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1. INTRODUCTION

We study the existence of invariant (and even hyperinvariant) subspaces for
weighted composition operators on Lp([0, 1]d), 1 6 p 6 ∞, that means operators
of the form

T f (x) = v(x) f (τ(x)),
with v ∈ L∞([0, 1]d) and τ : [0, 1]d → [0, 1]d. The aim is to give conditions
on the weight v and the composition mapping τ to obtain the existence of such
subspaces. The study of such operators comes from the Bishop operator, that we
discuss in the Section 3.

What we can first say is that if τ is not an ergodic transformation then there
exists an invariant subspace. Indeed, if τ is not ergodic, then there exists a Borel
set, say Ω, such that |Ω| > 0, |[0, 1]d \Ω| > 0 and such that τ(Ω) ⊂ Ω. Hence
TM⊂MwhereM = χΩ Lp([0, 1]d). Recall that given a Borel subset E of [0, 1]d,
the subspace defined by { f ∈ Lp([0, 1]d) : f|E = 0} is called a spectral subspace.
So, in other words, if τ is not ergodic, then T has a spectral nontrivial closed
invariant subspace. Therefore, from now on, we shall consider an ergodic map τ
for the composition. In particular, τ is measure preserving. We will also assume
that τ is a bijection.
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Also, if inf
x∈[0,1)

|v(x)| > 0 then the operator T is invertible, and then the tech-

niques of Wermer’s theorem [16] apply. Such work was done by Blecher and
Davie in [3] when τ is an irrational rotation τ(x) = {x + α} for certain irrational
numbers α and where the weight v does not vanish on [0, 1) and its modulus of
continuity satisfies a given condition. MacDonald generalized this result in [15],
for a larger class of irrationals.

We will use also along this article the discrepancy associated to an ergodic
map. Here we recall some standard terminology and facts, further details can
be found in [8], [12]. Let consider, for ω = (xn) a sequence of real numbers in
I = [0, 1) and E ⊂ I, the set

A(N, E, ω) = ]{n ; 1 6 n 6 N , xn ∈ E}.
Then the discrepancy associated to ω is defined as

(1.1) DN(ω) = sup
06α<β61

∣∣∣A(N, [α, β), ω)

N
− (β− α)

∣∣∣.
For a fixed x ∈ [0, 1) let ω(x) = (τn(x))n>1, we denote by

DN = sup
x∈[0,1)

DN(ω(x)).

Also, if τ is bijective, let ω′(x) = (τ−n(x))n>1 and notice that DN(ω
′(x)) =

DN(ω(τ−N−1(x))) 6 DN . The Birkhoff ergodic theorem states that if τ is er-
godic then for almost all x, DN(ω(x)) → 0 as N → ∞. Also it is known that for
certain ergodic transformations τ, the function x 7→ DN(ω(x)) is almost constant,
i.e. lim sup

N→∞
sup

x
DN(ω(x))/ inf

x
DN(ω(x)) < ∞. This is known to be the case for

the irrational rotation. In this case, DN → 0 as N → ∞.
The first part of the paper concerns our main theorem, that gives the exis-

tence of a hyperinvariant subspace for the weighted composition on Lp([0, 1]), as-
suming a hypothesis on the discrepancy DN of the ergodic transform τ. We then
provide sufficient number theoretic conditions which guarantee that the discrep-
ancy DN of an irrational rotation satisfies the assumptions of our main theorem.
The last part deals with generalization of this work to Lp([0, 1]d).

2. ONE-DIMENSIONAL CASE

We introduce the classP ⊂ L∞([0, 1]) of functions on [0, 1] saying that v ∈ P
if there exist some positive constants s0, . . . , sl , a constant C and map σi such that

(2.1) v(x) = C
l

∏
i=0

(σi(x− xi))
si ,

where xi ∈ [0, 1] and σi(x) = x or σi(x) = |x| for i = 0, . . . , l. Note that the abso-
lute value may be needed for certain powers si in order v to be defined on [0, 1].
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We call this class the “generalized polynomials” (since we allow non-integer pow-
ers).

The main theorem of this paper is the following:

THEOREM 2.1. Let τ be a bijective ergodic transformation of [0, 1] and v ∈ P ; we
consider the operator on Lp([0, 1]), 1 6 p 6 ∞, defined by

T f (x) = v(x) f (τ(x)).

Then, if the discrepancy Dn of the sequence (τn)n>1 satisfies

(2.2) Dn = O
( 1

ln3+ε n

)
for some ε > 0, this operator has a hyperinvariant subspace.

Proof. We want to construct a functional calculus based on regular Beurling
algebra Aw, associated to a subadditive weight w, as first appeared in Wermer
[16] and then generalized by Davie in [7] . This algebra is defined as follows:

Aw =
{

φ ∈ C(T) ; ∑
n∈Z
|φ̂(n)|ew(|n|) < ∞

}
.

We refer to Chapter 5, Section 2 of [6] for details about this Banach algebra. We
also recall that a function algebra on a compact X is said regular if for all p ∈ X
and all K compact of X such that p /∈ K, there exists f ∈ B such that f (p) = 1
and f = 0 on K. The important property for us is that if the weight satisfies
∑

n>1
w(n)/n2 < ∞ then the algebra Aw is regular. For φ ∈ Aw we define an

“operator” as follows:

(2.3) φ(T) f = ∑
n∈Z

φ̂(n)Tn f .

We need to give sense to this definition. The operator T is not an invertible op-
erator on Lp([0, 1]), but since τ is a bijection and v only vanishes in finitely many
points, the inverse map T−1 (as well as the other negative powers of T) of T is
well defined on the set of measurable functions. These are the maps that we will
refer to when we write negative powers of T. Also since this series contains both
positive and negative powers of T, if we want to obtain convergence of this series
in some sense, then we need to “normalize” T appropriately. The correct “nor-
malization” is to divide T by its spectral radius. Of course, this does not affect
the validity of Theorem 2.1. For v ∈ P , we can compute the spectral radius of the
associated operator acting on Lp([0, 1]) (1 6 p 6 ∞), using Proposition 1.3 of [13]
(this result was proved for p = 2 but a glance at the formula of Tn shows that the
same result is true for 1 6 p 6 ∞):

r(T) = C exp
( 1∫

0

ln
( l

∏
i=0
|x− xi|si

)
dx
)
= C exp

( l

∑
i=0
−si(Xi + X′i)

)
,
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where, for i = 0, . . . , l

(2.4) Xi = xi − xi ln xi and X′i = (1− xi)− (1− xi) ln(1− xi),

with the convention that if x0 = 0 or 1 then X0 + X′0 = 1. Note also that 1 6
Xi + X′i 6 1 + ln 2 for all i ∈ {0, . . . , l}, and that if x1 = 1− x0 then X0 + X′0 =
X1 + X′1. Thus, from now on, we assume that the weight v in the formula of T

in Theorem 2.1 has the form v(x) = 1/C exp
( l

∑
i=0

si(Xi + X′i)
) l

∏
i=0

(σi(x − xi))
si

where σi(x) = x or σi(x) = |x|. In order to prove that the series (2.3) converges
in some sense, we first need to compute estimates on the powers Tn for n ∈ Z.

2.1. ESTIMATION OF THE BOUNDS OF Tn , n ∈ Z. We prove the following theorem

THEOREM 2.2. There exists a subadditive weight w satisfying ∑
n>1

w(n)/n2 < ∞

such that for n ∈ N
‖Tn f ‖Lp([0,1]) 6 ew(n)‖ f ‖Lp([0,1]).

Moreover, for t ∈ (0, 1) there exists n(t) ∈ N and a set Et ⊂ [0, 1] with Et1 ⊂ Et2 for
t1 > t2 and |Et| ↗ 1 as t→ 0 such that

|T−n f (x)| 6 1
Ln,x
| f (τ−nx)| for all x ∈ [0, 1] and n ∈ N

where

sup
x∈Et

1
Ln,x

< ∞ for n ∈ N and sup
x∈Et

1
Ln,x

6 ew(n) for n > n(t).

Proof. Let us first consider the particular case where the weight vanishes
at one point, say x0 ∈ (0, 1) and the power is equal to 1, i.e. we work with the
weight

v(x) = eX0+X′0(x− x0).

We will be able to give an upper bound for Tn f and n ∈ Z. An easy computation
provides the following expressions of Tn:

Tn f (x) = en(X0+X′0)
n−1

∏
k=0

(τk(x)− x0) f (τn(x)) n > 1,

T−n f (x) =
1

en(X0+X′0)
n
∏

k=1
(τ−k(x)− x0)

f (τ−n(x)) n > 1,

and so we want to bound from above the quantity

Un,x = en(X0+X′0)
n−1

∏
k=0
|τk(x)− x0|,
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and bound from below (with a lower bound not zero!) the following

Ln,x = en(X0+X′0)
n

∏
k=1
|τ−k(x)− x0|.

The easiest case is the one of the positive powers of T because we do not
need to take care where v vanishes.

Case 1. The upper bound of the positive powers of T.

We choose δ1,n, δ2,n > 0 and k1,n = x0/δ1,n, k2,n = (1 − x0)/δ2,n ∈ N to
obtain a partition of the intervals I1 = [0, x0) and I2 = [x0, 1). Let denote ∆n =
max(δ1,n, δ2,n) and δn = min(δ1,n, δ2,n) and assume that

(2.5)
∆n

δn
6 1 +

1
ln2 n

.

Let, for i = 1, . . . , k1,n and j = 1, . . . , k j,n,

n1
i (x) := ]{1 6 k 6 n ; τk(x) ∈ [(k1,n − i)δ1,n, (k1,n − i + 1)δ1,n)}

= ]{1 6 k 6 n ; x0 − τk(x) ∈ [(i− 1)δ1,n, iδ1,n)},

and n2
j (x) := ]{1 6 k 6 n ; τk(x) ∈ [x0 + (j− 1)δ2,n, x0 + jδ2,n)}.

We have

Un,x = en(X0+X′0) ∏
k;τk(x)∈I1

(x0 − τk(x)) ∏
k;τk(x)∈I2

(τk(x)− x0)

6 en(X0+X′0)
k1,n

∏
i=1

(iδ1,n)
n1

i (x)
k2,n

∏
j=1

(jδ2,n)
n2

j (x)

= en(X0+X′0)δ
n1

1(x)+···+n1
k1,n

(x)

1,n δ
n2

1(x)+···+n2
k2,n

(x)

2,n

k1,n

∏
i=2

in1
i (x)

k2,n

∏
j=2

jn2
j (x)

6 en(X0+X′0)∆n
n

k1,n

∏
i=2

in1
i (x)

k2,n

∏
j=2

jn
2
j (x).

By definition of Dn we get, for i = 1, . . . , k1,n and j = 1, . . . , k2,n

n1
i (x)
n
− δ1,n 6 Dn and

n2
j (x)

n
− δ2,n 6 Dn,

and Dn −−−→n→∞
0. Thus,

Un,x 6 en(X0+X′0)δn
n(k1,n!)n(Dn+δ1,n)(k2,n!)n(Dn+δ2,n) = Un.

Let us look first at (k1,n!)n(Dn+δ1,n). By Stirling’s formula we obtain an upper
bound of n!:

n! 6
(n

e

)n√
2πn

(
1 +

1
12n

+
1

288n2

)
6 e
(n

e

)n√
2πn.
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Hence, using this and the fact that δ1,n → 0, we get for n large enough:

(k1,n!)n(Dn+δ1,n)

6 exp
(

n(Dn + δ1,n) ln
(

e
( k1,n

e

)k1,n
√

2πk1,n

))
= exp

(
n(Dn + δ1,n)

[ x0

δ1,n
ln
( x0

eδ1,n

)
+

1
2

ln
(2πx0

δ1,n

)
+ 1
])

= exp
(

n(Dn + δ1,n)
[
− X0

δ1,n
− x0 ln δ1,n

δ1,n
+

1
2

ln(2πx0)−
1
2

ln δ1,n + 1
])

= exp
(
− nX0 − nx0 ln δ1,n −

nDn

δ1,n
(1 + x0 ln δ1,n)

+ n(Dn + δ1,n)
[1

2
ln(2πx0)−

1
2

ln δ1,n + 1
])

6 exp
(
− nX0 − nx0 ln δ1,n −

nDn

δ1,n
(x0 ln δ1,n) + n(Dn + δ1,n)[− ln δ1,n]

)
= exp

(
− nX0 − nx0 ln δ1,n + nDn

[
− x0 ln δ1,n

δ1,n
− ln δ1,n

]
− nδ1,n ln δ1,n

)
6 exp

(
− nX0 − nx0 ln δ1,n − 2nDn

x0 ln δ1,n

δ1,n
− nδ1,n ln δ1,n

)
6 exp

(
− nX0 − nx0 ln δn − 2nDn

x0 ln δn

δn
− 2nδn ln δn

)
.

Doing the same with k2,n we obtain:

(k2,n!)n(Dn+δ2,n)6exp
(
−nX′0−n(1−x0) ln δn−2nDn

(1−x0) ln δn

δn
− 2nδn ln δn

)
.

Therefore it comes

Un6exp
(
n ln

∆n

δn
−2nDn

ln δn

δn
−4nδn ln δn

)
6exp

( n
ln2 n

−2nDn
ln δn

δn
−4nδn ln δn

)
,

since, by (2.5), ln(∆n/δn) 6 ln(1 + 1/ ln2 n) 6 1/ ln2 n. We choose δn such that
nδn ln δn/n2 is summable, a good choice is δn = 1/ ln1+ε1 n. For this value of δn
we set

w̃1(n) = 2nDn ln1+ε1 n ln(ln1+ε1 n) + 2n
ln(ln1+ε1 n)

ln1+ε1 n
.

Hence, if

Dn = O
( 1

ln2+ε n

)
,

where ε is an arbitrary positive number, we get that w̃1/n2 is summable (we can
change the ε1 if necessary). Fix ε > 0 and take ε1 < ε, for the choice of Dn =

1/ ln3+ε n (the choice of the power 3 + ε will be clearer in the light of the lower
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bound) we obtain:

w̃1(n) = 2n(1 + ε1)
1

ln2+ε−ε1 n
ln(ln n) + 2n

ln(ln1+ε1 n)
ln1+ε1 n

.

Moreover, for any η > 0, we have for x large enough (depending on η) :

ln x
x

6
1

x1−η
.

So, with a good choice of ε1, we can obtain:

w̃1(n) 6 4
n

ln2+ε/2 n
+ 2

n
ln1+ε/2 n

6 6
n

ln1+ε/2 n
.

Let

(2.6) w̃(n) = 15
n

ln1+ε/2 n
,

hence we get:
Un 6 exp(w̃(n)).

Let us now see how to obtain a non zero lower bound.

Case 2. The upper bound of the negative powers of T.

We need to remove a little interval around x0. For a fixed t > 0 and n ∈ N
we work on the two subintervals I1 = [0, x0 − t/n3) and I2 = [x0 + t/n3, 1). We
define the set

(2.7) En,x0,t =
{

x ∈ [0, 1] ; |τ−k(x)− x0| >
t

n3 ∀k = 1, . . . , n
}

,

and Ex0,t =
⋂

n>1
En,x0,t. Note that (Ex0,t)t>0 is decreasing. We have En,x0,t =

n⋂
k=1

En,x0,t,k with En,x0,t,k = {x ∈ [0, 1] ; |τ−k(x) − x0| > t/n3}. Then, using the

measure preserving of τ, we get:

|En,x0,t| = 1− |Ec
n,x0,t| = 1−

∣∣∣ n⋃
k=1

Ec
n,x0,t,k

∣∣∣ > 1− t
n

∑
k=1

2
n3 = 1− 2

t
n2 .

So |Ex0,t| > 1 − ∑
n>1

2t/n2 = 1 − tπ2/3 −−→
t→0

1. We work on Ex0,t. We define

δ1,n, δ2,n > 0 and k1,n, k2,n ∈ N such that

k1,n =
x0 − t

n3

δ1,n
and k2,n =

1−
(
x0 +

t
n3

)
δ2,n

.

We partition the interval I1 with the step size δ1,n, and I2 with the step size δ2,n.
Once again, we denote ∆n = max(δ1,n, δ2,n) and δn = min(δ1,n, δ2,n), but we
assume now that

(2.8) ∆n 6 δn +
1

24 ln3 n
.
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For i = 1, . . . , k1,n and j = 1, . . . , k2,n let

m1
i (x) := ]{1 6 k 6 n ; τ−k(x) ∈ [(k1,n − i)δ1,n, (k1,n − i + 1)δ1,n)}

= ]
{

1 6 k 6 n ; x0 − τ−k(x) ∈
[ t

n3 + (i− 1)δ1,n,
t

n3 + iδ1,n

)}
,

m2
j (x) := ]

{
1 6 k 6 n ; τ−k(x) ∈

[
x0 +

t
n3 + (j− 1)δ2,n, x0 +

t
n3 + jδ2,n

)}
.

We then obtain

Ln,x = en(X0+X′0) ∏
k;τ−k(x)∈I1

(x0 − τ−k(x)) ∏
k;τ−k(x)∈I2

(τ−k(x)− x0)

> en(X0+X′0)
k1,n

∏
i=1

( t
n3 + (i− 1)δ1,n

)m1
i (x)
×

k2,n

∏
j=1

( t
n3 + (j− 1)δ2,n

)m2
j (x)

= en(X0+X′0)
k1,n−1

∏
i=0

( t
n3 + iδ1,n

)m1
i+1(x) k2,n−1

∏
j=0

( t
n3 + jδ2,n

)m2
j+1(x)

.

Using the discrepancy we get, for i = 1, . . . , k1,n and j = 1, . . . , k2,n

m1
i (x)
n
− δ1,n 6 Dn and

m2
j (x)

n
− δ2,n 6 Dn.

Hence,

Ln,x >en(X0+X′0)
[ k1,n−1

∏
i=0

( t
n3 +iδ1,n

)]n(Dn+δ1,n)[ k2,n−1

∏
j=0

( t
n3 + jδ2,n

)]n(Dn+δ2,n)
=Ln.

Let us look at the first term of the product:

Q1=
[ k1,n−1

∏
i=0

( t
n3 +iδ1,n

)]n(Dn+δ1,n)
=
[
δ

k1,n
1,n

( t
n3δ1,n

) k1,n−1

∏
i=1

( t
n3δ1,n

+i
)]n(Dn+δ1,n)

=
[ tδk1,n−1

1,n

n3

Γ
(

t
n3δ1,n

+ k1,n

)
Γ
(

t
n3δ1,n

+ 1
) ]n(Dn+δ1,n)

.

Choose δ1,n such that δ1,nn3 → ∞. Since for all x ∈ [1, 2] Γ(x) 6 1, it comes

Q1 >
( tδk1,n−1

1,n

n3

)n(Dn+δ1,n)
exp

(
n(Dn + δ1,n) ln Γ

( t
n3δ1,n

+ k1,n

))
.

Also, the asymptotical development of the gamma function is:

Γ(x) =
( x

e

)x√
2πx

(
1 +

1
12x

+
1

288x2 −
139

51840x3 + o( 1
x3 )
)

.
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Then this relation and the fact that t/n3δ1,n + k1,n = x0/δ1,n give

ln Γ
( t

n3δ1,n
+ k1,n

)
= ln Γ

( x0

δ1,n

)
> ln

(( x0

δ1,ne

)x0/δ1,n
√

2π
x0

δ1,n

)
= − x0

δ1,n
ln δ1,n − (1− ln x0)

x0

δ1,n
+

1
2

ln(2πx0)−
1
2

ln δ1,n.

Hence we obtain:

Q1 >
( tδk1,n−1

1,n

n3

)n(Dn+δ1,n)
exp

(
n(Dn + δ1,n)

[
−
( x0

δn
+

1
2

)
ln δ1,n

])
× exp

(
n(Dn + δ1,n)

[−X0

δ1,n
+

1
2

ln(2πx0)
])

=
( t

n3

)n(Dn+δ1,n)
exp

([
k1,n −

x0

δn
− 3

2

]
n(Dn + δ1,n) ln δ1,n − X0n

)
× exp

(
− nX0Dn

δ1,n
+

n
2
(Dn + δ1,n) ln(2πx0)

)
=
( t

n3

)n(Dn+δ1,n)
exp

(
− X0n− nX0Dn

δ1,n
+

n
2
(Dn + δ1,n) ln x0

)
× exp

(
−
[ t

n3δ1,n
+

3
2

]
n(Dn + δ1,n) ln δ1,n +

n
2
(Dn + δ1,n) ln(2π)

)
>
( t

n3

)n(Dn+δ1,n)
exp

(
− X0n− nX0Dn

δ1,n
+

n
2
(Dn + δ1,n) ln x0

)
= exp

(
n(Dn + δ1,n) ln

( t
n3

)
− nX0 −

nX0Dn

δ1,n
+

n
2
(Dn + δ1,n) ln x0

)
> exp

(
n(Dn + δ1,n) ln t− nX0 −

nX0Dn

δ1,n
− 2n(Dn + δ1,n) ln n3

)
> exp

(
n(Dn + ∆n) ln t− nX0 −

nX0Dn

δn
− 2n(Dn + ∆n) ln n3

)
.

Doing the same with the second term of the product we get:

Q2 =
[ k2,n−1

∏
k=0

( t
n3 + kδ2,n

)]n(Dn+δ2,n)

> exp
(

n(Dn + ∆n) ln t− nX′0 −
nX′0Dn

δn
− 2n(Dn + ∆n) ln n3

)
.

Therefore it comes:

Ln > exp
(

2n(Dn + ∆n) ln t− 2nDn

δn
− 4n(Dn + ∆n) ln n3

)
,
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and finally we obtain, using also (2.8):

1
Ln

6 exp(−2n(Dn + ∆n) ln t) exp
(

4n(Dn + ∆n) ln n3 +
2nDn

δn

)
6 exp(−2n(Dn + ∆n) ln t) exp

( n
2 ln2 n

+ 4n(Dn + δn) ln n3 +
2nDn

δn

)
.

Set w̃2(n) = 4n(Dn + δn) ln n3 + 2nDn/δn, we want that w̃2(n)/n2 is summable.
This is the case if δn and Dn can be chosen such that

Dn

δn
6

1

ln1+ε n
, (Dn + δn) ln n 6

1
ln1+ε n

,

where ε is an arbitrary positive constant. Thus, if

Dn =
1

ln3+ε n
,

and consequently we choose δn = 1/ ln2+ε1 n with ε1 < ε, then w̃2(n)/n2 is sum-
mable. Moreover, it comes:

1
Ln

6 exp
(
− 3

n
ln2+ε1 n

ln t
)

exp
( n

2 ln2 n
+

25n
2 ln2+ε1 n

+
2n

ln1+ε−ε1 n

)
.

Taking ε1 = ε/2 we get:

1
Ln

6 exp
(
− 3

n
ln2+ε/2 n

ln t
)

exp
(

15
n

ln1+ε/2 n

)
= Cn,t exp(w̃(n)),

with

Cn,t = exp
(
− 1

5
w̃(n) ln t

)
(see (2.6)). We can remark that the cases x0 = 0 and x0 = 1 are included in the
previous work.

Now assume that v(x) = exp(s0(X0 + X′0))(σ0(x− x0))
s0 with σ0(x) = x or

σ0(x) = |x| and s0 > 0, i.e. we allow to have a positive power s0 (note that the
absolute value may be needed for this to make sense for certain powers s0). Then
working as above, we obtain that if the discrepancy of τ satisfies condition (2.2)
then

Un,x 6exp(s0w̃(n)) for all x∈ [0, 1) and
1

Ln,x
6Cs0

n,t exp(s0w̃(n)) for all x∈Ex0,t.

Now, assume more generally that v(x) = exp
( l

∑
i=0

si(Xi + X′i)
) l

∏
i=0

(σi(x − xi))
si

as in (2.1) and (2.4). We denote S =
l

∑
i=0

xi. Then working as above, we get that for

all x ∈ Et =
l⋂

i=0
Exi ,t,

(2.9)
1

Ln,x
6 CS

n,t exp(Sw̃(n)),
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and we still have that |Et| −−→
t→0

1. Furthermore, for all x ∈ [0, 1) we also have

(2.10) Un,x 6 exp(Sw̃(n)).

From now on let w(n) = n/ln1+ε/4 n. Then w is subadditive, satisfies ∑
n>1

w(n)/n2

< ∞, and w̃(n)/w(n) → 0. This last condition implies that, for n large enough,
say n > n(t), we get for x ∈ Et,

(2.11)
1

Ln,x
6 exp(w(n)),

and therefore, for f ∈ Lp([0, 1]) it comes

(2.12) ‖Tn f ‖Lp(Et) 6 exp(w(|n|))‖ f ‖Lp([0,1]) for |n| > n(t).

2.2. DEFINITION OF THE FUNCTIONAL CALCULUS. For φ ∈ Aw and f ∈ Lp([0, 1]),
using Theorem 2.2 we obtain

∑
|n|>n(t)

|φ̂(n)|‖Tn f ‖Lp(Et) 6 ∑
|n|>n(t)

|φ̂(n)|ew(|n|)‖ f ‖Lp([0,1]) < ∞,

which shows that the series ∑
n∈Z

φ̂(n)Tn f converges absolutely in Lp(Et). If φt(T) f

denotes the infinite sum ∑
n∈Z

φ̂(n)Tn f in Lp(Et), then notice that for 0 < t2 <

t1 < 1 we have Et1 ⊂ Et2 and (φt2(T) f )|Et1
= φt1(T) f . Since

∣∣∣ ⋃
0<t<1

Et

∣∣∣ = 1,

we denote by φ(T) f the function defined almost everywhere on [0, 1] such that
(φ(T) f )|Et = φt(T) f for all 0 < t < 1.

We now give a second way of looking at φ(T) f . Let Sm = ∑
|n|6m

φ̂(n)Tn f be

the partial sum of series ∑
n∈Z

φ̂(n)Tn f . We will prove that Sm tends to φ(T) f in

measure. Let (kn) be an increasing subsequence of N and tn ∈ (0, 1) be a decreas-
ing sequence tending to 0, and so Etn ↗ E with |E| = 1. We proved previously
that Sm → φ(T)( f ) in Lp(Et) for all t ∈ (0, 1), and so we can choose inductively
increasing subsequences of positive integers (kn)n ⊇ (k1

n)n ⊇ (k2
n)n ⊇ · · · such

that (Ski
n
)n converges almost everywhere on Eti to the function (φ(T) f )|Eti

for
all i. Thus the “diagonal” subsequence (Skn

n)n converges almost everywhere to
φ(T) f . This proves that every subsequence (Skn)n of (Sn) has a further subse-
quence (Skn

n)n which converges a.e. to the function φ(T) f . Since the measure of
[0, 1] is finite, this proves that (Sn) converges in measure to φ(T) f .

2.3. PROPERTIES OF THE FUNCTIONAL CALCULUS. We will show that the above
functional calculus has enough properties to prove the existence of a hyperinvari-
ant subspace for the operator T. Namely we will prove the following:

PROPOSITION 2.3. The above functional calculus satisfies:
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(i) There exists a non-empty set D ⊂ Lp([0, 1]) \ {0} such that for all φ ∈ Aw and
f ∈ D we have φ(T) f ∈ Lp([0, 1]).

(ii) If φn → φ in Aw and fn → f in Lp([0, 1]) then φn(T) fn → φ(T) f in measure.
(iii) If φn → φ in Aw and f ∈ D then φn(T) f → φ(T) f in Lp([0, 1]).
(iv) If ψ ∈ Aw, f ∈ D and S ∈ {T}′ then ψ(T)(S f ) = S(ψ(T) f ).
(v) If φ, ψ ∈ Aw and f ∈ D then

φ(T)(ψ(T) f ) = (φψ)(T) f .

(vi) If ψ ∈ Aw \ {0} and f ∈ Lp([0, 1]) \ {0} satisfies ψ(T) f ∈ Lp([0, 1]) then
ψ(T) f 6= 0.

Proof. (i) Let Gt = Ec
t =

l⋃
i=0

⋃
n>1

Ec
n,xi ,t, (see (2.7) and (2.1)), we have |Gt| −−→

t→0

0. We consider the two sets

Dt = { f ∈ Lp([0, 1]); f = 0 on Gt} and D =
⋃
t>0

Dt.

We remark that D is dense in Lp([0, 1]) for p < ∞. Fix f ∈ D. There exists t > 0
such that f ∈ Dt. We claim that

(2.13) |T−m f (x)| 6
(

sup
y∈Et

1
Lm,y

)
| f (τ−m(x))| for all m ∈ N and x ∈ [0, 1].

Indeed, if x ∈ Ec
m,xi ,t for some m ∈ N and i ∈ {1, . . . , l} then there exists k ∈

{1, . . . , n} such that |τ−k(x)− xi| < t/m3. But

|τ−k(x)− xi| = |τm−k(τ−m(x))− xi| <
t

m3 <
t

(m− k)3 ,

so τ−m(x) ∈ Ec
m−k,xi ,t

⊂ Gt. Thus f (τ−m(x)) = 0 for x ∈ Ec
m,xi ,t and hence (2.13)

is valid in this case. On the other hand, if x ∈ ⋂
m∈N

l⋂
i=1

Em,xi ,t(= Et) then (2.13) is

valid by (2.12). This finishes the proof of (2.13).
Now (2.13) and (2.11) imply that

(2.14) |T−m f (x)| 6 ew(m)| f (τ−m(x)| for all m > n(t) and x ∈ [0, 1].

Combining (2.13), (2.14) and Theorem 2.2 we obtain that for f ∈ Dt and φ ∈ Aw

∑
m∈Z
|φ̂(m)|‖Tm f ‖Lp([0,1])6

n(t)

∑
m=0
|φ̂(m)|‖Tm‖‖ f ‖Lp([0,1])+

−1

∑
m=−n(t)

|φ̂(m)|sup
x∈Et

1
Ln,x
‖ f ‖Lp([0,1])

+ ∑
|m|>n(t)

|φ̂(m)|ew(m)‖ f ‖Lp([0,1]) < ∞.

Thus the series ∑
m∈Z

φ̂(m)Tm f converges absolutely in Lp([0, 1]) for f ∈ Dt.
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(ii) We have for t ∈ (0, 1)∥∥∥ ∑
|m|>n(t)

φ̂n(m)Tm fn − ∑
|m|>n(t)

φ̂(m)Tm f
∥∥∥

Lp(Et)

6 ∑
|m|>n(t)

|φ̂n(m)− φ̂(m)|‖Tm fn‖Lp(Et) + ∑
|m|>n(t)

|φ̂(m)|‖Tm( fn − f )‖Lp(Et)

6 ∑
|m|>n(t)

|φ̂n(m)−ψ̂(m)|ew(|m|) sup
n
‖ fn‖Lp(Et)+ ∑

|m|>n(t)
|ψ̂(m)|ew(|m|)‖ fn− f ‖Lp([0,1])

6 ‖φn − φ‖Aw sup
n
‖ fn‖Lp(Et) + ‖φ‖Aw‖ fn − f ‖Lp([0,1]) −−−→n→∞

0.

Also,

n(t)

∑
m=0
|φ̂(m)|‖Tm( fn − f )‖Lp(Et) 6

m(t)

∑
m=0
|φ̂(m)|‖Tm‖‖ fn − f ‖Lp([0,1]) −−−→n→∞

0.

Finally, for x ∈ Et we have

n(t)

∑
m=1
|φ̂(−m)||T−m( fn − f )(x)| 6

n(t)

∑
m=1
|φ̂(−m)| 1

Lm,x
|( fn − f )(τ−mx)|

6
n(t)

∑
m=1
|φ̂(−m)|sup

x∈Et

1
Lm,x
|( fn − f )(τ−mx)|,

which converges to 0 in measure as n → ∞. Since |Et| → 1 as t → 0, the above
estimates imply (ii).

(iii) For f ∈ D there exists t > 0 such that f ∈ Dt. So

‖φn(T) f − φ(T) f ‖Lp([0,1])

6 ∑
m∈Z
| ̂(φn − φ)(m)|‖Tm f ‖Lp([0,1])

6
n(t)

∑
m=0
| ̂(φn − φ)(m)|‖Tm‖‖ f ‖Lp([0,1]) +

−1

∑
m=−n(t)

| ̂(φn − φ)(m)| sup
x∈Et

1
Lm,x
‖ f ‖Lp([0,1])

+ ∑
|m|>n(t)

| ̂(φn − φ)(m)|ew(|m|)‖ f ‖Lp([0,1]) (by (2.13), (2.14) and Theorem 2.2)

6 ‖φn − φ‖Aw‖ f ‖Lp([0,1]) −−−→n→∞
0,

which implies (iii).
(iv) and (v) These two equalities are true for trigonometric polynomials.

Since they are dense in Aw, there exist (φn) and (ψn) sequences of trigonometric
polynomials such that φn → φ and ψn → ψ in Aw. By (ii) with fn = f we
have ψn(T)(S f ) → ψ(T)(S f ) in measure and furthermore, by (iii), we have also
S(ψn(T) f )→ S(ψ(T) f ) in Lp([0, 1]). So (iv) is true. Since Aw is a Banach algebra,
we have φnψn → φψ in Aw. By (ii) and (iii) we get that φn(ψn(T) f ) → φ(ψ(T) f )
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in measure, and also by (iii), we have (φnψn)(T) f → (φψ)(T) f in Lp([0, 1]). So
(V) is true.

(vi) We take ψ > 0. Since ψ 6= 0, there exists t0 such that ψ(eit0) > 0, and
by continuity of ψ, there exists an interval I of length δ centered at t0 such that
ψ(eit) > 0 for all t on I. Let Rδ be the rotation of angle δ, and set ψk = ψ ◦ Rk

δ,
i.e. ψk(eit) = ψ(ei(t+kδ)). We recover the circle by successively shifting I by the

rotation Rδ. Then, given N = E(2π/δ) + 1, we have
N
∑

k=0
ψk(eit) > 0 for all t ∈

[0, 2π). So we built a function on Aw, positive on T, and in particular which does
not vanish on T. This function has an inverse Ψ in Aw. We get:

(2.15) Ψ(T)
N

∑
k=0

ψk(T) f = f .

Moreover,

ψ̂k(n) =
1

2π

2π∫
0

ψ(ei(t+kδ))e−intdt =
1

2π

2π∫
0

ψ(eiθ)e−inθeikδdθ = eikδψ̂(n),

hence

ψk(T) f = ∑
n∈Z

ψ̂k(n)Tn f (in measure)

= eikδ ∑
n∈Z

ψ̂(n)Tn f (in measure)

= eikδψ(T) f .

Thus the equality (2.15) becomes( N

∑
k=0

eikδ
)

Ψ(T)ψ(T) f = f ,

which implies, since f is not the zero function, that ψ(T) f 6= 0.

2.4. THE HYPERINVARIANT SUBSPACE. Since the Beurling algebra is regular, there
exist φ, ψ ∈ Aw with ψ, φ > 0, such that φψ = 0. Set

M = { f ∈ Lp([0, 1]) ; φ(T)(S f ) = 0 ∀ S ∈ {T}′},

and Mhi = MLp
. By construction Mhi is closed and hyperinvariant. It remains

to show that Mhi is non trivial. First Mhi 6= Lp([0, 1]). Otherwise, take f ∈
Lp([0, 1]) \ {0}, there exists a sequence fn ∈ M such that fn → f in Lp. Then by
(ii) (and taking S = Id) we obtain φ(T) fn → φ(T) f in measure and so φ(T) f = 0,
which implies a contradiction by (vi). To prove that Mhi 6= {0}, we construct a
non zero element in Mhi. By (i) there exists g ∈ D such that ψ(T)g ∈ Lp([0, 1]).
Then, by (iv) and (v),

φ(T)(Sψ(T)g) = S(φ(T)(ψ(T)g)) = S((φψ)(T)g) = 0.
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This finishes the proof of Theorem 2.1.

REMARK 2.4. Let ∆1, . . . , ∆ p be an arbitrary partition of [0, 1]. We say that c
is a permutation of [0, 1] if c is a transformation on [0, 1] consisting of a rearrange-
ment of these intervals in a different order. For a function f defined on [0, 1], one
may introduce the mixing-class associated to f by

F f := {θ : [0, 1]→ R ; θ(x) = f (c(x)) where c is a permutation of [0, 1]}.

The class Fx is in fact the class of the permutation of [0, 1]. For α ∈ [0, 1], the
function θ(x) = {x + α} belongs to Fx where the permutation c is associated to
the partition [0, 1] = [0, α) ∪ [α, 1). If f is a bijection, θ is too. Our main Theo-
rem 2.1 remains valid for more general weights v, namely if the functions x− xi
(1 6 i 6 l) in the definition of v in (2.1) are replaced by functions θi ∈ Fx−xi . The
spectral radius of the associated operator T does not change in this case and all
the previous estimates are obtained again by working on permuted subintervals
of [0, 1].

3. EXAMPLES OF ERGODIC TRANSFORMS

The most classical example of ergodic transform is the irrational rotation
τα(x) = {x + α}, and we then obtain operator called Bishop-type operator. Davie
[7] first proved that for almost all irrational number, namely the non-Liouville
numbers (they are dense in R with Lebesgue measure equals to 0), the Bishop
operator associated to the weight v(x) = x has a hyperinvariant subspace. A
later result due to MacDonald [13] generalized the previous result to a larger
class of weights but for the same kind of irrational numbers as Davie. Actu-
ally, MacDonald uses a generalization of Wermer’s result due to Atzmon [1],
when the operator T is not invertible (Atzmon’s result is also a generalization
of Beauzamy’s work [2], further discussion of Wermer’s criterion exists in [11]).
In [9], the work of Davie was generalized to a larger class of irrationals, but for the
weight v(x) = xs, with s a positive real. A recent work of Chalendar and Parting-

ton [5] generalize the previous result for weights of the form v(x) =
K
∏

k=1
{x− βk}γk

with γk > 0 for some irrationals (including some Liouville numbers). This oper-
ator includes the product of Bishop-type operators.

We first give sufficient conditions on an irrational number α such that the
discrepancy of the ergodic transformation τα(x) = {x + α} satisfies condition
(2.2) and thus our Theorem 2.1 applies. Recall that for a real number t we denote
by 〈t〉 the distance from t to the nearest integer, i.e. 〈t〉 = min

n∈Z
|t− n|. Also recall

that if ψ is a non-decreasing positive function defined on the positive integers,
then an irrational number α is said to be of type < ψ if q〈qα〉 > 1/ψ(q) for all
q ∈ N. This is a measure of “irrationality” of the number α. The smaller the
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function ψ is, the “farther away” is α from the rationals; the larger the ψ is, the
“closer” α is allowed to be to the rationals. Using results in [12] we can prove the
following:

PROPOSITION 3.1. Let α be an irrational number of type < ψ where ψ(q) =

exp(q1/(3+ε)) for some ε > 0. Then

DN(α) = O
( 1

ln3+ε/3 N

)
.

Proof. In order to prove this proposition we first recall the two lemmas in
p. 122–123 of [12]:

(a) The discrepancy of ω = (nα) satisfies, for any positive integer m,

DN(ω) 6 C
( 1

m
+

1
N

m

∑
h=1

1
h〈hα〉

)
.

(b) Let α be of type < ψ. Then,

m

∑
h=1

1
h〈hα〉 = O

(
ψ(2m) ln m +

m

∑
h=1

ψ(2h) ln h
h

)
.

We remark that the function h 7→ ψ(2h) ln h/h is non-decreasing, so it comes

m

∑
h=1

ψ(2h) ln h
h

6

m+1∫
1

ψ(2h) ln h
h

dh

= O
( m+1∫

1

e(2h)1/(3+ε) 2
3 + ε

(2h)1/(3+ε)−1dh
)
= O(e(2m+2)1/(3+ε)

).

Thus
m

∑
h=1

1
h〈hα〉 = O(em1/(3+ε/2)

) + O(e(2m+2)1/(3+ε)
) = O(em1/(3+ε/2)

),

and therefore we obtain

DN(ω) = O
( 1

m
+

1
N

em1/(3+ε/2)
)

for all positive integers m.

Now choose m=bln3+ε/2(N ln−3−ε/3 N)c to obtain that DN(α)=O(1/ln3+ε/3 N)
and finish the proof of the proposition.

We recall the definition:

DEFINITION 3.2. The irrational number α is a Liouville number if and only if
α is not of type < φ for any power function φ, i.e. of the form φ(q) = qn (where
n is a fixed positive integer). Equivalently, if for all integer n, there exist some
integers p and q with q > 1 satisfying 0 < |α− p/q| < 1/qn.
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Looking closer at the definition of type < ψ, we remark that if α is of type
< ψ then |a− p/q| > 1/(ψ(q)q2) for all p ∈ N. Thus we can use the results in
[9] to estimate the size of the set A of the irrational numbers α of type < ψ where
ψ(q) = exp(q1/(3+ε)) for some ε > 0. We have

PROPOSITION 3.3. For f (x) = 1/ ln8(x/2) the f -Hausdorff measure of Ac is
zero. Furthermore, as soon as g converges faster than f to 0 in 0, we have Hg(Ac) = 0.

And we can give explicit Liouville numbers for which the operator has a
hyperinvariant subspace.

PROPOSITION 3.4. Let b > 2 be an integer, and let (un) be a sequence of positive
integers satisfying, for n large enough, the two conditions

nun +
ln β

ln b
< un+1 with β =

b
b− 1

, un+1 <
bun/(3+ε)

ln b
.

Then the number α = ∑
n>0

1/bun is a Liouville number of type < ψ where ψ(q) =

exp(q1/(3+ε)). For this choice of α we obtain, by Proposition 3.1 and Theorem 2.1, that
T has a nontrivial hyperinvariant subspace.

EXAMPLE 3.5. Taking b = 10 and un = n!, we obtain the classical example
of Liouville number, and for this one the operator T has a nontrivial hyperinvari-
ant subspace.

Using the previous function, we can construct a class of bijective ergodic
transforms such that their discrepancy satisfy the condition (2.2). Indeed, let
τ ∈ Fx and an irrational α ∈ [0, 1], we consider the map σ = τ ◦ τα ◦ τ−1. Since
τ is a bijective measure-preserving map and τα is ergodic, σ is ergodic too. More-
over the discrepancy of σ is the same as the one of τα. This is because for any
subinterval I of [0, 1], τ−1(I) is a finite union of subintervals of [0, 1] having a
total measure the same as the length of I. At last, the map σ is not necessary a
rotation.

In [10] it is proved that for almost every x ∈ R the discrepancy of the se-
quence {2nx} is at most of the order

√
log log N/N. Thus the discrepancy of the

transformation τ : [0, 1] → [0, 1] defined by τ(x) = 2x satisfies condition (2.2).
However this map τ is not 1-1.

4. HIGHER-DIMENSIONAL CASE

The previously described approach allows us to easily extend Theorem 2.1
to the case of weighted composition operators on Lp([0, 1]d) for d a positive inte-
ger. We consider the operator

T : Lp([0, 1]d) → Lp([0, 1]d)
f 7→ v f ◦ τ
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where v ∈ L∞([0, 1]d) and τ is a bijective ergodic transformation on [0, 1]d. We
assume that v and τ can be written as

v(x) =
d

∏
i=1

vi(xi) and τ(x) = (τ1(x1), . . . , τd(xd)),

where vi ∈ P for all i ∈ {1, . . . , d}. Such an example τ of ergodic transformation
is the rotation on the d-dimensional torus with angle α = (α1, . . . , αd), defined by

τ : [0, 1]d → [0, 1]d

x = (x1, . . . , xd) 7→ ({x1 + α1}, . . . , {xd + αd}).

A vector α = (α1, . . . , αd) is said irrational if 1, α1, . . . , αd are linearly independent
over Q, and if α is irrational, then the rotation τ is known to be uniquely ergodic
so in particular ergodic. For this ergodic transform it was proved in [4] that the
operator has no eigenvalues for all irrational α, but it was not known about the
existence of hyperinvariant subspaces. Also, MacDonald extends in [14] his first
work to obtain hyperinvariant subspace for some Bishop-type operator with a
non-vanishing weight v and an irrational rotation τ.

In order to apply the previous work, we remark that the only change is
in the bounds of Tn, but considering these ergodic transformation and weight
allows to easily obtain that

‖Tn f ‖Lp([0,1]d) 6 edw(n)‖ f ‖Lp([0,1]d) for n > 0,

‖Tn f ‖Lp(Et) 6 Cd
n,te

dw(n)‖ f ‖Lp([0,1]d) for n < 0,

where Et is defined as before but En,x0,t becomes

En,x0,t =
{

x ∈ [0, 1]d ; |τ−k
i (x)− x0| >

t
n3 ∀k = 1, . . . , n, i = 1, . . . , d

}
,

and assuming that

sup
16i6d

Di,n = O
( 1

ln3+ε n

)
for some ε > 0,

where Di,n denotes the discrepancy associated to τi. Under these assumptions we
obtain the existence of a hyperinvariant subspace for this operator.

REMARK 4.1. (i) Theorem 2.1 should remain valid for more general weights
v where the functions x − xi in (2.1) are replaced by any function whose graph
is the union of linear segments. However, some of the above calculations may
become more technical when somebody tries to complete this task.

(ii) In the higher-dimensional case, our main Theorem 2.1 (and the scheme
of our proof) should remain valid when one considers more general maps τ :
[0, 1]d → [0, 1]d, where the discrepancy is defined by replacing [α, β) in (1.1)
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by
d

∏
k=1

[αi, βi). In that case, one should need to create grids of [0, 1]d using d-

dimensional cubes in order to obtain the bounds of Tn for n ∈ Z. However, this
may make the proof and the notation more tedious.
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