haar system on G.

(iv) The trace ν on C∗(ν) leads to a quasi-invariant measure (denoted again by ν) on
G(0). Let µ =

∫
G(0)

λudν(u); then:

(N, M, α, β, Γ) = (L∞(G(0), ν), L∞(G, µ), rG, sG, ΓG)

where rG, sG, ΓG have been defined in Subsection 3.1. Moreover, then, the operator-valued
weights T and RTR are given, for any positive F in L∞(G, ν) by

T(F)(u) =
∫
G

Fdλu, RTR(F)(u) =
∫
G

Fdλu,
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where λu is the image of λu under the application (x 7→ x−1). Therefore, with the
notations of Example 3.11, we have G = G(G).

Proof. As α(N) ⊂ M(An(W)), we can construct by restriction a continuous
application r from G into G(0) such that, for all f ∈ C0(G

(0)) = C∗(ν), we have
α( f ) = f ◦ r; we can construct the same way a continuous application s from G

into G(0) such that, for all f ∈ C0(G
(0)) = C∗(ν), we have β( f ) = f ◦ r. The

applications r and s are open by 3.14 of [4], which gives (i).
The application R from An(W) into itself leads to an involutive application

in G, that we shall write x 7→ x−1, and, using that R ◦ α = β, we get that r(x−1) =
s(x) and s(x−1) = r(x).

Thanks to Theorem 6.1, we may apply 3.1 of [3] to An(W), which we identify
to C0(G), and we obtain that the commutative C∗-algebra An(W) β⊗m

α
C∗(ν)

An(W) is

the quotient of the C∗-algebra An(W) ⊗ An(W) (identified with C0(G
2)) by the

ideal generated by all the functions (x1, x2) 7→ f (s(x1))g(x1, x2)− f (r(x2))g(x1, x2),
where x1, x2 are in G, f in C∗(ν) (identified with C0(G

(0))), and g in C0(G
2). So,

a non zero character on An(W) β⊗m
α

C∗(ν)
An(W) is a couple (x1, x2) in G2 such that

s(x1) = r(x2); let us write G(2) for the subset of such elements of G2.
Therefore, we can identify An(W) β⊗m

α
C∗(ν)

An(W) to C0(G
(2)). Therefore, we

see that the restriction of Γ to An(W) leads to a continuous application from G(2)

into G, which gives to G a structure of locally compact groupoid, which is (ii).
As An(W) ∩MT is a dense ideal in An(W), it contains the ideal K(G) of

continuous functions on G, with compact support; for all F in K(G), α−1(T(F))
belongs to Cb(G

(0)), and, for all u ∈ G(0), F 7→ α−1(T(F))(u) defines a non zero
positive Radon measure λu on G; it is now straightforward to get, from the left
invariance of T, that (λu)u∈G(0) is a Haar system on the groupoid. Starting from
R ◦ T ◦ R, we obtain measures λu, which are the images of λu by the inverse.

The modulus δ of the measured quantum groupoid gives that the trace ν on
C∗(ν) is a quasi-invariant measure on G(0).

Now, by density reasons, we shall identify N with L∞(G(0), µ), M with
L∞(G, µ), where µ is the measure on G constructed from µ and the Haar system,
α with rG, β with sG, Γ with ΓG, and we obtain the required formulae for the left
and right Haar systems.

THEOREM 7.2 (Ramsay’s theorem ([33])). Let G be a measured groupoid, with
G(0) as space of units, and r and s the range and source functions from G to G(0), with
a Haar system (λu)u∈G(0) and a quasi-invariant measure ν on G(0). Let us write µ =∫
G(0)

λudν. Let ΓG, rG, sG be the morphisms associated in Subsection 3.2. Then, there

exists a locally compact groupoid G̃, with set of units G̃(0), with a Haar system (λ̃u)u∈G̃(0) ,
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and a quasi-invariant measure ν̃ on G̃(0), such that, if µ̃ =
∫

G̃(0)

λ̃udν̃, we get that the

abelian measured quantum groupoids G(G) and G(G̃) are isomorphic.

Proof. Let us apply Proposition 7.1 to the commutative measured quantum
groupoid G(G) constructed from the measured groupoid G. Then, we get the
result.

8. MEASURED FIELDS OF LOCALLY COMPACT QUANTUM GROUPS

In this section, we define a notion of measured field of locally compact quan-
tum groups (Subsection 8.1), which was underlying in [4]. We construct then from
such a field a measured quantum groupoid (Subsection 8.2), and we show that
the measured quantum groupoids obtained this way are exactly the measured
quantum groupoids with a central basis, studied in Sections 5 and 6, such that the
dual object is of the same kind (Subsection 8.5). We finish by recalling concrete
examples (Subsections 8.7, 8.8, 8.9) given by Blanchard, which give examples of
measured quantum groupoids.

DEFINITION 8.1 ([26], 17.3). Let (X, ν) be a σ-finite standard measure space;
let us take {Mx, x ∈ X} a measurable field of von Neumann algebras over (X, ν)
and {ϕx, x ∈ X} (respectively {ψx}) a measurable field of normal semi-finite
faithful weights on {Mx} ([37], 4.4). Moreover, let us suppose that:

(i) There exists a measurable field of injective ∗-homomorphisms Γx from Mx

into Mx ⊗Mx (which is also a measurable field of von Neumann algebras, on the
measurable field of Hilbert spaces Hϕx ⊗ Hϕx ).

(ii) For almost all x ∈ X, Gx = (Mx, Γx, ϕx, ψx) is a locally compact quantum
group (in the von Neumann sense [23]).

In that situation, we shall say that (Mx, Γx, ϕx, ψx, x ∈ X) is a measurable
field of locally compact quantum groups over (X, ν).

THEOREM 8.2 ([26], 17.3). Let Gx = (Mx, Γx, ϕx, ψx, x ∈ X) be a measurable
field of locally compact quantum groups over (X, ν). Let us define:

(i) M as the von Neumann algebra made of decomposable operators
∫
X

⊕Mxdν(x), and

α the ∗-isomorphism which sends L∞(X, ν) into the algebra of diagonalizable operators,
which is included in Z(M).

(ii) Φ (respectively Ψ) as the direct integral
∫
X

⊕
ϕxdν(x) (respectively

∫
X

⊕
ψxdν(x)).

Then, the Hilbert space HΦ is equal to the direct integral
∫
X

⊕Hϕx dν(x), the relative

tensor product HΦ α⊗α
ν

HΦ is equal to the direct integral
∫
X

⊕
(Hϕx ⊗ Hϕx )dν(x), and

the product M α∗α
N

M is equal to the direct integral
∫
X

⊕
(Mx ⊗Mx)dν(x).
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(iii) Γ as the decomposable ∗-homomorphism
∫
X

⊕
Γxdν(x), which sends M into

M α∗α
N

M.

(iv) T (respectively T′) as an operator-valued weight from M into α(L∞(X, ν)) defined
in the following way: a ∈ M+ represented by the field {ax} belongs to M+

T (respectively
M+

T′ ) if, for almost all x ∈ X, ax belongs to Mϕx (respectively Mψx ), and the function
x 7→ ϕx(ax) (respectively x 7→ ψx(ax)) is essentiallly bounded; then T(a) (respectively
T′(a)) is defined as the image under α of this function.

Then, (L∞(X, ν), M, α, α, Γ, T, T′, ν) is a measured quantum groupoid, that we
shall denote by

∫
X

⊕Gxdν(x).

Proof. The fact that HΦ =
∫
X

⊕Hϕx dν(x) is given by 6.3.11 of [37]. Then, we

can identify, for an element a ∈ NΦ represented by the field {ax}, ΛΦ(a) with∫
X

⊕
Λϕx (ax)dν(x). If ξ ∈ HΦ, ξ can be represented by a square integrable field of

vectors {ξx}; moreover, if ξ ∈ D(α HΦ, ν), we get that there exists C > 0 such that,
for all f ∈ L∞(X, ν) ∩ L2(X, ν):∫

X

‖ f (x)ξx‖2dν(x) 6 C
∫
X

| f (x)|2dν(x)

which gives that the function x 7→ ‖ξx‖2 is essentially bounded. It is then straight-
forward to get that this function is equal to the element 〈ξ, ξ〉α,ν of L∞(X, ν).

So, the relative tensor product HΦ α⊗α
ν

HΦ is the completion of the alge-

braic tensor product D(αHΦ, ν)�ΛΦ(NΦ) by the scalar product defined by the
formula (where b ∈ NΦ is represented by the field {bx} and η ∈ D(α HΦ, ν) is
represented by the vector field {ηx}):

(ξ �ΛΦ(a)|η �ΛΦ(b)) = (α(〈ξ, η〉α,ν)ΛΦ(a)|ΛΦ(b))

=
∫
X

⊕
(ξx ⊗Λϕx (ax)|ηx ⊗Λϕx (bx))dν(x)

from which we get that HΦ α⊗α
ν

HΦ =
∫
X

⊕
(Hϕx ⊗ Hϕx )dν(x); it is now straight-

forward to obtain that M α∗α
N

M =
∫
X

⊕
(Mx ⊗ Mx)dν(x). We then get that the

∗-homomorphism Γ defined in (iii) is a coassociative coproduct which makes
(L∞(X, ν), M, α, α, Γ) a Hopf-bimodule.

Then, T as defined in (iv) is an operator-valued weight from M to α(L∞(X, ν)),
which verify, by definition ν ◦ α−1 ◦ T = Φ; therefore, T is normal, faithful, semi-
finite. If a ∈ M+

T and is represented by the field {ax}, for almost all x ∈ X,
ax belongs to Mϕx , therefore, Γx(ax) belongs to Mid⊗ϕx , and (id⊗ ϕx)Γx(ax) =
ϕx(ax)1Mx . Let now ξ ∈ D(αHΦ, ν), represented by the vector field {ξx}. We
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have

Φ[(ωξ α⊗α
N

id)Γ(a)] =
∫
X

⊕
(ωξx ⊗ ϕx)Γx(ax)dν(x)

=
∫
X

⊕
ϕx(ax)ωξx (1Mx )dν(x) = Φ(A)ωξ(1)

from which we get that (id α⊗α
N

Φ)Γ(a) = Φ(a)1, and, therefore, that

(id α⊗α
N

T)Γ(a) = T(a) α⊗α
N

1;

the right-invariance for T′ is proved the same way.
Finally, thanks to 4.8 of [37], we have, for any a ∈ M, represented by the

field {ax} and t ∈ R, σΦ
t (a) =

∫
X

⊕
σ

ϕx

t (ax)dν(x) and σΨ
t (a) =

∫
X

⊕
σ

ψx

t (ax)dν(x).

Therefore, the commutation, for almost all x ∈ X, of σ
ϕx

t and σ
ψx

t ([22] 6.8) gives
that ν is relatively invariant.

PROPOSITION 8.3. Let (X, ν) be a σ-finite standard measure space, and {Gx, x∈X}
a measurable field of locally compact quantum groups, as defined in Definition 8.1; let∫
X

⊕Gxdν(x) be the measured quantum groupoid constructed in Theorem 8.2; then:

(i) We have α = β = β̂.
(ii) The pseudo-multiplicative unitary of the measured quantum groupoid is a unitary

on HΦ α⊗α
ν

HΦ, which is equal to the decomposable operator
∫
X

⊕Wxdν(x), where Wx is

the multiplicative unitary associated to the locally compact quantum group Gx.
(iii) We have

̂∫
X

⊕
Gxdν(x) =

∫
X

⊕
Ĝxdν(x).

Proof. The fact that β = α is given in the definition of
∫
X

⊕Gxdν(x); more-

over, as α(L∞(X, ν)) ⊂ Z(M), we have β̂ = α, which is (i). Therefore, the pseudo-
multiplicative unitary W is a unitary on HΦ α⊗α

ν
HΦ =

∫
X

⊕
(Hϕx ⊗ Hϕx )dν(x).

Moreover, using Theorem 3.7(i), we get, for all v ∈ D(α HΦ, ν), represented by the
vector field {vx}, and a ∈ NΦ, represented by the field {ax}:

W∗(v α⊗α
ν

ΛΦ(a)) = ∑
i

ξi α⊗α
ν

ΛΦ[(ωv,ξi α⊗α
N

id)Γ(a)]

where (ξi)i∈I is an orthogonal (α, ν)-basis of HΦ; each ξi is in D(αHΦ, ν), and
is represented by a field {ξx

i }; for almost all x ∈ X, the vectors (ξx
i )i∈I (more

precisely, those which are not equal to 0) are an orthogonal basis of Hϕx ([13],10.1);
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therefore, we get

W∗(v α⊗α
ν

ΛΦ(a)) =
∫
X

⊕
∑

i
ξx

i ⊗Λϕx [(ωvx ,ξx
i
⊗ id)Γx(ax)]dν(x)

=
∫
X

⊕
(Wx)∗(vx ⊗Λϕx (ax))dν(x)

which gives (ii). Then, we get that the Hopf-bimodules underlying to ̂∫
X

⊕Gxdν(x)

and
∫
X

⊕Ĝxdν(x) are the same; the only result to prove is the equality of the dual

operator-valued weights, which is left to the reader.

PROPOSITION 8.4. Let G = (N, M, α, β, Γ, T, T′, ν) be a measured quantum
groupoid and let Ĝ be its dual measured quantum groupoid; let us write Ĝ = (N, M̂, α, β̂,
Γ̂, T̂, R̂T̂R̂, ν). Then the following are equivalent:

(i) α(N) ⊂ Z(M) ∩ Z(M̂).
(ii) α = β = β̂.

The proof is clear by using Lemma 5.1 twice (for G and Ĝ).

THEOREM 8.5. Let G=(N, M, α, β, Γ, T, T′, ν) be a measured quantum groupoid
and let Ĝ be its dual measured quantum groupoid; let us write Ĝ = (N, M̂, α, β̂, Γ̂,
T̂, R̂T̂R̂, ν); let W and Ŵ be the pseudo-multiplicative unitaries associated, and Φ =

ν ◦ α−1 ◦ T (respectively Φ̂ = ν ◦ α−1 ◦ T̂); let us suppose that α(N) is central in both
M and M̂; let X be the spectrum of C∗-algebra C∗(ν), that we shall therefore identify
with C0(X); for any x ∈ X, let Cx(X) be the subalgebra of C0(X) made of functions
which vanish at x; let An(W) be the sub-C∗-algebra of M introduced in Subsection 3.1
and Proposition 4.3(ii), which is, thanks to α|C0(X), a continuous field over X of C∗-
algebras (Theorem 6.5); let ϕx be the desintegration of Φ|An(W) over X given in Theorem
6.1(ii); then, by Theorem 6.1(iii), ϕx is a lower semi-continuous weight on An(W), faith-
ful when considered on An(W)/α(Cx(X))An(W), and the representations πϕx form a
continuous field of faithful representations of An(W). Then:

(i) The Hilbert space HΦ α⊗α
ν

HΦ is equal to
∫
X

⊕Hϕx ⊗ Hϕx dν(x).

(ii) The von Neumann algebra M α∗α
N

M is equal to:

∫
X

⊕
πϕx (An(W)/α(Cx(X))An(W))”⊗ πϕx (An(W)/α(Cx(X))An(W))”dν(x).

(iii) The coproduct Γ|An(W) can be desintegrated in Γ|An(W) =
∫
X

⊕
Γxdν(x), where Γx

is a continuous field of coassociative coproducts on An(W)/α(Cx(X))An(W).
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(iv) Rx is an anti-∗-automorphism of An(W)/α(Cx(X))An(W), and, for all x ∈ X

Gx = (An(W)/α(Cx(X))An(W), Γx, ϕx, ϕx ◦ Rx)

is a locally compact quantum group (in the C∗-sense). We shall denote also Gx its von
Neumann version.

(v) We have, with the notations of Theorem 8.2, G =
∫
X

⊕Gxdν(x).

Proof. Let a ∈ An(W) ∩NΦ and b ∈ An(W) ∩NΦ; using Definition 6.2, we
can write ΛΦ(a) =

∫
X

⊕
Λϕx (ax)dν(x) and ΛΦ(b) =

∫
X

⊕
Λϕx (bx)dν(x), where ax

(respectively bx) is the image of a (respectively b) in An(W)/α(Cx(X))An(W); as
the linear set made of vectors of the form ΛΦ(a), for all is dense in HΦ, the rela-
tive tensor product HΦ α⊗α

ν
HΦ is the completion of the algebraic tensor product

D(α HΦ, ν)�ΛΦ(NΦ ∩ An(W)) defined by the scalar product, if ξ =
∫
X

⊕
ξxdν(x),

η =
∫
X

⊕
ηxdν(x) are in D(α HΦ, ν), by the formula

(ξ �ΛΦ(a)|η �ΛΦ(b)) = (α(〈ξ, η〉α,ν)ΛΦ(a)|ΛΦ(b))

=
∫
X

⊕
(ξxΛϕx (ax)|ηxΛϕx (bx))dν(x)

=
∫
X

⊕
(ξx ⊗Λϕx (ax)|ηx ⊗Λϕx (bx))dν(x)

from which we get (i). Then (ii) is a direct corollary.
As Γ(α( f )) = α( f ) α⊗α

N
1 = 1 α⊗α

N
α( f ), we get, using Theorem 6.5, that

Γ|An(W) can be desintegrated into a continuous field of ∗-homomorphisms Γx

from An(W)/ α(Cx(X))An(W) into [An(W)/α(Cx(X))An(W)] ⊗m [An(W)/
α(Cx(X))An(W)]. Moreover, if a ∈ An(W) ∩M+

T , we have, for all x ∈ X, (id⊗
ϕx)Γx(a) = ϕx(a)1.

So, if a in An(W) ∩M+
T verify Γx(a) = 0, it implies that ϕx(a) = 0 and,

therefore, by Theorem 6.1(ii), that a ∈ α(Cx(X))An(W). Let now eλ be an ap-
proximate unit in An(W) ∩MT , and let a ∈ An(W) be such that Γx(a) = 0; as
we have Γx(aeλ) = 0, we get that aeλ belongs to α(Cx(X))An(W), for almost
all x, and we get the same result for a. Therefore, we get that Γx is injective on
An(W)/α(Cx(X))An(W). The coassociativity of Γx is just a corollary of the coas-
sociativity of Γ.

It is clear that Rx is a ∗-anti-automorphism of An(W)/α(Cx(X))An(W),
which will be a co-inverse for Γx; we shall therefore get that ϕx ◦ Rx is right-
invariant with respect to Γ; in order to prove that Gx is a (C∗-version of a) locally
compact quantum group, we shall extend Γx, etc. to πϕx (An(W)α(Cx(X))An(W))”,
and prove that the objects obtained are a locally compact quantum group in the
von Neumann sense.
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In fact, from (i) and (ii), we get that Γ can be desintegrated in

Γ =
∫
X

⊕
Γ̃xdν(x)

where Γ̃x is a ∗-homomorphism from πϕx (An(W)α(Cx(X))An(W))” into its von
Neumann tensor product by itself; moreover, by unicity of the desintegration
procedure, we get that, for almost all x ∈ X, Γx is equal to the restriction of Γ̃x

to An(W)/α(Cx(X))An(W), which proves that Γx extends at the von Neumann
level. We shall therefore write Γx instead of Γ̃x. We obtain that, for almost all x,
Γx(1) = 1, and (Γx ⊗ id)Γx = (id⊗ Γx)Γx from the properties of Γ. Moreover,
we had got that the restriction of Γx to An(W)/α(Cx(X))An(W) is injective; so,
if a ∈ πϕx (An(W)/α(Cx(X))An(W))”+ verify Γx(a) = 0, we get that a is an
increasing limit of elements an in An(W)/α(Cx(X))An(W) such that Γx(an) = 0;
so, we get that an = 0, and a = 0, which finishes the proof of (ii). Then, (iii) is
given by 6.5(vi) and similar calculations, and (iv) is straightforward.

THEOREM 8.6. Let (X, ν) be a σ-finite standard measure space, Gx be a measur-
able field of locally compact quantum groups over (X, ν), and defined in Definition 8.1,
and

∫
X

⊕Gxdν(x) be the measured quantum groupoid constructed in Theorem 8.2. Then:

(i) There exists a locally compact set X̃, and a positive Radon measure ν̃ on X̃, such
that L∞(X, ν) and L∞(X̃, ν̃) are isomorphic, and such that this isomorphism sends ν on ν̃.

(ii) There exists a continuous field (Ax)x∈X̃ of C∗-algebras, and a continuous field of
coassociative coproducts Γ̃x : Ax → Ax ⊗m Ax.

(iii) There exists left-invariant (respectively right-invariant) weights ϕ̃x (respectively
ψ̃x), such that (Ax, Γ̃x, ϕ̃x, ψ̃x) is a locally compact quantum group G̃x (in the C∗-sense).

(iv) We have:
∫
X

⊕Gxdν(x) =
⊕∫̃
X

G̃xdν̃(x).

For the proof let’s apply Theorem 8.5 to Theorem 8.2.

EXAMPLE 8.7. As in 7.1 of [3], let us consider the C∗-algebra A whose gen-
erators α, γ and f verify:

(i) f commutes with α and γ.
(ii) The spectrum of f is [0, 1].

(iii) The matrix
(

α − f γ
γ α∗

)
is unitary in M2(A).

Then, using the sub C∗-algebra generated by f , A is a C([0, 1])-algebra; let us
consider now A as a C0(]0, 1])-algebra. Then, Blanchard has proved ([4], 7.1) that
A is a continuous field over ]0, 1] of C∗-algebras, and that, for all q ∈]0, 1], we have
Aq = SUq(2), where the SUq(2) are the compact quantum groups constructed by
Woronowicz and A1 = C(SU(2)).
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Moreover, using the coproducts Γq defined by Woronowicz as

Γq(α) = α⊗ α− qγ∗ ⊗ γ, Γq(γ) = γ⊗ α + α∗ ⊗ γ,

and the (left and right-invariant) Haar state ϕq, which verifies:

ϕq(αkγ∗mγn) = 0, for all k > 0, and m 6= n;

ϕq(α∗|k|γ∗mγn) = 0, for all k < 0, and m 6= n;

and ϕq((γ∗γ)m) =
1− q2

1− q2m+2 ;

we obtain this way a continuous field of compact quantum groups (see 6.6 of [4]
for a definition); this leads to put on A a structure of C∗ quantum groupoid (of
compact type, in the sense of [13], because 1 ∈ A).

This structure is given by a coproduct Γ which is C0(]0, 1])-linear from A to
A ⊗m

C0(]0,1])
A, and given by

Γ(α) = α ⊗m

C0(]0,1])
α− f γ∗ ⊗m

C0(]0,1])
γ, Γ(γ) = γ ⊗m

C0(]0,1])
α + α∗ ⊗m

C0(]0,1])
γ,

and by a conditional expectation E from A on M(C0(]0, 1])) given by:

E(αkγ∗mγn) = 0, for all k > 0, and m 6= n;

E(α∗|k|γ∗mγn) = 0, for all k < 0, and m 6= n;

E((γ∗γ)m) is the bounded function x 7→ 1− q2

1− q2m+2 .

Then E is both left and right-invariant with respect to Γ. This example give results
at the level of C∗-algebras, which are more precise than Theorem 8.2.

EXAMPLE 8.8. One can find in [4] another example of a continuous field of
locally compact quantum group. Namely, in 7.2 of [4], Blanchard constructs a C∗-
algebra A which is a continuous field of C∗-algebras over X, where X is a compact
included in ]0, 1], with 1 ∈ X. For any q ∈ X, q 6= 1, we have Aq = SUq(2), and
A1 = C∗r (G), where G is the "ax + b" group ([4], 7.6).

Moreover, he constructs a coproduct (denoted δ) ([4], 7.7(c)), and "the sys-
tem of Haar weights" Φ ([B2], 7.2.3), which bear left-invariant-like properties (end
of remark after 7.2.3 of [4]).

Finally, he constructs a unitary U in L(EΦ) ([4], 7.10), with which it is pos-
sible to construct a co-inverse R of (A, δ), which leads to the fact that Φ ◦ R is
right-invariant.

Clearly, the fact that we are here dealing with non-compact locally compact
quantum groups made the results more problematic at the level of C∗-algebra; at
the level of von Neumann algebra, Theorem 8.2 allows us to construct an example
of measured quantum groupoid from these data.
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EXAMPLE 8.9. Let us finish by quoting a last example given by Blanchard in
7.4 of [4]: for X compact in [1, ∞[, with 1 ∈ X, he constructs a C∗-algebra which is
a continuous field over X of C∗-algebras, whose fibers, for µ ∈ X, are Aµ = Eµ(2),
with a coproduct δ and a continuous field of weights Φ, which is left-invariant.
As in Example 8.8, he then constructs a unitary U on L(EΦ), which will lead to a
co-inverse, and, therefore, to a right-invariant C∗-weight.

EXAMPLE 8.10 ([26], 17.1). Let us return to Definition 8.1; let I be a (discrete)
set, and, for all i in I, let Gi = (Mi, Γi, ϕi, ψi) be a locally compact quantum group;
then the product ∏

i
Gi is a measured field of locally compact quantum groups,

and can be given a natural structure of measured quantum groupoid, described
in 17.1 of [26].

9. MEASURED QUANTUM GROUPOID WITH CENTRAL BASIS C2

We finish by studying the structure of measured quantum groupoids with
central basis C2. This example appears in [10] as a Galois object linking two lo-
cally compact quantum groups.

LEMMA 9.1. Let α be a representation of C2 on a Hilbert space H; let (e1, e2) be the
canonical basis of C2, ν the faithful normal state on C2 defined by ν(e1) = ν(e2) = 1/2.
Then:

(i) All vectors in H are bounded with respect to (α, ν). For any ξ, η in H, we have:

〈ξ, η〉α,ν = (α(e1)ξ|η)e1 + (α(e2)ξ|η)e2.

(ii) For any representation β of C2 on H, the application which sends ξ β⊗α
ν

η on the

vector [β(e1)⊗ α(e1) + β(e2)⊗ α(e2)](ξ ⊗ η) extends to an isomorphism of the relative
tensor product H β⊗α

ν

H with the subspace of the Hilbert tensor product H⊗ H which is

the image of the projection β(e1)⊗ α(e1) + β(e2)⊗ α(e2).
(iii) Let M be a von Neumann algebra on H, such that α(C2) ⊂ M and β(C2) ⊂

M; then, the isomorphism given in (i) sends M′ β⊗α

C2

M′ on the induced von Neumann

algebra (M′ ⊗M′)β(e1)⊗α(e1)+β(e2)⊗α(e2)
and M β∗α

C2

M on its commutant, which is the

reduced von Neumann algebra (M⊗M)β(e1)⊗α(e1)+β(e2)⊗α(e2)
.

Proof. For all (λ, µ) ∈ C2, ξ ∈ H, we have

‖α(λe1 + µe2)ξ‖2 = |λ|2‖α(e1)ξ‖2 + |µ|2‖α(e2)ξ‖2 6 ‖ξ‖2(|λ|2 + |µ|2)
= ‖ξ‖2ν(|λ|2e1 + |µ|2e2)

which proves that ξ ∈ D(αH, ν); it is straightforward then to finish the proof of
(i). Then (ii) is a direct corollary of (i), and (iii) is a direct corollary of (ii).
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REMARK 9.2. This kind of result can be generalized to any representation
of a finite dimensional C∗-algebra ([10], 5), which generalizes the results of [43]
about relative tensor product of finite-dimensional Hilbert spaces.

PROPOSITION 9.3. Let us use the notations of Lemma 9.1; let (C2, M, α, β, Γ, T,
T′, ν) be a measured quantum groupoid, with α(C2) ⊂ Z(M). Let Φ = ν ◦ α−1 ◦ T.
Then:

(i) The fiber product Mβ∗α
N

M can be identified with the reduced von Neumann algebra

(M⊗M)β(e1)⊗α(e1)+β(e2)⊗α(e2)

and Γ can be identified with an injective ∗-homomorphism from M to M ⊗ M, which
satisfies:

Γ(1) = β(e1)⊗ α(e1) + β(e2)⊗ α(e2);

(Γ⊗ id)Γ = (id⊗ Γ)Γ;

Γ(α(ei)β(ej)) = α(ei)β(e1)⊗ α(e1)β(ej) + α(ei)β(e2)⊗ α(e2)β(ej).

If we write Mi,j = Mα(ei)β(ej), we have

Γ(Mi,j) ⊂ (Mi,1 ⊗M1,j)⊕ (Mi,2 ⊗M2,j)

and M1,1 6= {0}, M2,2 6= {0}.
(ii) The pseudo-multiplicative unitary W can be identified with a partial isometry on

the Hilbert tensor product HΦ⊗HΦ with initial support [α(e1)⊗α(e1)+α(e2)⊗α(e2)],
and final support [β(e1)⊗ α(e1) + β(e2)⊗ α(e2)], satisfying the pentagonal equation,
and the following intertwining relations, for all n ∈ C2:

W(α(n)⊗ 1) = (1⊗ α(n))W = (α(n)⊗ 1)W;

W(1⊗ α(n)) = W(β(n)⊗ 1) = (β(n)⊗ 1)W;

W(1⊗ β(n)) = (1⊗ β(n))W.

(iii) There exists normal semi-finite faithful weights ϕi,j on Mi,j, such that, for any X
in M+

T , X = x1,1 ⊕ x1,2 ⊕ x2,1 ⊕ x2,2, with xi,j ∈ M+
i,j, T(X) is the image under α of

(ϕ1,1(x1,1) + ϕ1,2(x1,2))e1 + (ϕ2,1(x2,1) + ϕ2,2(x2,2))e2.
(iv) There exists normal semi-finite faithful weights ψi,j on Mi,j, such that, for any Y

in M+
T′ , Y = y1,1 ⊕ y1,2 ⊕ y2,1 ⊕ y2,2, with yi,j ∈ M+

i,j, T′(Y) is the image under β of
(ψ1,1(y1,1) + ψ2,1(y2,1))e1 + (ψ1,2(y1,2) + ψ2,2(y2,2))e2.

(v) For any xi,j in Mi,j and k = 1, 2, let us define

Γk
i,j(xi,j) = Γ(xi,j)[α(ei)β(ek)⊗ α(ek)β(ej)]
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which implies that Γi,j = ∑
k

Γk
i,j. Then, we have the following, where the δi,j are the usual

Kronecker symbols, for any xi,j ∈Mϕi,j , and yi,j ∈Mψi,j :

δi,1 ϕi,j(xi,j)(α(e1)⊗1)+δi,2 ϕi,j(xi,j)(α(e2)⊗1)=(id⊗ϕ1,j)Γ1
i,j(xi,j)+(id⊗ϕ2,j)Γ2

i,j(xi,j);

δ1,jψi,j(yi,j)(1⊗ β(e1)) + δ2,jψi,j(yi,j)(1⊗ β(e2))

= (ψi,1 ⊗ id)Γ1
i,j(yi,j) + (ψi,2 ⊗ id)Γ2

i,j(yi,j).

Proof. The beginning of (i) is just a corollary of Lemma 9.1, using the fact
that α(C2) (and β(C2) by Lemma 5.1) is included in Z(M); the end of (i) is given
also by this fact, using also the fact that the formulae obtained for Γ(α(e1)β(e1))
and Γ(α(e2)β(e2)) prove that α(e1)β(e1) 6= 0 and α(e2)β(e2) 6= 0.

As α is central, we have β̂ = α, then, the identification of W with a partial
isometry comes from the identification of the relative tensor Hilbert spaces made
in Lemma 9.1(ii); this identification gives as well that this partial isometry satisfies
the pentagonal equation, the intertwining properties; finally, the fact that α and β
are central finish the proof of (ii).

Results (iii) and (iv) are given by Theorem 6.1(vi); then result (v) is given by
the left-invariance of T (respectively the right-invariance of T′).

THEOREM 9.4 ([10], 3.17). With the notations of Lemma 9.1, let G=(C2, M, α, β,
Γ, T, T′, ν) be a measured quantum groupoid, R its co-inverse, with α(C2) ⊂ Z(M); let
us write Ĝ = (N, α, α, Γ̂, T̂, R̂T̂R̂, ν) its dual. Let’s use the notations of Proposition 9.3;
then:

(i) G1 = (M1,1, Γ1
1,1, ϕ1,1, ψ1,1) and G2 = (M2,2, Γ2

2,2, ϕ2,2, ψ2,2) are two locally
compact quantum groups. The multiplicative unitary W1 (respectively W2) of G1 (re-
spectively G2) is equal to the restriction of W to α(e1)β(e1)⊗ α(e1)β(e1) (respectively
α(e2)β(e2)⊗ α(e2)β(e2)); the co-inverse R1 (respectively R2) of G1 (respectively G2) is
equal to the restriction of R to M1,1 (respectively M2,2).

(ii) If α(C2) ⊂ Z(M̂), then β = α and G = G1 ⊕G2 (i.e. M1,2 = M2,1 = {0}).
(iii) If α(e1) /∈ Z(M̂), then M1,2 6= {0}, M2,1 = R(M1,2) 6= {0}, Γ2

1,2 : M1,2 →
M1,2 ⊗ M2,2 is a right action of G2 on M1,2, Γ1

1,2 : M1,2 → M1,1 ⊗ M1,2 is a left
action of G1 on M1,2, Γ1

2,1 : M2,1 → M2,1 ⊗M1,1 verify Γ1
2,1 = ς(R1 ⊗ R)Γ1

1,2R, and
Γ2

2,1 : M2,1 → M2,2 ⊗M2,1 verify Γ2
2,1 = ς(R⊗ R2)Γ2

1,2R. Moreover, these actions are
ergodic and integrable.

Proof. Using Proposition 9.3, we get that M1,1 6= 0, and that

Γ(α(e1)β(e1))[α(e1)β(e1)⊗ α(e1)β(e1)] = α(e1)β(e1)⊗ α(e1)β(e1)

from which we get that Γ1
1,1(1) = 1, when considered from M1,1 into M1,1 ⊗M1,1;

by restriction, the coproduct property is straightforward from Proposition 9.3(i);
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using Proposition 9.3(iv), we get

α(e1)(id⊗ ϕ1,1)Γ1
1,1(x1,1) = α(e1)ϕ1,1(x1,1), and

β(e1)(ψ1,1 ⊗ id)Γ1
1,1(y1,1) = β(e1)ψ1,1(y1,1),

which proves that ϕ1,1 is a left-invariant weight, and ψ1,1 is a right-invariant
weight, and proves that G1 is a locally compact quantum group, in the sense
of [23]. Then, the result about the multiplicative unitary of G1 is a straightfor-
ward calculation, and, then, by polar decomposition of the antipode, one gets the
result about the co-inverse of G1. The proof for G2 is identical, which finishes the
proof of (i).

Result (ii) is given by Theorem 8.5; conversely, if M1,2 = {0}, as M2,1 =
R(M1,2), we have also M2,1 = {0}, and M = M1,1 ⊕ M2,2, and, using Theo-
rem 8.2(iv), we get that α = β, and, therefore, that α(C2) ⊂ Z(M̂). So, we get
that, if α(e1) /∈ Z(M̂), we have M1,2 6= {0}, and M2,1 6= {0}. Then, by restriction
of the coproduct property of Γ, we obtain that Γ2

1,2 is a right-action of G2 on M1,2,
and that Γ1

2,1 is a left-action of G1 on M2,1 (in the sense of 1.1 of [39]); the prop-
erties of Γ1

2,1 and Γ2
2,1 come from the formula linking Γ and R (and the fact that

R|M1,1
= R1 and R|M2,2

= R2 obtained in (i)). Moreover, using Proposition 9.3(v),
one gets that, for any x1,2 ∈Mϕ1,2 , we have

ϕ1,2(x1,2) = (id⊗ ϕ2,2)Γ2
1,2(x1,2).

But the right-hand formula is the canonical operator-valued weight TΓ2
1,2

([39], 1.3)

from M1,2 on the invariants M
Γ2

1,2
1,2 ; so we get that both this algebra M

Γ2
1,2

1,2 is equal
to C (which means that Γ2

1,2 is ergodic), and that this operator-valued weight is
semi-finite (which means that Γ2

1,2 is integrable). The proof for Γ1
2,1 is identical.

REMARK 9.5. In [10] is given a very interesting interpretation of these ac-
tions, and of the link between G1 and G2 which occur in that situation, in term of
Morita–Rieffel equivalence. Let’s have a look at what happens when G is abelian
(respectively symmetric).

If G is abelian, by Ramsay’s Theorem 7.2, we have G = G(G), where G is a
locally compact groupoid, with a two-points basis. Then, if X = {x ∈ G, s(g) =
1, r(g) = 2} is not empty, it is clear that, in the construction given in Theorem 9.4,
we obtain two locally compact groups which are isomorphic, and act on the left
and on the right on X; if X is empty, we obtain that G is the disjoint union of the
two locally compact groups G1 and G2 (Example 8.10).

If G is symmetric, then α(C2) ⊂ Z(M̂), and G = Ĝ1 ⊕ Ĝ2, where Gi are lo-
cally compact groups, and Ĝi their duals as symmetric locally compact quantum
groups.

So, we see that this construction, which is completely trivial in the case of
groupoids, gives very rich information in the case of quantum groupoids.
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