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ABSTRACT. We consider Hankel operators on the Segal–Bargmann space
H2(Cn, dµ). We obtain necessary and sufficient conditions for the simulta-
neous membership of H f and H f in the Schatten class Sp for 0 < p < 1. In
particular, we show that the necessary and sufficient conditions obtained by
J. Xia and D. Zheng for the case 1 6 p < ∞ extends to the case 0 < p < 1.
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1. INTRODUCTION

Let dµ be the normalized Gaussian measure on Cn centered at 0, so that

dµ(z) = π−ne−|z|
2
dV(z).

Recall that the Segal–Bargmann space H2(Cn, dµ) is defined as { f ∈ L2(Cn, dµ) :
f is analytic on Cn}. It is well known that

{(k1! · · · kn!)−1/2zk1
1 · · · z

kn
n : k1 > 0, . . . , kn > 0}

forms an orthonormal basis for H2(Cn, dµ) and that the orthogonal projection
P : L2(Cn, dµ) → H2(Cn, dµ) is an integral operator on L2(Cn, dµ) with kernel
e〈z,w〉. Here and in what follows, we write

〈z, w〉 = z1w1 + · · ·+ znwn.

For each ν ∈ Cn, let τν : Cn → Cn be the translation

τν(w) = w + ν w ∈ Cn,
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and define

T (Cn) = { f ∈ L2(Cn, dµ) : f ◦ τν ∈ L2(Cn, dµ) for every ν ∈ Cn}.
It is easy to see that a measurable function f on Cn belongs to T (Cn) if and

only if the function w 7→ f (w)e〈w,ν〉 belongs to L2(Cn, dµ) for every ν ∈ Cn. This
means that if f ∈ T (Cn), then the set {h ∈ H2(Cn, dµ) : f h ∈ L2(Cn, dµ)} is a
dense, linear subspace of H2(Cn, dµ).

Recall that the Hankel operator H f : L2(Cn, dµ)→ L2(Cn, dµ) with symbol
f is defined by the formula

H f = (I − P)M f P.

Thus, if f ∈ T (Cn), then H f has at least a dense domain in L2(Cn, dµ).
Given a ϕ ∈ L2(Cn, dµ), let SD(ϕ) denote its standard deviation with re-

spect to the probability measure dµ, which is defined by

SD(ϕ) =
{ ∫ ∣∣∣ϕ− ∫ ϕdµ

∣∣∣2dµ
}1/2

=
{ ∫
|ϕ|2dµ−

∣∣∣ ∫ ϕdµ
∣∣∣2}1/2

.

When f ∈ T (Cn), it was shown in [1] that H f and H f are simultaneously bounded
if and only if ξ 7→ SD( f ◦ τξ) is a bounded function on Cn, and H f and H f are
simultaneously compact if and only if lim

|ξ|→∞
SD( f ◦ τξ) = 0 (it should be noted

that the later was proved in [2] for bounded measurable symbols, where in this
setting, it was also proved that H f is compact if and only if H f is compact). There-
fore, for f ∈ T (Cn), it is reasonable to think that the simultaneous Schatten p
class membership of H f and H f for 1 6 p < ∞ would be characterized by an Lp

condition involving the standard deviation. In fact, it was shown in [6] that for
f ∈ T (Cn) and 1 6 p < ∞, H f and H f are simultaneously members of Sp if and
only if ∫

Cn

{SD( f ◦ τξ)}pdV(ξ) < ∞.

With this in mind, the following is the main result of this paper.

THEOREM 1.1. Let 0 < p < 1 and f ∈ T (Cn). Let H f and H f be the correspond-
ing Hankel operators from L2(Cn, dµ) to L2(Cn, dµ). Then we have the simultaneous
membership of H f and H f in Sp if and only if∫

Cn

{SD( f ◦ τξ)}pdV(ξ) < ∞.

In particular, we will show that the quantity
∫
Cn
{SD( f ◦ τξ)}pdV(ξ) is com-

parable to ‖H f ‖Sp + ‖H f ‖Sp with a constant that is independent of f .
We close this section with a sketch of the proof. The sufficiency direction is

proved by an argument that is identical to the proof for the case 1 6 p < 2, and
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so we refer the reader to [6] for the details (more precisely, the proof follows from
standard reproducing kernel Hilbert space techniques that are specialized to the
Segal–Bargmann space.) For the other direction, let Z2n be treated as a lattice in
Cn. We will first prove that

∫
Cn

{SD( f ◦ τξ)}pdV(ξ) 6 C ∑
b∈ 1

N Z2n

{ ∫
QN

∫
QN

| f (z + b)− f (w + b)|2dV(w)dV(z)
}p/2

where QN is the cube [− 1
N , 2

N )2n in R2n and C depends only on n, N, and p. The
proof is very similar to the proof of Lemma 3.4 in [6], though we include it for the
sake of the reader. We will next show that for large enough N and each b ∈ 1

NZ2n,

∫
QN

∫
QN

| f (z + b)− f (w + b)|2dV(w)dV(z)

6 C
∫

QN+b

∣∣∣ ∫
QN+b

( f (z)− f (w))e〈z,w〉e−|w|
2/2e−iIm〈b,w〉dV(w)

∣∣∣2e−|z|
2
dV(z)

where C only depends on n, N, and p. To prove this, we will make crucial use of
the fact that N is chosen to be sufficiently large, and it is for this reason alone that
we work with the lattice 1

NZ2n rather than Z2n.
Next, it is easy to see that H f and H f are both in Sp for all 0 < p < ∞ if and

only if the first order commutator [M f , P] is in Sp. With this in mind, we will fix
some N large enough and estimate ‖W‖Sp directly, where W = A[M f , P]B and
where A and B are some bounded operators that will depend on our fixed N. This
will be done by the standard general method employed to handle estimating the
Schatten p quasinorm of special classes of integral operators for 0 < p < 1 (for
example, see [4] and [5]). For each M ∈ N, we will first appropriately decompose
1
NZ2n as the disjoint union of lattices {ΛM

j }j∈{1,...,M}2n , and analogously decom-
pose W =

⊕
j∈{1,...,M}2n

Wj. We will break up each Wj = Dj + Ej where Dj is a diago-

nal operator and Ej is an off-diagonal operator, so that ‖Wj‖
p
Sp

> ‖Dj‖
p
Sp
−‖Ej‖Sp .

Finally, we will show that our choices of A and B, and the results from above, give
us that ∑

j∈{1,...,M}2n
‖Dj‖

p
Sp

is bounded below by C
∫
Cn
{SD( f ◦ τξ)}pdV(ξ), and that

∑
j∈{1,...,M}2n

‖Ej‖
p
Sp

is bounded above by CM
∫
Cn
{SD( f ◦ τξ)}pdV(ξ), where C > 0

is a constant that only depends on n, N and p, and CM is a constant depending
on n, N, p, and M with lim

M→∞
CM = 0. Thus, with this fixed N, we can complete

the proof by setting M large enough.
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2. PRELIMINARIES

For each N ∈ N, let 1
NZ2n denote the set {( k1

N , . . . , k2n
N ) ∈ R2n : ki ∈ Z}. A

subset S = {p0, . . . , pk} of 1
NZ2n with k > 1 is said to be a discrete segment in 1

NZ2n

if there exists j ∈ {1, . . . , 2n} and z ∈ Z2n such that

pi = z +
i
N

ej, 0 6 i 6 k

where ej is the standard j th basis vector of R2n. In this setting, we say that p0
and pk are the endpoints of S. Also, we define the length of S to be |S| = k. Let

ν = ( ν1
N , . . . , ν2n

N ) and ν′ = (
ν′1
N , . . . , ν′2n

N ) be elements of 1
NZ2n where ν 6= ν′. We

can enumerate the integers {j : νj 6= ν′j , 1 6 j 6 2n} as j1, . . . , jm in ascending
order, so that j1 < · · · < jm when m > 1. Set z0(ν, ν′) = ν, and inductively define

zt(ν, ν′) = zt−1(ν, ν′) +
ν′jt
−νjt
N ejt for t ∈ {1, . . . , m}. Note that zm(ν, ν′) = ν′. Let

St(ν, ν′) be the discrete segment in 1
NZ2n which has zt−1(ν, ν′) and zt(ν, ν′) as its

endpoints. The union of the discrete segments S1(ν, ν′), . . . , Sm(ν, ν′) will be de-
noted by Γ(ν, ν′). We call Γ(ν, ν′) the discrete path in 1

NZ2n from ν to ν′. Further-
more, we define the length |Γ(ν, ν′)| of Γ(ν, ν′) to be |S1(ν, ν′)|+ · · ·+ |Sm(ν, ν′)|.
That is, the length of Γ(ν, ν′) is just the sum of the lengths of the discrete segments
which make up Γ(ν, ν′). If ν′ = 0, we let Γ(ν) denote Γ(ν, ν′). In the case ν = ν′,
we define the discrete path from ν to ν to be the singleton set Γ(ν, ν) = {ν}.

Let SN denote the cube SN = [0, 1
N )2n and let QN be the cube [− 1

N , 2
N )2n.

For any f ∈ L2
loc(C

n, dV), write

JN( f ) =
∫

QN

∫
QN

| f (z)− f (w)|2dV(z)dV(w).

If E is a Borel set with 0 < V(E) < ∞, we will denote the mean value of f
on E by fE. That is,

fE =
1

V(E)

∫
E

f dV.

Universal constants will be denoted by C1, C2, . . . and will represent differ-
ent values in the proofs of different results. To keep better track of the dependence
of the various constants encountered, we will use subscripts to denote what a
particular constant depends on (though we implicitly assume that all universal
constants may depend on n and p).

Finally, we conclude this section by reviewing some necessary facts about
Schatten class ideals, all of which can be found in [3]. Recall that for any 0 < p <
∞, the Schatten p class Sp ⊂ B(H) consists of operators T satisfying the condition
‖T‖Sp < ∞, where ‖ · ‖Sp is defined by

‖T‖Sp = {tr(|T|p)}1/p = {tr((T∗T)p/2)}1/p.
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When p > 1, ‖ · ‖Sp defines a norm. However, when 0 < p < 1, ‖ · ‖Sp only
defines a quasinorm, which means that we have the following:

LEMMA 2.1. If 0 < p < 1, then for any Schatten p class operators T and S, we
have that

‖T + S‖p
Sp

6 ‖T‖p
Sp

+ ‖S‖p
Sp

.

For all 0 < p < ∞, it is well known that Sp is a two sided ideal of the ring
of bounded operators B(H). More precisely, if A, B ∈ B(H) and T ∈ Sp, then
ATB ∈ Sp with

‖ATB‖Sp 6 ‖A‖Op‖T‖Sp‖B‖Op.

If 0 < p 6 2, then for any T ∈ Sp and any orthonormal basis { fn} of H
(where H is a separable Hilbert space), we have that

‖T‖p
Sp

6
∞

∑
n=1

∞

∑
k=1
|〈T fn, fk〉|p.

3. MAIN RESULT : NECESSITY FOR 0 < p < 1.

We will now follow the outline discussed in the introduction. As stated
before, the details for sufficiency can be found in [6]. The results and proofs of the
next three lemmas are very similar to Lemmas 3.2–3.4 in [6], though we include
proofs for the sake of the reader.

LEMMA 3.1. For any f ∈ L2
loc(C

n, dV) and ν ∈ 1
NZ2n, we have∫

SN

| f ◦ τν − fSN |
2dV 6

(
N2n + 2

N4n

32n |Γ(ν)|
)

∑
a∈Γ(ν)

JN( f ◦ τa).(3.1)

Proof. The case ν = 0 is trivial. If ν 6= 0, enumerate the points in Γ(ν) as
a0, a1, . . . , a` with ` = |γ(ν)| in such a way that a0 = 0, a` = ν, and

{SN + aj−1} ∪ {SN + aj} ⊂ QN + aj−1, 1 6 j 6 `.

By the triangle inequality,

|( f ◦ τaj)SN − ( f ◦ τaj−1)SN |
6 |( f ◦ τaj)SN − ( f ◦ τaj−1)QN |+ |( f ◦ τaj−1)QN − ( f ◦ τaj−1)SN |(3.2)

for any 1 6 j 6 `. Since V(SN + aj) =
1

N2n and SN + aj ⊂ QN + aj−1, we have

|( f ◦τaj)SN−( f ◦τaj−1)QN |
2=N4n

∣∣∣ ∫
SN+aj

{ f − fQN+aj−1}dV
∣∣∣2
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6N2n
∫

QN+aj−1

| f − fQN+aj−1 |
2dV

=N2n
∫

QN

| f ◦τaj−1−( f ◦τaj−1)QN |
2dV=

1
2

N4n

32n JN( f ◦τaj−1).

Similarly,

|( f ◦ τaj−1)QN − ( f ◦ τaj−1)SN |
2 6

1
2

N4n

32n JN( f ◦ τaj−1).

Thus, by (3.2),

|( f ◦ τaj)SN − ( f ◦ τaj−1)SN | 6
N4n

32n JN( f ◦ τaj−1) 1 6 j 6 `.(3.3)

Now, ∫
SN

| f ◦τν− fSN |
2dV62

∫
SN

{| f ◦τν−( f ◦τν)SN |
2+|( f ◦τν)SN− fSN |

2}dV.(3.4)

However,

2
∫

SN

| f ◦ τν − ( f ◦ τν)SN |
2dV =

1
V(SN)

∫
SN

∫
SN

| f (w + ν)− f (z + ν)|2dV(w)dV(z)

6
1

V(SN)
JN( f ◦ τν) = N2n JN( f ◦ τa`)

and by (3.3),

|( f ◦ τν)SN − fSN |
2 = |( f ◦ τa`)SN − ( f ◦ τa0)SN |

2

6
{ `

∑
j=1
|( f ◦ τaj)SN − ( f ◦ τaj−1)SN |

}2
(3.5)

6 `
`

∑
j=1
|( f ◦ τaj)SN − ( f ◦ τaj−1)SN |

2 6 `
N4n

32n

`

∑
j=1

JN( f ◦ τaj−1).

But ` = |Γ(ν)|, so that (3.1) follows from (3.4) and (3.5).

LEMMA 3.2. For f ∈ T (Cn), there exists CN > 0 such that

sup
z∈SN

∫
Cn

∣∣∣ f ◦ τz −
∫
Cn

f ◦ τzdµ
∣∣∣2dµ 6 CN ∑

ν∈ 1
N Z2n

∑
a∈Γ(ν)

e−|ν|
2/3 JN( f ◦ τa).(3.6)
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Proof. For any z ∈ SN , we have

∫
Cn

∣∣∣ f ◦ τz −
∫
Cn

f ◦ τzdµ
∣∣∣2dµ 6

∫
Cn

| f ◦ τz − fSN |
2dµ

= ∑
ν∈ 1

N Z2n

1
πn

∫
SN+ν

| f (w)− fSN |
2e−|w−z|2dV(w)

= ∑
ν∈ 1

N Z2n

1
πn

∫
SN

|( f ◦ τν)(w)− fSN |
2e−|(w−z)+ν|2dV(w)(3.7)

6 ∑
ν∈ 1

N Z2n

d(ν)
πn

∫
SN

| f ◦ τν − fSN |
2dV,

where d(ν) = exp
{
− inf

w,ξ∈SN
|(w − ξ) + ν|2

}
. Since |(w − ξ) + ν|2 > |ν|2 +

|w − ξ|2 − 2|w − ξ||ν| > |ν|2
2 − |w − ξ|2, there exists C1

N > 0 such that d(ν) 6

C1
Ne−|ν|

2/2. Obviously, N|ν| dominates the length of every discrete segment in
Γ(ν), so that |Γ(ν)| 6 2nN|ν|. Therefore, we have that

(
N2n + 2

N4n

32n |Γ(ν)|
)

d(ν) 6 C1
N

(
N2n + 4n

N4n+1

32n |ν|
)

e−|ν|
2/2 6 C2

Ne−|ν|
2/3

and so (3.6) follows from the above inequality and plugging (3.1) into (3.7).

LEMMA 3.3. For 0 < p 6 2 and f ∈ T (Cn), there exists CN > 0 such that∫
Cn

{SD( f ◦ τξ)}pdV(ξ) 6 CN ∑
b∈ 1

N Z2n

{JN( f ◦ τb)}p/2.

Proof. Since
⋃

u∈ 1
N Z2n
{SN + u} = Cn and V(SN + u) = 1

N2n , it is enough to

show that

∑
u∈ 1

N Z2n

sup
z∈SN+u

{SD( f ◦ τz)}p = ∑
u∈ 1

N Z2n

sup
z∈SN

{SD( f ◦ τz ◦ τu)}p

6 CN ∑
b∈ 1

N Z2n

{JN( f ◦ τb)}p/2.

Since 0 < p 6 2, Hölder’s inequality applied to (3.6) gives that

sup
z∈SN

{SD( f ◦ τu ◦ τz)}p 6 C1
N ∑

ν∈ 1
N Z2n

∑
a∈Γ(ν)

e−p|ν|2/6{JN( f ◦ τu ◦ τa)}p/2.
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Since τu ◦ τa = τu+a, we have

∑
u∈ 1

N Z2n

sup
z∈SN

{SD( f ◦ τu ◦ τz)}p6C1
N ∑
u∈ 1

N Z2n
∑

ν∈ 1
N Z2n

∑
a∈Γ(ν)

e−p|ν|2/6{JN( f ◦ τu+a)}p/2

=C1
N ∑

ν∈ 1
N Z2n

e−p|ν|2/6 ∑
a∈Γ(ν)

∑
u∈ 1

N Z2n

{JN( f ◦ τu+a)}p/2

=C1
N ∑

ν∈ 1
N Z2n

e−p|ν|2/6card(Γ(ν)) ∑
b∈ 1

N Z2n

{JN( f ◦ τb)}p/2.

Since card(Γ(ν)) = 1 + |Γ(ν)| 6 1 + 2nN|ν|, it is clear that Lemma 3.3 holds.

LEMMA 3.4. There exists N ∈ N and CN > 0 such that for any f ∈ L2
loc(C

n)

and ν ∈ 1
NZ2n , we have∫

QN+ν

∣∣∣ ∫
QN+ν

( f (z)− f (w))e〈z,w〉e−|w|
2/2e−iIm〈ν,w〉dV(w)

∣∣∣2e−|z|
2
dV(z)>CN JN( f ◦τν).

Proof. Since

e−|z|
2/2e〈z,w〉e−|w|

2/2 = e−|z|
2/2e〈z,w〉/2e〈z,w〉/2e−|w|

2/2

= e−|z|
2/2|e〈z,w〉/2|2e−|w|

2/2eiIm〈z,w〉 = e−|z−w|2/2eiIm〈z,w〉,

we have that∫
QN+ν

∣∣∣ ∫
QN+ν

( f (z)− f (w))e〈z,w〉e−|w|
2/2e−iIm〈ν,w〉dV(w)

∣∣∣2e−|z|
2
dV(z)

=
∫

QN+ν

∣∣∣ ∫
QN+ν

( f (z)− f (w))e−|z−w|2/2eiIm〈z,w〉e−iIm〈ν,w〉dV(w)
∣∣∣2dV(z)

=
∫

QN

∣∣∣ ∫
QN

( f ◦ τν(z)− f ◦ τν(w))e−|z−w|2/2eiIm〈z,w〉dV(w)
∣∣∣2dV(z).

Pick some δ > 0 to be determined, and pick N large enough so that

e−|z−w|2/2eiIm〈z,w〉 = 1 + γz,w(3.8)

where |γz,w| < δ for any (z, w) ∈ QN ×QN . This implies that if z ∈ QN , then(∣∣∣ ∫
QN

( f ◦ τν(z)− f ◦ τν(w))dV(w)
∣∣∣− ∣∣∣ ∫

QN

( f ◦ τν(z)− f ◦ τν(w))γz,wdV(w)
∣∣∣)2

>
∣∣∣ ∫
QN

( f ◦ τν(z)− f ◦ τν(w))dV(w)
∣∣∣2

− 2
∣∣∣ ∫
QN

( f ◦ τν(z)− f ◦ τν(w))dV(w)
∣∣∣∣∣∣ ∫

QN

( f ◦ τν(z)− f ◦ τν(w))γz,wdV(w)
∣∣∣
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>
∣∣∣ ∫
QN

( f ◦ τν(z)− f ◦ τν(w))dV(w)
∣∣∣2 − 2δ

( ∫
QN

| f ◦ τν(z)− f ◦ τν(w)|dV(w)
)2

.

Therefore, (3.8) and the triangle inequality implies that∫
QN

∣∣∣ ∫
QN

( f ◦τν(z)− f ◦τν(w))e−|z−w|2/2eiIm〈z,w〉dV(w)
∣∣∣2dV(z)

>
∫

QN

[∣∣∣∫
QN

( f ◦τν(z)− f ◦τν(w))dV(w)
∣∣∣2(3.9)

−2δ
(∫
QN

| f ◦τν(z)− f ◦τν(w)|dV(w)
)2]

dV(z).

However,

1
(V(QN))2

∫
QN

∣∣∣ ∫
QN

( f ◦ τν(z)− f ◦ τν(w))dV(w)
∣∣∣2dV(z)

=
∫

QN

| f ◦ τν − ( f ◦ τν)QN |
2dV(3.10)

=
1

2V(QN)

∫
QN

∫
QN

| f ◦ τν(z)− f ◦ τν(w)|2dV(w)dV(z)

so that∫
QN

∣∣∣ ∫
QN

( f ◦ τν(z)− f ◦ τν(w))dV(w)
∣∣∣2dV(z)

=
1
2

V(QN)
∫

QN

∫
QN

| f ◦ τν(z)− f ◦ τν(w)|2dV(w)dV(z)(3.11)

whereas the Cauchy–Schwarz inequality gives us∫
QN

( ∫
QN

| f ◦ τν(z)− f ◦ τν(w)|dV(w)
)2

dV(z)

6 V(QN)
∫

QN

∫
QN

| f ◦ τν(z)− f ◦ τν(w)|2dV(z)dV(w).(3.12)

Finally, plugging (3.11) and (3.10) into (3.9) gives us that∫
QN

∣∣∣ ∫
QN

( f ◦ τν(z)− f ◦ τν(w))e−|z−w|2/2eiIm〈z,w〉dV(w)
∣∣∣2dV(z)
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>
(1

2
− 2δ

)
V(QN)

∫
QN

∫
QN

| f ◦ τν(z)− f ◦ τν(w)|2dV(w)dV(z)

=
32n

N2n

(1
2
− 2δ

) ∫
QN

∫
QN

| f ◦ τν(z)− f ◦ τν(w)|2dV(w)dV(z)

since V(QN) = 32n

N2n . Therefore, picking 0 < δ < 1
4 and N corresponding to δ

completes the proof of Lemma 3.4.

4. PROOF OF THE MAIN RESULT

We can now prove our main result.

THEOREM 4.1. Let 0 < p < 1 and f ∈ T (Cn). If H f and H f ∈ Sp, then there
exists a constant C > 0 independent of f such that∫

Cn

{SD( f ◦ τξ)}pdV(ξ) < C(‖H f ‖
p
Sp

+ ‖H f ‖
p
Sp
).

Proof. Fix N ∈ N such that Lemma 3.4 holds. For M ∈ N to be deter-
mined later and each j = (j1, . . . , j2n) ∈ {1, . . . , M}2n , set ΛM

j =
{

ν ∈ 1
NZ2n :

ν = ( 1
N ν1, . . . , 1

N ν2n) with each ν` ≡ j` mod M
}

. Since [M f , P] = [M f , P]P +

[M f , P](I − P) = H f − (H f )
∗, we have that [M f , P] ∈ Sp with ‖[M f , P]‖p

Sp
6

‖H f ‖
p
Sp

+ ‖H f ‖
p
Sp

.

Let {eν}ν∈ΛM
j

be an orthonormal basis for L2(Cn, dµ). Let

hν(w) = e|w|
2/2e−iIm〈ν,w〉χQN+ν(w) and ξν(z) =

χQN+ν(z)([M f , P]hν(z))
‖χQN+ν[M f , P]hν‖ .

Set Wj = A∗j [M f , P]Bj where Ajeν = ξν and Bjeν = hν, so that

∑
j∈{1,...,M}2n

‖Wj‖
p
Sp

6 M2n 3np

Nnp ‖[M f , P]‖p
Sp

6 M2n 3np

Nnp (‖H f ‖
p
Sp

+ ‖H f ‖
p
Sp
).(4.1)

Fix R ∈ N and let Z = {ν = (ν1, . . . , ν2n) ∈ 1
NZ2n where each |νi| 6 R} so that

for any ν, ν′ ∈ Z, we have Γ(ν, ν′) ⊂ Z. Let Zj = ΛM
j ∩ Z and let PZj denote

the orthogonal projection onto span{eν : ν ∈ Zj}, so that clearly PZjWjPZj f =

∑
ν,ν̃∈Zj

〈 f , eν〉〈Wjeν, eν̃〉eν̃. Let Dj be defined by Dj f = ∑
ν∈Zj

〈 f , eν〉〈Wjeν, eν〉eν and

set Ej = PZjWjPZj − Dj so that ‖Wj‖
p
Sp

> ‖PZjWjPZj‖
p
Sp

> ‖Dj‖
p
Sp
− ‖Ej‖

p
Sp

.
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Thus, since Dj is diagonal, we have that

‖Dj‖
p
Sp
=∑

ν∈Zj

|〈A∗j [M f , P]Bjeν, eν〉|p = ∑
ν∈Zj

‖χQN+ν[M f , P]hν‖p

=∑
ν∈Zj

( ∫
QN+ν

∣∣∣ ∫
QN+ν

( f (z)− f (w))e〈z,w〉e−|w|
2/2e−iIm〈ν,w〉dV(w)

∣∣∣2e−|z|2dV(z)
)p/2

(4.2)

>C1
N ∑

ν∈Zj

{JN( f ◦ τν)}p/2,

where the last inequality follows from Lemma 3.4.
We now get a upper bound for ‖Ej‖

p
Sp

. Since 0 < p < 1, we have that

‖Ej‖
p
Sp
6 ∑

ν∈ΛM
j

∑
ν′∈ΛM

j

|〈Ejeν, eν′〉|p = ∑
ν∈Zj

∑
ν′∈Zj
ν′ 6=ν

|〈Ejeν, eν′〉|p

=∑
ν∈Zj

∑
ν′∈Zj
ν′ 6=ν

∣∣∣ 〈[M f , P]hν, χQN+ν′ [M f , P]hν′〉
‖χQN+ν′ [M f , P]hν′‖

∣∣∣p
6 ∑

ν∈Zj

∑
ν′∈Zj
ν′ 6=ν

‖χQN+ν′ [M f , P]hν‖p(4.3)

=∑
ν∈Zj

∑
ν′∈Zj
ν′ 6=ν

( ∫
QN+ν′

∣∣∣ ∫
QN+ν

( f (z)− f (w))e〈z,w〉e−|w|
2/2

e−iIm〈ν,w〉dV(w)
∣∣∣2e−|z|2dV(z)

)p/2
.

But by the Cauchy–Schwarz inequality, we have that

∑
ν∈Zj

∑
ν′∈Zj
ν′ 6=ν

( ∫
QN+ν′

∣∣∣ ∫
QN+ν

( f (z)− f (w))e〈z,w〉e−|w|
2/2eiIm〈ν,w〉dV(w)

∣∣∣2e−|z|
2
dV(z)

)p/2

6
3np

Nnp ∑
ν∈Zj

∑
ν′∈Zj
ν′ 6=ν

( ∫
QN+ν′

∫
QN+ν

| f (z)− f (w)|2e−|z|
2

|e〈z,w〉|2e−|w|
2
dV(w)dV(z)

)p/2

=
3np

Nnp ∑
ν∈Zj

∑
ν′∈Zj
ν′ 6=ν

( ∫
QN+ν′

∫
QN+ν

| f (z)− f (w)|2e−|z−w|2dV(w)dV(z)
)p/2
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6e−(np/4)((M−3)/N)2 3np

Nnp(4.4)

∑
ν∈Zj

∑
ν′∈Zj
ν′ 6=ν

( ∫
QN+ν′

∫
QN+ν

| f (z)− f (w)|2e−|z−w|2/2dV(w)dV(z)
)p/2

6C2
Ne−(np/4)((M−3)/N)2

∑
ν∈Zj

∑
ν′∈Zj
ν′ 6=ν

e−p|ν−ν′ |2/5

(∫
QN

∫
QN

| f ◦τν′(z)− f ◦τν(w)|2dV(w)dV(z)
)p/2

.

Now, if z and w are both in QN , then enumerating the points in Γ(ν′, ν) ⊂ Z as
{a0, . . . , a`} in such a way that a0 = ν′ and a` = ν,

{SN + aj−1} ∪ {SN + aj} ⊂ QN + aj−1, 1 6 j 6 `,

we have that

| f ◦ τν′(z)− f ◦ τν(w)|
6| f ◦τν′(z)−( f ◦τν′)QN |+|( f ◦τν)QN− f ◦τν(w)|(4.5)

+
`

∑
j=1
|( f ◦τaj−1)QN−( f ◦τaj)QN |.

However,

| f ◦τν′(z)−( f ◦τν′)QN |+
`

∑
j=1
|( f ◦τaj−1)QN−( f ◦ τaj)QN |+|( f ◦τν)QN− f ◦τν(w)|

6 {2nN|ν− ν′|+ 2}1/2(| f ◦ τν′(z)− ( f ◦ τν′)QN |
2 + |( f ◦ τν)QN − f ◦ τν(w)|2

+
`

∑
j=1
|( f ◦ τaj−1)QN − ( f ◦ τaj)QN |

2)1/2

which means that( ∫
QN

∫
QN

| f ◦ τν′(z)− f ◦ τν(w)|2dV(w)dV(z)
)p/2

6
3np

Nnp

(
(2nN|ν− ν′|+ 2)

∫
QN

| f ◦ τν′ − ( f ◦ τν′)QN |
2dV

)p/2

+
32np

N2np

(
(2nN|ν− ν′|+ 2)

`

∑
j=1
|( f ◦ τaj−1)QN − ( f ◦ τaj)QN |

2
)p/2

(4.6)

+
3np

Nnp

(
(2nN|ν− ν′|+ 2)

∫
QN

| f ◦ τν − ( f ◦ τν)QN |
2dV

)p/2
.
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Now plug the first term of (4.4) into (4.3) and noting that

{2nN|ν− ν′|+ 2}p/2e−p|ν−ν′ |2/5 6 C5
Ne−p|ν−ν′ |2/6,

we get

C6
Ne−(np/4)((M−3)/N)2

∑
ν∈Zj

∑
ν′∈Zj
ν′ 6=ν

e−p|ν−ν′ |2/5

(
(2nN|ν−ν′|+2)

∫
QN

| f ◦τν′−( f ◦τν′)QN |
2dV

)p/2

6 C7
Ne−(np/4)((M−3)/N)2

∑
ν∈Zj

∑
ν′∈Zj
ν′ 6=ν

e−p|ν−ν′ |2/6(4.7)

( ∫
QN

| f ◦ τν′ − ( f ◦ τν′)QN |
2dV

)p/2

= C8
Ne−(np/4)((M−3)/N)2

∑
ν′∈Zj

( ∫
QN

| f ◦ τν′ − ( f ◦ τν′)QN |
2dV

)p/2

= C9
Ne−(np/4)((M−3)/N)2

∑
ν′∈Zj

{JN( f ◦ τν′)}p/2

and by symmetry, we get the exact same estimate by plugging the third term of
(4.4) into (4.3).

Now we plug in the second term of (4.4) into (4.3). Since 0 < p 6 1, we
only need to estimate the quantity

e−(np/4)((M−3)/N)2
∑

ν∈Zj

∑
ν′∈Zj
ν′ 6=ν

`(ν′ ,ν)

∑
j=1

e−p|ν−ν′ |2/6|( f ◦ τaj−1)QN − ( f ◦ τaj)QN |
p(4.8)

where for each ν′ and ν in the above sum, Γ(ν′, ν) = {a0, . . . , a`(ν′ ,ν)}.
As in the computation from equation (3.3), we have

|( f ◦ τaj−1)QN − ( f ◦ τaj)QN |
p = | fQN+aj−1 − fQN+aj |

p

6 | fQN+aj−1 − fSN+aj |
p + | fSN+aj − fQN+aj |

p

6 C10
N [(JN( f ◦ τaj−1))

p/2 + (JN( f ◦ τaj))
p/2].

Now, if ν = (y1, . . . , y2n) and ν′ = (z1, . . . , z2n) with ν 6= ν′, then by defini-
tion,

Γ(ν′, ν)=
2n⋃
`=1

{(y1, . . . , y`−1, u, z`+1, . . . , z2n)∈Z : min{y`, z`}6u6max{y`, z`}}.
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Therefore, combining the three summations in (4.5) into one single sum, this sum
is taken over the set {u, ν, ν′ : u ∈ Z, (ν, ν′) ∈ Γu} where

Γu ⊆
2n⋃
`′=1

2n⋃
`=1

Γ
`′+
u ∪ Γ

`−
u ,

with

Γ
`−
u = {ν, ν′ ∈ Z : u = (u1, . . . , u2n), ν = (u1, . . . , u`−1, u′, x`+1, . . . , x2n),

ν′ = (y1, . . . , y`−1, u′′, u`+1, . . . , u2n) where u′ > u` > u′′}

and

Γ
`+
u = {ν, ν′ ∈ Z : u = (u1, . . . , u2n), ν = (u1, . . . , u`−1, u′, x`+1, . . . , x2n),

ν′ = (y1, . . . , y`−1, u′′, u`+1, . . . , u2n) where u′ 6 u` 6 u′′}.

Thus, after switching the order of summation, (4.5) is smaller than

C11
N e−(np/4)((M−3)/N)2

∑
u∈Z
{JN( f ◦ τu)}p/2 ∑

(ν,ν′)∈Γu

e−p|ν−ν′ |2/6.(4.9)

If we denote ν = (ν1, . . . , ν2n) and ν′ = (ν′1, . . . , ν′2n), and let πi : Cn ← R be
the canonical projection onto the ith factor, then

∑
(ν,ν′)∈Γu

e−p|ν−ν′ |2/6 =
(

∑
(ν1,ν′1)∈π1×π1(Γu)

e−p|ν1−ν′1|2/6
)
· · ·
(

∑
(ν2n ,ν′2n)∈π2n×π2n(Γu)

e−p|ν2n−ν′2n |2/6
)

.

For some ` ∈ {1, . . . , 2n}, we now get an estimate on(
∑

(ν1,ν′1)∈π1×π1(Γ
`+
u )

e−p|ν1−ν′1|2/6
)
· · ·
(

∑
(ν2n ,ν′2n)∈π2n×π2n(Γ

`+
u )

e−p|ν2n−ν′2n |2/6
)

(4.10)

for fixed u. The terms that involve some Γ
`−
u ’s are treated similarly. Assume `

is neither 1 nor 2n, since the case where ` = 1 and ` = 2n is very similar. If
j ∈ {1, . . . , ` − 1}, then |νj − ν′j | = |uj − ν′j |, and if j ∈ {` + 1, . . . , 2n}, then
|νj − ν′j | = |uj − νj|. Moreover, since ν` 6 u` 6 ν′`, (4.7) is smaller than(

∑
ν′1∈

1
N Z

e−p|u1−ν′1|2/6
)
· · ·
(

∑
ν`6u`6ν′`

e−p|ν`−ν`′ |2/6
)

. . .
(

∑
ν2n∈ 1

N Z
e−p|ν2n−u2n |2/6

)
.

Thus, as we are holding u fixed, each of the factors corresponding to j 6= ` in the
product above converge to a positive number that depends only on N and p. For
the factor that corresponds to j = `, we have

∑
ν`6u`6ν′`

e−p|ν`−ν`′ |2/6 =
u`

∑
ν`=−∞

∞

∑
k=(u`−ν`)

e−pk2/6N2
6 ∑

ν`∈Z

∞

∑
k=|u`−ν` |

e−pk2/6N2

6 C12
N ∑

ν`∈Z
e−p|u`−ν` |2/12N2

.
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Since each ∑
ν`∈Z

e−p|u`−ν` |2/12N2
converges to a number that only depends on

p and N, we have that (4.6) is smaller than

C13
N e−(np/4)((M−3)/N)2

∑
u∈Z
{JN( f ◦ τu)}p/2

which therefore gives us that

‖Ej‖
p
Sp

6 C14
N e−(np/4)((M−3)/N)2

∑
u∈Z
{JN( f ◦ τu)}p/2.(4.11)

Going back to (4.1) and combining (4.2) with (4.8), we have that

M2n 3np

Nnp (‖H f ‖
p
Sp
+‖H f ‖

p
Sp
)>‖[M f , P]‖p

Sp
> ∑

j∈{1,...,M}2n

‖Wj‖
p
Sp
> ∑

j∈{1,...,M}2n

‖PZWjPZ‖
p
Sp

> ∑
j∈{1,...,M}2n

(‖Dj‖
p
Sp
− ‖Ej‖

p
Sp
)

> (C3
N−C14

N M2ne−(np/4)((M−3)/N)2
)∑
u∈Z
{JN( f ◦ τu)}p/2.

Pick M > 0 large enough so that C3
N − C14

N M2ne−(np4)((M−3)/N)2
> 0. Thus,

since the above estimate holds for any R ∈ N (and recalling that Z = {ν =

(ν1, . . . , ν2n) ∈ 1
NZ2n with each |νi| 6 R}), Lemma 3.3 gives us

(‖H f ‖
p
Sp

+ ‖H f ‖
p
Sp
) > C15

N

∫
Cn

{SD( f ◦ τξ)}pdV(ξ).

For some constants C15
N > 0, which proves the theorem.
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