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ABSTRACT. In this article, we investigate the notion of a Galois object for a
locally compact quantum group G. Such an object consists of a von Neumann
algebra N, together with an ergodic integrable action of G on N for which the
crossed product is a type I factor. We show how to construct from this data
a possibly different locally compact quantum group. By way of application,
we prove the following statement: any twisting of a locally compact quantum
group by a unitary 2-cocycle is again a locally compact quantum group.
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INTRODUCTION

In commutative geometry, the importance of principal fiber bundles can
hardly be overestimated. When passing to non-commutative geometry, they be-
come even more intriguing: one can have interesting principal bundles over a
point! In this article, we investigate this phenomenon in the framework of locally
compact quantum groups.

In Hopf algebra theory, “non-commutative principal bundles” are known
under the name “faithfully flat Hopf–Galois extensions”. A Hopf–Galois extension
consists of the following data: a Hopf algebra (H, ∆H) (say over a field k), a unital
k-algebra A, and a coaction α : A → A⊗

k
H. These have to satisfy the following

property: with B the fixed point algebra of α, the map

(0.1) G : A⊗
B

A→ A⊗
k

H : x⊗ y→ α(x)(y⊗ 1),

called the Galois map, must be a bijection. Here the surjectivity corresponds ge-
ometrically to the freeness of the action, while the injectivity corresponds to the
action being proper (actually, “to the action being Cartan” is the more accurate
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analogy). Saying that the Hopf Galois extension is faithfully flat, means that A
is faithfully flat as a right B-module (in which case the injectivity of the map G
comes for free). This corresponds to the local triviality of the bundle. Finally,
if we want to have a fiber bundle over a point, we should ask that B = k · 1A
(the condition of being “faithfully flat” becoming obsolete). The couple (A, α) is
then called a (right) Galois object for (H, ∆H). See [20] for a nice overview of these
concepts.

We now briefly indicate how the above definitions have to be adapted in
the setting of locally compact quantum groups. We will work only in the von
Neumann algebra framework. While this is certainly not sufficient to study “lo-
cally compact quantum principal fiber bundles”, it turns out to be sufficient if one
considers a bundle over a point (i.e., there is automatically a C∗-algebraic picture
available). So let (M, ∆) be a von Neumann algebraic quantum group, which is to
be interpreted as being L∞(G) for some locally compact quantum group G (see
[14] and [27]). Let N be a von Neumann algebra, and α : N → N ⊗ M a right
coaction. Denote by Nα the subalgebra of fixed points. The map α is called inte-
grable, if the operator-valued weight (ι⊗ ϕ)α from N to Nα is semi-finite, where
ϕ denotes the left invariant nsf weight for (M, ∆). This is our non-commutative
analogue of the action being proper. (In fact, one would also like to use the notion
of integrability to define properness on the level of C∗-algebras, but the situation
there is much more subtle, see e.g. [19].) When this condition is satisfied, one is
able to construct an analogue of the Galois map (0.1) on the level of L2-spaces.
It will automatically be isometric. When it is actually a unitary, then we call α a
Galois coaction. Finally, when also Nα = C, i.e. when α is ergodic, we call (N, α)
a Galois object. This turns out to be equivalent with the condition given in the
abstract.

One reason which makes Galois objects so interesting, is that in general they
carry with them not one, but two Hopf algebras: if (A, α) is a (right) Galois object
for a Hopf algebra (H, ∆H), then one can construct from this a second “reflected”
Hopf algebra (L, ∆L) and a (left) coaction γ of L on A, such that (A, γ) becomes
a left Galois object, and such that γ and α commute. This turns out to be a (part
of a) non-commutative generalization of the Ehresmann construction, where one
lets a locally compact group act freely and properly on a locally compact space,
and constructs from this a locally compact groupoid with an action on this same
space, commuting with the group action (see e.g. [16], Example 1.1.5).

We show in this article that such a reflected quantum group also exists when
dealing with Galois objects for locally compact quantum groups. While the new
locally compact quantum group can be constructed more or less as on the algebraic
level, there is one technical point which is much less straightforward to establish:
namely, the construction gives a priori only a Hopf–von Neumann algebra, and
one still has to see if there are invariant weights available. The existence of these
weights is the main theorem of this paper (Theorem 5.10). In fact, we prefer an
approach dual to the one in Hopf algebra theory, so we rather construct a von
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Neumann algebraic quantum group (P̂, ∆ P̂), whose dual then plays the role of
(L, ∆L).

An important corollary of our results, is that any cocycle twist of a locally
compact quantum group is again a locally compact quantum group. I.e.: if Ω

is a unitary 2-cocycle for a von Neumann algebraic quantum group (M̂, ∆̂) (so
Ω ∈ M̂ ⊗ M̂ and (Ω⊗ 1)(∆̂⊗ ι)(Ω) = (1⊗Ω)(ι⊗ ∆̂)(Ω)), then one can show
that the cocycle twisted convolution algebra M̂ n

Ω
C together with its dual coac-

tion constitutes a Galois object for (M, ∆), and the new von Neumann algebraic
quantum group (P̂, ∆ P̂) which we obtain is precisely M̂ itself with the new co-
product ∆̂Ω := Ω∆̂(·)Ω∗. We want to note that in [8], a special type of such cocy-
cle deformations is discussed: a cocycle on a classical subobject, satisfying certain
conditions, is lifted to the whole locally compact quantum group. In this case,
more concrete formulas are available for describing the weights on the twisted
locally compact quantum group.

As mentioned already, the theory of Galois objects is well-developed for
Hopf algebras. It was also investigated for compact quantum groups in [2], which
was in turn based on the work of Wassermann on ergodic actions of compact
groups on von Neumann algebras ([29],[30]). We then investigated this notion for
algebraic quantum groups in [3]. It can be shown that the ∗-Galois objects of [3]
can be completed to analytic objects of the kind discussed in this paper (similar
to the completion of ∗-algebraic quantum groups to locally compact quantum
groups, as is done in [11]), although we have not included a detailed exposition
of this fact in this paper.

The specific content of this paper is as follows: in the first two sections, we
establish notation and preliminaries concerning operator valued weights. Our
general references for this part are the first four chapters of [21] for the theory of
non-commutative integration, Section 10 of [5] for some results about inclusions
of von Neumann algebras.

In the third section, we treat the notion of a (right) Galois coaction for a von
Neumann algebraic quantum group, as briefly explained above. This notion al-
ready appeared implicitly at various places in the literature, for it turns out to be
equivalent with the following property: with α denoting the coaction of a locally
compact quantum group (M, ∆) on a von Neumann algebra N, being Galois is
the same as saying that N o M can be represented faithfully on L2(N) by a certain
canonical map ρ. Our general references for this part are [14] and [27] for the the-
ory of locally compact quantum groups in the von Neumann algebraic setting,
and [22] for the theory of coactions for locally compact quantum groups (which
are there just termed "actions”).

In the fourth section, we study Galois objects, i.e. Galois coactions (N, α) for
which α is ergodic. We show that a Galois object has as rich a structure as a lo-
cally compact quantum group: we can associate with N certain invariant weights,
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related by a modular element, and also a one-parameter scaling group. The ref-
erences for this part are [14], [27] and [22].

In the fifth section, we use these results to construct a (possibly new) von
Neumann algebraic quantum group (P̂, ∆ P̂) from such a Galois object. The refer-
ence for this part is Section IX.3 of [21].

In the sixth section, we consider the special case of cocycle twisted locally
compact quantum groups.

In the seventh section, we define the notion of a projective corepresentation
for a locally compact quantum group, and we show the connection with coactions
on type I-factors.

1. PRELIMINARIES AND NOTATION

The scalar product of a Hilbert space will be anti-linear in the second argu-
ment. If H,K are Hilbert spaces, we denote by B(H,K) the Banach space of all
bounded operators between H and K, by B(H) the algebra of all bounded oper-
ators on H, and by B0(H) the algebra of all compact operators. If ξ, η ∈ H, we
write

ωξ,η : B(H)→ C : x → 〈xξ, η〉.
If u is a unitary onH, we will denote

Ad(u) : B(H)→ B(H) : x → uxu∗.

IfH1,H2 are two Hilbert spaces, we will denote by Σ the flip map

H1 ⊗H2 → H2 ⊗H1 : ξ ⊗ η → η ⊗ ξ.

We will also frequently use leg numbering notation: ifHi are Hilbert spaces
and

u : H1 ⊗H2 → H3 ⊗H4

is an operator, we denote for example by u12 the operator

u⊗ 1 : H1 ⊗H2 ⊗H5 → H3 ⊗H4 ⊗H5,

and by u13 the operator

Σ23u12Σ23 : H1 ⊗H5 ⊗H2 → H3 ⊗H5 ⊗H4.

If u is already indexed, say u = u1, then we write u1,13 for u13.
If N is a von Neumann algebra, we denote by N∗ its predual. We denote by

L2(N) the universal Hilbert space for GNS-constructions. We denote the spatial
tensor product of two von Neumann algebras by ⊗.

Let ϕN be a fixed normal semi-finite faithful (nsf) weight on N. We will
then sometimes index the modular structure by N instead of ϕN (so the mod-
ular automorphism group for example is written as σN

t ). We will then write
the modular operator as ∇N (since the symbol ∆ will be used for the comul-
tiplication of a quantum group). When we work with another weight ψN , we
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will then always use ψN as an index. We will always write NϕN = {n ∈ N :
ϕN(n∗n) < ∞} for the space of square integrable elements for ϕN , we write
M+

ϕN
= {n ∈ N+ : ϕN(n) < ∞} for the space of positive integrable elements,

andMϕN = span{M+
ϕN
} = N ∗ϕN

NϕN for the space of integrable elements. The
GNS mapNϕN → L2(N) for ϕN is denoted by ΛN . We denote by TϕN the canon-
ical Tomita algebra for ϕN (inside N):

TϕN = {x ∈ N : x analytic for σN
t and σN

z (x) ∈ NϕN for all z ∈ C}.

We then also call ΛN(TϕN ) the Tomita algebra for ϕN (inside L2(N)).
The opposite weight of ϕN will be denoted by ϕ

op
N . We see it as a weight

on the commutant N′ ⊆ B(L2(N)). It has a natural GNS-construction in L2(N):
with JN denoting the modular conjugation of ϕN , we have a GNS map

Λ
op
N : Nϕ

op
N
→ L2(N) : JNn∗ JN → JNΛN(n∗).

Sometimes however, we will also allow elements of N as input of Λ
op
N : then in

fact we first identify N with the opposite von Neumann algebra Nop as a linear
space (an operation we will write as n → nop), and then we identify Nop with
N′ as a ∗-algebra by sending nop to JNn∗ JN . So for n ∈ N ∗ϕN

, we will also write
Λ

op
N (n) = JNΛN(n∗). This notation is consistent, since JNn∗ JN = n for elements

in the center.
When N1 and N2 are two von Neumann algebras, and ϕNi an nsf weight on

Ni, we denote by ϕN1 ⊗ ϕN2 their tensor product (Definition 4.2 in [21]), which
is an nsf weight on N1 ⊗ N2. We denote its GNS-map with ΛN1 ⊗ΛN2 . One can
show that

ϕN1 ⊗ ϕN2 = ϕN1 ◦ (ι⊗ ϕN2),

where (ι⊗ ϕN2) is an nsf operator valued weight from N1 ⊗ N2 to N1, defined as

ω((ι⊗ ϕ2)(x)) := ϕ2((ω⊗ ι)(x))

for x ∈ (N1 ⊗ N2)
+ and ω ∈ (N1 ⊗ N2)

+
∗ . By symmetry, this gives us a Fubini

theorem.
We recall the definition of the Connes–Sauvageot tensor product.
IfH is a left N-module, by which we mean a Hilbert space carrying a unital

normal representation πl of N, and ϕN is a nsf weight on N, a vector ξ ∈ H is
called right bounded with respect to ϕN if the map

ΛN(NϕN )→ H : ΛN(x)→ πl(x)ξ

is bounded, in which case we denote its closure by Rπl,ϕN (ξ) (or Rξ if πl and ϕN
are fixed). We denote by ϕNH the space of right bounded vectors for πl. Similarly,
if H is a right N-module, by which we mean a Hilbert space carrying a unital
normal anti-representation πr of N, a vector ξ ∈ H is called left bounded with
respect to ϕN if the map

Λ
op
N (N ∗ϕN

)→ H : JNΛN(x∗)→ πr(x)ξ
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is bounded, in which case we denote its closure by Lπr,ϕN (ξ) (or Lξ if πr and ϕN
are fixed). We denote by HϕN the space of left bounded vectors for πr. Remark
that when we regard H as a left Nop-module in the natural way, then the right
bounded vectors with respect to ϕ

op
N are exactly the left bounded vectors with

respect to ϕN .
If (Hr, πr) is a faithful right N-module, (Hl, πl) a faithful left N-module,

and ϕN a nsf weight on N, we denote by Hr
πr⊗πl

ϕN

Hl (or simply Hr ⊗
ϕN
Hl when

πl, πr are clear) their Connes–Sauvageot tensor product with respect to πl, πr and
ϕN . It is the Hilbert space closure of the algebraic tensor product of Hr

ϕN
and Hl

with respect to the scalar product

〈ξ1 ⊗ ξ2, η1 ⊗ η2〉 = 〈πl(L∗η1
Lξ1)ξ2, η2〉,

modulo vectors of norm zero. In fact, we could as well start with the algebraic
tensor product of Hr

ϕN
and ϕNHl, since the image of this tensor product in the

previous Hilbert space will be dense. On elementary tensors of the last space, we
can give a different form of the scalar product, namely

〈ξ1 ⊗ ξ2, η1 ⊗ η2〉 = 〈πr(R∗η2
Rξ2)ξ1, η1〉.

The image of such an elementary tensor in Hr ⊗
ϕN
Hl will then be denoted by the

same symbol, with ⊗ replaced by πr⊗πl
ϕN

or simply ⊗
ϕN

.

Note that these spaces carry faithful normal left representations π′r and π′l
of respectively πr(N)′ and πl(N)′, determined by

π′r(n1)π
′
l(n2)(ξ1 ⊗

ϕN
ξ2) = (n1ξ1) ⊗

ϕN
(n2ξ2),

where n1 ∈ πr(N)′, n2 ∈ πl(N)′, ξ1 ∈ Hr
ϕN

, ξ2 ∈ ϕNHl. If N1 ⊆ B(Hr) is a von
Neumann algebra containing πr(N), and N2 ⊆ B(Hl) is a von Neumann algebra
containing πl(N), the von Neumann algebra

N1 πr∗πl
N

N2 := (π′r(N′1) ∪ π′l(N′2))
′

is called the fiber product of N1 and N2. As an abstract von Neumann algebra, it
only depends on N, N1, N2 and the maps πr : N → N1 and πl : N → N2. For
further properties of the fiber product, see [7].

We will also need the notion of intertwiners and a linking algebra. Suppose
we are given two right N-modules (H2, πr,2) and (H1, πr,1). Denote

Qij = {x ∈ B(Hj,Hi) : xπr,j(n) = πr,i(n)x for all n ∈ N}.

We call Q12 the space of intertwiners between the right N-modules (H2, πr,2) and
(H1, πr,1). In fact, it is a self-dual Q11-Q22-Hilbert W∗-bimodule (see [18]). The
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linking algebra between (H2, πr,2) and (H1, πr,1) is the von Neumann algebra

Q =

(
Q11 Q12
Q21 Q22

)
,

acting on (H1
H2
) = H1 ⊕H2 in the obvious way. It is the commutant of the direct

sum right representation πr,1 ⊕ πr,2. Most of the time, we will identify the Qij as
subspaces of Q, indexing the units of the Qii then to emphasize that we consider
them as projections in Q. If θ1 is a weight on Q11 and θ2 a weight on Q22, the
balanced weight θ1 ⊕ θ2 is the weight Q+ → [0,+∞] : ( x y

z w )→ θ1(x) + θ2(w).
We now briefly recall the definition of a locally compact quantum group,

mainly to fix notation.
Let M be a von Neumann algebra, ∆ a faithful normal unital ∗-homomor-

phism M→ M⊗M which satisfies coassociativity:

(∆⊗ ι) ◦∆ = (ι⊗∆) ◦∆,

where ι denotes the identity map. Then the pair (M, ∆) is called a Hopf–von Neu-
mann algebra. A Hoph–von Neumann algebra is called coinvolutive if there exists
an anti-multiplicative ∗-involution R : M→ M such that

∆ ◦ R = (R⊗ R) ◦∆op,

where ∆op = Ad(Σ) ◦∆ . A Hopf–von Neumann algebra is called a von Neumann
algebraic quantum group if there exist nsf weights ϕ and ψ on M such that

(ι⊗ ϕ) ◦∆ = ϕ, (ψ⊗ ι) ◦∆ = ψ.

These identities should be interpreted as follows: for any ω ∈ M+
∗ , the weight

ψ ◦ (ι ⊗ ω)∆ should equal the weight ω(1)ψ, and similarly for ϕ. (These are in
fact the strong forms of invariance, and they follow from weaker ones (see Propo-
sition 3.1 of [14]).) A von Neumann algebraic quantum group will automatically
be a coinvolutive Hopf–von Neumann algebra for a canonical map R. As we
mentioned already in the introduction, the terminology “locally compact quan-
tum group” is a formal one used to guide intuition: one sometimes writes (M, ∆)
as (L∞(G), ∆) and refers to the symbol G as the locally compact quantum group
associated to (M, ∆).

We refer to [14] and [27] for further definitions and formulas. We shall also
use notations as in those papers. Specifically, we denote by ϕ a (fixed) left invari-
ant nsf weight, by S the antipode, by τt the one-parameter scaling group and by
R the unitary antipode (so that S = R ◦ τ−i/2). We scale the right invariant weight
ψ such that ψ = ϕ ◦ R. We establish the GNS-constructions for ϕ in the standard
form L2(M), writing just Λ for the GNS-map associated with ϕ. We follow the
convention of [14] by taking a GNS-construction Λδ for ψ in L2(N) by defining
Λδ(x) := Λ(xδ1/2) for x ∈ M a left multiplier of the square root of the modular
element δ such that xδ1/2 ∈ Nϕ, and then closing Λδ. If ν is the scaling constant of
(M, ∆), then Λδ and Λψ are related by Λδ = νi/8Λψ. The modular one-parameter
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group for ϕ is denoted simply by σt, and its corresponding modular operator by
∇. The modular one-parameter group for ψ is denoted by σ′t = Ad(δit) ◦ σt, its
modular operator by ∇p. The canonical (self-dual) one-parameter group of uni-
taries implementing the scaling group will be denoted by Pit.

We denote the dual von Neumann algebraic quantum group by (M̂, ∆̂), and
also all its other structures are denoted as for (M, ∆), but with a ̂ on top. By
W and Ŵ = ΣW∗Σ we denote the left regular corepresentation of respectively
(M, ∆) and (M̂, ∆̂). We write V and V̂ for the right regular corepresentation of
respectively (M, ∆) and (M̂, ∆̂). We will also from time to time work with the
commutant von Neumann algebraic quantum groups (M′, ∆′) and (M̂′, ∆̂′). For
the relationship between all these quantum groups, we refer again to [14].

For most of the paper, we will work with a fixed von Neumann algebraic
quantum group (M, ∆). When (P, ∆P) is the von Neumann algebraic realization
of another locally compact quantum group, we will use the same notations but
with a subscript P. Note that we also use the symbol P for the scaling operator,
since this is standard notation, but in any case, there should not arise any occasion
where a von Neumann algebra could get mixed up with an operator!

2. FURTHER PRELIMINARIES ON OPERATOR VALUED WEIGHTS

We collect in this preliminary section some results about operator valued
weights. While they are well-known to specialists, we have chosen to present
them here in considerable detail, as we do not know a convenient reference for
the specific results we need.

Let N0 ⊆ N be a unital inclusion of von Neumann algebras, and T a nor-
mal semi-finite faithful operator valued weight from N+ to the positive extended
cone (N0)

+,ext of N0. Let µ be a fixed nsf weight on N0, and denote by ϕN the
nsf weight µ ◦ T. Denote the semi-cyclic representation associated with ϕN by
(L2(N), ΛN , πl), realized in the standard form. Most of the time, we will write
n instead of πl(n) for n ∈ N. Denote by πr (or πN

r for emphasis) the anti-
representation n → JNn∗ JN of N, where JN is the modular conjugation. Denote
N2 = πr(N0)

′, then
N0 ⊆ N ⊆ N2

is called the basic construction. We will also use πl for the natural representation
of N2 on L2(N), and θr for the natural anti-representation

θr : N2 → B(L2(N)) : θ(x) = JN x∗ JN .

Note that this will of course not turn L2(N) into a N2-N2-bimodule in general.
Consider x ∈ NT = {n ∈ N : T(n∗n) is bounded}. Then xn ∈ NϕN when

n ∈ Nµ, and Λµ(n)→ ΛN(xn) extends from Λµ(Nµ) to a bounded operator

ΛT(x) : L2(N0)→ L2(N),
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following the notations of Theorem 10.6 of [5]. Its adjoint is then determined
by ΛT(x)∗ΛN(y) = Λµ(T(x∗y)) for y ∈ NϕN ∩ NT . The operators of the form
ΛT(x)ΛT(y)∗, with x, y ∈ NT , will generate a σ-weakly-dense sub-∗-algebra of
N2, and if we denote by T2 the canonical operator valued weight from N2 onto N
associated with T, then we have, as follows from Theorem 10.7 of [5],

ΛT(x)ΛT(y)∗ ∈ MT2 := N ∗T2
NT2

with
T2(ΛT(x)ΛT(y)∗) = xy∗.

Consider now L2(N) as an N2-N0-bimodule, and denote by L2(N) the con-
jugate bimodule. Then it is well-known that there is a unitary N2-N2-bimodule
map

L2(N)⊗
µ
L2(N)→ L2(N2) : ΛN(x)⊗

µ
Λ

op
N (y)→ Λϕ2(ΛT(x)ΛT(y)∗)

for x, y ∈ NϕN ∩ N ∗ϕN
∩ NT , where ϕ2 = ϕN ◦ T2. As said, since we will need

some more information about this statement, of which we know no appropriate
reference in the literature, we will give a proof of it.

We first prove a lemma about interchanging the analytic continuation of a
modular one-parameter group with an operator valued weight.

LEMMA 2.1. Let Q be the linking algebra between the right N0-modules L2(N)
and L2(N0), and consider the balanced weight ϕ2 ⊕ µ on Q. Let x ∈ N be such that x
is analytic for σN

t and σN
z (x) ∈ NT for all z ∈ C. Then ΛT(x) is analytic for σQ

t , with
σQ

z (ΛT(x)) = ΛT(σ
N
z (x)) for all z ∈ C.

Recall that the notion of a linking algebra between two right von Neumann
modules, and the notion of balanced weight, were given in the section on prelim-
inaries, of which we also use the notation.

Proof. First remark that ΛT(x) ∈ Q12 by Lemma 10.6.(i) of [5]. Choose y ∈
Nµ and u, v ∈ NϕN with v in the Tomita algebra TϕN ⊆ N for ϕN . Denote

f (z) = 〈ΛT(σ
N
z (x))Λµ(y), JNσN

i/2(v)JNΛN(u)〉, for z ∈ C.

Then

f (z) = 〈JNσN
i/2(v)

∗ JNΛN(σ
N
z (x)y), ΛN(u)〉 = 〈σN

z (x)ΛN(yv), ΛN(u)〉,

and so f is analytic. Moreover, if z = r + is with r, s ∈ R, then since σ
µ
t = (σN

t ):N0 ,

| f (z)| = |〈σN
is (x)∇−ir

N ΛN(yv),∇−ir
N ΛN(u)〉|

= |〈ΛN(σ
N
is (x)σµ

−r(y)), JNσN
i/2(σ

N
−r(v))JNΛN(σ

N
−r(u))〉|

= |〈ΛT(σ
N
is (x))∇−ir

µ Λµ(y),∇−ir
N JNσN

i/2(v)JNΛN(u)〉|,
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and so we can conclude, by the Phragmén–Lindelöf principle, that the modulus
of f is bounded on every horizontal strip by Mx‖ω‖, where

ω = ωΛµ(y),JN σN
i/2(v)JNΛN(u) ∈ B(L2(N0),L2(N))∗,

and Mx is a number depending only on x and the chosen strip. The same is of
course true for linear combinations of such ω, and since these span a dense sub-
space of B(L2(N0),L2(N))∗, we get that z→ ΛT(σ

N
z (x)) is bounded on compact

sets. But then this function is analytic (for example by condition A.1.(iii) in the
appendix of [21]). Since σQ

t is implemented by ∇it
N ⊕∇it

µ and since we have that
∇it

NΛT(x)∇−it
µ = ΛT(σ

N
t (x)), the result follows.

We can now provide a convenient Tomita algebra for ϕ2. Let TϕN ⊆ N be
the Tomita algebra for ϕN , and denote

TϕN ,T = {x ∈ TϕN ∩NT ∩N ∗T : σN
z (x) ∈ NT ∩N ∗T for all z ∈ C}.

(This space is called the Tomita algebra for ϕN and T in Proposition 2.2.1 of [4].)
Denote the linear span of {ΛT(x)ΛT(y)∗ : x, y ∈ TϕN ,T} by A2, and further denote
by (L2(N2), ΛN2 , πN2

l ) the natural semi-cyclic representation for ϕ2.

PROPOSITION 2.2. We have A2 ⊆ D(ΛN2), and A2 is a Tomita algebra for
(N2, ϕ2).

By the second statement, we mean that ΛN2(A2) is a sub-Tomita algebra of
the natural Tomita algebra ΛN2(Tϕ2) for ϕ2, closed in L2(N2), which still has N2
as its left von Neumann algebra, and also with the corresponding weight on N2
coinciding with ϕ2.

Proof. For x, y ∈ TϕN ,T , we know that ΛT(x)ΛT(y)∗ ∈ MT2 , with

T2(ΛT(x)ΛT(y)∗) = xy∗.

Since x, y ∈ TϕN , also xy∗ ∈ MϕN . Hence A2 ⊆ Mϕ2 , and so certainly A2 ⊆
D(ΛN2).

It is clear that A2 is closed under the ∗-involution. Now choose x, y, u, v ∈
TϕN ,T . Then

(ΛT(u)ΛT(v)∗)(ΛT(x)ΛT(y)∗) = ΛT(uT(v∗x))ΛT(y)∗.

We want to show that uT(v∗x) ∈ TϕN ,T . It is clear that

uT(v∗x) ∈ N ∗ϕN
∩NT ∩N ∗T .

By the previous lemma, we have, using notation as there, that ΛT(v) and ΛT(x)
are analytic for σQ

t , with

σQ
z (ΛT(a)) = ΛT(σ

N
z (a)) for all z ∈ C, a ∈ {u, v}.

But then also ΛT(v)∗ΛT(x) = T(v∗x) analytic for σQ
t , with

σQ
z (T(v∗x)) = T(σN

z (v)∗σN
z (x)) for all z ∈ C.
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Since σQ
t restricts to σ

µ
t on N0, and also σN

t restricts to σ
µ
t on N0, we get that

uT(v∗x) is analytic for σN
t , with

σN
z (uT(v∗x)) = σN

z (u)T(σN
z (v)∗σN

z (x)) for all z ∈ C.

Since TϕN ,T is invariant under all σN
z with z ∈ C, we get that

σN
z (uT(v∗x)) ∈ N ∗ϕN

∩NT ∩N ∗T for all z ∈ C.

Hence uT(v∗x) ∈ TϕN ,T , and thus

(ΛT(u)ΛT(v)∗)(ΛT(x)ΛT(y)∗) ∈ A2.

We have shown so far that ΛN2(A2) ⊆ ΛN2(Nϕ2 ∩N ∗ϕ2
) is a sub-left Hilbert

algebra. But by the previous lemma, A2 consists of analytic elements for σQ
t ,

which restricts to σN2
t on N2. So in fact ΛN2(A2) is a sub-Tomita algebra of ΛN2(Tϕ2).

Now we show that A2 is σ-weakly dense in N2. For this, it is enough to show
that ΛT(TϕN ,T) is strongly dense in Q12. Note that ΛT(TϕN ,T) is closed under
right multiplication with elements from Tµ ⊆ N0, which are σ-weakly dense in
N0. Then by a similar argument as in the proof of Theorem 10.6.(ii) of [5], it is
sufficient to prove that if z ∈ Q12 and z∗ΛT(x) = 0 for all x ∈ TϕN ,T , then z = 0.
So suppose z satisfies this condition. Choose y ∈ Nµ analytic for σ

µ
t . Then

πN0
r (σ

µ
i/2(y))z

∗ΛN(x) = z∗πN
r (σN

i/2(y))ΛN(x) = z∗ΛN(xy) = z∗ΛT(x)Λµ(y) = 0.

Letting πN0
r (σ

µ
i/2(y)) tend to 1, we see that z∗ vanishes on ΛN(TϕN ,T). Now

choose x ∈ MϕN ∩MT . Then

xn =

√
n
π

+∞∫
−∞

e−nt2
σN

t (x)dt

is in TϕN ,T by Lemma 10.12 of [5], and ΛN(xn) converges to ΛN(x). Hence z∗

vanishes also on ΛN(MϕN ∩MT). Since NϕN ∩ NT is weakly dense in N and
ΛN(NϕN ∩NT) is normdense in L2(N), we get that z∗ = 0, and the density claim
follows.

Now let G be the closure of ΛN2(A2). Then for x ∈ N2, we get that πN2
l (x)

will restrict to an operator πA2
l (x) : G → G, since A2 is dense in N2. Then the

left von Neumann algebra associated with ΛN2(A2) is πA2
l (N2). If we denote by

ϕ1(1/2) the weight on πA2
l (N2) associated with ΛN2(A2), then it is clear that ϕ2,

the weight (ϕ1(1/2) ◦ πA2
l ) and A2 satisfy the conditions of Proposition VIII.3.15

of [21], hence ϕ2 = ϕ1(1/2) ◦ πA2
l , which finishes the proof.

REMARK 2.3. It also follows easily from Lemma 10.12 of [5] that TϕN ,T itself
is σ-weakly dense in N.
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Let L2(N)⊗
µ
L2(N) denote the Connes–Sauvageot tensor product, with its

natural N2-N2-bimodule structure. Denote by K the natural image of the alge-
braic tensor product ΛN(TϕN ,T)�ΛN(TϕN ,T) inside L2(N)⊗

µ
L2(N).

THEOREM 2.4. The space K is dense in L2(N)⊗
µ
L2(N), and the map

K → L2(N2) : ΛN(x)⊗
µ

ΛN(y)→ ΛN2(ΛT(x)ΛT(y∗)∗)

extends to a unitary equivalence of N2-N2-bimodules.

Proof. First note that the expression on the left is well-defined by Theo-
rem 10.6.(v) of [5], and then by definition, we have for x, y, z, w ∈ TϕN ,T that

〈ΛN(x)⊗
µ

ΛN(y), ΛN(z)⊗
µ

ΛN(w)〉= 〈(ΛT(z)∗ΛT(x))ΛN(y), ΛN(w)〉

= ϕN(w∗T(z∗x)y)

= 〈ΛN2(ΛT(x)ΛT(y∗)∗), ΛN2(ΛT(z)ΛT(w∗)∗)〉,

so that the given map extends to a well-defined partial isometry. Since ΛN(TϕN ,T)

is dense in L2(N) (which was proven in the course of the previous proposi-
tion), we have that K is dense in L2(N) ⊗

µ
L2(N). Since also ΛN2(A2) is dense

in L2(N2), the extension is in fact a unitary.
The fact that it is a bimodule map follows from a straightforward computa-

tion (since we only have to check the bimodule property for operators in A2 and
vectors in K and ΛN2(A2)).

REMARK 2.5. If we identify L2(N) with L2(N) as an N0-N2-bimodule by
the unitary ΛN(y)→Λ

op
N (y∗), we get the isomorphism L2(N)⊗

µ
L2(N)→L2(N2)

mentioned before. In some sense, this is a more natural unitary, but in our specific
setting, the former one is easier to work with.

In the following, we will hence identify L2(N)⊗
µ
L2(N) and L2(N2) in this

manner.

LEMMA 2.6. Let x, y be elements of TϕN ,T , and let p be an element of Nϕ2 . Then

〈ΛN(x)⊗
µ

ΛN(y), ΛN2(p)〉 = 〈ΛN(x), pΛN(σ
N
−i(y

∗))〉.

Conversely, if p ∈ N2 and ξ ∈ L2(N2) are such that

〈ΛN(x)⊗
µ

ΛN(y), ξ〉 = 〈ΛN(x), pΛN(σ
N
−i(y

∗))〉

for all x, y ∈ TϕN ,T , then p ∈ Nϕ2 and ΛN2(p) = ξ.
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Proof. Suppose p = ΛT(z)ΛT(w∗)∗ for some z, w ∈ TϕN ,T . Then since
w∗T(z∗x) ∈ NϕN ∩N ∗ϕN

, we have

〈ΛN(x)⊗
µ

ΛN(y), ΛN2(p)〉 = 〈ΛN(x)⊗
µ

ΛN(y), ΛN(z)⊗
µ

ΛN(w)〉

= ϕN(w∗T(z∗x)y) = ϕN(σ
N
i (y)w∗T(z∗x))

= 〈ΛN(w∗T(z∗x)), ΛN(σ
N
−i(y

∗))〉

= 〈ΛT(w∗)ΛT(z)∗ΛN(x), ΛN(σ
N
−i(y

∗))〉

= 〈ΛN(x), pΛN(σ
N
−i(y

∗))〉.

As A2, being a left Hilbert algebra for ϕ2, is a strong-norm core for ΛN2 , the result
holds true for any p ∈ Nϕ2 .

Now we prove the converse statement. So let p ∈ N2 and ξ ∈ L2(N2) be
such that

〈ΛN(x)⊗
µ

ΛN(y), ξ〉 = 〈ΛN(x), pΛN(σ
N
−i(y

∗))〉

for all x, y ∈ TϕN ,T . Then, since A
op
2 is a strong-norm core for Λ

op
N2

, it is enough to

prove that pΛ
op
N2
(a) = πN2

r (a)ξ for all a ∈ A2. Now if a = ΛT(x)ΛT(y∗)∗, then

Λ
op
N2
(a) = JN2ΛN2(a∗) = ΛN(σ

N
−i/2(x))⊗

µ
ΛN(σ

N
−i/2(y)).

So if also b ∈ A2 with b = ΛT(z)ΛT(w∗)∗, w, z ∈ TϕN ,T , then

〈ΛN2(b), pΛ
op
N2
(a)〉 = 〈ΛN(z), pΛT(σ

N
−i/2(x))ΛT(σ

N
−i/2(y)

∗)∗ΛN(σ
N
−i(w

∗))〉

by the first part of the lemma. On the other hand, we have

〈ΛN2(b), πN2
r (a)ξ〉 = 〈πN2

r (a)∗ΛN2(b), ξ〉 = 〈ΛN2(bσN2
i/2(a)∗), ξ〉

= 〈ΛN2(ΛT(z)ΛT(w∗)∗ΛT(σ
N
i/2(y)

∗)ΛT(σ
N
i/2(x))∗), ξ〉

= 〈ΛN2(ΛT(z)ΛT(σ
N
i/2(x)T(σN

i/2(y)w
∗))∗), ξ〉

= 〈ΛN(z), pΛN(σ
N
−i/2(x)T(σN

−i/2(y)σ
N
−i(w

∗)))〉,

which equals our earlier expression, hence proving pΛ
op
N2
(a) = πN2

r (a)ξ for all
a ∈ A2.

We prove two further results which naturally belong in this section, but of
which only the second one will be further used in the present paper.

LEMMA 2.7. Let N0 ⊆ N be a unital inclusion of von Neumann algebras, let
T : N → N0 an nsf operator valued weight, µ an nsf weight on N0, and let ϕN be the
composed nsf weight µ ◦ T. Suppose x ∈ N and z ∈ B(L2(N0),L2(N)) are such, that
for any y ∈ Nµ, we have xy ∈ NϕN and ΛN(xy) = zΛµ(y). Then x ∈ NT with
ΛT(x) = z.
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Proof. Choose y, w ∈ Nµ with w in the Tomita algebra of µ. Then

πr(w)zΛµ(y)=πr(w)ΛN(xy)=ΛN(xyσN
−i/2(w))=zΛµ(yσ

µ
−i/2(w))=zπN0

r (w)Λµ(y),

so that z is a right N0-module map. It follows that z∗z ∈ N0.
Now by Lemma 4.7 of [21], there exists a closed positive (possibly

unbounded) operator A, such that Λµ(y) ∈ D(A) and

ωΛµ(y),Λµ(y)(T(x∗x)) = 〈AΛµ(y), AΛµ(y)〉.

Also, since for any element u ∈ N+,ext
0 , one can find a sequence un ∈ N+

0 such
that un ↗ u pointwise on (N0)

+
∗ (see the proof of Proposition 4.17(ii) in [21]), we

get that ωΛµ(y),Λµ(y)(T(x∗x)) = µ(y∗T(x∗x)y), using Corollary 4.9 of [21] (which
allows us to extend weights to the extended positive cone). Using the bimodular-
ity of T, we get

〈AΛµ(y), AΛµ(y)〉 = ωΛµ(y),Λµ(y)(T(x∗x)) = µ(y∗T(x∗x)y) = µ(T(y∗x∗xy))

= 〈ΛN(xy), ΛN(xy)〉 = 〈zΛµ(y), zΛµ(y)〉,

from which we conclude that A is bounded. Hence T(x∗x) is bounded, and then
of course ΛT(x) = z follows.

LEMMA 2.8. Let
N10 ⊆ N11

⊆ ⊆

N00 ⊆ N01

be unital normal inclusions of von Neumann

algebras. Denote, for i ∈ {0, 1}, by Qi the linking algebra between the right Ni0-modules
L2(Ni0) and L2(Ni1). Suppose T1 is an nsf operator valued weight N+

11 → N+,ext
10

whose restriction T0 to N+
01 is an nsf operator valued weight N+

01 → N+,ext
00 . Then there

is a natural normal embedding of Q0 into Q1, determined by ΛT0(x) → ΛT1(x) for
x ∈ NT0 .

REMARK 2.9. The inclusion will in general not be unital. Consider for ex-
ample the case where N11 = M2(C) and all other algebras equal to C.

Proof. By assumption, if x, y ∈ NT0 , then x, y ∈ NT1 , and T0(x∗y) = T1(x∗y).
Denote by Q̃1 the ∗-algebra generated by the ΛT1(x), x ∈ NT0 , and by Q̃1 its σ-
weak closure. Denote by Q0 the ∗-algebra generated by the ΛT0(x), x ∈ NT0 . We
want to show that Q0 and Q̃1 are isomorphic in the indicated way.

Now for ai, bi ∈ NT0 , it is easy to check that

∑
i

ΛT1(ai)ΛT1(bi)
∗ = 0 if and only if ∑

i
ΛT0(ai)ΛT0(bi)

∗ = 0,

so we already have an isomorphism F at the level of Q0 and Q̃1. Denote by e0
the unit of N00, seen as a projection in Q0, and denote by e1 the unit of N00 as a
projection in Q̃1. Suppose that xi is a bounded net in Q0 which converges to 0 in
the σ-weak topology. Then for any a, b ∈ Q0, we have that e0axibe0 converges to
0 σ-weakly. Applying F, we get that e1F(a)F(xi)F(b)e1 converges σ-weakly to 0,
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and then also ce1F(a)F(xi)F(b)e1d, for any c, d ∈ Q̃1. Since Q̃1e1Q̃1 is σ-weakly
dense in Q̃1, we get that F(xi) converges σ-weakly to 0. Since the same argument
applies to F−1, we see that F extends to a ∗-isomorphism between Q0 and Q̃1,
and we are done.

REMARK 2.10. We could also have used the results from [18] concerning
self-dual Hilbert W∗-modules to prove this lemma.

3. GALOIS COACTIONS

Let (M, ∆) be the von Neumann algebraic realization of a locally compact
quantum group. Let N be a von Neumann algebra equipped with a right coaction
α of (M, ∆), by which we mean a faithful normal unital ∗-homomorphism

α : N → N ⊗M

such that the coaction property is satisfied:

(ι⊗∆)α = (α⊗ ι)α.

Denote by Nα the von Neumann algebra of coinvariants:

Nα = {x ∈ N : α(x) = x⊗ 1}.

In this paper, we will only work with integrable coactions, so the normal faithful oper-
ator valued weight

T = (ι⊗ ϕ)α : N+ → (Nα)+,ext,

where ϕ is the left invariant weight for (M, ∆), is assumed to be semi-finite ([22],
Proposition 1.3 and Definition 1.4). Let µ be a fixed nsf weight on Nα, and denote
by ϕN the nsf weight µ ◦ T. It will be δ-invariant (see Definition III.1 of [6] and
Definition 2.3 of [22]). With the exception that N0 is now written Nα, we will use
notation as in the previous section.

Recall from Theorem 5.3 of [22] that the integrability of α is equivalent with
the existence of a canonical map

ρ : N o M→ B(L2(N)),

which we will explicitly write down later on. Here N o M denotes the crossed
product of N with respect to the coaction α, i.e.

N o M = (α(N) ∪ (1⊗ M̂′))′′ ⊆ B(L2(N)⊗L2(M)).

We can also consider the map

K → L2(N)⊗L2(M) : ΛN(x)⊗
µ

ΛN(y)→ (ΛN ⊗Λ)(α(x)(y⊗ 1))
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for x, y ∈ TϕN ,T , where K was introduced just before Theorem 2.4, and TϕN ,T
just before Proposition 2.2. Then this is easily seen to be a well-defined isometry.
Denote its extension by

G : L2(N)⊗
µ
L2(N)→ L(N)⊗L2(M).

The main goal of this section is to prove

THEOREM 3.1. The map ρ is faithful if and only if G is a unitary.

The result will follow from the following set of lemmas and propositions,
which conclude with Lemma 3.6.

Consider the dual weight ϕNoM of ϕN on N o M ([22], Definition 3.1). Then
there is a natural semi-cyclic representation (L2(N)⊗L2(M), ΛNoM, πNoM

l ) for
ϕNoM, determined by

ΛNoM((1⊗m)α(x)) = ΛN(x)⊗ Λ̂op(m)

for x ∈ NϕN and m ∈ Nϕ̂op . Most of the time, we will suppress the symbol πNoM
l .

Note that we use here the results of [22], adapted to the setting of right coactions.
Denote by U ∈ B(L2(N))⊗M the unitary implementation of α (i.e., the uni-

tary implementation for αop in the sense of [22], with its legs interchanged). By
Proposition 4.3 and Theorem 4.4 of [22], it can be defined as

U = JNoM(JN ⊗ Ĵ),

with JNoM the modular conjugation of the dual weight ϕNoM, as well as by the
formula

(3.1) (ι⊗ωξ,η)(U)ΛN(z) = ΛN((ι⊗ωδ−1/2ξ,η)α(z)),

where ξ, η ∈ L2(M) with ξ ∈ D(δ−1/2), z ∈ NϕN . The surjective normal ∗-
homomorphism ρ from N o M to N2 mentioned before is then given on the gen-
erators of N o M by{

ρ(α(x)) = πl(x) for x ∈ N,
ρ(1⊗ (ι⊗ω)(V)) = (ι⊗ω)(U) for ω ∈ M∗,

where we recall that πl is just the standard representation for N, that V is the
right regular multiplicative unitary for (M, ∆), and that N2 is the von Neumann
algebra in the basic construction Nα ⊆ N ⊆ N2.

In the following proposition, we also use the associated basic construction

for the weight T, i.e. Nα
T
⊆ N

T2
⊆ N2 denotes the basic construction obtained from

Nα
T
⊆ N, as explained in the beginning of the previous section. We also denote

again ϕ2 = ϕN ◦ T2.

PROPOSITION 3.2. If m ∈ Nϕ̂op and z ∈ NϕN , then ρ((1⊗m)α(z)) ∈ Nϕ2 and

G∗(ΛN(z)⊗ Λ̂op(m)) = ΛN2(ρ((1⊗m)α(z))).
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Proof. Choose m ∈ Nϕ̂op of the form (ι ⊗ ω)(V), with ω such that the
functional x → ω(S(x)∗) on D(S) extends to a normal functional ω∗ on M,
and such that moreover the functional x → ω∗(xδ−1/2) on the set of left mul-
tipliers of δ−1/2 in M extends to a normal functional ω∗δ on M. Then, since
(ι⊗ω)(V)∗ = (ι⊗ω∗)(V), we have, for x, y ∈ TϕN ,T and z ∈ NϕN , that

〈ΛN(x), ρ(1⊗m)zΛN(σ
N
−i(y

∗))〉 = 〈ΛN((ι⊗ω∗δ )(α(x))), ΛN(zσN
−i(y

∗))〉

= ϕN(σ
N
i (y)z∗(ι⊗ω∗δ )(α(x)))

= ϕN(z∗(ι⊗ω∗δ )(α(x))y).

But for a ∈ Nϕ, we have 〈Λ(a), Λ̂op(m)〉 = ω∗δ (a), so the final expression equals

〈G(ΛN(x)⊗
µ

ΛN(y)), ΛN(z)⊗ Λ̂op(m)〉.

Since such m form a strong-norm core for Λ̂op (by standard smoothing argu-
ments), we have

〈ΛN(x), ρ(1⊗m)zΛN(σ
N
−i(y

∗))〉 = 〈G(ΛN(x)⊗
µ

ΛN(y)), ΛN(z)⊗ Λ̂op(m)〉,

for all m ∈ Nϕ̂op . By Lemma 2.6, we then get ρ((1⊗m)α(z)) ∈ Nϕ2 and

ΛN2(ρ((1⊗m)α(z))) = G∗(ΛN(z)⊗ Λ̂op(m))

for all m ∈ Nϕ̂op and z ∈ NϕN .

LEMMA 3.3. The map G is a left N o M-module morphism.

Proof. Denoting again by πN2
l the natural representation of N2 on L2(N), it

is easy to see that GπN2
l (x) = α(x)G for all x ∈ TϕN ,T , hence this is true for all

x ∈ N. Further, if m ∈ M̂′, n ∈ Nϕ̂op and z ∈ NϕN , then ρ((1⊗mn)α(z)) ∈ Nϕ2

by the previous lemma, and we have

πN2
l (ρ(1⊗m))G∗(ΛN(z)⊗Λ̂op(n))=ΛN2(ρ((1⊗mn)α(z)))=G∗(ΛN(z)⊗Λ̂op(mn)),

hence GπN2
l (ρ(1⊗m)) = (1⊗m)G for all m ∈ M̂′. Since N o M is generated by

1⊗ M̂′ and α(N), the lemma is proven.

REMARK 3.4. This implies that πN2
l (ρ(x)) = G∗xG for x ∈ N o M, as G is

an isometry.

LEMMA 3.5. The following commutation relations hold:
(i) ∇it

NoMG = G∇it
N2

;
(ii) JNoMG = GJN2 .

Here ∇NoM denotes the modular operator for ϕNoM.



76 KENNY DE COMMER

Proof. By the earlier identification of L2(N2) with L2(N)⊗
µ
L2(N), it’s easy

to see that
∇it

N2
(ΛN(x)⊗

µ
ΛN(y)) = ΛN(σ

N
t (x))⊗

µ
ΛN(σ

N
t (y))

for x, y ∈ TϕN ,T , so for the first commutation relation, we must show that for all
x, y ∈ TϕN ,T , we have

∇it
NoM((ΛN ⊗Λ)(α(x)(y⊗ 1))) = (ΛN ⊗Λ)(α(σN

t (x))(σN
t (y)⊗ 1)).

Define the one-parameter group κt on M by κt(a) = δ−itτ−t(a)δit for a ∈ M.
As in the proof of Proposition 4.3 in [22], one can show that

∇it
NoM = ∇it

N ⊗ qit,

where qitΛ(a) = Λ(κt(a)) for a ∈ Nϕ. Since σ
ϕNoM
t ◦ α = α ◦ σN

t by Proposi-
tion 3.7.2 of [22], we have for x, y ∈ TϕN ,T and ξ ∈ L2(M) that

∇it
NoM(α(x)(ΛN(y)⊗ ξ)) = α(σN

t (x))(ΛN(σ
N
t (y))⊗ qitξ).

Now let a ∈ Nϕ be analytic for σt. Since σt commutes with κt, we have that κt(a)
is then also analytic for σt, with σz(κt(a)) = κt(σz(a)) for t ∈ R, z ∈ C. Hence for
such a, and x, y ∈ TϕN ,T , we get

∇it
NoM(1⊗ Jσi/2(a)∗ J)((ΛN ⊗Λ)(α(x)(y⊗ 1)))

= ∇it
NoM(ΛN ⊗Λ)(α(x)(y⊗ a))

= (ΛN ⊗Λ)(α(σN
t (x))(σN

t (y)⊗ κt(a)))

= (1⊗ Jκt(σi/2(a))∗ J)(ΛN ⊗Λ)(α(σN
t (x))(σN

t (y)⊗ 1)),

and letting σi/2(a) tend to 1, we see that

∇it
NoM((ΛN ⊗Λ)(α(x)(y⊗ 1))) = (ΛN ⊗Λ)(α(σN

t (x))(σN
t (y)⊗ 1)),

which proves the first commutation relation.
It follows that G∗∇1/2

NoM equals the restriction of ∇1/2
N2

G∗ to D(∇1/2
NoM). De-

note tNoM = JNoM∇1/2
NoM and tN2 = JN2∇

1/2
N2

. Then

tN2 G∗ = JN2 G∗∇1/2
NoM on D(∇1/2

NoM).

So to prove that G∗ JNoM = JN2 G∗, we only have to find a subset

K ⊆ D(∇1/2
NoM) = D(tNoM)

whose image under∇1/2
NoM (or tNoM) is dense in L2(N o M), and on which tN2 G∗

and G∗tNoM agree. But take

K = span{α(x)ΛNoM((1⊗m)α(y)) : x, y ∈ TϕN ,T , m ∈ Nϕ̂op ∩N ∗ϕ̂op}.

Then clearly K ⊆ D(tNoM) and tNoM(K) = K, since

tNoM(α(x)ΛNoM((1⊗m)α(y))) = α(y∗)ΛNoM((1⊗m∗)α(x∗)).
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Furthermore, if x, y ∈ TϕN ,T and m ∈ Nϕ̂op ∩ N ∗ϕ̂op , we get from Proposition 3.2
and Lemma 3.3 that ρ(α(x)(1⊗m)(α(y))) and ρ(α(y∗)(1⊗m∗)(α(x∗))) are both
in D(ΛN2), and that G∗α(x)ΛNoM((1⊗m)α(y)) ∈ D(tN2), with

tN2 G∗α(x)ΛNoM((1⊗m)α(y)) = tN2ΛN2(ρ(α(x)(1⊗m)α(y)))

= ΛN2(ρ(α(y
∗)(1⊗m∗)α(x∗)))

= G∗α(y∗)ΛNoM((1⊗m∗)α(x∗))

= G∗tNoMα(x)ΛNoM((1⊗m)α(y)).

Since K is dense in L2(N o M), the second commutation relation is proven.

Denote by p the central projection in N o M such that ker(ρ) = (1− p)(N o
M). Denote by ρp the restriction of ρ : N o M → N2 to p(N o M), and by ϕ̃2 the
nsf weight ϕNoM ◦ ρ−1

p on N2.

LEMMA 3.6. The projection GG∗ equals p.

Proof. By Lemma 3.3, G is a left N o M-module morphism, hence GG∗ ∈
(N o M)′, and GG∗ 6 p since G∗pG = ρ(p) = 1. By the previous lemma, GG∗

commutes with JNoM, hence GG∗ is in the center Z(N o M). Since ρ(GG∗) =
G∗(GG∗)G = 1, we must have GG∗ = p.

As mentioned, Theorem 3.1 follows immediately from this, since G is uni-
tary if and only if p = 1 if and only if ρ is faithful.

PROPOSITION 3.7. The weight ϕ̃2 equals ϕ2.

Proof. If m ∈ Nϕ̂op and z ∈ NϕN , then ρ((1⊗ m)α(z)) ∈ Nϕ̃2 , and we can
make a GNS-map Λϕ̃2 for ϕ̃2 in p(L2(N)⊗L2(M)) by

Λϕ̃2(ρ((1⊗m)α(z))) = p(ΛNoM((1⊗m)α(z))) = p(ΛN(z)⊗ Λ̂op(m)),

since by the results of [22], the linear span of the (1⊗m)α(z) forms a σ-strong∗-
norm core for ΛNoM. By Proposition 3.2 and the previous lemma,

Λϕ̃2(ρ((1⊗m)α(z))) = G(Λϕ2(ρ((1⊗m)α(z)))).

Since G is a left N o M-module map, we obtain that also (L2(N2), G∗ ◦Λϕ̃2 , πN2
l )

is a GNS-construction for ϕ̃2, and that (G∗ ◦Λϕ̃2) ⊆ Λϕ2 .
By the first commutation relation of Lemma 3.5, it also follows that the mod-

ular operators for the GNS-constructions Λϕ2 and G∗ ◦Λϕ̃2 are the same. Hence
ϕ2 = ϕ̃2 by Proposition VIII.3.16 of [21].

REMARK 3.8. This implies that T2 equals TNoM ◦ ρ−1
p with TNoM the canon-

ical operator valued weight N o M → N, by Theorem IX.4.18 of [21]. Note that
this result was obtained in Proposition 5.7 of [22] under the hypothesis that ρ was
faithful.
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It follows from Proposition 3.7 that G∗ coincides with the map

Z : L2(N o M)→ L2(N2) : ΛNoM(z)→ Λϕ̃2(ρ(z)), z ∈ NϕNoM ,

cf. the proof of Theorem 5.3 in [22]. So we can summarize our results by saying
that the following square of N o M-bimodules and bimodule morphisms com-
mutes:

(3.2) L2(N2)

∼=
��

Z∗ // L2(N o M)

∼=
��

L2(N)⊗
µ
L2(N)

G
// L2(N)⊗L2(M)

DEFINITION 3.9. Let α be an integrable coaction of (M, ∆) on a von Neu-
mann algebra N. We call the associated map

ρ : N o M→ N2

the Galois homomorphism for α. We call the operator

G̃ = ΣG : L2(N)⊗
µ
L2(N)→ L2(M)⊗L2(N)

the Galois map or the Galois isometry for (N, α). We call the coaction α Galois if
the Galois homomorphism is bijective, or equivalently, if the Galois isometry is a
unitary (in which case we call it of course the Galois unitary).

REMARK 3.10. The reason for putting a flip map in front of G, is to make it
right N-linear in such a way that this is just right N-linearity on the second factors
of the domain and range, so that “the second leg” of G̃ is in N. See the section on
Galois objects for more information.

Note that the notion of a Galois coaction already appeared, as far as we
know, nameless at various places in the literature. The property of G being sur-
jective is the motivation for the terminology, as the bijectivity of the above map
N ⊗

Nα
N → N ⊗M (in the algebraic context of Hopf algebras) is precisely the con-

dition to have a Galois coaction of a Hopf algebra. Also note that as these are
the non-commutative generalizations of principal fiber bundles, we could call
the space pertaining to a Galois coaction a measured quantum principal fiber bundle
(with (M, ∆) as the principal fiber), an object which is quite trivial in the commu-
tative setting! (There probably is no need to account for the “local triviality”, as
the functor L2(N)⊗

µ
− is automatically an equivalence between the categories of

respectively left Nα and left N2-modules (so the “faithful flatness” condition in
the algebraic setup is automatically fulfilled).) Further note that the above square
was essentially constructed in the setting of algebraic quantum groups in [28].

We give a further characterization of Galois coactions in the following corol-
lary. Given an integrable coaction α of (M, ∆) on N, write N00 = Nα ⊗C, N01 =
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α(N), N10 = N ⊗C and N11 = N ⊗M. Write T1 for the operator valued weight
(ι⊗ ϕ) from (N ⊗M)+ to (N ⊗C)+,ext. Then T1 restricts to the canonical oper-
ator valued weight T0 = T ◦ α−1 from α(N)+ to (Nα ⊗C)+,ext, so we are in the
situation of Lemma 2.8. Then also denote again by Q0 and Q1 the correspond-
ing linking algebras. We regard L2(N) and L2(N) ⊗ L2(M) ∼= L2(NoM) as
right NoM-modules in the natural way, using the Galois homomorphism for the
first one.

COROLLARY 3.11. The following statements are equivalent:
(i) the coaction α is Galois;

(ii) the inclusion Q0 ⊆ Q1 is unital;
(iii) the image of (Q0)12 in (Q1)12 is exactly the space of N o M-intertwiners.

Proof. We will write Q̃ for the linking algebra between the right N o M-
modules L2(N) and L2(N o M). Denote explicitly the inclusion Q0 ⊆ Q1 by
F. We first show that F(Q0) ⊆ Q̃. Take x ∈ NT . Then α(x) ∈ NT1 , and it is
easily seen that ΛT1(α(x))ΛN(y) = (ΛN ⊗Λ)(α(x)(y⊗ 1)) for y ∈ NϕN . Hence
ΛT1(α(x)) = G ◦ lx, where we denote by lx the map L2(N) → L2(N)⊗

µ
L2(N)

which sends ξ ∈ L2(N) to ΛN(x) ⊗
µ

ξ. But lx is a right N o M-intertwiner,

and we know that G is a right N o M-intertwiner by the diagram (3.2). Hence
ΛT1(α(x)) ∈ Q̃12, and then it follows that F(Q0) ⊆ Q̃.

Next, we show that ρ ◦ F11 ◦ F̃ = ι, where F11 denotes the restriction of F to
(Q0)11, and F̃ is the isomorphism N2 → (Q0)11 determined by ΛT(x)ΛT(y)∗ →
ΛT0(α(x))ΛT0(α(y))

∗ for x, y ∈ NT . Namely: for x, y ∈ NT , we have

(ρ ◦ F11)(ΛT0(α(x))ΛT0(α(y))
∗) = (πN2

l )−1(G∗(Glxl∗y G∗)G) = (πN2
l )−1(lxl∗y )

= ΛT(x)ΛT(y)∗,

again by using the diagram (3.2).
By these observations, the equivalence of the first and third statement is

immediate. Since we have also shown that in fact F11 ◦ F̃ = G(πN2
l (·))G∗, the

equivalence of the first and second statement follows.

We now present some natural examples of Galois coactions.
First, every dual coaction is Galois. More generally, recall that a coaction

is called semi-dual if there exists a unitary v ∈ B(L2(M))⊗ N with (ι⊗ α)(v) =

Ŵ13v12. Then such a semidual coaction is Galois, by Proposition 5.12 of [22].
Also, whenever α is an integrable coaction with N o M a factor, then α is

Galois since the Galois homomorphism ρ is necessarily faithful. A special case
concerns the integrable outer coactions, i.e. the coactions for which

N o M ∩ α(N)′ = C1.

Next, suppose (M1, ∆1) and (M, ∆) are von Neumann algebraic quantum
groups, with (M̂1, ∆̂1) a von Neumann algebraic quantum subgroup of (M̂, ∆̂).
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We mean by this that M̂1 is a unital sub-von Neumann algebra of M̂, such that
the restriction of ∆̂ to M̂1 coincides with ∆̂1 ([26], Definition 2.9).

Associated to (M1, ∆1) and (M, ∆), there is a canonical right coaction

Γr : M→ M⊗M1

by right translation, and likewise a left coaction Γl by left translation. See for
example the first paragraphs of Section 4 in [26] for the left setting.

PROPOSITION 3.12. If (M1, ∆1) and (M, ∆) are von Neumann algebraic quan-
tum groups, with (M̂1, ∆̂1) a von Neumann algebraic quantum subgroup of (M̂, ∆̂), the
associated coaction Γr is Galois. Conversely, if (M, ∆) and (M1, ∆1) are von Neumann
algebraic quantum groups for which there is a right Galois coaction Γr of (M1, ∆1) on M
such that (ι⊗ Γr)∆ = (∆⊗ ι)Γr, then (M̂1, ∆̂1) can be identified with a von Neumann
algebraic quantum subgroup of (M̂, ∆̂) in such a way that Γr is precisely the coaction by
right translations.

Proof. First suppose that (M̂1, ∆̂1) is a von Neumann algebraic quantum
subgroup of (M̂, ∆̂). Then we can also embed M̂′1 into M̂′ by a normal map
F which respects the comultiplications. Denote VΓ = (F ⊗ ι)(V1), where V1 ∈
M̂′1 ⊗ M1 is the right regular corepresentation of (M1, ∆1). The aforementioned
coaction Γr is then explicitely given as Γr(x) = VΓ(x ⊗ 1)V∗Γ for x ∈ M. We can
make the following sequence of isomorphisms:

M o M1=(Γr(M) ∪ (1⊗ M̂′1))
′′ ∼= ((M⊗ 1) ∪V∗Γ (1⊗ M̂′1)VΓ)

′′

=((M⊗1)∪(F⊗ι)(∆̂′1(M̂′1)))
′′∼=((M⊗1)∪∆̂′(F(M̂′1)))

′′∼=(M∪F(M̂′1)),

where we have used that V1 is also the left regular corepresentation for (M̂′1, ∆̂′1).
Since it’s easy to see that the resulting isomorphism satisfies the requirements for
the Galois homomorphism (using that VΓ is actually the corepresentation imple-
menting Γr), the coaction is Galois.

Now suppose that we have a Galois coaction Γr such that (ι⊗ Γr)∆ = (∆⊗
ι)Γr. Denote by (Â′u, ∆̂′u) the universal C∗-algebraic quantum group associated
with (M̂′, ∆̂′), and similarly for (M̂′1, ∆̂′1) (cf. [12]). By the results in Section 12
of [12] (in the setting of right coactions), we get that there is a canonical non-
degenerate ∗-homomorphism Fu : Â′1,u → M(Â′u) which intertwines the comul-
tiplications. Since Γr is Galois, we also have a faithful normal homomorphism
F : M̂′1 → B(L2(M)). Denote by U the corepresentation associated with Γr. By
the results of [12], it is an element of M̂′ ⊗ M1. Denote by πu and π1,u respec-
tively the canonical homomorphisms M(Â′u) → M̂′ and M(Â′1,u) → M̂′1 from
the multiplier C∗-algebras to the von Neumann algebras. Identify M∗ and (M1)∗
with their images in respectively Â′u and Â′1,u (noting that the dual of (M̂′, ∆̂′)
is (M, ∆op)). Then we can deduce again from [12] that for ω ∈ (M1)∗, we have
πu(Fu(ω)) = (ι⊗ω)(U). Since the πu also commute with the comultiplications,
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we deduce that F(M̂′1) ⊆ M̂′, and that this embedding respects the comultiplica-
tions. Hence (M̂′1, ∆̂′1) is a von Neumann algebraic quantum subgroup of (M̂′, ∆̂′)

(and then of course also (M̂1, ∆̂1) is a von Neumann algebraic quantum subgroup
of (M̂, ∆̂)).

Finally, we should show that Γr is just the coaction naturally associated with
this von Neumann algebraic quantum subgroup. But this is clear, as Γr is im-
plemented by the corepresentation U, which equals VΓ since also πu(Fu(ω)) =
(ι⊗ω)(VΓ).

4. GALOIS OBJECTS

We will now treat in detail the case of ergodic Galois coactions, i.e. Nα = C.

DEFINITION 4.1. If N is a von Neumann algebra, (M, ∆) a von Neumann
algebraic quantum group and α an ergodic Galois coaction of (M, ∆) on N, we call
(N, α) a (right) Galois object for (M, ∆).

In this case, the constructions of the previous sections greatly simplify. First
of all, T = (ι⊗ ϕ)α itself will already be an nsf weight on N (identifying C with
C · 1N), so we denote it by ϕN . Then NT = NϕN . There is a slight ambiguity
of notation then, as ΛN(x) denotes either an element of H or a linear operator
C → H, but this ambiguity disappears if we identify the Hilbert spaces B(C,H)

andH by sending x to x · 1. Next, N o M
ρ∼= N2 becomes the whole of B(L2(N)),

and ϕ2 = Tr(·∇N). Further, L2(N2) will be identified with L2(N) ⊗ L2(N) by
the map

ΛN2(ΛN(x)ΛN(y∗)∗)→ ΛN(x)⊗ΛN(y) for x, y ∈ NϕN ∩N
∗
ϕN

.

For x ∈ B(L2(N)), we have πN2
l (x) = x⊗ 1, πN2

r (x) = 1⊗ πr(x) (where πr(x) =
JN x∗ JN), ∇it

N2
= ∇it

N ⊗ ∇it
N and JN2 = Σ(JN ⊗ JN). In the following, we will

now also use the symbol π̂l to denote the left representation of M̂′ on L2(N) (so
π̂l(m) = ρ(1 ⊗ m) for m ∈ M̂′), and we will write θ̂r(m) for θr(ρ(1 ⊗ m)) =

JNπ̂l(m)∗ JN when m ∈ M̂′. In fact, it’s not difficult to see that for any integrable
coaction, we have then θ̂r(m) = π̂l(R̂′(m)): just use that (JN ⊗ Ĵ)U(JN ⊗ Ĵ) = U∗

and (J ⊗ Ĵ)V(J ⊗ Ĵ) = V∗.
The aim of this section is to show that there is much extra structure on a

Galois object (N, α), closely resembling the one of (M, ∆) itself. In particular, we
are able to show that there exists an nsf invariant weight on N. To find it, we will
search a 1-cocycle to deform ϕN .
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Let (N, α) be a fixed Galois object, with Galois unitary G̃ : L2(N)⊗ L2(N)
→ L2(M)⊗L2(N). To begin with, we will write down some commutation rela-
tions. In the following, αop(x) = Σα(x)Σ for x ∈ N, and Π̂r(m) for m ∈ M̂ will
denote the operator Ĵm∗ Ĵ on L2(M).

LEMMA 4.2. For all x ∈ N and m ∈ M̂′, we have:
(i) G̃(x⊗ 1) = αop(x)G̃;

(ii) G̃(π̂l(m)⊗ 1) = (m⊗ 1)G̃;
(iii) G̃(1⊗ πr(x)) = (1⊗ πr(x))G̃;
(iv) G̃(1⊗ θ̂r(m)) = (Π̂r ⊗ θ̂r)((∆̂′)op(m))G̃.

Proof. These equalities follow directly from the fact that G is a N o M-
bimodule map. For the fourth one, we remark that the right representation πNoM

r
of N o M on L2(N)⊗L2(M) is given by

πNoM
r (α(x)) = πr(x)⊗ 1, x ∈ N,

πNoM
r (1⊗m) = U(1⊗ Π̂r(m))U∗, m ∈ M̂′,

a fact which is easy to recover using that U = JNoM(JN ⊗ Ĵ). Now use that also
U = (π̂l ⊗ ι)(V), that V is the left multiplicative unitary for (M̂′, ∆̂′), and that
V(J ⊗ Ĵ) = (J ⊗ Ĵ)V∗.

Note that L2(N) is a natural right M̂-module, by an anti-representation

π̂r : m→ π̂l( Ĵm∗ Ĵ), m ∈ M̂.

Denote by Q̂ the linking von Neumann algebra between the right M̂-modules
L2(M) and L2(N). We will write

Q̂ =

(
Q̂11 Q̂12
Q̂21 Q̂22

)
=

(
P̂ N̂
Ô M̂

)
.

COROLLARY 4.3. (i) G̃ ∈ Ô⊗ N.
(ii) G̃12U13 = V13G̃12.

Proof. The first statement follows by the second and third commutation
relation in the previous lemma. Since for ω ∈ M∗, we have (ι ⊗ ω)(U) =
π̂l((ι⊗ω)(V)), the second statement also follows from the second commutation
relation of the previous lemma.

The following is just a restatement of Lemma 3.5.

LEMMA 4.4. The map G̃ satisfies the identity G̃(JN ⊗ JN)Σ = ΣUΣ( Ĵ ⊗ JN)G̃.

Now we prove a kind of pentagon equation:

PROPOSITION 4.5. We have:

Ŵ12G̃13G̃23 = G̃23G̃12.
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Proof. For x ∈ NϕN and ω ∈ B(L2(N))∗, we have (ω⊗ ι)(α(x)) ∈ Nϕ, and

(ι⊗ω)(G̃)ΛN(x) = Λ((ω⊗ ι)(α(x))).

This follows by first considering ω of the form ωΛN(y),ΛN(z) with y, z ∈ NϕN , and
then using the closedness of the map Λ to conclude that it holds in general. Now
for x ∈ NϕN , ω ∈ M∗ and ω′ ∈ N∗, we have, using Ŵ = ΣW∗Σ,

(ι⊗ω)(Ŵ)(ι⊗ω′)(G̃)ΛN(x) = Λ((ω′ ⊗ω⊗ ι)((ι⊗∆)(α(x))))

= Λ((ω′ ⊗ω⊗ ι)((α⊗ ι)(α(x))))

= Λ((((ω⊗ω′) ◦ αop)⊗ ι)(α(x)))

= (ι⊗ ((ω⊗ω′) ◦ αop))(G̃)ΛN(x),

from which we conclude Ŵ12G̃13 = (ι⊗ αop)(G̃). Since (ι⊗ αop)(G̃) = G̃23G̃12G̃∗23,
the result follows.

REMARK 4.6. (i) Note that if N and M have separable preduals, then, choos-
ing a unitary u : L2(M) → L2(N), the unitary v = G̃(u⊗ 1) in B(L2(M))⊗ N
will satisfy (ι⊗ α)(v) = Ŵ13v12. So in this case there is a one-to-one correspon-
dence between Galois objects and ergodic semi-dual coactions.

(ii) Note that for the trivial right Galois object (M, ∆) for (M, ∆), the map G̃ is
exactly Ŵ, while the map U becomes the right regular representation V.

We have the following density results:

PROPOSITION 4.7. (i) The following space L is σ-weakly dense in N:

L = {(ω⊗ ι)(G̃) : ω ∈ B(L2(N),L2(M))∗}.

(ii) The space K = {(ι⊗ω)(G̃) : ω ∈ B(L2(N))∗} is σ-weakly dense in Ô.

Proof. By the pentagon equation, the linear span of the (ω ⊗ ι)(G̃) will be
an algebra. Further, for any x ∈ NϕN and m ∈ Nϕ, we have (1 ⊗ m∗)α(x) ∈
M(ι⊗ϕ) and (ωΛN(x),Λ(m) ⊗ ι)(G̃) = (ι ⊗ ϕ)((1 ⊗ m∗)α(x)). From this, we can
conclude that the σ-weak closure of L also is the σ-weak closure of the span of
{(ι ⊗ ω)(α(x)) : ω ∈ M∗, x ∈ N}, so that this σ-weak closure will be a unital
sub-von Neumann algebra of N (see also the proof of Proposition 1.21 of [27]).
Now suppose ω ∈ N∗ is orthogonal to L. By the bi-duality theorem (see [6],
and also Theorem 2.6 of [22]), we have that (α(N) ∪ (1 ⊗ B(L2(M))))′′ equals
N ⊗ B(L2(M)). So for any x ∈ N ⊗ B(L2(N)) and ω′ ∈ B(L2(N))∗, (ι⊗ ω′)(x)
can be σ-weakly approximated by elements of the form (ι ⊗ ω′)(xn) with xn in
the algebra generated by α(N) and 1⊗ B(H), and any such element can in turn
be approximated by an element in the algebra generated by elements of the form
(ι⊗ ω′′)(α(xnm)), ω′′ ∈ B(L2(M))∗ and xnm ∈ N, by using an orthogonal basis
argument. It follows that ω vanishes on the whole of N, and hence L is σ-weakly
dense in N.
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For the second statement, note that, by the pentagon equation, K is closed
under left multiplication with elements of the form (ι ⊗ ω)(Ŵ) for ω ∈ M∗.
Hence, as in the proof of Proposition 2.2, it is enough to show that if z ∈ N̂ satis-
fies K · z = 0, then z = 0. But take x, y ∈ TϕN ,T (which is now just the Tomita
algebra TϕN for ϕN), and m ∈ Nϕ̂op . Then (ι ⊗ ωΛN(x),ΛN(y))(G̃∗)Λ̂op(m) =

π̂l(m)xΛN(σ−i(y∗)) by Lemma 2.6 and Proposition 3.2. Hence K∗ · L2(M) is
dense in L2(N), and necessarily z = 0.

PROPOSITION 4.8. For any m ∈ M′, the operator G̃∗(m⊗ 1)G̃ lies in N′ ⊗ N.

Proof. Clearly, the second leg lies in N. Since G̃(y⊗ 1)G̃∗ = αop(y) for y ∈
N, the first leg of G̃∗(m⊗ 1)G̃ must be inside N′.

Recall from the proof of Lemma 3.5 that ∇it
NoM = ∇it

N ⊗ qit, where we can
also write qit = δ−it∇̂−it. Then κt = qitxq−it defines a one-parameter group of
automorphisms on M, and γt(x) = qitxq−it defines a one-parameter group of
automorphisms on M̂′.

LEMMA 4.9. (i) For x ∈ N, we have α(σN
t (x)) = (σN

t ⊗ κt)(α(x)).
(ii) For m ∈ M̂′, we have σN2

t (π̂l(m)) = π̂l(γt(m)).
(iii) For m ∈ M̂′, we have θ̂r(m) = π̂l(R̂′(m)).

Proof. The first two statements follow straightforwardly from Lemma 3.5
and Lemma 4.2. The final statement was noted at the beginning of this section.

In particular, σN2
t (π̂l( Ĵδ̂ is Ĵ)) = π̂l( Ĵδ̂ is Ĵ) for each s, t ∈ R, since an easy

computation shows that each Ĵδ̂ is Ĵ is invariant under γt.

COROLLARY 4.10. The one-parameter groups ∇it
N and π̂l( Ĵδ̂ it Ĵ) commute.

We denote the resulting one-parameter group of unitaries by

Pit
N = ∇it

Nπ̂l( Ĵδ̂−it Ĵ).

PROPOSITION 4.11. N is invariant under Ad(Pit
N).

Proof. We only have to show that N is invariant under Ad(π̂l( Ĵδ̂−it Ĵ)). But
for any group-like element u ∈ M̂′, we have, denoting by α̂ the dual coaction,
that

((ρ⊗ι)α̂ρ−1)(π̂l(u)xπ̂l(u)∗)=(π̂l(u)⊗u)(x⊗ 1)(π̂l(u)∗⊗u∗)= π̂l(u)xπ̂l(u)∗⊗1

for x ∈ N, and so, by the bi-duality theorem of [6], we get π̂l(u)xπ̂l(u)∗ ∈ N.

DEFINITION 4.12. We call the resulting one-parameter group

τN
t : N → N : x → Pit

N xP−it
N

the scaling group of (N, α).
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PROPOSITION 4.13. The following identities hold for x ∈ N:

α(τN
t (x)) = (τN

t ⊗ τt)(α(x)), α(τN
t (x)) = (σN

t ⊗ σ′−t)(α(x)),

α(σN
t (x)) = (τN

t ⊗ σt)(α(x)).

Recall that τt denotes the scaling group of (M, ∆), while σ′t denotes the mod-
ular one-parameter group of the right invariant weight ψ.

Proof. By Lemma 4.9, we have

α ◦ σN
t = (σN

t ⊗Ad(δ−it)τ−t) ◦ α.

Further, since G is a left N o M-module map, we have

α(Ad(π̂l( Ĵδ̂−it Ĵ))(x)) = G((Ad(π̂l( Ĵδ̂−it Ĵ))(x))⊗ 1)G∗

= (ι⊗Ad(π̂l( Ĵδ̂−it Ĵ)))(G(x⊗ 1)G∗)

= (ι⊗Ad(π̂l( Ĵδ̂−it Ĵ)))(α(x)).

Now by the first formula of Theorem 4.17 in [27], we have ( Ĵδ̂−it Ĵ)P−it = ∇−it,
where Pit denotes the standard unitary implementation of the scaling group of
(M, ∆), so Ad(δ−it)τ−tAd( Ĵδ̂−it Ĵ) reduces to σ′−t on M. This proves the second
formula.

As for the first identity, we have, using the second identity, the coaction
property of α and the identity ∆ ◦ σ′−t = (σ′−t ⊗ τt) ◦∆, that

(α⊗ ι) ◦ (τN
t ⊗ τt) ◦ α = (σN

t ⊗ σ′−t ⊗ τt) ◦ (ι⊗∆) ◦ α = (ι⊗∆) ◦ (σN
t ⊗ σ′−t) ◦ α

= (α⊗ ι) ◦ α ◦ τN
t .

Thus the first identity follows by the injectivity of α.
The third identity now easily follows from the first identity and, for x ∈ N,

α(Ad(π̂l( Ĵδ̂ it Ĵ))(x)) = (ι⊗ σtτ−t)(α(x))

For the next result, recall that ν > 0 denotes the scaling constant of (M, ∆).

LEMMA 4.14. The one-parameter group τN
t satisfies ϕN ◦ τN

t = ν−t ϕN , and if
x ∈ NϕN , then

Pit
NΛN(x) = νt/2ΛN(τ

N
t (x)).

Proof. The first statement easily follows since

ϕN ◦ τN
t = ((ι⊗ ϕ) ◦ α) ◦ τN

t = τN
t ◦ ((ι⊗ ϕ ◦ τt) ◦ α) = ν−t ϕN .

By the first statement, Ad(π̂l( Ĵδ̂ it Ĵ))(x) ∈ NϕN for x ∈ NϕN , and the second
statement is equivalent with

νt/2π̂l( Ĵδ̂ it Ĵ)ΛN(x) = ΛN(Ad(π̂l( Ĵδ̂ it Ĵ))(x)).

Taking an arbitrary y ∈ NϕN , we have

G(νt/2π̂l( Ĵδ̂ it Ĵ)ΛN(x)⊗ΛN(y)) = νt/2(1⊗ Ĵδ̂ it Ĵ)(ΛN ⊗Λ)(α(x)(y⊗ 1)).
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Since Ĵδ̂ it Ĵ = ∇itP−it and α(Ad(π̂l( Ĵδ̂ it Ĵ))(x)) = (ι ⊗Ad( Ĵδ̂ it Ĵ))(α(x)), the re-
sult follows.

COROLLARY 4.15. We have the following commutation relations:
(i) G̃(∇it

N ⊗∇it
N) = (δ−it∇̂−it ⊗∇it

N)G̃;
(ii) G̃(∇it

N ⊗ Pit
N) = (∇it ⊗ Pit

N)G̃;
(iii) G̃(Pit

N ⊗ Pit
N) = (Pit ⊗ Pit

N)G̃.

Proof. The first identity follows immediately from Lemma 3.5, while the
other two follow by using the definition of G, the implementation of Lemma 4.14
and the identities in Lemma 4.13.

Now consider Hit = G̃∗(Jδit J ⊗ 1)G̃ in N′ ⊗ N.

PROPOSITION 4.16. There exist non-singular h, k > 0 affiliated with respectively
N′ and N such that Hit = hit ⊗ kit for all t ∈ R. Moreover, α(kit) = kit ⊗ δit for t ∈ R.

Proof. We show that

Hit(B(L2(N))⊗ 1)H−it = B(L2(N))⊗ 1.

Since B(L2(N)) = ρ(N o M), we only have to show that

Hit(N ⊗ 1)H−it = (N ⊗ 1), Hit(π̂l(M̂′)⊗ 1)H−it = (π̂l(M̂′)⊗ 1).

Now the first equality is clear as the first leg of Hit lies in N′. As for the second
equality, applying Ad(G̃), this is equivalent with Ad(Jδit J)(M̂′) = M̂′, which is
easily seen to be true.

Denote by h a positive (possibly unbounded) operator which implements
the automorphism group Ad(Hit) on B(L2(N)), so

Ad(Hit)(x⊗ 1) = (Ad(hit)(x))⊗ 1 for all x ∈ B(L2(N)).

Then h is non-singular, with h affiliated with N′, and Hit = hit ⊗ kit for a positive
non-singular k affiliated with N.

Note now that Ŵ∗(Jδit J ⊗ 1)Ŵ = Jδit J ⊗ δit, which can be computed for
example by Lemma 4.14 and the formulas in Proposition 4.17 of [27]. Then using
the pentagon equation for G̃, we have

(ι⊗ αop)(Hit) = G̃23Hit
12G̃∗23 = G̃23G̃∗12(Jδit J ⊗ 1⊗ 1)G̃12G̃∗23

= G̃∗13Ŵ∗12G̃23(Jδit J ⊗ 1⊗ 1)G̃∗23Ŵ12G̃13

= G̃∗13(Jδit J ⊗ δit ⊗ 1)G̃13 = hit ⊗ δit ⊗ kit,

so that α(kit) = kit ⊗ δit.

The operator k which appears in the proposition is determined up to a pos-
itive scalar. We will now fix some k, and call it δN .

DEFINITION 4.17. We call δN the modular element of (N, α).
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LEMMA 4.18. With the notation of the previous proposition, we have:
(i) h = JNδ−1

N JN ,
(ii) σN

t (δis
N) = νistδis

N ,
(iii) τN

t (δis
N) = δis

N .

Proof. Denoting again Hit = G̃∗(Jδit J ⊗ 1)G̃, we first prove that

Σ(JN ⊗ JN)Hit(JN ⊗ JN)Σ = Hit.

Using Lemma 4.4, the left hand side equals

G̃∗( Ĵ ⊗ JN)ΣU∗Σ(Jδit J ⊗ 1)ΣUΣ( Ĵ ⊗ JN)G̃.

As U ∈ B(L2(N))⊗M, this reduces to G̃∗( Ĵ Jδit J Ĵ ⊗ 1)G̃. Since J commutes with
Ĵ up to a scalar of modulus 1, and since δit commutes with Ĵ, we find that this
expression reduces to G̃∗(Jδit J ⊗ 1)G̃ = Hit. So

JNδit
N JN ⊗ JNhit JN = hit ⊗ δit

N ,

which implies that there exists a positive scalar r such that hit = rit JNδit
N JN . But

plugging this back into the above equality, we find that r2it = 1 for all t, hence
r = 1.

For the second statement, we easily get, using the first commutation relation
of Corollary 4.15, that

(∇it
N ⊗∇it

N)(JNδis
N JN ⊗ δis

N)(∇−it
N ⊗∇

−it
N ) = (JNδis

N JN ⊗ δis
N).

This implies that there exists a positive number ν̃ such that σN
t (δis

N) = ν̃ istδis
N . We

must show that ν̃ = ν.
But we know now that δis

N is analytic with respect to σN
t . So if x ∈ MϕN ,

then also xδis
N and δis

N x are integrable. We have for such x that, choosing some
state ω ∈ N∗,

ϕN(δ
is
N x) = ϕ((ω⊗ ι)(α(δis

N x))) = ϕ(δis(ω(δis
N ·)⊗ ι)(α(x)))

= νs ϕ((ω(δis
N ·)⊗ ι)(α(x))δis)

= νs ϕ((ω(δis
N · δ−is

N )⊗ ι)(α(xδis
N))) = νs ϕN(xδis

N).

This shows σN
−i(δ

is
N) = νsδis

N , which implies ν̃ = ν.
As for the last statement, this follows from

α(τN
t σN
−t(δ

is
N)) = (ι⊗ τtσ−t)α(δ

is
N) = δis

N ⊗ τtσ−t(δ
is) = ν−istα(δis

N).

This ends the proof.

By Connes’ cocycle derivative theorem, we can now construct the nsf weight

ψN = ϕN(δ
1/2
N · δ1/2

N ),

which is the deformation of ϕN by the cocycle wt = νit2/2δit
N .
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THEOREM 4.19. The weight ψN is invariant with respect to α: if x ∈ M+
ψN

and
ω ∈ M+

∗ , then
ψN((ι⊗ω)α(x)) = ψN(x)ω(1).

Proof. Let x ∈ N be a left multiplier of δ1/2
N such that the closure of xδ1/2

N

is an element of NϕN . Then x ∈ NψN , and ΛN,δN (x) := ΛN(xδ1/2
N ) determines a

GNS-construction for ψN (see the remark before Proposition 1.15 in [13]). Choose
ξ ∈ D(δ−1/2). Then for any η ∈ L2(M), we have (ι⊗ ωξ,η)α(x) a left multiplier

of δ1/2
N , and the closure of ((ι⊗ ωξ,η)α(x))δ1/2

N equals (ι⊗ ωδ−1/2ξ,η)α(xδ1/2
N ). By

the formula (3.1) for U (after the statement of Theorem 3.1), we conclude that this
last operator is in D(ΛN), and that

ΛN((ι⊗ωδ−1/2ξ,η)α(xδ1/2
N )) = (ι⊗ωξ,η)(U)ΛψN (x).

Then by the closedness of ΛN,δN , we can conclude that for x of the above form,
(ι⊗ω)(α(x)) ∈ D(ΛN,δN ) for every ω ∈ M∗, with

ΛN,δN ((ι⊗ω)(α(x))) = (ι⊗ω)(U)ΛN,δN (x).

Since such x form a σ-strong-norm core for ΛN,δN , the same statement holds for
a general x ∈ NψN . >From this, it is standard to conclude the invariance: take
ω = ωξ,ξ ∈ M+

∗ and x = y∗y ∈ M+
ψN

. Let ξi denote an orthonormal basis for
L2(M). Then by the lower-semi-continuity of ψN , we find

ψN((ι⊗ωξ,ξ)(α(y∗y)))=ψN

(
∑
n
(ι⊗ωξ,ξn)(α(y))

∗((ι⊗ωξ,ξn)(α(y))))

=∑
n

ψN((ι⊗ωξ,ξn)(α(y))
∗((ι⊗ωξ,ξn)(α(y))))

=∑
n
‖ΛN,δN ((ι⊗ωξ,ξn)(α(y)))‖

2

=∑
n
‖(ι⊗ωξ,ξn)(U)ΛN,δN (y)‖

2

=
〈

ΛN,δN (y),
(

∑
n
(ι⊗ωξn ,ξ)(U∗)(ι⊗ωξ,ξn)(U)

)
ΛN,δN (y)

〉
= 〈ΛN,δN (y), (ι⊗ωξ,ξ)(U∗U)ΛN,δN (y)〉=ψN(y∗y)ωξ,ξ(1),

hence ψN((ι⊗ω)(α(x))) = ψN(x)ω(1).

REMARK 4.20. It is natural to ask if there is a corresponding result for gen-
eral Galois coactions. We briefly show that one can not expect too much: for
general Galois coactions, there does not have to exist an invariant nsf operator
valued weight TψN , i.e. an operator valued weight N+ → (Nα)+,ext such that

TψN ((ι⊗ω)α(x)) = ω(1)TψN (x) for all ω ∈ M+
∗ , x ∈ M+

TψN
.

To give an explicit example, suppose α is an integrable outer left coaction of a von
Neumann algebraic quantum group (M, ∆) on a factor N. Then by outerness,
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there is a unique nsf operator valued weight (N o M)+ → α(N)+,ext (up to a
scalar), namely (ι⊗ ϕ̂)α̂, where α̂ is the dual right coaction. But if (M̂, ∆̂) is not
unimodular, then this operator valued weight is not invariant. On the other hand,
this does not rule out the possibility that there exists an invariant nsf weight: for if
the original coaction has an invariant nsf weight ψN (for example, the coactions
occurring in [23]), then one checks that x ∈ (N o M)+ → ψM̂′((ψN ⊗ ι)(x)) ∈
[0,+∞] is a well-defined α̂-invariant nsf weight on N o M. We do not know of
any example of a Galois coaction without invariant weights.

PROPOSITION 4.21. Denote ∇̂it
N = Pit

N JNδit
N JN . Then

∇̂−it
N π̂l(m)∇̂it

N = π̂l(σ
ϕ̂op

t (m)) for m ∈ M̂′.

Proof. First note that ∇̂it
N is well-defined, since Pit

N is easily seen to commute
with JN and δit

N . Then also

∇̂it
NΛψN (x) = ΛψN (τ

N
t (x)δ−it

N ) for x ∈ NψN ,

by an easy adjustment of Lemma 4.14 and using the relative invariance property
of δit

N . If we apply (ι⊗ ω)(U) to this with ω ∈ M∗, then, using the commutation
rules between α,τN

t and δit
N , we get

(ι⊗ω)(U)∇̂it
NΛψN (x) = ΛψN (τ

N
t ((ι⊗ω(τt(·)δ−it))α(x))δ−it

N ).

This shows

∇̂−it
N π̂l((ι⊗ω)(V))∇̂it

N = π̂l((ι⊗ω(τt(·)δ−it))(V)).

But this is exactly π̂l(σ
ϕ̂op

t ((ι ⊗ ω)(V))). Then of course the same holds with
(ι⊗ω)(V) replaced by a general element of M̂′, thus proving the proposition.

PROPOSITION 4.22. The following commutation relations hold:
(i) (∇it ⊗ ∇̂it

N)G̃ = G̃(∇it
N ⊗ ∇̂it

N);
(ii) (∇̂it ⊗ Pit

N)G̃ = G̃(∇̂it
N ⊗ Pit

Nδit
N).

Proof. The first formula follows by the second formula in Corollary 4.15,
and the fact that the second leg of G̃ lies in N. The second formula follows from
the fact that also ∇̂it = Jδit JPit, then using the third formula of Corollary 4.15 and
the first formula in Lemma 4.18 together with the definition of δN .

THEOREM 4.23. Up to a positive constant, ψN is the only invariant, and ϕN the
only δ-invariant weight on N.

Proof. The claim about ϕN follows immediately by Lemma 3.9 of [22] and
the fact that α is ergodic. The second statement can be proven in the same fash-
ion.

Before going over to the next section, we remark that of course all results
hold as well in the context of left Galois coactions: if (P, ∆P) is a von Neumann
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algebraic quantum group, N a von Neumann algebra, and γ an integrable ergodic
left coaction of (P, ∆P) on N, we call (N, γ) a left Galois object if, with ψN = (ψ⊗
ι)γ, the Galois map

H̃ : L2(N)⊗L2(N)→ L2(N)⊗L2(P),

ΛψN (x)⊗ΛψN (y)→ (Λψ ⊗ΛψN )(γ(x)(1⊗ y)), x, y ∈ NψN ,

is a unitary. We will therefore use the proper analogous statements of this section
in the left context without further proof.

5. REFLECTING ACROSS A GALOIS OBJECT

In this section, we will construct another von Neumann algebraic quantum
group given a Galois object (N, α) for a von Neumann algebraic quantum group
(M, ∆). In fact, the new quantum group will be a corner of a special kind of
quantum groupoid, with (M̂, ∆̂) in the other corner. This quantum groupoid pic-
ture turns out to be very useful, providing one with the right intuition on how
to proceed. We use notation as in the previous section. For convenience, we will
now treat also L2(M)⊗L2(N) as an N o M-bimodule (by applying Ad(Σ) to the
previous representations), so that we can call G̃ a bimodule map.

Denote as before by Q̂ =
(

Q̂11 Q̂12
Q̂21 Q̂22

)
=
(

P̂ N̂
Ô M̂

)
the linking algebra between

the right M̂-modules L2(M) and L2(N) (see the remark before Corollary 4.3). We

will sometimes denote the natural inclusion Q̂ ⊆ B
(
L2(N)

L2(M)

)
by πQ̂,2 = (π2

ij)i,j for

emphasis. We will identify the Q̂ij with their parts in Q̂ (so for example if x ∈ Q̂12,
we identify it with

(
0 x
0 0
)
), except that we will write the unit 1 of Q̂22 = M̂ as 1M̂

when we see it as a projection in Q̂ (likewise for Q̂11 = P̂). As before, we denote
the right M̂-module structure on L2(N) by π̂r, i.e. π̂r(m) = π̂l( Ĵm∗ Ĵ) = ρ((1⊗
Ĵm∗ Ĵ)) for m ∈ M̂, where ρ is the Galois homomorphism for α. By π̂r, we also
denote the map π̂r with respect to the Galois object (M, ∆), i.e. the standard right
representation π̂r(m) = Ĵm∗ Ĵ, and by θ̂r also the right representation m → R̂(m)

of M̂ on L2(M). This will not lead to any ambiguities, as we will in fact only use
this double notation π̂r in the proof of the following lemma.

LEMMA 5.1. We have G̃∗(1⊗ N̂)Ŵ ⊆ N̂ ⊗ N̂.

REMARK 5.2. By N̂⊗ N̂, we mean the σ-weak closure of the algebraic tensor
product of N̂ with itself inside Q̂ ⊗ Q̂. By the commutation theorem for tensor
products of von Neumann algebras, this coincides with the space of intertwiners
for the right M̂⊗ M̂-modules L2(M)⊗L2(M) and L2(N)⊗L2(N).
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Proof. Let x be an element of N̂. As the first leg of Ŵ lies in M̂, and G̃ is a
left M̂′-module morphism, it is clear that for any m ∈ M̂, we have

G̃∗(1⊗ x)Ŵ(π̂r(m)⊗ 1) = (π̂r(m)⊗ 1)G̃∗(1⊗ x)Ŵ.

On the other hand, we have to prove that for all m ∈ M̂,

(5.1) G̃∗(1⊗ x)Ŵ(1⊗ π̂r(m)) = (1⊗ π̂r(m))G̃∗(1⊗ x)Ŵ.

Now as G̃ is a right N o M-map, we have

(1⊗ π̂r(m))G̃∗ = G̃∗((θ̂r ⊗ π̂r)∆̂(m)),

using the fourth commutation relation of Lemma 4.2 in a slightly adapted form.
Since also

Ŵ(1⊗ π̂r(m)) = ((θ̂r ⊗ π̂r)(∆̂(m))Ŵ,

the stated commutation follows from the intertwining property of x, as xπ̂r(m) =
π̂r(m)x.

Denote the corresponding map by

∆ N̂ : N̂ → N̂ ⊗ N̂ : x → G̃∗(1⊗ x)Ŵ.

Then we can also define

∆Ô : Ô→ Ô⊗ Ô : x → ∆ N̂(x∗)∗, and ∆ P̂ : P̂→ P̂⊗ P̂ : x → G̃∗(1⊗ x)G̃,

since Q̂21 = (Q̂12)
∗ and the span of Q̂12Q̂21 is σ-weakly dense in P̂. Finally, we

denote by ∆Q̂ the map

Q̂→ Q̂⊗ Q̂ : xij → ∆̂ ij(xij), xij ∈ Q̂ij,

where we denote ∆̂11 = ∆ P̂, . . . (in the following, we will use both notations
without further comment). Then ∆Q̂ is easily seen to be a ∗-homomorphism.
However, it is not unital: ∆Q̂(1Q̂) = 1M̂ ⊗ 1M̂ + 1P̂ ⊗ 1P̂ does not equal (1M̂ +

1P̂)⊗ (1M̂ + 1P̂) = 1Q̂⊗Q̂.

LEMMA 5.3. The map ∆Q̂ is coassociative.

The proof follows trivially by Proposition 4.5.
Since JNπ̂l(m)∗ JN = π̂l(Jm∗ J) for m ∈ M̂′, we can define an anti-∗-isomor-

phism RQ̂ : Q̂ → Q̂ by sending x ∈ Q̂12 to (JN xJ)∗, and then extending it in the
natural way.

LEMMA 5.4. We have ∆Q̂(RQ̂(x)) = (RQ̂ ⊗ RQ̂)∆
op
Q̂
(x) for x ∈ Q̂.

Proof. We only have to check whether

G̃∗(1⊗ JN xJ)Ŵ = (JN ⊗ JN)ΣG̃∗(1⊗ x)ŴΣ(J ⊗ J)
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for x ∈ Q̂12. But using Lemma 4.4 twice, once for N and once for M itself, the
right hand side simplifies as follows:

(JN ⊗ JN)ΣG̃∗(1⊗ x)ŴΣ(J ⊗ J) = G̃∗( Ĵ ⊗ JN)ΣU∗Σ(1⊗ x)ŴΣ(J ⊗ J)

= G̃∗( Ĵ ⊗ JN)(1⊗ x)ΣV∗ΣŴΣ(J ⊗ J)

= G̃∗(1⊗ JN xJ)Ŵ.

This (Q̂, ∆Q̂) could be called a coinvolutive Hopf–von Neumann algebraic

quantum groupoid, and in particular (P̂, ∆ P̂) is a coinvolutive Hopf–von Neu-
mann algebra. We proceed to show that (Q̂, ∆Q̂) is a measured quantum groupoid

([15]), and in particular that (P̂, ∆ P̂) is a von Neumann algebraic quantum group.
However, we first briefly return to the situation of a general Galois coaction: it is
not difficult to see that up to this point, everything in this section could be done
without assuming α ergodic. Of course, P̂ will then not be a quantum group, but
a quantum groupoid. More precisely: we will have that (P̂, Nα, πl, πr, ∆ P̂) is a
Hopf bimodule (in the sense of Definition 3.1 of [4]), with ∆ P̂(x) = G̃∗(1⊗ x)G̃ ∈
P πr∗πl

Nα

P for x ∈ P̂. We can even equip it with a “scaling group” and a unitary

antipode. However, we do not know if P̂ can actually be made into a measured
quantum groupoid in general.

We have shown in Proposition 4.21 that the modular automorphism group
of ϕ̂op on M̂′ can be implemented on L2(N) by the one-parameter group ∇̂it

N .
Then by Theorem IX.3.11 in [21], we can construct an nsf weight ϕP̂ on P̂ which
has ∇̂N as spatial derivative with respect to ϕ̂op. Then we can also consider the

balanced weight ϕQ̂ = ϕP̂ ⊕ ϕ̂ on Q̂. Its modular automorphism group σQ̂
t is

then implemented by ∇̂it
N ⊕ ∇̂it if we use the faithful representation πQ̂,2 of Q̂ on

L2(N)⊕L2(M).
We make the identification

(L2(Q̂), πQ̂, ΛQ̂)
∼=
((

L2(P̂) L2(N)

L2(N) L2(M)

)
, πQ̂, (Λ̂ij)

)

of the natural semi-cyclic representations of Q̂ with respect to ϕQ̂, as in Lem-

ma IX.3.5 of [21] and the remark above it. Here
(
L2(P̂) L2(N)

L2(N) L2(M)

)
is just the direct

sum Hilbert space of its entries, written as a matrix to emphasize its left Q̂-module
structure. Further, Λ̂11 and Λ̂22 are the GNS-constructions for the weights ϕP̂
and ϕ̂. The map Λ̂12 : Q̂12 ∩ NϕQ̂

→ L2(N) is determined by Λ̂12(Lξ) = ξ for

ξ ∈ L2(N) left-bounded, i.e. those ξ for which the closure Lξ of the map

Λ̂op(m) = Λ̂op( Ĵm∗ Ĵ)→ π̂r(m)ξ = π̂l( Ĵm∗ Ĵ)ξ for m ∈ N ∗ϕ̂
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is bounded. The map Λ̂21 is determined by Λ̂21(L∗ξ ) = ∇̂1/2
N ξ for ξ ∈ L2(N)

left-bounded and in the domain of ∇̂1/2
N . Then the restriction Ĵ21 of the modular

conjugation JQ̂ of ϕQ̂ to a map

ΛQ̂(NϕQ̂
∩ Q̂21)→ ΛQ̂(NϕQ̂

∩ Q̂12)

is simply the natural anti-unitary map L2(N) → L2(N) : ξ → ξ. We will denote
the inverse of this map by Ĵ12. Finally, we note that πQ̂ decomposes as πQ̂,1 ⊕
πQ̂,2, with πQ̂,i acting on the i-th column, and we will then also write πQ̂,1 =
(π1

ij)i,j.

We will now provide another formula for G̃∗.

LEMMA 5.5. If m ∈ Nϕ̂ and x ∈ N̂ ∩NϕQ̂
, then

∆ N̂(x)(m⊗1)∈D(ΛN̂⊗ΛN̂) and (ΛN̂⊗ΛN̂)(∆ N̂(x)(m⊗1))= G̃∗(Λ̂(m)⊗ΛN̂(x)).

Proof. Since

(ι⊗ ϕQ̂)((m
∗ ⊗ 1)∆̂12(x)∗∆̂12(x)(m⊗ 1)) = (ι⊗ ϕ̂)((m∗ ⊗ 1)∆̂(x∗x)(m⊗ 1))

= ϕQ̂(x∗x)m∗m

for x ∈ Q̂12 and m ∈ M̂, it is clear that ∆̂12(x)(m⊗ 1) ∈ D(Λ̂12⊗ Λ̂12) for m ∈ Nϕ̂

and x ∈ Q̂12 ∩NϕQ̂
, and that the map

Λ̂(m)⊗ Λ̂12(x)→ (Λ̂12 ⊗ Λ̂12)(∆̂12(x)(m⊗ 1))

extends to a well-defined isometry. We now show that it coincides with G̃∗.
Let z be an element of Nϕ̂op . Then it is sufficient to prove that

∆̂12(x)(Λ̂(m)⊗ Λ̂op(z)) = (1⊗ π̂l(z))G̃∗(Λ̂(m)⊗ Λ̂12(x)).

But ∆̂12(x) = G̃∗(1⊗ x)Ŵ, and bringing G̃ to the other side, G̃(1⊗ π̂l(z))G̃∗

can be written as ΣU(1⊗ Ĵ R̂′(z)∗ Ĵ)U∗Σ. Taking a scalar product in the first factor,
it is then sufficient to prove that for ω ∈ M̂′∗, we have

x(ω⊗ ι)(Ŵ)Λ̂op(z) = (ι⊗ω)(U(1⊗ Ĵ R̂′(z) Ĵ)U∗)Λ̂12(x).

But now using again that (π̂l ⊗ ι)(V) = U, it is sufficient to show that

(ι⊗ω)(V(1⊗ Ĵ R̂′(z) Ĵ)V∗) ∈ Nϕ̂op

and that applying Λ̂op to it gives (ω⊗ ι)(Ŵ)Λ̂op(z). We could check this directly,
but we can just as easily backtrack our arguments: we only have to see if for
y ∈ Nϕ̂, we have

y(ω⊗ ι)(Ŵ)Λ̂op(z) = (ι⊗ω)(V(1⊗ Ĵ R̂′(z) Ĵ)V∗)Λ̂(y)

for any z ∈ Nϕ̂op . This is then seen to be the same as saying that

(Λ̂⊗ Λ̂)(∆̂(y)(m⊗ 1)) = Ŵ∗(Λ̂(m)⊗ Λ̂(y)),
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which is of course true by definition.

LEMMA 5.6. Let x be inNϕN ∩N ∗ϕN
, and a ∈ Tϕ, the Tomita algebra for ϕ. Then

(ωΛN(x∗),Λ(σi(a)∗) ⊗ ι)(G̃) = (ωΛ(a),ΛN(x) ⊗ ι)(G̃∗).

Proof. Choose ω ∈ N∗. Then we have the following which ends the proof:

ω((ωΛN(x∗),Λ(σi(a)∗) ⊗ ι)(G̃)) = ϕ(σi(a)((ω⊗ ι)(α(x)∗))) = ϕ(((ω⊗ ι)(α(x)∗))a)

= 〈Λ(a), Λ((ω⊗ι)α(x))〉= 〈Λ(a), (ι⊗ω)(G̃)ΛN(x)〉

= ω((ωΛ(a),ΛN(x) ⊗ ι)(G̃∗)).

LEMMA 5.7. Let x ∈ NϕN and y ∈ TϕN . Then writing w = xσN
−i(y

∗), we have
that ΛN(w) is left-bounded, and

LΛN(w) = (ι⊗ωΛN(x),ΛN(y))(G̃
∗).

Proof. We have to prove that for m ∈ Nϕ̂op , we have

(ι⊗ωΛN(x),ΛN(y))(G̃
∗)Λ̂op(m) = π̂l(m)ΛN(xσN

−i(y
∗)).

But using the square (3.2) at the end of Section 1 and Lemma 2.6, we get for any
z ∈ NϕN the following which ends the proof:

〈(ι⊗ωΛN(x),ΛN(y))(G̃
∗)Λ̂op(m), ΛN(z)〉= 〈G̃∗(Λ̂op(m)⊗ΛN(x)), ΛN(z)⊗ΛN(y)〉

= 〈ΛN2(π̂l(m)x), ΛN(z)⊗ΛN(y)〉

= 〈π̂l(m)xΛN(σ
N
−i(y

∗)), ΛN(z)〉.

PROPOSITION 5.8. If x ∈ N̂ ∩ NϕQ̂
and y ∈ Ô ∩ NϕQ̂

, then ∆Ô(y)(x ⊗ 1) in

D(Λ̂⊗ΛÔ), and

(Λ̂⊗ΛÔ)(∆Ô(y)(x⊗ 1)) = (J ⊗ Ĵ12)G̃(JN ⊗ Ĵ21)(ΛN̂(x)⊗ΛÔ(y)).

REMARK 5.9. Compare this formula with the identity ( Ĵ⊗ J)W( Ĵ⊗ J)=W∗.

Proof. This statement is equivalent with proving for sufficiently many y in
Q̂21 ∩NϕQ̂

and ω ∈ Q̂12,∗ that (ω⊗ ι)(∆̂21(y)) ∈ NϕQ̂
, and

Λ̂21((ω⊗ ι)(∆̂21(y))) = (ω⊗ ι)((J ⊗ Ĵ12)G̃(JN ⊗ Ĵ21))Λ̂21(y),

which can be written as

(5.2) Ĵ21Λ̂21((ω⊗ ι)(∆̂21(y))) = (ω(J(·)∗ JN)⊗ ι)(G̃) Ĵ21Λ̂21(y).

Let y ∈ Q̂21 ∩ NϕQ̂
be in the Tomita algebra of ϕQ̂. Let ω be of the form

ωΛN(x),Λ(a) with x, a in the Tomita algebra of respectively ϕN and ϕ. Then by the
first formula of Lemma 4.22 (used both in the general case and the case where

N = M), we have that (ω⊗ ι)(∆̂21(y)) will also be analytic for σQ̂
t , with

σQ̂
−i/2((ωΛN(x),Λ(a) ⊗ ι)(∆̂21(y))) = (ω∇1/2

N ΛN(x),∇−1/2Λ(a) ⊗ ι)(∆̂12(σ
Q̂
−i/2(y))).
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Further, (ω ⊗ ι)(∆̂21(y))∗ = (ω ⊗ ι)(∆̂12(y∗)), which will be in D(Λ̂12) by Lem-
ma 5.5, with

Λ̂12((ω⊗ ι)(∆̂12(y∗))) = (ω⊗ ι)(G̃∗)Λ̂12(y∗).

This shows that (ω⊗ ι)(∆̂21(y)) ∈ D(Λ̂21).
Now by Lemma 5.6, we have then also

Λ̂12((ω⊗ ι)(∆̂12(y∗))) = (ωΛN(x∗),Λ(σ−i(a∗)) ⊗ ι)(G̃)Λ̂12(y∗),

and by Lemma 4.22, we have that (ωΛN(x∗),Λ(σ−i(a∗)) ⊗ ι)(G̃) is analytic for χt =

Ad(∇̂it
N), with

χ−i/2((ωΛN(x∗),Λ(σ−i(a∗)) ⊗ ι)(G̃)) = (ωJNΛN(x),JΛ(a) ⊗ ι)(G̃).

So combining all this, we get

Ĵ21Λ̂21((ω⊗ ι)(∆̂21(y))) = ∇1/2
Q̂

Λ̂12((ω⊗ ι)(∆̂21(y))∗)

= (∇1/2
Q̂

(ωΛN(x∗),Λ(σ−i(a∗)) ⊗ ι)(G̃)∇−1/2
Q̂

)∇1/2
Q̂

Λ̂12(y∗)

= (ωJNΛN(x),JΛ(a) ⊗ ι)(G̃) Ĵ21Λ̂21(y)

= (ω(J(·)∗ JN)⊗ ι)(G̃) Ĵ21Λ̂21(y).

Now by closedness of ΛQ̂, this equality remains true for ω arbitrary. Since

such y’s form a σ-strong∗-norm core for Λ̂12, the equality is true for any y ∈
Q̂21 ∩NϕQ̂

.

THEOREM 5.10. The weight ϕP̂ is left invariant.

Proof. It follows from the last proposition that

(ι⊗ ϕP̂)(∆ P̂(Lξ L∗ξ )) = ϕP̂(Lξ L∗ξ )

for ξ right-bounded and in the domain of ∇̂1/2
N . From Lemma IX.3.9 of [21], it

follows that also (ι ⊗ ϕP̂)(∆ P̂(b)) = ϕP̂(b) for b ∈ M+
ϕP̂

. Indeed: that lemma

implies that b can be approximated from below by elements of the form
n
∑

i=1
Lξi L

∗
ξi

with ξi right-bounded, and since b is integrable, every ξi must be in D(∇̂1/2
N ). So

we can conclude by lower-semi-continuity.

This proves that (P̂, ∆ P̂) is a von Neumann algebraic quantum group, since
ϕP̂ is a left invariant weight, and by Lemma 5.4, ψP̂ := ϕP̂ ◦ RQ̂ will be a right
invariant weight.

DEFINITION 5.11. If (N, α) is a Galois object for a von Neumann algebraic
quantum group (M, ∆), and (P̂, ∆ P̂) the von Neumann algebraic quantum group
constructed from it in the foregoing manner, then we call (P̂, ∆ P̂) the reflected von
Neumann algebraic quantum group (or just the reflection) of (M̂, ∆M̂) across (N, α).
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To end this section, we show that (Q̂, ∆Q̂) is a measured quantum groupoid.
In fact, our set-up is closer in spirit to the formulation of the generalized Kac
algebras of [32], but this theory has no full generalization to the “locally compact”
world. It is however well known that these approaches are equivalent in the
finite-dimensional Kac case (cf. [17]).

Let d be the natural imbedding of C2 in Q̂:

d : C2 → Q̂ : (w, z)→
(

w 0
0 z

)
.

Let ε denote the map
ε : C2 → C : (w, z)→ w + z.

Then we have natural identifications

L2(Q̂) d⊗d
ε
L2(Q̂) =

(⊕
i,j
L2(Q̂ij)

)
d⊗d

ε

(⊕
l,k

L2(Q̂lk)
)

∼=
2⊕

i,j,k

(L2(Q̂ij)⊗L2(Q̂ik)) = ∆Q̂(1)(L
2(Q̂)⊗L2(Q̂)),

since d⊗d
ε

is just the ordinary balanced tensor product of two C2-modules. (Note

that C2 acts on the left on both the L2(Q̂) spaces, so we don’t get ordinary “matrix
multiplication compatibility” on the summands!) Under this identification we
have

Q̂ d∗d
C2

Q̂ ∼= ∆Q̂(1)(Q̂⊗ Q̂)∆Q̂(1),

where the expression left is the fibred product. Thus ∆Q̂ can be seen as a map

∆Q̂ : Q̂→ Q̂ d∗d
C2

Q̂.

Note now that the expressions 1 d⊗d
C2

d(x) and d(x) d⊗d
C2

1 coincide with respec-

tively (1⊗ d(x))∆Q̂(1) and (d(x)⊗ 1)∆Q̂(1) for x ∈ C2. Using also that ι d∗d
C2

∆Q̂

is just the restriction of (ι⊗∆Q̂) to ∆Q̂(1)(Q̂⊗ Q̂)∆Q̂(1), it is easy to see that ∆Q̂
satisfies the coassociativity conditions for a Hopf bimodule as in Definition 3.1 of
[4]. Now the octuple(

C2, Q̂, d, d, ∆Q̂,
(

ϕP̂ 0
0 ϕ̂

)
,
(

ψP̂ 0
0 ψ̂

)
, ε

)
will form a measured quantum groupoid as in Definition 3.7 of [5]. First of all,
after the proper identifications, it is easy to see that TQ̂ =

(
ϕP̂ 0
0 ϕ̂

)
is a left invariant

nsf operator valued weight onto d(C2), and that T′
Q̂
=
(

ψP̂ 0
0 ψ̂

)
is a right invariant

nsf operator valued weight onto d(C2). So we only have to check whether ε is
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relatively invariant with respect to TQ̂ and T′
Q̂

. Now since ψP̂ ⊕ ψ̂ = (ϕP̂ ⊕ ϕ̂) ◦
RQ̂, we have

σ
ψP̂⊕ψ̂
t = RQ̂ ◦ σ

ϕP̂⊕ϕ̂
t ◦ RQ̂.

If we look at the faithful representation πQ̂,2 of Q̂ on L2(N)⊕L2(M), then:

(∇̂it
N ⊕ ∇̂it)πQ̂,2(x)(∇̂−it

N ⊕ ∇̂
−it) = πQ̂,2(σ

ϕP̂⊕ϕ̂
t (x)),

(JN ⊕ J)πQ̂,2(x)∗(JN ⊕ J) = πQ̂,2(RQ̂(x)),

for x ∈ Q̂, so that σ
ψP̂⊕ψ̂
t is implemented on L2(N)⊕L2(M) by ∇̂p it

N ⊕ ∇̂p
it

, where

∇̂p it
N = JN∇̂−it

N JN . Using the definition of ∇̂N and the commutation rules between

δN , JNδN JN and PN , it is then easy to see that indeed σ
ψP̂⊕ψ̂
t commutes with σ

ϕP̂⊕ϕ̂
s .

6. TWISTING BY 2-COCYCLES

We now treat a specific method to create non-trivial Galois objects, namely
the twisting by cocycles. Let (M, ∆) be a von Neumann algebraic quantum group,
and let Ω ∈ M̂⊗ M̂ be a unitary 2-cocycle, i.e. a unitary element satisfying

(1⊗Ω)(ι⊗ ∆̂)(Ω) = (Ω⊗ 1)(∆̂⊗ ι)(Ω).

Denote by α̌ the trivial coaction C→ M̂⊗C of M̂. The following definitions and
propositions will refer to [24]. So (α̌, Ω) is a cocycle action in the terminology of
Definition 1.1 in that paper. Let

N = M̂ n
Ω
C := [(ω⊗ ι)(ŴΩ∗) : ω ∈ M̂∗]σ−weak

be the cocycle crossed product as in Definition 1.3 (actually, one should take the
von Neumann algebra generated by elements of this last set, in stead of just the
σ-weak closure, but it will follow from our Proposition 4.7 and the following
proposition that this is the same). Then, by Proposition 1.4 of [24], there is a
canonical right coaction α of M on N, determined by

α((ω⊗ ι)(ŴΩ∗)) = (ω⊗ ι⊗ ι)(Ŵ13Ŵ12Ω∗12) for ω ∈ M̂∗.

By Theorem 1.11.1 of [24] it is ergodic. By the remark after Lemma 1.12 of [24] it
is integrable, and by Proposition 1.15 of [24] we can take the GNS-construction
for ϕN in L2(M), by defining ΛN((ω ⊗ ι)(ŴΩ∗)) = Λ((ω ⊗ ι)(Ŵ)) for ω ∈ M̂∗
well-behaved. Finally, (N, α) is a Galois object, since the unitary

ŴΩ∗ ∈ B(L2(M))⊗ N

satisfies
(ι⊗ α)(ŴΩ∗) = Ŵ13Ŵ12Ω∗12,
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so that α is semi-dual (see Proposition 5.12 of [22] in the setting of left coactions).
In fact, not surprisingly, we have the following proposition.

PROPOSITION 6.1. The Galois map G̃ of (N, α) equals ŴΩ∗.

Proof. Choose ξ, η, ζ ∈ L2(M), and an orthonormal basis ξi of L2(M). Fur-
ther, let m ∈ M̂ be a Tomita element for ϕ̂, and denote ω′ = ωζ,Λ̂(m). Then by

Proposition 1.15 of [24], (ω′ ⊗ ι)(ŴΩ∗) ∈ NϕN , (ω′ ⊗ ι)(Ŵ) ∈ Nϕ and

ΛN((ω
′ ⊗ ι)(ŴΩ∗)) = Λ((ω′ ⊗ ι)(Ŵ)).

So

(ι⊗ωξ,η)(G̃)Λ((ω′ ⊗ ι)(Ŵ)) = (ι⊗ωξ,η)(G̃)ΛN((ω
′ ⊗ ι)(ŴΩ∗))

= Λ((ωξ,η ⊗ ι)(α((ω′ ⊗ ι)(ŴΩ∗))))

= Λ((ω′ ⊗ωξ,η ⊗ ι)(Ŵ13Ŵ12Ω∗12))

= Λ
(

∑
i
(ω′ ⊗ωξ,ξi ⊗ωξi ,η ⊗ ι)(Ŵ14Ŵ13Ω∗12)

)
,

where the sum is taken in the σ-strong-topology.
On the other hand, using Result 8.6 of [13], adapted to the von Neumann

algebra setting, we get

(ι⊗ωξ,η)(ŴΩ∗)Λ((ω′⊗ι)(Ŵ))=∑
i
(ι⊗ωξi ,η)(Ŵ)(ι⊗ωξ,ξi )(Ω

∗)Λ((ω′⊗ι)(Ŵ))

=∑
i

Λ((ωξi ,η⊗ι)∆((ω′(·(ι⊗ωξ,ξi )(Ω
∗))⊗ι)(Ŵ)))

=∑
i

Λ((ω′ ⊗ωξ,ξi ⊗ωξi ,η ⊗ ι)(Ŵ14Ŵ13Ω∗12)),

so that the result follows by the closedness of Λ and the density of elements of
the form Λ((ω′ ⊗ ι)(Ŵ)) in L2(M).

THEOREM 6.2. The Ω-twisted Hopf–von Neumann algebra (M̂, ∆̂Ω) is a von
Neumann algebraic quantum group.

Proof. Recall that the Ω-twisted Hopf–von Neumann algebra is the algebra
M̂ with the comultiplication ∆̂Ω(m)=Ω∆̂(m)Ω∗. But the representation of M̂′ on
L2(N) equals the ordinary representation on L2(M) (since it’s easy to see that the
unitary implementation of the coaction equals the right regular representation V),
so we can identify the underlying algebra of the reflected quantum group (P̂, ∆ P̂)

with M̂, and then we have the following which proves the theorem:

∆ P̂(m) = G̃∗(1⊗m)G̃ = ΩŴ∗(1⊗m)ŴΩ∗ = ∆̂Ω(m).

We will keep notation as in the previous sections, so we keep writing (P̂, ∆ P̂)

for (M̂, ∆̂Ω).
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Denote by ut = ∇̂it
N∇̂−it ∈ M̂ the cocycle derivative of ϕP̂ with respect to

ϕ̂, so that us+t = usσ̂s(ut). Denote vt = ∇it
N∇−it. Then also vt ∈ M̂, since ∇it

N
and∇it implement the same automorphism on M̂′. Finally, denote X = JN J, then
X ∈ M̂ for the same reason.

PROPOSITION 6.3. (i) The one-parameter group vt is a cocycle with respect to τ̂t.
(ii) The 2-cocycles Ω and (τ̂t ⊗ τ̂t)(Ω) are cohomologous by the coboundary vt.

(iii) The 2-cocycles Ω and Ω̃=(R̂⊗R̂)(ΣΩ∗Σ) are cohomologous by the coboundary X.

REMARK 6.4. The third statement of this proposition was noted for 2-co-
cycles in the group von Neumann algebra of a compact group in [30].

Proof. By Lemma 4.22, we have

(∇it ⊗ ut∇̂it)(ŴΩ∗) = (ŴΩ∗)(∇it
N ⊗ ut∇̂it).

Since∇it⊗ ∇̂it commutes with Ŵ and∇it implements τ̂t on M̂, the left hand side
can be rewritten as (1⊗ ut)Ŵ(τ̂t ⊗ σ̂t)(Ω∗)(∇it ⊗ ∇̂it), and so, bringing Ŵ and
(∇it ⊗ ∇̂it) to the other side, we obtain

∆̂(ut)(τ̂t ⊗ σ̂t)(Ω
∗) = Ω∗(vt ⊗ ut).

Hence

vs+t ⊗ us+t = Ω∆̂(us+t)(τ̂s+t ⊗ σ̂s+t)(Ω
∗) = Ω∆̂(usσ̂s(ut))(τ̂s+t ⊗ σ̂s+t)(Ω

∗)

= Ω∆̂(us)(τ̂s ⊗ σ̂s)(Ω
∗) · (τ̂s ⊗ σ̂s)(Ω∆̂(ut)(τ̂t ⊗ σ̂t)(Ω

∗))

= vsτ̂s(vt)⊗ usσ̂s(ut),

from which the cocycle property of vt follows.
Now note that vt also equals Pit

N P−it (by definition of PN). So using the third
equality of Corollary 4.15,

ŴΩ∗(vt ⊗ vt)(Pit ⊗ Pit) = (Pit ⊗ vtPit)ŴΩ∗.

Using that Pit = P̂it, taking Ŵ and Pit ⊗ Pit to the other side, we arrive at

Ω∗(vt ⊗ vt) = ∆̂(vt)(τ̂t ⊗ τ̂t)(Ω
∗),

which proves the second statement.
Finally, as mentioned already, the unitary implementation of α is just V it-

self. So by Lemma 4.4, we have ŴΩ∗(JN ⊗ JN)Σ = ΣVΣ( Ĵ ⊗ JN)ŴΩ∗. Multi-
plying to the right with (J ⊗ J)Σ, we get

ŴΩ∗(X⊗X)=ΣVΣ(1⊗X)( Ĵ ⊗ J)ŴΩ∗(J⊗ J)Σ=ΣVΣ(1⊗X)( Ĵ⊗ J)Ŵ(J⊗ J)ΣΩ̃∗

=ΣVΣ(1⊗ X)( Ĵ ⊗ J)ΣVΣ( Ĵ ⊗ J)ŴΩ̃∗

=ΣVΣ(1⊗ X)ΣV∗ΣŴΩ̃∗ = (1⊗ X)ŴΩ̃∗,

from which Ω∗(X⊗ X) = ∆̂(X)Ω̃∗ immediately follows.

We have the next formula for the multiplicative unitary ŴΩ for (M̂, ∆̂Ω):
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PROPOSITION 6.5. ŴΩ = (JN ⊗ Ĵ)ΩŴ∗(J ⊗ Ĵ)Ω∗.

REMARK 6.6. This is to be compared with the formula for the multiplicative
unitary in [8].

Proof. We will use notation as in the previous section. As already noted,
the unitary implementation of α is the multiplicative unitary V, and the iden-
tification of L2(N) with L2(M) is an identification of left M̂′-modules. Hence

the left module structure of
(

M̂ M̂
M̂ M̂

)
on
(
L2(M) L2(M)

L2(M) L2(M)

)
is explicitly known: if we

identify L2(M) with L2(M) by the map Ĵ Ĵ21, then the module structure is just
ordinary matrix multiplication, the module structure on all summands being the
standard one. Also, Λ̂12 becomes Λ̂, and Λ̂21 becomes ΛϕP̂

. Then from Lemma
5.8, and the fact that ∆̂21(x) = ∆̂(x)Ω∗, it is easy to conclude that ŴΩΩ = G̃∗J =

(JN ⊗ Ĵ)(ΩŴ∗)(J ⊗ Ĵ). The proposition follows.

7. GALOIS OBJECTS AND COACTIONS ON TYPE I FACTORS

We now look at another possible way to create examples. One of the major
motivations for the present paper was the article [2]. There the authors consider
examples of Galois objects (which they call “ergodic coactions of full quantum
multiplicity”) which were not induced by a 2-cocycle. This was surprising, as
Wassermann had shown in [30] that for compact groups, any Galois object for
the function algebra must come from a 2-cocycle of the dual (a result which was
in turn based on the work in [29], and ultimately on the fundamental results of
[10]). In fact, in [2] all Galois objects for the compact quantum groups SUq(2) are
classified. There is a whole family of them, parametrized by orthogonal matrices
which satisfy some relation with respect to q, even though there are no non-trivial
cocycles for the dual of SUq(2).

To obtain examples in our wider setting, the following construction would
seem to be very helpful. It is a generalization of the fact that any action (and
by the work of A. Wassermann, any coaction ([30], Theorem 3)) of a compact
group on a type I-factor comes from a cocycle representation. We need some
terminology.

DEFINITION 7.1. Let (N, α) be a (right) Galois object for a von Neumann
algebraic quantum group (M, ∆). Denote again by N̂ the space of intertwiners
between L2(M)M̂ and L2(N)M̂. Let H be a Hilbert space. A (unitary) left (N, α)-
corepresentation for (M̂, ∆̂) is a unitary G ∈ N̂ ⊗ B(H) such that

(∆ N̂ ⊗ ι)(G) = G13G23.

By a projective corepresentation for (M̂, ∆̂), we mean a left (N, α)-corepresentation
for (M̂, ∆̂) and some Galois object (N, α).
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For any Galois object (N, α), there is a regular left (N, α)-corepresentation,
namely the unitary (JN ⊗ Ĵ12)G̃∗(J⊗ Ĵ21). In case (M, ∆) = (L(G), ∆) is the group
von Neumann algebra of an ordinary locally compact group G, and (N, α) is the
twisted convolution algebra by a cocycle Ω ∈ L∞(G)⊗L∞(G), we just get back
the ordinary notion of a cocycle representation. Of course, one can also easily
adapt the definition to find the notion of a right (N, α)-corepresentation.

THEOREM 7.2. Let (M, ∆) be a von Neumann algebraic quantum group. If (N, α)

is a Galois object for (M, ∆), then any left (N, α)-corepresentation of (M̂, ∆̂) gives rise to
a left coaction of (M̂, ∆̂) on a type-I-factor. Conversely, any left coaction on a type-I-factor
is induced by a projective corepresentation.

Proof. The first statement is easy: if G is such a corepresentation, define

Υ : B(H)→ M̂⊗ B(H) : x → G∗(1⊗ x)G,

then this is a coaction by the defining property of G.
Now let H be a Hilbert space, and Υ : B(H) → M̂⊗ B(H) be a coaction of

(M̂, ∆̂). Denote by N the relative commutant of Υ(B(H)) inside M̂ n B(H). Then
we have a canonical isomorphism Φ : M̂ n B(H) → N ⊗ B(H). We claim that
the dual (right) coaction Υ̂ : M̂n B(H)→ (M̂n B(H))⊗M restricts to a coaction
of M on N. Indeed: choose an orthonormal basis ξi of H, with respective matrix
unit system {eij}. Then for x ∈ N, we have x = ∑

k
Υ(ek1)xΥ(e1k) σ-strongly.

Applying Υ̂, we get Υ̂(x) = ∑
k
(Υ(ek1)⊗ 1)Υ̂(x)(Υ(e1k)⊗ 1), whose first leg clearly

commutes with Υ(B(H)).
We now show that (N, α) is a Galois object. Ergodicity is clear, since 1⊗

B(H) is the fixed point algebra of Ad(Σ)23(α ⊗ ι) = (Φ ⊗ ι)Υ̂ ◦ Φ−1. Also in-
tegrability follows easily by this, Υ̂ being integrable. Since we have a canoni-
cal isomorphism (M̂ n B(H)) o M ∼= (N o M) ⊗ B(H), and the first space is
∼= B(H)⊗ B(L2(M)), also N o M must be a type I factor, from which it follows
that the Galois homomorphism for α is necessarily an isomorphism.

We now show that the original coaction is implemented by an (N, α)-co-
representation. Denote by Tr the ordinary trace on B(H), by T̂r the dual weight
on M̂ n B(H) with respect to Tr, and by ϕN the weight (ι⊗ ϕ)α on N. Then we
have

T̂r = (ϕN ⊗ Tr) ◦Φ.
Hence we obtain a unitary

u : L2(M)⊗L2(B(H))→ L2(N)⊗L2(B(H))

which sends Λ(m)⊗ΛTr(x) to (ΛN ⊗ΛTr)(Φ(m⊗ 1)(1⊗ x)) for m ∈ Nϕ and x
Hilbert–Schmidt. But identifying L2(B(H), Tr) with H⊗H, and observing that
u is right B(H)-linear, we must have that u = G ⊗ 1 for some unitary

G : L2(M)⊗H → L2(N)⊗H.
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We proceed to show that G is indeed an (N, α)-corepresentation implement-
ing Υ. First of all, it is not difficult to see that G ∈ Q̂12 ⊗ B(H), since for m ∈ Nϕ

and x Hilbert–Schmidt, and ξ, η ∈ L2(M) with ξ ∈ D(δ−1/2), we have, putting
ω = ωξ,η and ωδ = ωδ−1/2ξ,η , denoting by U the unitary corepresentation belong-
ing to α and by V the right regular representation for (M, ∆),

u((ι⊗ω)(V)⊗1)(Λ(m)⊗ΛTr(x))=u(Λ((ι⊗ωδ)(∆(m)))⊗ΛTr(x))

=(ΛN ⊗ΛTr)(Φ(((ι⊗ωδ)(∆(m)))⊗ 1)(1⊗ x))

=(ΛN⊗ΛTr)(Φ((((ι⊗ωδ)(∆(m)))⊗1)Υ(x)))

=(ΛN⊗ΛTr)(Φ((ι⊗ωδ)(Υ̂((m⊗1)Υ(x)))))

=(ΛN⊗ΛTr)((ι⊗ωδ⊗ι)(α⊗ι)Φ((m⊗1)Υ(x)))

=((ι⊗ω)(U)⊗1)(ΛN⊗ΛTr)(Φ((m⊗1)Υ(x)))

=((ι⊗ω)(U)⊗ 1)u(Λ(m)⊗ΛTr(x)),

so that G((ι⊗ ω)(V)⊗ 1) = ((ι⊗ ω)(U)⊗ 1)G, which is sufficient to conclude
that the first leg of G is in Q̂12.

Since uΥ(x) = (1⊗ x)u on L2(M)⊗L2(B(H)), we have GΥ(x) = (1⊗ x)G
on L2(M)⊗H, so that G implements Υ.

The only thing left to show is that G satisfies

(∆̂12 ⊗ ι)(G) = G13G23.

Writing out ∆̂12 and tensoring by 1H to the right, this translates into proving that

G̃∗12u23Ŵ12 = u13u23,

with G̃ the Galois unitary for (N, α). Moving G̃ to the other side, and multiplying
to the left with Σ12, this becomes

u13W∗12Σ12 = Σ12G̃12u13u23.

This can again be proven using a simple matrix algebra argument: we can write
Φ(m⊗ 1) = ∑

i,j
Φij(m)⊗ eij with Φij(m) = ∑

k
Υ(eki)(m⊗ 1)Υ(ejk) ∈ N, where the

sums are in the σ-strong topology. Then for m, n ∈ Nϕ and x Hilbert–Schmidt,
we have

u13W∗12Σ12(Λ(m)⊗Λ(n)⊗ΛTr(x))=u13(Λ⊗Λ⊗ΛTr)(∆(m)(n⊗ 1)⊗ x)

=(ΛN⊗ΛM⊗ΛTr)
(
∑
i,j
((Φij⊗ι)(∆(m)(n⊗1))⊗eijx)

)
,

while

Σ12G̃12u13u23(Λ(m)⊗Λ(n)⊗ΛTr(x))

= Σ12G̃12u13(Λ⊗ΛN ⊗ΛTr)
(

∑
i,j

m⊗Φij(n)⊗ eijx
)
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= Σ12G̃12(ΛN ⊗ΛN ⊗ΛTr)
(

∑
i,j,r

(Φri(m)⊗Φij(n)⊗ erjx)
)

= (ΛN ⊗ΛM ⊗ΛTr)
(

∑
i,j,r

((α(Φri(m))⊗ 1)(Φij(n)⊗ 1⊗ erjx))
)

= (ΛN ⊗ΛM ⊗ΛTr)
(

∑
i,j,r

((Φri ⊗ ι)(∆(m))⊗ 1)(Φij(n)⊗ 1⊗ erjx)
)

= (ΛN ⊗ΛM ⊗ΛTr)
(

∑
j,r
((Φrj ⊗ ι)(∆(m)(n⊗ 1))⊗ erjx)

)
,

where we have used ∑
i

Φri(m)Φij(n) = Φrj(mn) for m, n ∈ M in the last step. So

we are done.

REMARK 7.3. Starting from an (N1, α1)-corepresentation G1 and consider-
ing its associated coaction on B(L2(N1)), one thus obtains a Galois object (N2, α2)
and an (N2, α2)-corepresentation G2. As is to be expected, these Galois objects are
isomorphic, in such a way that the corepresentations correspond to each other.
Indeed: it’s easy to see that G1G∗2 = v ⊗ 1 for some unitary v : L2(N2) →
L2(N1). Since v is a right M̂-module map, we can extend the (well-defined) map
Q̂2,12 → Q̂1,12 : z → vz to an isomorphism Ψ of the linking algebras Q̂2 and
Q̂1. From the fact that G1 and G2 are corepresentations, it is easy to deduce that
∆̂1,12(vz) = (v ⊗ v)∆̂2,12(z) for z ∈ Q̂2,12. Hence Ψ preserves the comultiplica-
tion structure, and thus (N1, α1) and (N2, α2) are isomorphic by a map Ψ̂, and
moreover (Ψ⊗ ι)(G2) = G1.

Recall that two coactions Υ1 and Υ2 of (M̂, ∆̂) on a von Neumann algebra
Y are called outer equivalent if there exists a unitary element v ∈ M̂⊗ Y which
satisfies

(∆̂⊗ ι)(v) = v23(ι⊗Υ1)(v),
(i.e., v is an Υ1-cocycle) and such that Υ2(x) = vΥ1(x)v∗ for x ∈ Y. Then it is easy
to see that also the following classical result still holds true.

THEOREM 7.4. Suppose (M, ∆) is a von Neumann algebraic quantum group for
which M has a separable predual. Then there is a natural one-to-one correspondence
between outer equivalence classes of coactions of (M̂, ∆̂) on B(H), with H a separable
infinite-dimensional Hilbert space, and isomorphism classes of right Galois objects (with
separable predual) for (M, ∆).

Proof. First suppose that Υ1 and Υ2 are two coactions on B(H) which are
outer equivalent by a unitary v. Then we get an isomorphism

Φ : M̂ n
Υ1

B(H)→ M̂ n
Υ2

B(H) : z→ vzv∗,

which obviously sends Υ1(B(H)) to Υ2(B(H)). Hence if (Ni, αi) denotes the Ga-
lois object constructed from Υi as in the previous theorem, N1 gets sent to N2 by
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Φ. But Φ also preserves the dual right coaction, since V13v12 = v12V13. So Φ|N1
gives an (M, ∆)-equivariant isomorphism from (N1, α1) to (N2, α2).

Conversely, suppose that Υ1 and Υ2 are two coactions on B(H), which are
induced by respective (N, α)-corepresentations G1 and G2 for some Galois object
(N, α) for (M, ∆). Put v = G∗2G1 ∈ M̂⊗ B(H). Then v is an Υ1-cocycle:

(∆̂⊗ ι)(v) = G∗2,23G∗2,13G1,13G1,23 = v23G∗1,23v13G1,23 = v23(ι⊗Υ1)(v),

and obviously Υ2(x) = vΥ1(x)v∗ for x ∈ B(H). Hence Υ1 and Υ2 are outer equiv-
alent.

Now for any right Galois object (N, α) with separable predual, there exists
a coaction on B(H) which has (N, α) as its associated Galois object: for example,
one can takeH ∼= L2(N)⊗H and equip it with the coaction

Υ : B(L2(N)⊗H)→ M̂⊗L2(N)⊗H :

Υ(x) = (((JN ⊗ Ĵ21)G̃(J ⊗ Ĵ12))⊗ 1)(1⊗ x)(((JN ⊗ Ĵ12)G̃∗(J ⊗ Ĵ21))⊗ 1),

i.e., take an amplification of the coaction coming from the regular left projective
corepresentation of a Galois object. This observation then ends the proof of the
proposition.

Acknowledgements. At the time of writing, the author was a Research Assistant of the
Research Foundation - Flanders (FWO - Vlaanderen).

The author would like to thank his thesis advisor Alfons Van Daele for giving him
the opportunity (and initial motivation) to study these problems. He would also like to
thank L. Vaı̆nerman at the university of Caen, where part of this work was made. Finally,
he would like to thank P. Hajac, for informing him about the Ehresmann construction,
which provides one with the right geometrical intuition in these matters.

REFERENCES

[1] J. BICHON, Hopf–Galois systems, J. Algebra 264(2003), 565–581.

[2] J. BICHON, A. DE RIJDT, S. VAES, Ergodic coactions with large quantum multiplicity
and monoidal equivalence of quantum groups, Comm. Math. Phys. 262(2006), 703–728.

[3] K. DE COMMER, Galois objects for algebraic quantum groups, J. Algebra 321(2009),
1746–1785.

[4] M. ENOCK, Measured quantum groupoids in action, Mém. Soc. Math. France (N.S.)
114(2008), 1–150.

[5] M. ENOCK, R. NEST, Irreducible inclusions of factors, multiplicative unitaries, and
Kac algebras, J. Funct. Anal. 137(1996), 466–543.

[6] M. ENOCK, J.-M. SCHWARTZ, Produit croisé d’une algebre de von Neumann par une
algebre de Kac. II, Publ. Res. Inst. Math. Sci. 16(1980), 189–232.



GALOIS OBJECTS FOR LOCALLY COMPACT QUANTUM GROUPS 105

[7] M. ENOCK, J.-M. VALLIN, Inclusions of von Neumann algebras and quantum
groupoids, J. Funct. Anal. 172(2000), 249–300.

[8] P. FIMA, L. VAINERMAN, Twisting and Rieffel’s deformation of locally compact quan-
tum groups: deformation of the Haar measure, Comm. Math. Phys. 286(2009), 1011–
1050.

[9] P. FIMA, On locally compact quantum groups whose algebras are factors, J. Funct.
Anal. 244(2007), 78–94.

[10] R. HØEGH-KROHN, M.B. LANDSTAD, E. STRMER, Compact ergodic groups of auto-
morphisms, Ann. of Math. 114(1981), 75–86.

[11] J. KUSTERMANS, A. VAN DAELE, C∗-algebraic quantum groups arising from alge-
braic quantum groups, Internat. J. Math. 8(1997), 1067–1139.

[12] J. KUSTERMANS, Locally compact quantum groups in the universal setting, Internat.
J. Math. 12(2001), 289–338.

[13] J. KUSTERMANS, S. VAES, Locally compact quantum groups, Ann. Sci. École Norm.
Sup. (4) 33(2000), 837–934.

[14] J. KUSTERMANS, S. VAES, Locally compact quantum groups in the von Neumann
algebraic setting, Math. Scand. 92(2003), 68–92.

[15] F. LESIEUR, Measured quantum groupoids, Mém. Soc. Math. France (N.S.) 109(2007),
1–117.

[16] K.C.H. MACKENZIE, General Theory of Lie Groupoids and Lie Algebroids, Cambridge
Univ. Press, Cambridge 2005.
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