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ABSTRACT. We find new presentations for the Thompson’s groups F, the de-
rived group F

′
and the intermediate group D. These presentations have a

common ground in that their relators are the same and only the generating
sets differ. As an application of these presentations we extract the following
consequences: the cost of the group F

′
is 1 hence the cost cannot decide the

(non)amenability question of F; the II1 factor L(F
′
) is inner asymptotically

abelian and the reduced C∗-algebra of F is not residually finite dimensional.
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1. INTRODUCTION

The Thompson group F can be regarded as the group of piecewise-linear,
orientation-preserving homeomorphisms of the unit interval which have break-
points only at dyadic points and on intervals of differentiability the slopes are
powers of two. The group was discovered in the ’60s by Richard Thompson and
in connection with the now celebrated groups T and V led to the first example
of a finitely presented infinite simple group. Also, it has been shown that the
commutator subgroup F

′
of F is simple.

In 1979 R. Geoghegan conjectured that F is not amenable. This problem is
still open and of importance for group theory: either outcome will help better
understand the inclusions EA ⊂ AG ⊂ N F, where EA is the class of elementary
amenable groups, AG is the class of amenable groups and N F is the class of
groups not containing free (non-abelian) groups. By work of Grigorchuck [7],
Olshanskii and Sapir [13], the inclusions above are strict.

There are properties stronger than amenability and also weaker ones. There
is naturally a great deal of interest in knowing which ones hold or fail in the case
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of F. For example, from the “weak” perspective the question of exactness has
been put forward in [1]. We also find a two-folded interest in whether or not the
reduced C∗-algebra of F is quasidiagonal (QD): by a result of Rosenberg in [8] this
property implies that the group is amenable. It is also conjectured that any count-
able amenable group generates a QD reduced C∗-algebra. As a consequence, the
(non)QD property gives another spin to the amenability question of F. We prove
a weaker result than non-QD, namely the reduced C∗-algebra of F is not residually
finite dimensional.

The Thompson’s groups have infinite conjugacy classes and therefore the
associated von Neumann algebras are II1 factors (see [9]). Also, P. Jolissaint
proved that the II1 factor associated with the Thompson group F has the rela-
tive McDuff property with respect to the II1 factor determined by F

′
; in particular

both are McDuff factors. By finding a presentation of the commutator subgroup
we naturally recover another result of Jolissaint ([10]), namely that the II1 factor
L(F

′
) is (inner) asymptotically abelian. The last property has been introduced

by S. Sakai in the 70’s and consists essentially of a stronger requirement than
property Γ of Murray and von Neumann: instead of a sequence of unitaries al-
most commuting with the elements of the factor one wants a sequence of (inner)
∗-isomorphisms to do the job. Moreover, asymptotically abelian is a stronger
property than McDuff (see the Background section below).

In [6], D. Gaboriau introduced a new dynamical invariant for a countable
discrete group called cost. Infinite amenable groups have cost 1 and also Thomp-
son’s group F has cost 1, while the free group on n generators has cost n, for
n > 1. As the cost non-decreases when passing to normal subgroups, finding the
cost of F

′
becomes an interesting question. Using our new presentation of F

′
and

one of the tools developed by Gaboriau we show that F
′

has cost 1 as well (and
because F

′
is simple we get that any non-trivial normal subgroup of F has cost 1).

It is very likely that any non-trivial subgroup of F has cost 1. This problem might
be related to a conjecture of M. Brin: any subgroup of F is either elementary amenable
or contains a copy of F (Conjecture 4 in [2]).

The paper is organized as follows: the Background section prepares some
basics on the Thompson groups, group von Neumann algebras and cost of groups.
We have collected some known facts and also folklore-like facts, mostly about the
Thompson’s groups. The follow-up to this section is our main result which de-
scribes various presentations of the groups F, F

′
and D. Next section of the paper

contains conclusions of these presentations.

2. BACKGROUND

2.1. THOMPSON’S GROUPS. For a good introduction of Thompson’s groups we
refer the reader to [4].
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FIGURE 1. Graphs of generators A = x0 and B = x1

DEFINITION 2.1. The Thompson group F is the set of piecewise linear home-
omorphisms from the closed unit interval [0, 1] to itself that are differentiable
except at finitely many dyadic rationals and such that on intervals of differentia-
bility the derivatives are powers of 2.

REMARK 2.2. The group F is shown to have the following finite presenta-
tion: 〈A, B〉 with relations [AB−1, A−1BA] = 1 and [AB−1, A−2BA2] = 1. Also,
F has a useful infinite presentation: F = 〈x0, x1, . . . xi, . . . : xjxi = xixj+1, i < j〉.
This is obtained by declaring x0 = A, xn = A−(n−1)BAn−1.

As a map on the unit interval xn is given by:

(2.1) xn(t) =


t if 0 6 t 6 1− 2−n,
t
2 + 1

2 (1− 2−n) if 1− 2−n 6 t 6 1− 2−n−1,
t− 2−n−2 if 1− 2−n−1 6 t 6 1− 2−n−2,
2t− 1 if 1− 2−n−2 6 t 6 1.

The following result can be found in [4].

PROPOSITION 2.3. Let F be given as in Definition 2.1.
(i) The subgroup

F
′

:= { f ∈ F : ∃δ, ε ∈ (0, 1) such that f|[0,ε] = id, f|[δ,1] = id}

is normal and simple. Moreover, F
′

is the commutator (or the derived group) of F.
(ii) Any non-trivial quotient of F is abelian.

As a consequence, any non trivial normal subgroup of F must contain F
′
. In

the next section we will give a (infinite) presentation of F
′
and of the intermediate
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normal subgroup introduced in [9]

D := { f ∈ F : ∃δ ∈ (0, 1) such that f|[δ,1] = id}.

The following finite presentation of F is well known to specialists. Starting with
n > 4, with notations A = x0, B = x1 we can follow the proof of Theorem 3.1 in [4]
by rewritting first the two relators in the finite presentation of F as x3 = x−1

1 x2x1

and x4 = x−1
1 x3x1.

LEMMA 2.4. Let n > 4. The Thompson group F is isomorphic to the group gener-
ated by x0, x1, . . . , xn subject to relations

(2.2) xjxi = xixj+1 for all 0 6 i < j 6 n− 1.

(Only n + 1 generators are used.)

REMARK 2.5. There is a classic procedure to realize F as a group of trans-
formations on R. Let F̃ be a subgroup of the group of piece-wise linear transfor-
mations of the real line such that its elements:

(i) have finitely many breakpoints and only at dyadic real numbers;
(ii) have slopes in 2Z;

(iii) are translations by integers outside a dyadic interval.
Then F̃= ϕFϕ−1 where ϕ : (0, 1) → R is defined as follows: ϕ(tn) = n and ϕ is
affine in [tn, tn+1], for all n ∈ Z where

tn =

{
1− ( 1

2 )
n+1 if n > 0,

( 1
2 )

1−n if n < 0.

To recover the generators in this new setting notice that x0(tn) = tn−1. The cor-
responding generator of F̃ thus satisfies x̃0(t) = t − 1 for all t ∈ R. Also, by
definition for n > 1, xn = x−(n−1)

0 x1xn−1
0 which together with the action of x0

on the sequence (tm)m∈Z determines the form of the other generators, for n > 1:
x̃n(t) = t for all t 6 n− 1, x̃n(t) = t+n−1

2 for n− 1 6 t 6 n + 1, x̃n(t) = t− 1, for
all t > n + 1, (see Figure 2). In conclusion, the group F̃ is generated by (x̃n)n∈N
and the similar F relations from the infinite presentation of F constitute a presen-
tation of F̃. We will see later that it is useful to consider maps x̃n with negative
integers n. Our aim is to give a presentation of the commutator subgroup of F,
thus it suffices to find a presentation of the commutator subgroup of F̃. Using the
description of the commutator in Proposition 2.3 we obtain that the commutator
in F̃ is

(2.3) F̃
′
= { f ∈ F̃ : f (t) = t , |t| > k for some k ∈ N}.

2.2. GROUP VON NEUMANN ALGEBRAS. If G is a countable discrete group with
infinite conjugacy classes (i.c.c.) then the left regular representation of G on l2(G)
gives rise to a II1 factor, the group von Neumann algebraL(G), as follows: endow
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FIGURE 2. Graphs of generators x̃0 and x̃n, n > 1

l2(G) =
{

ψ : G → C : ∑
g∈G
|ψ(g)|2 < ∞

}
with the scalar product

〈φ, ψ〉 := ∑
g∈G

φ(g)ψ(g).

The Hilbert space l2(G) is generated by the countable collection of vectors {δg :
g ∈ G}. Also, an element g ∈ G defines a unitary operator Lg, on l2(G) as
follows: Lg(ψ)(h) = ψ(g−1h), for any ψ ∈ l2(G) and any h ∈ G. (Sometimes,
to not burden the notation we will write just g instead of Lg). Now, L(G), the
von Neumann algebra generated by G is obtained by taking the wo-closure in
B(l2(G)) (all bounded operators on l2(G)), of the linear span of the set {Lg :
g ∈ G} (if one takes the norm closure of the same linear span then one obtains
the reduced C∗-algebra of the group, C∗r (G)). It is well known (see [11]) that
L(G) is a factor provided G is an i.c.c. group (i.e. every conjugacy class in G \ {e}
is infinite) and it is of type II1. The map defined by tr(x) = 〈x(δe), δe〉, where
e ∈ G is the neutral element and x ∈ L(G) is a faithful, finite, normal trace.
The canonical trace also determines the Hilbertian norm ‖x‖2 = tr(x∗x)1/2. In
particular, for x, y in L(G) the following inequalities hold: ‖xy‖2 6 ‖x‖‖y‖2 and
‖yx‖2 6 ‖y‖2‖x‖, where ‖x‖ is the usual operator norm of x in B(l2(G)). Also, if
u is unitary in L(G) then ‖xu‖2 = ‖ux‖2 = ‖x‖2 for any x ∈ L(G). Finally let us
recall an important result of A. Connes (see [5]): If G is a countable i.c.c. group,
L(G) is the hyperfinite II1 factor if and only if G is amenable.

DEFINITION 2.6. A finite factor M is called asymptotically abelian if there ex-
ists a sequence of ∗-automorphisms (ρn)n∈N on M such that

‖[ρn(a), b]‖2 → 0 for a, b ∈ M.

If each ρn is inner then M is called inner asymptotically abelian.
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EXAMPLE 2.7 (see [14]). (i) The type In factor is not asymptotically abelian.
(ii) The hyperfinite II1 factorR is asymptotically abelian.

(iii) Any asymptotically abelian factor is McDuff (this follows from characteri-
zation of McDuff property with central sequences).

(iv) L(F2)⊗R is not asymptotically abelian and is a McDuff factor ( F2 is the
free group on two generators).

(v) If M is a finite factor then
∞⊗

i=1
M is asymptotically abelian.

2.3. COST OF GROUPS. We collect here definitions and some results from [6].
We say that R is a SP1 equivalence relation on a standard Borel probability space
(X, λ) if

(S) Almost each orbit R[x] is at most countable and R is a Borel subset of X×X.
(P) For any T ∈ Aut(X, λ) such that graphT ⊂ R we have that T preserves the

measure λ.

DEFINITION 2.8. (i) A countable family Φ = (ϕi : Ai → Bi)i∈I of measure
preserving, Borel partial isomorphisms between Borel subsets of (X, λ) is called
a graphing on (X, λ).

(ii) The equivalence relation RΦ generated by a graphing Φ is the smallest equiv-
alence relation S such that (x, y) ∈ S if and only if x is in some Ai and ϕi(x) = y.

(iii) An equivalence relation R is called treeable if there is a graphing Φ such
that R = RΦ and almost every orbit RΦ[x] has a tree structure. In such case Φ is
called a treeing of R.

One can consider the quantity C(Φ) = ∑ λ(Ai). The cost of a (SP1) equiva-
lence relation is defined by the number

C(R) := inf{C(Φ) : Φ is a graphing of R}.

It is the preserving property that allows one to conclude the infimum is attained if
and only if R admits a treeing (see Proposition I.11 and Theorem IV.1 in [6]). The
numbers C(R) could be interpreted as the "cheapest" measure-theoretical way to
generate R with partial isomorphisms on standard probability space (X, λ). The
cost of a discrete countable group G is

C(G) := inf{C(R) : R coming from a free, measure preserving action of G on X}.

If all numbers C(R) are equal then the group is said to be of fixed price. The cost
does not depend on the standard Borel probability space (X, λ) as all standard
Borel spaces are isomorphic as measure spaces. The following statements were
proved by Gaboriau.

THEOREM 2.9 ([6]). (i) The cost of an infinite, amenable group is 1, fixed price.
(ii) The Thompson group F has cost 1, fixed price.

(iii) The cost of the free group on n generators is n, fixed price.
(iv) If N is a infinite normal subgroup of G, of fixed price then C(N) > C(G) > 1.
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(v) Any number c > 1 is the cost (fixed price) of some group.
(vi) If G is an increasing union of infinite groups (Gn)n such that C(G1) = 1, fixed

price and if Gn+1 is generated by Gn and elements γ ∈ G such that γ−1Gnγ ∩ Gn is
infinite then G is of cost 1, fixed price.

3. MAIN RESULT

Recall the following general principle (von Dyck): let G = 〈X|R〉 be a group
generated by a set X subject to the set of relatorsR. Let F(X) be the free group on
X generators, H is an arbitrary group and f : X → H a function. Denote by v its
morphism extension to F(X). If v(R) = 1 in H then the map f can be extended
to a morphism from G to H. Moreover, if f (X) generates H then this morphism
is surjective.

Before stating the main result we will make some preparations. These will
be fully used in the second part of the proof below. Let us turn to the point of view
taken in Remark 2.5. Recall that we can work with the group F̃ and its generators
x̃n’s instead of F and xn’s. Moreover, same relations as in Remark 2.2 hold in
(and present) F̃. First we will extend the sequence (xn)n for negative values of n.
Define a sequence of elements in F as follows:

(i) xn := xn for n > 1;
(ii) x0 := x0x1x−1

0 ;

(iii) xn := x−(n−1)
0 x1xn−1

0 for n < 0.

From the above we get xn = x−n
0 x0xn

0 which entails

xn+1 = x−1
0 xnx0 for all n ∈ Z.

By yn we will denote the image of xn in F̃ (see Figure 3). We have

(3.1) yn+1 = x̃−1
0 yn x̃0.

Notice that from the relations of type x̃j x̃i = x̃i x̃j+1 we obtain by translation

(3.2) yjyi = yiyj+1 for any i < j , i, j in Z.

(The “obvious” extension x0 = x0 would have destroyed (3.2) ,e.g. pick i = −1
and j = 0.) For i ∈ Z we define now the maps G̃i : R → R by G̃i = yiy−1

i+1 (see
Figure 4). For example:

G̃0(t) =


t if t 6 −1,
t−1

2 if − 1 6 t 6 0,
t− 1

2 if 0 6 t 6 1
2 ,

2t− 1 if 1
2 6 t 6 1,

t if 1 6 t.

By (2.3) we get that each G̃i belongs to the commutator F̃
′
.

We are now ready to prove the main result of the paper:
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FIGURE 3. Graphs of yi, i ∈ Z. Note yjyi = yiyj+1 when i < j.

THEOREM 3.1. Let I ⊂ Z be a set of consecutive integers and G the group gener-
ated (and presented) by (gi)i∈I subject to relations:

gi−1gigi+1 = gigi+1gi−1gi,(3.3)

[gi, gj] = 1 if |i− j| > 2.(3.4)

(i) If I = {0, 1, 2, . . . , n} with n > 4 then G ∼= F.
(ii) If I = Z then G ∼= F

′
.

(iii) If I = N then G ∼= D.

Proof. (i) Let F be given as in Lemma 2.4. Define a map f (xn) = gn, f (xn−1)
= gn−1gn, . . . , f (x0) = g0g1 · · · gn. For v the corresponding map on the free group
we check relations (2.2). We have v(xjxi) = gj · · · gngi · · · gn and v(xixj+1) =
gi · · · gngj+1 · · · gn for 0 6 i < j < n. It all amounts now to check the following
relation: gj · · · gngi · · · gj = gi · · · gn. Because of commutations (3.4) the left-hand
side can be rewritten and the relation to be checked becomes

gi · · · gj−2gjgj−1gj+1gjgj+2 · · · gn = gi · · · gn.

Simplifying by gi · · · gj−2 to the left and by gj+2 · · · gn to the right the last equal-
ity reduces exactly to (3.3). Clearly, ( f (xi))

n
i=0 generate G, hence by the principle
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above there exists a surjective morphism f : F → G. If Ker f is not trivial then
by Proposition 2.3 we would get that G is abelian (and this cannot happen as it
would be implied that some gi’s are the identity). In conclusion, f is an isomor-
phism.

(ii) We will make use of the following groups: for a, b in Z[ 1
2 ] and a < b

define
F(a, b) := { f ∈ F̃ : f (t) = t if t /∈ (a, b)}.

Then (F(−k, k))k∈N is an increasing sequence of groups and by (2.3) we have
F̃
′
=
⋃

k>2
F(−k− 1, k + 1).

We make the following claims:
• F(−k− 1, k + 1) is generated by G̃−k, . . . , G̃0, . . . , G̃k;
• G̃−k, . . . , G̃0, . . . , G̃k satisfy relations (3.3) and (3.4) and this gives a presen-

tation of F(−k− 1, k + 1).
Notice that by these claims we obtain an isomorphism between G and F̃

′
:

the set (G̃i)i∈Z will generate F̃
′

and satisfies (3.3) and (3.4). These relations give a
presentation of F̃

′
because any (extra) relator, being a finite length word in letters

G̃i will be a relator in some F(−k − 1, k + 1). However, if extra, the relator will
violate the presentation of F(−k− 1, k + 1). By taking 2k = n (so that n > 4) and
translating by k the claims to be proved become:
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• F(−1, n + 1) is generated by G̃0, . . . , G̃n;
• G̃0, . . . , G̃n satisfy relations (3.3) and (3.4) and this gives a presentation of

F(−1, n + 1).
To prove the last two claims we will construct an isomorphism between (the

original) F and F(−1, n + 1) as follows: first, for any f ∈ F we will denote by f ′

its extension to R where f ′(t) = t outside [0, 1]. Next we consider the sequence
s−1 = 0, sk = 1− 2−k−1 for k = 0, . . . , n and sn+1 = 1. Let φn : R → R be the
map such that φn(sk) = k for all k ∈ {−1, 0, 1, 2, . . . , n + 1} with φn affine in any
interval [sk, sk+1] and φn(t) = t− 1 if t 6 0, φn(t) = t + n if t > 1. It is not hard to
check that the map

F 3 f → φn f ′φ−1
n ∈ F(−1, n + 1)

is well-defined and is a group isomorphism. Let gk := xkx−1
k+1 for k ∈ {0, 1, . . . , n−

1} and gn = xn. Then {gk : k = 0, 1, . . . , n} generate F and (3.3) and (3.4) give a
presentation of F (recall n > 4). We will finish the proof once we show

(3.5) φng′kφ−1
n = G̃k for all k ∈ {0, 1, . . . , n}.

The equality holds outside the interval (−1, n + 1) because all G̃k with 0 6 k 6 n
are equal to the identity map on that domain. Hence it is enough to show

(3.6) φngkφ−1
n (t) = G̃k(t) for all t ∈ [−1, n + 1], for all k ∈ {0, 1, . . . , n}.

The case k = n can be treated separately, all that is involved being calculations
similar to the ones below. So let 0 6 k < n. Using xk given in (2.1) one finds
that gk is affine in between the breakpoints s−1 = 0, sk−1, 1− 3

2k+3 , sk and sk+1.
Also xk(u) = u for u 6 sk−1, xk(sk+1) = sk and xk(sk) = 1 − 3

2k+2 . Now, if
t 6 k− 1 then both sides of (3.6) are equal to t. If t > k + 1 then G̃k(t) = t. Also

x−1
k+1(φ

−1
n (t)) = φ−1

n (t)+1
2 . Hence, using again (2.1) gk(φ

−1
n (t)) = φ−1

n (t) and (3.6)
follows. It remains thus to treat the case t ∈ (k− 1, k + 1). Because φn is affine in
between sk−1, sk and sk+1 and G̃k is affine in between k − 1, k, k + 1

2 and k + 1 it
suffices to prove (3.6) for t = k and t = k + 1

2 . Notice φn
(
1− 3

2k+2

)
= k− 1

2 . For
t = k we have:

φnxkx−1
k+1φ−1

n (k) = φnxkx−1
k+1(sk) = φnxk(sk) = φn

(
1− 3

2k+2

)
= k− 1

2
= G̃k(k).

For t = k + 1
2 we have:

φnxkx−1
k+1φ−1

n

(
k+

1
2

)
=φnxkx−1

k+1

(
1− 3

2k+3

)
=φnxk(sk+1)=φn(sk)= k= G̃k

(
k+

1
2

)
.

(iii) Let φ∞ : [0, 1)→ [−1, ∞) be affine in between the points γk = 1− 2−k−1

with φ∞(γk) = k for all k > −1. For any f ∈ D define an element of F̃

h f (t) =
{

φ∞ f φ−1
∞ (t) if t > −1,

t if t 6 −1.
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Because f is trivial in a neighborhood of t = 1, h f is trivial outside an interval
[−1, n + 1]. The map

D 3 f → h f ∈
∞⋃

k=0

F(−1, k + 1)

is a group isomorphism. The sequence of groups (F(−1, k + 1))k>0 is increas-
ing and by the previous proof each F(−1, k + 1) is generated and presented by

G̃0, . . . , G̃k with relations (3.3) and (3.4). It follows that
∞⋃

k=0
F(−1, k + 1) is gener-

ated by G̃0, . . . , G̃k, G̃k+1, . . .. Moreover the same relations are satisfied and this
gives a presentation of the whole union (because any extra-relator would end up
in some F(−1, n + 1)).

REMARK 3.2. Let us sketch a different proof for the presentation of F
′
. This

proof is algebraic in spirit as one does not need (much of) F as in its original
definition but as in its algebraic characterization from Remark 2.2. What follows
is based on discussions with M. Brin. We start with F on the entire real line. We
will switch the notations around a bit: the generators are s(t) = t− 1 and

x0(t) =


t if t 6 0,
t
2 if 0 6 t 6 2,
t− 1 if t > 2.

Also xi := s−ix0si. We define Gi := xix−1
i+1 for all i ∈ Z. The main point comes

into play now: Lemma 2.4 is still valid (word for word, eventhough the “old” x1
is now called x0). Let H be the subgroup of F generated by Gi, i ∈ Z. Clearly H is
a subgroup of the commutator group, F

′
. We can write H as an increasing union

of subgroups H =
⋃

k>3
H(−k, k) where for n−m > 4 H(m, n) is by definition the

subgroup of H generated by Gm, . . . , Gn. As in part (i) of Theorem 3.1 we can ap-
ply Lemma 2.4 and show that F is generated and presented by G0, G1, . . . , Gn−m
with relations (3.3) and (3.4). As expected H(m, n) is isomorphic to F and the
generators Gm, . . . , Gn with their corresponding relations (3.3) and (3.4) consti-
tute a presentation of H(m, n). Putting all H(−k, k) together we obtain that H is
generated and presented by Gi, i ∈ Z with (3.3) and (3.4).

The equality H = F
′

will end the proof. It suffices to show H is normal in F
or equivalently that H is invariant under conjugations by s and x±0 . Conjugations
of the Gi’s by s only shifts subscripts so that it remains to treat conjugations by
x±0 . These are further reduced down to the following: x−1

0 Gix0 for i = −1, 0
and x0Gix−1

0 for i = −1, 0, 1. We only show that x−1
0 G0x0 is in H, all the other

cases being reasonable to deal with. As in proof of part (i) let gi = xix−1
i+1 for

i = 0, 1, 2, 3 and g4 = x4. Then x0 = g0g1 · · · g4, x1 = g1g2 · · · g4 and (gi)i=1,...,4
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satisfy relations (3.3) and (3.4). We have:

x−1
0 G0x0 = x−1

1 x0 = g−1
4 g−1

3 g−1
2 g−1

1 g0g1g2g3g4

= g−1
3 g−1

2 g−1
4 g−1

3 (g−1
1 g0g1)g3g4g2g3

= g−1
3 g−1

2 g−1
1 g0g1g2g3 = G−1

3 G−1
2 G−1

1 G0G1G2G3 ∈ H.

The third equality comes from (3.3) and the fourth from (3.4).

4. APPLICATIONS

LEMMA 4.1. (i) For n ∈ N the group morphism determined by the "shift"

ρn(gi) = gn+i ∀i ∈ Z, ∀n ∈ N,

is an automorphism of F
′
.

(ii) For fixed g and h in F
′

there exists a large n0 such that

[ρn(g), h] = 1 for all n > n0.

Proof. (i) One can use von Dyck’s principle again to show that ρn extends
to a morphism and so does the map defined by ρ−n(gi) = gi−n. Clearly, these
morphisms are inverse to each other.

(ii) Write g and h as (finite) words in the generators (gi)i∈Z and choose k ∈ N
such that for all gi that occur in these words |i| 6 k. Hence if n ∈ N, h (respectively
ρn(g)) are words in generators gi of index i in [−k, k], respectively [n− k, n + k].
Since [gi, gj] = 1 for |i− j| > 2 it follows that [ρn(g), h] = 1, when n > 2k + 2.

THEOREM 4.2 ([10]). The II1 factor L(F′) is asymptotically abelian.

Proof. Each (ρn)n from Lemma 4.1 extends to a ∗-automorphism of L(F′)
denoted by ρ̂n. We will prove that

(4.1) ∀x, y ∈ L(F′) we have lim
n→∞

‖[ρ̂n(x), y]‖2 = 0

which implies that L(F′) is asymptotically abelian. By Kaplansky’s density theo-
rem it is sufficient to prove (4.1) for x, y ∈ span{Lg : g ∈ F′}. From Lemma 4.1 it
follows that for such x and y:

[ρ̂n(x), y] = 0 eventually for n→ ∞.

So in particular (4.1) holds.

REMARK 4.3. (i) In [10] Jolissaint proves a stronger result, namely thatL(F′)
is inner asymptotically abelian, i.e.

lim
n→∞

‖[αn(x), y]‖2 = 0 for x, y ∈ L(F′)

holds for a sequence of inner automorphisms of L(F′). This result can also be
obtained by modifying the proofs of Lemma 4.1 and Theorem 4.2.



NEW PRESENTATIONS OF THOMPSON’S GROUPS AND APPLICATIONS 229

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

   (s−2n, s−2n)

(s, s−n)

(t, t−n)

(t+n, t+n)

FIGURE 5. Graph of h̃

First observe that for each k, n ∈ N there exists a h = hk,n ∈ F′ such that

(4.2) h−1gih = gi+n when |i| 6 k.

One can namely choose h such that the corresponding element h̃ in F̃ has a graph
as depicted in Figure 5, where s = n− k− 1 and t = n + k + 1. Let σm ∈ Aut(F′)
be the inner automorphism

σm = ad h−1
m,2m+2 m ∈ N.

Then it is clear from the proof of Lemma 4.1 that if g, h ∈ L(F′) are words in the
generators g−k, g1−k, . . . , gk then

[σm(g), h] = 1 for m > k.

Hence the proof of Theorem 4.2 works with (ρ̂n)∞
n=1 replaced by (σ̂m)∞

m=1, where
σ̂m = ad (Lh−1

m,2m+2
) is an inner automorphism of L(F′) for every m ∈ N.

(ii) The argument in the proof of Theorem 4.2 does not work if we replace
F′ with the intermediate group D or with the Thompson’s group F. Hence we
find the following question very interesting : Is L(F) (or L(D)) asymptotically
abelian?

THEOREM 4.4. Any non-trivial normal subgroup of F has cost 1.

Proof. Because any proper quotient of F is abelian, any non-trivial, normal
subgroup of F must contain F

′
. Thus it suffices to show C(F

′
) = 1, fixed price.
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We will write F′ as an increasing union of groups Gn such that G0 is of cost 1,
fixed price and Gn+1 is obtained out of Gn and elements g with the property
g−1Gng∩Gn is infinite. Let G0 be the subgroup of F′ generated by (g2i)i∈Z. From
Theorem 3.1 G0 is abelian, therefore its cost is 1. Let G1 be generated by G0 and
g±1. Because of the commutation relations we have g−1

1 G0g1 ∩ G0 ⊃ {g2i : i < 0}
and g−1

−1G0g−1 ∩ G0 ⊃ {g2i : i > 0}. Now it is clear how to continue: gradually
add a generator gi of odd subscript to a previuos Gn and use the commutation
relations to insure that the set g−1

i Gngi ∩Gn is infinite. Because the even subscript
generators are already in G0 the Gn’s will exhaust the group F′. We can now apply
Theorem 2.9(vi) and end the proof.

DEFINITION 4.5. A separable C∗-algebra R is called residually finite dimen-
sional (RFD) if for each non-zero x ∈ R there exists a ∗-homomorphism π : R→ B
such that dim (B) < ∞ and π(x) 6= 0. Equivalently R embeds in a C∗-algebra

of the form
∞
∏

n=1
Mk(n)(C) where Mk(C) is the algebra of k × k matrices over the

complex numbers.

We will prove that both the reduced C∗-algebra C∗r (F) and the full C∗-
algebra C∗(F) associated with F are not residually finite dimensional. One can
prove this result for more general groups (using a theorem of A. Mal’cev in
[12]); nevertheless, we prefer a self contained treatment. The argument is es-
sentially based on the fact that F is not a residually finite group. However the
two “residual” notions do not compare in general. There exist residually finite
groups whose reduced C∗-algebras are not RFD (e.g. the free non abelian group
on two generators) and there exist non residually finite groups whose reduced
C∗-algebras are RFD (e.g. (Q,+)).

LEMMA 4.6. Let A be a (unital) finite dimensional algebra over an arbitrary field.
Then F

′
can not be faithfully represented in A.

Proof. Assume that F
′

can be faithfully represented in A and let (gi)i∈Z be
our generators for F

′
. For simplicity of notation we will consider F

′
as a subset of

A. Define now:

A0 = A,
A1 = the commutant of {g0, g1} in A0,
A2 = the commutant of {g3, g4} in A1,
A3 = the commutant of {g6, g7} in A2,
etc.

Since gi and gj commute when |i− j| > 2 we have:

g3, g4, g5, . . . ∈ A1,
g6, g7, g8, . . . ∈ A2,
etc.
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But since g3i and g3i+1 do not commute, Ai+1 is a proper subalgebra of Ai. Hence

dim(Ai/Ai+1) > 1, i = 0, 1, 2, . . .

which implies that A is infinite dimensional.

COROLLARY 4.7. C∗r (F) and C∗(F) are not RFD.

Proof. We will consider F as a subset of (unitary) operators in the C∗ algebra
A, where A is either C∗r (F) or C∗(F). Suppose A is RFD. Then there exists an

embedding π : A →
∞
∏

n=1
Mk(n)(C). It follows that π|F : F → U (∏ Mk(n)(C)) is

a one to one group morphism. Hence, for g ∈ F
′
, g 6= 1 there exists k such that

pkπ(g) 6= Ik where pk is the projection map onto Mk(C) and Ik is the identity
matrix. We have obtained a group morphism ψ := pkπ|F from F to the group
of invertible matrices GLk(C) which is not trivial on F

′
. Because F

′ ∩ Ker ψ is a
normal subgroup, by Proposition 2.3 ψ must be one to one on F

′
. This of course

contradicts Lemma 4.6.

REMARK 4.8. Residually finite dimensional algebras are an important class
of quasidiagonal C∗-algebras (for a detailed account of these algebras we refer the
reader to [3]). By a theorem of Rosenberg in [8], if G is a countable discrete group
and C∗r (G) is quasidiagonal then G is amenable. It is believed that the converse
should also be true.
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