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ABSTRACT. The notions of super strictly singular and cosingular operators
are revisited and new characterizations given in terms of ultrapowers and op-
erator local representability. The behaviour of the associated (Bernstein and
Mityagin) s-numbers with respect to duality, ultraproducts and local repre-
sentability is considered. We also give properties of these classes in the Banach
lattice setting like a Dodds–Fremlin type domination result and introduce the
class of super disjointly stricty singular operators. The equivalence between
lattice strictly singular and disjointly strictly singular operators is considered,
and we show that at the super level both classes coincide.
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INTRODUCTION

Super strictly singular operators were introduced implicitly by Mityagin
and Pełczyński in [34] and explicitly by Milman in [32] and [33]. This class of op-
erators contains compact operators and it is contained in the class of strictly sin-
gular operators. Recall that a bounded operator is strictly singular (SS for short),
or Kato [25] if its restriction to any infinite-dimensional subspace is never an iso-
morphism.

Given two Banach spaces X and Y, a bounded operator T : X → Y is super
strictly singular (super-SS for short), or finitely strictly singular, if there does not
exist a number c > 0 and a sequence of subspaces En of X, with dim En = n, such
that

‖Tx‖ > c‖x‖ for all x ∈
⋃
n

En.

In other words, T is super-SS if and only if the Bernstein numbers bn(T)→ 0,
as n→ ∞, where

bn(T) = sup inf
x∈S(En)

‖Tx‖,
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and the supremum is taken among all n-dimensional subspaces En of X and
S(En) denotes the unit sphere of En. Clearly super-strict singularity implies strict
singularity.

In [33] Milman proved that super-SS operators form a closed operator ideal
in the sense of Pietsch [39].

Recently the dual point of view has been considered by Plichko in [41]
where the class of super strictly cosingular operators (super-SC for short) is in-
troduced, showing that both classes are in full duality. The precise definition of
super-SC operators will be given in Section 2. Recall that an operator T between
two Banach spaces X and Y is called strictly cosingular (SC for short) or Pełczyński
[36] if for every infinite codimensional subspace E of Y the composition operator
πET is not surjective (here πE denotes the quotient map from Y onto Y/E). This
operator class is (partially) related by duality to that of strictly singular operators:
If the conjugate operator T∗ is SS (respectively SC), then T is SC (respectively SS),
but the converses are not true in general ([36], [37]).

In this paper we consider the classes of super-SS and super-SC operators,
and other closely related, with several purposes. One of these purposes is to
establish that these classes constitute the super version of the classes of strictly
singular (respectively cosingular) operators, in the following sense: an operator
T : X → Y is super-SS (respectively super-SC) if and only if for every ultrafilter
U the corresponding ultraoperator TU : XU → YU is SS (respectively SC). It turns
out that this is also equivalent to the fact that every operator locally representable
in T (in the sense of Pietsch [40]) is SS (respectively SC) (see Proposition 1.5,
Proposition 1.12 and Theorem 2.16). We also focus on reshaping somewhat the
definition of super strict cosingularity in order to eliminate some inconsistencies
resulting from the definition given in [41] (see Example 2.1 and Definition 2.10
below). It turns out that the super strict cosingularity is characterized by means
of another class of s-numbers considered by Pietsch [38], namely Mityagin num-
bers. Recall that for an operator T : X→Y the Mityagin number an(T) is defined as

an(T) = sup{q(πET); codim E = n}
where πE denotes the quotient map X → Y/E and q is the modulus of surjec-
tivity. Thus T is super strictly cosingular if the sequence (an(T)) of its Mityagin
numbers converges to zero. With this modified definition of super strict cosin-
gularity the full duality of super-SS and super-SC classes, stated by Plichko ([41],
Theorem 4), is obtained as a direct consequence of a duality relation linking Bern-
stein and Mityagin numbers (see Proposition 2.6).

A third purpose is to study the problem of domination for these super oper-
ator classes in Banach lattices, motivated by the well-known result by Dodds and
Fremlin concerning compact operators (cf. [2] and [46]) and the results obtained
for strictly singular and cosingular operators in [14] and [15]. More precisely, let
E and F be two Banach lattices and 0 6 R 6 T : E → F two positive operators
and assume that T belongs to a given operator class; must R belong to that same
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class? The goal is to obtain positive answers by imposing mild conditions on the
Banach lattices.

A final purpose is to obtain a deeper insight on the class of disjointly strictly
singular operators. Recall that an operator T from a Banach lattice E to a Banach
space Y is said to be disjointly strictly singular (DSS for short) if for every pairwise
disjoint sequence (xn)n in E the restriction of T to the (closed) span of (xn)n is
not an isomorphism. The class of DSS operators introduced in [22], strictly larger
in general than the class of SS operators, has some remarkable applications ([14],
[16]). Naturally close to this class is that of lattice strictly singular operators in-
troduced in [12] and implicitly in [13]. Recall that T is lattice strictly singular (LSS
for short) if the restriction of T to every infinite dimensional (closed) sublattice of
E is never an isomorphism. Clearly every lattice strictly singular operator must
be DSS, but the converse seems to be unknown. In [13] and [12] some results
are given in this direction for regular operators. Here we formally introduce the
classes of super disjointly strictly singular (super-DSS for short) and super lattice
strictly singular (super-LSS for short) with the hope that some light might be shed
on the question and in fact we show that these two super classes coincide (Theo-
rem 6.3). From the techniques employed we obtain, as a consequence, new classes
of spaces for which the equivalence between DSS and LSS operators holds (see
Proposition 6.4).

The paper is organized in six sections. In sections one and two we give
the announced modified definition of super-strict cosingularity, justify the role
of super-SS and super-SC operators as the super classes of strictly singular and
cosingular operators (see Proposition 1.5 and Theorem 2.16) and deduce the full
duality between the two super classes (Proposition 2.13). The notion of opera-
tor local representability introduced by Pietsch gives a nice frame for treating these
questions, and we use various results obtained by this author in [40]. The gen-
eral idea of these sections is that “local representability decreases Bernstein and
Mityagin numbers”. More precisely, if an operator R is locally representable in T
then bn(R) 6 bn(T) and an(R) 6 an(T) for every natural n.

In the third section we examine the question of preservation of theses super-
properties by domination in the class of positive operators between Banach lat-
tices.

In the fourth section we introduce the class of super-disjointly strictly sin-
gular operators, show that it is a “super” class and deduce domination results as
consequences of known domination results for DSS operators.

The fifth section is devoted to the relations between the previously intro-
duced classes of “singular” operators. We also consider rearrangement invariant
function spaces E on [0, 1] showing that the canonical inclusions L∞ ↪→ E and
E ↪→ L1 are always super-SS and super-SC respectively (Proposition 5.7).

In the sixth section we introduce formally the class of super-lattice strictly
singular operators and show that it actually coincides with the class of super-
DSS operators (Theorem 6.3). We conclude by showing the equivalence between
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disjointly strictly singular and lattice strictly singular operators in the class of
stable Banach lattices in the sense of Krivine and Maurey [27] (which contains for
instance Orlicz and Lorentz spaces). This is the content of Proposition 6.4.

Our methods involve some ultrapower techniques, Pietsch’s notion of op-
erator local representability ([40]), the use of Krivine’s theorem on finite repre-
sentability of lp ([26]), the spreading model construction by Brunel and Sucheston
([9]), and some results on domination in the classes of SS and DSS operators ([13],
[14], [15]).

1. SUPER STRICTLY SINGULAR OPERATORS

Let us start recalling some basic definitions and fixing the notation.
Let (Xi)i∈I be a family of Banach spaces. We denote by l∞((Xi); I) the Ba-

nach space {
x = (xi)i∈I : xi ∈ Xi and ‖x‖∞ = sup

i∈I
‖xi‖Xi < ∞

}
.

In the case that each Xi is a Banach lattice for every i then l∞((Xi); I) is a Banach
lattice under the pointwise lattice operations. If U denotes an ultrafilter on I, we
consider the set

NU =
{

x = (xi)i∈I ∈ l∞((Xi); I) : lim
i,U
‖xi‖Xi = 0

}
.

It holds thatNU is a closed vector subspace of l∞((Xi); I); moreover, if Xi is a Ba-
nach lattice for every i, thenNU is an order ideal in l∞((Xi); I). If we consider the
quotient space l∞((Xi); I)/NU we obtain a Banach space called the ultraproduct
([10], [20]) of the spaces (Xi)i with respect to the ultrafilter U , which is denoted
by ∏U Xi. If Xi is a Banach lattice for every i, then ∏U Xi is a Banach lattice. For
each x = (xi)i ∈ l∞((Xi); I) we shall denote its equivalence class in ∏U Xi by
[x]U . Of particular interest is the situation in which all the Banach spaces Xi are
the same. In this case we talk about the ultrapower of X with respect to the ul-
trafilter U , and we denote it by XU . Note that there is a natural embedding of X
into its ultrapower: the mapping DX : x → [(x, x, . . . )]U . This mapping is a linear
isometry (which is also a lattice isometry if X is a Banach lattice); it is often called
the diagonal embedding.

Analogously, given a family of bounded operators Ti : Xi → Yi between
Banach spaces Xi and Yi with i ∈ I and an ultrafilter U on I, the ultraprod-
uct of the family (Ti)i∈U , denoted by ∏U Ti : ∏U Xi → ∏U Yi, is defined as
∏U Ti([(xi)]U ) = [(Tixi)]U . The operator norm of ∏U Ti is ‖∏U Ti‖ = lim

i,U
‖Ti‖.

Also, if T : X → Y is a bounded operator, then for every ultrafilter U on I
the mapping TU : XU → YU defined for each (xi)i ∈ l∞(X; I) by

TU ([(xi)]U ) = [(Txi)]U
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is a well defined bounded operator that extends T and satisfies ‖TU‖ = ‖T‖.
Moreover if X and Y are Banach lattices, then T is a positive operator (respec-
tively lattice homomorphism) if and only if TU is positive (respectively lattice
homomorphism).

For the general terminology of Banach spaces we refer to [28], [6] and [11],
while for that of Banach lattices we refer to [31], [2], [29] and [1].

Let us explicitly recall the well-known fact which shows in particular that
every ultrapower X̃ of a Banach space X is finitely representable in X. A proof
can be found in p. 223 of [6].

PROPOSITION 1.1. Let X̃ = ∏U Xi be an ultraproduct of a family of Banach
spaces (Xi)i∈I . Let Ẽ be a m-dimensional subspace of X̃, [ξ(1), . . . , ξ(m)] a basis of Ẽ, and
for every j = 1, . . . , m let (x(j)

i )i∈I be a family representing ξ(j). Let Ei = span [(x(j)
i ) :

j = 1, . . . n] and Vi : Ẽ → Ei be the linear map which assigns x(j)
i to ξ(j) for every

j = 1, . . . , m. Then for every i in some element U of the ultrafilter U , the operator Vi is
an isomorphism, and moreover lim

i,U
max(‖Vi‖, ‖V−1

i ‖) = 1.

DEFINITION 1.2. A bounded operator T : X → Y is super strictly singular
(super-SS for short) if there does not exist a number c > 0 and a sequence of
subspaces En ⊂ X, dim En = n, such that

(1.1) ‖Tx‖ > c‖x‖ for all x ∈
⋃
n

En

The Bernstein numbers are considered for a given operator T:

bn(T) = sup inf
x∈S(En)

‖Tx‖,

where the supremum is taken over all n-dimensional subspaces En of X and S(En)
is the unit sphere of En. We have

‖T‖ = b1(T) > b2(T) > · · · > 0,

and it is seen that T is super-SS if and only if bn(T) → 0 as n → ∞. The greatest
constant c for which (1.1) is satisfied is equal to lim

n→∞
bn(T) ([32], [41]).

The class of super-SS operators is in between the classes of compact and
SS operators; indeed the natural inclusion lp ↪→ lq, 1 6 p < q 6 ∞, is a (non
compact) super-SS operator while the operator given in Example 5.1 is a (non
super-SS) SS operator.

PROPOSITION 1.3. Let (Ti : Xi → Yi)i∈I be a bounded family of bounded op-
erators, and U an ultrafilter over the index set I. Let T̃ = ∏U Ti be the corresponding
ultraproduct of the family (Ti)i∈U . Then, for every n > 1,

bn(T̃) = lim
i,U

bn(Ti).
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Proof. Let c be a real number with c < lim
i,U

bn(Ti), then there exists an ele-

ment U ∈ U such that c < inf
i∈U

bn(Ti). For every i ∈ U, there is a n-dimensional

subspace Ei of Xi such that ‖Tix‖ > c‖x‖ for every x ∈ Ei. The ultraproduct
Ẽ := ∏U Ei is an n-dimensional space which identifies with a subspace of the
ultraproduct X̃ := ∏U Xi. For every ξ = [xi]U ∈ Ẽ we clearly have ‖T̃ξ‖ =
lim
i,U
‖Tixi‖ > c lim

i,U
‖xi‖ = c‖ξ‖ and thus bn(T̃) > c.

Conversely let c < bn(T̃) and let ε > 0 such that c′ := c(1 + ε)2 < bn(T̃).
Choose a subspace F ⊂ X̃ of dimension n such that ‖T̃ξ‖ > c′‖ξ‖ for every ξ ∈ F.
Let (ξ(1), . . . , ξ(n)) be a basis of F: observe that (T̃ξ(1), . . . , T̃ξ(m)) is a basis of T̃F.
For j = 1, . . . , n let (x(j)

i )i∈I be a family representing ξ(j). We have∥∥∥T̃
( n

∑
j=1

ajξ
(j)
)∥∥∥ = lim

i,U

∥∥∥ n

∑
j=1

ajTix
(j)
i

∥∥∥.

On the other hand, by Proposition 1.1 applied to both F and T̃F, there is some U ∈
U such that for every i ∈ U both operators φi : F → [x(1)

i , . . . , x(n)
i ] and ψi : T̃F →

[Tix
(1)
i , . . . , Tix

(m)
i ]) defined by φi(ξ(j)) = x(j)

i (respectively ψi(T̃ξ(j)) = Tix
(j)
i )

are isomorphisms satisfying max(‖φi‖, ‖φ−1
i ‖) < 1 + ε and max(‖ψi‖, ‖ψ−1

i ‖) <
1 + ε (here we use the fact that the intersection of two elements of U belongs to
U ). Then we have the following chain of inequalities∥∥∥Ti

( n

∑
j=1

ajx
(j)
i

)∥∥∥>
1

(1+ε)

∥∥∥ n

∑
j=1

ajT̃ξ(j)
∥∥∥>

c′

(1+ε)

∥∥∥ n

∑
j=1

ajξ
(j)
∥∥∥>

c′

(1+ε)2

∥∥∥ n

∑
j=1

ajx
(j)
i

∥∥∥,

showing that Ti is invertible on the n-dimensional subspace Ei := [x(1)
i , . . . , x(n)

i ],
with constant c′

(1+ε)2 > c. Thus bn(Ti) > c for every i ∈ U, and lim
i,U

bn(Ti) > c.

COROLLARY 1.4. If T is a bounded operator then any ultrapower TU of T has the
same Bernstein numbers as T: ∀n, bn(TU ) = bn(T).

The following result was essentially given in [30]. We include its proof for
the sake of completeness.

PROPOSITION 1.5. Let T : X → Y be a bounded operator. The following asser-
tions are equivalent:

(i) T is super strictly singular.
(ii) Every ultrapower of T is strictly singular.

(iii) Every ultrapower of T relative to a free ultrafilter on N is strictly singular.

Proof. (i) ⇒ (ii) Assume that there exists an ultrafilter U such that TU :
XU → YU is not strictly singular. Then it is neither super strictly singular, thus
inf

n
bn(T) = inf

n
bn(TU ) > 0 by Corollary 1.4 and T is not super strictly singular.
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(iii) ⇒ (i) If T is not super strictly singular then there exists a sequence of
subspaces (Bn)n in X such that dim(Bn) = n for every n, and a constant c > 0
such that ‖Tx‖ > c‖x‖ for all x ∈ ⋃

n
En. Consider a free ultrafilter U on N and

consider the ultraproduct Z = (Bn)U , of which an isometric copy, still denoted
by Z, can be found in the ultrapower XU . Let us show that TU : XU → YU is
invertible on (Bn)U . Indeed, for every element [x]U = [(xn)]U in (Bn)U we have
TU ([x]U ) = [T(xn)]U and

‖TU ([x]U )‖ = lim
n,U
‖Txn‖ > lim

n,U
C‖xn‖ = C‖[x]U‖.

Thus TU is invertible on Z, hence TU is not strictly singular, since Z has infinite
dimension.

REMARK 1.6. The collection of super strictly singular operators is an opera-
tor ideal in Pietsch sense [39]. This follows instantly from Proposition 1.5 and the
fact that the collection of strictly singular operators is an operator ideal.

Let us now recall the notion of local representability of operators introduced
by Pietsch in [40], that we shall use in the sequel.

DEFINITION 1.7. An operator T1 : X1 → Y1 is said to be locally representable
in an operator T : X → Y (in short: T1 l.r. T) if for every ε > 0, every finite-
dimensional spaces E, F and every bounded linear operators A1 : E → X1, B1 :
Y1 → F there are bounded linear operators A : E → X, B : Y → F such that
BTA = B1T1 A1 and ‖B‖‖A‖ 6 (1 + ε)‖B1‖‖A1‖.

X1
T1 // Y1

B1

$$JJJJJJJ

E

A1
99ttttttt

A %%KKK
KKK

KK F

X
T

// Y
B

99tttttttt

Two operators T and T1 are said to be locally equivalent if each of them is
locally representable in the other one.

REMARK 1.8. An equivalent definition of Pietsch’s local representability is
the following: T1 is locally representable in T if for every finite-dimensional sub-
space E1 of X1 and every finite-codimensional (closed) subspace N1 in Y1 there
exist a finite dimensional subspace E in X, a finite-codimensional subspace N
in Y, and bounded linear operators V : E1 → E and W : Y/N → Y1/N1 with
‖V‖ 6 1 + ε, ‖W‖ 6 1 + ε such that the Diagramme 1.2 is commutative.

The following remark lists simple facts:

REMARK 1.9. (i) Local representability is transitive (i.e. T2 l.r. T1 and T1 l.r.
T imply T2 l.r. T).
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(ii) Let U : X1 → X and V : Y → Y1 be norm one operators. Then for every
T : X → Y, the operator VTU : X1 → Y1 is l.r. T.

(iii) Every operator T : X → Y is locally representable in jYT, where jY is the
canonical injection of Y in its bidual.

(iv) Every operator T is locally representable in any of its ultrapowers TU .
(v) Every operator T is locally representable in its biconjugate T∗∗.

E
iE−−−−→ X T−−−−→ Y

πN−−−−→ Y/N

V
x yW

E1
iE1−−−−→ X1

T1−−−−→ Y1
πN1−−−−→ Y1/N1

(1.2)

The connection between operator local representability and ultrapowers of
operators is the following result of Pietsch ([40], Theorem 6.6):

THEOREM 1.10 (Pietsch). Let T : X → Y and T1 : X1 → Y1 be bounded
operators. Then T1 : X1 → Y1 is locally representable in T if and only if there exist an
ultrapower TU of T, and contractive operators A : X1 → XU and B : YU → Y∗∗1 such
that jY1 T1 = BTUA, where jY1 : Y1 → Y∗∗1 is the canonical injection.

Note that in particular every ultrapower TU of T is locally representable in
T. Similarly it results from the local reflexivity theorem that the biconjugate T∗∗

is locally representable in T. Consequently we have ([40], Theorem 6.3):

PROPOSITION 1.11. Every operator is locally equivalent to its biconjugate and to
any of its ultrapowers.

PROPOSITION 1.12. An operator T : X → Y is super strictly singular if and only
if every operator T1 which is locally representable in T is strictly singular.

Proof. If T : X → Y is super-SS and T1 : X1 → Y1 is l.r. T, then let jY1 T1 =
B(TU )A be a decomposition as in Theorem 1.10; since TU is strictly singular by
Proposition 1.5, so is B(TU )A by the ideal property and so is T1 by the injectivity
of the SS-operator ideal. The converse direction is clear since all ultrapowers of T
are locally representable in T (Proposition 1.11).

PROPOSITION 1.13. The sequence of Bernstein numbers of an operator T domi-
nates that of any operator T1 locally representable in T: ∀n, bn(T1) 6 bn(T).

Proof. Let jY1 T1 = B(TU )A, with ‖A‖‖B‖ 6 1 be a decomposition as in
Theorem 1.10. By injectivity of Bernstein numbers, s-number property ([38], pag.
202), and Corollary 1.4 we have

bn(T1) = bn(jY1 T1) = bn(BTUA) 6 ‖B‖bn(TU )‖A‖ 6 bn(TU ) = bn(T).

In particular, from Propositions 1.11 and 1.13 we deduce the following state-
ment which is implicit in p. 249–250 of [41], and could also be deduced directly
from the local reflexivity theorem:
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COROLLARY 1.14. Any operator T and its biconjugate T∗∗ have the same Bern-
stein numbers, i.e. ∀n, bn(T) = bn(T∗∗).

2. SUPER STRICTLY COSINGULAR OPERATORS

We pass now to consider the class of super strictly cosingular operators in-
troduced by Plichko in [41] as a dual version of the class of super strictly singular
operators. There he introduces the following quantity numbers associated to a
bounded operator T : X → Y between two Banach spaces:

an(T) = sup
En

inf{‖T̂x‖Y/En : x ∈ X , ‖x̂‖X/T−1En = 1} ,

where supremum is taken over all n-codimensional subspaces En of Y and hats
denote the corresponding quotient classes.

According to Definition 6 of [41], an operator T : X → Y is super strictly
cosingular if the sequence an(T)→ 0 as n tends to infinity.

This class is shown to be in duality with that of super-SS operators ([41],
Theorem 4); consequently this super class also contains the class of compact op-
erators.

The definition of super strict cosingularity given in [41] may be inconsistent
with the claimed duality results and with its relation with the class of compact
operators. This is illustrated with the following:

EXAMPLE 2.1. Consider the rank-one operator T : lp → lp defined by
T((xn)n)=(x1, 0, 0, . . . ), and for every integer n the subspace En =[en+1, en+2, . . . ]
spanned by the sequence (en+k)∞

k=1. If Pn is the natural projection on ln
p and

πEn denotes the quotient linear map from lp onto lp/En, then it is clear that
‖Pnx‖ = ‖πEn x‖ for all x ∈ lp. Hence there is a linear isometry φn : ln

p → lp/En
such that πEn = φnPn.

If ŷ denotes the class of y in lp/En, then ‖T̂x‖ = ‖x̂1e1‖ = ‖Pn(x1e1)‖ =
|x1|. Also T−1En = [e2, e3, . . . ] since y ∈ T−1En if and only if y1 = 0. There-
fore lp/T−1En is isometric to l1

p and ‖πT−1En
x‖ = |x1|. Thus, ‖T̂x‖ = |x1| =

‖πT−1En
x‖, and hence

inf{‖πEn Tx‖ : ‖πT−1En
x‖ = 1} = 1.

Since this is true for every integer n we obtain that an(T) > 1 for all n, in other
words, T is not super strictly cosingular.

On the other hand, it is clear that the conjugate operator T∗ has also rank
one and sends every element (xn)n in lq to the sequence (x1, 0, 0, . . . ) (p−1 + q−1 =
1). Hence T∗ is super-SS being compact and therefore T should be super strictly
cosingular.



130 JULIO FLORES, FRANCISCO L. HERNANDEZ AND YVES RAYNAUD

Let us show now how a simple modification of the definition of the num-
bers an(T) will avoid the preceding trivial unconsistencies. To this end some
preliminary preparation is needed.

DEFINITION 2.2. Let T : X → Y be a bounded linear operator. For every
closed subspace E of Y set:

aE(T) := inf{d(Tx, E)/d(x, T−1(E)) : x ∈ X, Tx 6∈ E}
if TX 6⊂ E, and aE(T) = 0 if TX ⊂ E. For every natural number n > 1 define the
following, with the convention that sup ∅ = 0:

an(T) := sup{aE(T) : E ⊂ Y, codim E = n, Y ⊂ TX + E}.
Note that if we denote by πE the canonical surjection from Y onto Y/E, and

if we assume that TX 6⊂ E we have:

aE(T) = inf{‖πE ◦ Tx‖Y/E : x ∈ X, ‖πT−1Ex‖X/T−1E = 1}
consistently with Plichko’s paper. As was said above our definition of an(T) dif-
fers from that of Plichko insofar we consider in the supremum defining an(T)
only n-codimensional subspaces E such that πE ◦ T is surjective. In particular if
T has finite rank we have an(T) = 0 as soon as n > rankT. Note also that this
surjectivity condition, together with the fact that E is a proper subspace (in par-
ticular if E has nonzero codimension), implies that TX is not included in E and
thus αE(T) is defined by the first formula (or by Plichko’s formula).

If X is a Banach space, we denote by BX , respectively Bo
X , its unit ball, re-

spectively its open unit ball. If T : X → Y is a bounded operator, we denote by
q(T) its modulus of surjectivity that is q(T) = sup{α > 0 : T(BX) ⊃ αBY}. In this
definition balls can be replaced by open unit balls.

Note that if T is a Banach space isomorphism then q(T) = ‖T−1‖−1.

LEMMA 2.3. If T : X → Y is a bounded linear operator and E ( Y is a proper
subspace of finite codimension such that Y ⊂ TX + E then aE(T) = αE(T) , where

αE(T) = sup{α > 0 : πE ◦ T(BX) ⊃ αBY/E} = q(πE ◦ T)

is the modulus of surjectivity of the operator πE ◦ T.

Proof. Let TE = πE◦T and consider the induced operator T̂E : X̂ := X/ker TE
→Y/E (note that ker TE =T−1(E)). Then clearly aE(T)= a{0}(T̂E) and T̂E(Bo

X/ ker TE
)

= πE ◦ T(Bo
X) which implies αE(T) = q(T̂E). Now T̂E is injective by construction

and surjective because πE ◦ T is by hypothesis: so it is a linear isomorphism be-
tween X/ ker TE and Y/E; then:

‖T̂−1
E ‖ = sup{‖T̂−1

E η‖/‖η‖ : η ∈ Y/E, η 6= 0}

= sup{‖ξ‖/‖T̂Eξ‖ : ξ ∈ X/ ker TE, ξ 6= 0} = a{0}(T̂E)−1.
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Passing to the inverses we obtain:

αE(T) = q(T̂E) = ‖T̂−1
E ‖

−1 = a{0}(T̂E) = aE(T).

REMARK 2.4. Since αE(T)=0 when πE◦T is not surjective, we have in fact,
for every natural number n > 1:

an(T) = sup{αE(T) : E ⊂ Y, codim E = n}.
From this and the following lemma it will be clear that the an(T) coincide

with the Mityagin numbers defined in [38], pag. 210.

LEMMA 2.5. The sequence (an(T))n is non increasing.

Proof. It is sufficient to prove that if F ⊂ E are subspaces of finite codimen-
sion of Y then αF(T) 6 αE(T). Denote by πF

E the canonical surjection Y/F →→
Y/E. Then πE = πF

E ◦ πF and πF
E sends the unit ball of Y/F onto the unit ball of

Y/E. Hence if α < αF(T):

πE ◦ T(BX) = πF
E(πF ◦ T(BX)) ⊃ πF

E(αBY/F) ⊃ αBY/E

thus αE(T) > αF(T).

Mityagin and Bernstein s-numbers are related by duality as follows:

PROPOSITION 2.6. For every operator T : X → Y we have for every n > 1:

an(T) = bn(T∗) and bn(T) = an(T∗).

Proof. The lefthand equality was stated in Theorem 6.4 of [38], and proved
there as a consequence of the equality

(2.1) αE(T) = inf{‖T∗x′‖ : x′ ∈ E⊥, ‖x‖ = 1}
where E ⊂ Y, and E⊥ ⊂ Y∗ is the annihilator of E. Note that the map E 7→ E⊥ is
one to one from the set Gn(Y) of all closed subspaces of codimension n in Y onto
the set Gn(Y∗) of all subspaces of dimension n in Y∗, and the lefthand equality
in the proposition is thus obtained by taking the suprema in (2.1) with respect
to E ∈ Gn(Y). This reasoning does not work for the right hand equality in the
proposition since the map E 7→ E⊥ is not onto from Gn(Y) onto Gn(Y∗) when Y
is not reflexive.

However applying the left hand equality to the operator T∗ and Corol-
lary 1.14 we obtain:

an(T∗) = bn(T∗∗) = bn(T)
which is the right hand equality stated in the proposition (see Remark in [38],
pag. 213).

COROLLARY 2.7. If the operator R is locally representable in the operator T then
the sequence of Mityagin numbers of T dominates that of R: ∀n, an(R) 6 an(T).
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Proof. From the duality of Mityagin and Bernstein numbers (Proposition 2.6),
the fact that R l.r. T is equivalent to R∗ l.r. T∗ ([40], Proposition 6.4), and Proposi-
tion 1.13 we have

an(R) = bn(R∗) 6 bn(T∗) = an(T).

In particular by Proposition 1.11 we obtain:

COROLLARY 2.8. Every operator T has the same Mityagin numbers as its bicon-
jugate and any of its ultrapowers: ∀n, an(T) = an(T∗∗) = an(TU ).

The dual result to Proposition 1.3 holds true:

PROPOSITION 2.9. Given a bounded family of operators Ti : Xi → Yi, i ∈ I and
an ultrafilter U on I, we have for every n > 1

an

(
∏U Ti

)
= lim

i,U
an(Ti).

Proof. By Propositions 2.6 and 1.3 is sufficient to prove that bn((∏U Ti)∗) =
bn(∏UT∗i ). Let ι(Xi) : ∏UX∗i→(∏UXi)∗ be the isometric linear injection defined by

〈ι(Xi)([x
∗
i ]U ), [xi]U 〉 = lim

i,U
〈x∗i , xi〉

and ι(Yi) the similar one for ∏U Y∗i , we have ι(Xi) ◦∏U T∗i = (∏U Ti)∗ ◦ ι(Yi), thus

bn(∏U T∗i ) = bn(ι(Xi) ◦∏U T∗i ) 6 bn((∏U Ti)∗)

by injectivity and s-number property of Bernstein numbers. For proving the con-
verse inequality it is sufficient by Proposition 1.13 to prove that (∏U Ti)∗ is locally
representable in ∏U T∗i . Indeed let A : E → (∏U Yi)∗ and B : (∏U Xi)∗ → F
where E, F are finite dimensional and ‖A‖ 6 1, ‖B‖ 6 1. Applying Propo-
sition 5.6 of [40] to the operator ∏U Ti we can assume that B = C∗ for some
operator C : F∗ → ∏U Xi. Then applying the Kürsten-Stern “local duality theo-
rem for ultraproducts” ([20], Theorem 7.3) we may find Iε from the range of A to
(∏U Y∗i ), with ‖Iε‖ 6 1 + ε, such that 〈Iεφ, η〉 = 〈φ, η〉 for all φ in the range of A
and η in the range of (∏U Ti)C. Setting A1 = Iε A and B1 = C∗ |ΠUX∗i

we obtain
B(∏U Ti)∗A = B1(∏U T∗i )A1, as we wanted.

Like Plichko, we define now:

DEFINITION 2.10. An operator T : X → Y is super strictly cosingular (super-
SC) if an(T)→ 0 as n→ ∞.

EXAMPLE 2.11. We have seen that every finite rank operator is super-SC
(an(T) = 0 for n > rankT). More generally every compact operator T is super-
SC: if not we can find a sequence (En)n of subspaces of Y with codimEn > n and
inf

n
αEn(T) = α > 0. Let K = TBX which is compact. Then πEn(K) ⊃ αBY/En for

every n. Since the normed space Y/En has dimension n, its unit ball contains a
sequence of n points with mutual distances at least 1. Hence πEn(K) contains at
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least n points with mutual distances at least α, and so does K since ‖πEn‖ = 1.
Since this is true for every n, the set K cannot be compact, a contradiction.

REMARK 2.12. Super strict cosingularity implies strict cosingularity.

Indeed, consider a non-SC operator T : X → Y; thus there exists a subspace
E of Y of infinite codimension such that πE ◦ T: X → Y/E is surjective. By
Banach’s open mapping theorem the map πE ◦ T is open, i.e. αE(T) > 0. For
every subspace F of Y containing E we have αF(T) > αE(T) (see the proof of
Lemma 2.5); since E has infinite codimension, we may find for every n > 1 a
subspace Fn ⊃ E of codimension n: this shows that an(T) > αE(T) > 0 for every
n, and T is not super-SC.

The following immediate consequence of Proposition 2.6 is stated as Theo-
rem 4 in [41].

PROPOSITION 2.13. Let T : X → Y be a bounded operator. Then T is super
strictly cosingular if and only if T∗ is super strictly singular; and T is super strictly
singular if and only if T∗ is super strictly cosingular.

As an example we get that the canonical inclusions Lp[0, 1] ↪→ L1[0, 1], 1 <
p 6 ∞, are super-SC operators since the conjugate operators L∞[0, 1] ↪→ Lq[0, 1],
1 6 q < ∞ are super-SS (cf. Theorem 5.2 of [43]). In Section 4 we extend these
results to all rearrangement invariant function spaces (in particular to Lorentz
and Orlicz spaces).

Our aim now is to prove that the class of super-SC operators is actually the
“super" class of that of strictly cosingular operators. We first make a preliminary
remark on ultraproducts of quotients.

LEMMA 2.14. Let Z be a Banach space, (Hi)i∈I be a family of closed linear sub-
spaces of Z, and U be an ultrafilter on the set I. Consider the ultraproduct H̃ = ΠUHi as
a subspace of the ultrapower Z̃ = ZU . Then the distance function to H̃ is the ultraproduct
of the distance functions to the subspaces Hi, that is:

∀x̃ = [xi]U ∈ Z̃, d(x̃, H̃) = lim
i,U

d(xi, Hi).

Proof. Let ε > 0 be fixed; for every i ∈ I chose hi ∈ Hi such that d(xi, hi) 6
d(xi, Hi) + ε. Note that ‖hi‖ 6 ‖xi‖+ ε, so that the family (hi)i is bounded and
defines an element h̃ = [hi]U in H̃. Then

d(x̃, H̃) 6 d(x̃, h̃) = lim
i,U

d(xi, hi) 6 lim
i,U

d(xi, Hi) + ε.

Conversely let h̃=[hi]U∈H̃ be such that d(x̃, h̃)6d(x̃, H̃)+ε, then lim
i,U

d(xi, Hi)

6 lim
i,U

d(xi, hi)=d(x̃, h̃)6d(x̃, H̃)+ε. We conclude by letting ε→ 0.
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REMARK 2.15. By Lemma 2.14 there is a canonical identification of Z̃/H̃
with ∏U (Z/Hi), namely the operator J : πH̃ x̃ 7→ [πHi xi]U , which is well defined
and isometric. Note that J ◦ π̃H̃ = π̃ where π̃ = ∏U πHi .

THEOREM 2.16. Let T : X → Y be a bounded operator. The following assertions
are equivalent:

(i) T is super strictly cosingular.
(ii) Every operator locally representable in T is strictly cosingular.

(iii) Every ultrapower of T is strictly cosingular.
(iv) Every ultrapower of T relative to a free ultrafilter on N is strictly cosingular.

Proof. (i)⇒ (ii) This follows from Corollary 2.7 and Remark 2.12. (ii)⇒ (iii)
results from Theorem 1.10. (iii)⇒ (iv) is trivial.

(iv) ⇒ (i) Assume that T is not super-SC. Then there exist α > 0 and for
every n > 1 a subspace En ⊂ Y with codim En = n, such that

πEn ◦ T(BX) ⊃ αBY/En .

Let U be a free ultrafilter on N, and set T̃ = TU : XU → YU , and Ẽ = ∏U En,
which we consider as a closed subspace of YU . Let J : YU/Ẽ → Γ̃ := ∏U (Y/En)
be the isometric isomorphism of Remark 2.15, and set π̃ = ∏U πEn ; then we have
π̃ = J ◦ πẼ. We claim that

π̃ ◦ T̃(BXU ) ⊃ αBΓ̃

then it will follow that π̃ ◦ T̃ is surjective and so will be πẼ ◦ T̃ since π̃ ◦ T̃ =
J ◦ (πẼ ◦ T̃); as Ẽ is infinite dimensional, this will show that T̃ is not strictly cosin-
gular. Now every η̃ ∈ αBΓ̃ can be defined by a family (ηn)n with ηn ∈ αBY/En

for every n. Thus for every n there is some xn ∈ BX such that ηn = πEn ◦ T(xn);
setting x̃ = [xn]U we obtain the desired element x̃ ∈ BXU such that π̃ ◦ T̃(x̃) = η̃,
and the claim is proved.

REMARK 2.17. From Proposition 1.5 and Theorem 2.16 it follows immedi-
ately that for ultrapowers of a bounded operator with respect to a non-trivial
ultrafilter on N, strict (co) singularity implies super-strict (co) singularity. This
can be extended to ultraproducts in the following way. Assume that the ultra-
filter U on some set I is countably incomplete, that is, there exists a sequence (In)
of members of U such that

⋂
n>1

In = ∅. Then for any uniformly bounded family

of operators Ti : Xi → Yi, i ∈ I, the ultraproduct T̃ := ∏U Ti is super strictly
singular (respectively cosingular), whenever it is strictly singular (respectively
cosingular).

Indeed, if T̃ is not, say, super strictly cosingular, then α := inf
n

an(T̃) > 0.

By Proposition 2.9, for every n there is a set Un ∈ U such that an(Ti) > α/2
for every i ∈ Un. By taking appropriate finite intersections we may assume that
the sequence (Un) is decreasing and that Un ⊂ In for every n, thus

⋂
n

Un = ∅.
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For i ∈ Un \ Un+1 we may choose a closed subspace Ei of codimension n such
that πEi ◦ TEi (BYi ) ⊃ (α/2)BYi/Ei

. This defines Ei for all i ∈ U1 (for i 6∈ U1 set
Ei = (0)). Set Ẽi = ∏U Ei, which is an infinite-dimensional closed subspace of
Ỹ = ∏U Yi. Then as in the last part of the proof of Theorem 2.16 we see that πẼ ◦ T̃
is surjective, and thus T̃ is not strictly cosingular.

REMARK 2.18. The preceding developments remain true if one replaces
Pietsch’s notion of operator local representability by the more ancient notion of
“finite representability” due to Heinrich [19]. (Other notions of operator finite
representability have been introduced by several authors ([5], [8], [3]) which seem
to be less relevant for dealing with duality).

Recall that in Heinrich’s definition of finite representability the arrows V,
W in the diagramme (1.2) have to be (1 + ε)-isomorphisms and the diagramme is
only “ε-approximatively commutative”, i.e. ‖WπNTiEV − πN1 T1iE1‖ 6 ε. More-
over in Heinrich’s analogue of Theorem 1.10, the operators A, B have to be an iso-
metric injection, respectively a metric surjection. Thus Heinrich’s notion of finite
representability is strictly stronger than Pietsch’s notion of local representability
(see Remark 1.8).

3. DOMINATION BY SUPER-SS AND SUPER-SC OPERATORS

In this section we study the domination of super-SS and super-SC operators
between Banach lattices. We start by showing that the domination problem is not
trivial. We benefit from some examples given in [13] and [14].

EXAMPLE 3.1. There exist two operators 0 6 R 6 T : l1 → L∞[0, 1] such
that T is super-SS but R is not.

Indeed, take R̃ : l1 → L∞[0, 1] the isometry which takes the nth element, en,
of the canonical basis of l1 to the nth-Rademacher function, rn, on [0, 1] (cf. p. 203
of [11]). Consider also the positive operators R1, R2 : l1 → L∞[0, 1] defined by
R1(en) = r+

n and R2(en) = r−n respectively, where r+
n and r−n denote respectively

the positive and negative part of rn. Clearly R̃ = R1 − R2 and 0 6 R1, R2 6 T,

where T is the rank-one operator defined by T(x) =
( ∞

∑
n=1

xn

)
χ[0,1]. Note that the

operator T is super-SS being compact, but from the equalities T = R1 + R2 and
R̃ = R1 − R2 it results that if one of the operators R1 or R2 were SS then both
would be, as well as R̃; hence none of the operators R1, R2 can be SS.

EXAMPLE 3.2. There exist two operators 0 6 Q 6 P : L2[0, 1] → l∞ such
that P has rank one (hence is super-SS) and Q is not SS (hence non super-SS).

Indeed, consider the positive compact operator T : L1[0, 1] → l∞ defined
by the equality T( f ) = (

∫
f )(1, 1, 1, . . . ). Consider also the standard isometry R

from L1[0, 1] into l∞ given by R( f ) = (h′n( f ))n, where (hn)n is a dense sequence
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in the unit ball of L1[0, 1] and (h′n)n is a sequence of norm-one functionals such
that h′n(hn) = ‖hn‖ for all n (cf. Theorem 2.1.14 of [31]). Notice that the space
of all bounded operators between L1[0, 1] and l∞ coincides with the space of all
regular (in the lattice sense) operators between L1[0, 1] and l∞, and is a Dedekind
complete vector lattice (cf. Theorem 1.5.11 of [31]). In particular the positive and
negative parts R+, R− of R as well as the modulus |R| exist; furthermore 0 6
R+, R− 6 |R|.

It can be seen that 0 6 R+, R− 6 |R| 6 T : L1[0, 1] → l∞ (see [14] for
details). If J denotes the natural inclusion of L2[0, 1] into L1[0, 1] then the operator
RJ : L2[0, 1] → l∞ is not SS since R is an isometry and the inclusion J is not SS. It
follows that the operators (RJ)+ and (RJ)− cannot simultaneously be SS. On the
other hand the operator TJ is compact, hence SS, and clearly

0 6 (RJ)+, (RJ)− 6 |RJ| 6 |R|J 6 TJ.

Finally write P = TJ and Q = (RJ)+ to conclude the proof.

It is well known that for a Banach space X the property having type p (co-
type q) is a super property. In other words, if X has type p (cotype q), then every
ultrapower of X has type p (cotype q).

Recall that a Banach lattice E satisfies an upper (respectively lower) q-estimate

if there exists a constant M > 0 such that
∥∥∥ n

∑
i=1

xi

∥∥∥ 6 M
( n

∑
i=1
‖xi‖q

)1/q
(respec-

tively
∥∥∥ n

∑
i=1

xi

∥∥∥ > M
( n

∑
i=1
‖xi‖q

)1/q
) for every disjoint sequence (xi)n

i=1 in E and

every natural n. The lower (respectively upper) index of E is defined as s(E) =
sup{q > 1 : E satisfies an upper q-estimate} (respectively σ(E) = inf{q > 1 :
E satisfies a lower q-estimate}). It is well known that 1 6 s(E) 6 σ(E) 6 ∞ and
that 1/s(E) + 1/σ(E∗) = 1 and 1/σ(E) + 1/s(E∗) = 1 (cf. pag. 563 of [46]). Also
well known is the fact that a Banach lattice E has type p (cotype q) for some p > 1
(q < ∞) if and only if s(E) > 1 (σ(F) < ∞) (cf. pag. 101 of [29]). From main
results in [14] and [15] we have (see Theorem 1.4 of [15]):

THEOREM 3.3. Let 0 6 R 6 T : E → F be two positive operators from a Banach
lattice E to a Banach lattice F with order continuous norm. If σ(E) < ∞, then if T is SS
so is R.

We can give now a domination result for the super-SS operator class:

PROPOSITION 3.4. Let 0 6 R 6 T : E → F be two positive operators from
a Banach lattice E to a Banach lattice F. If σ(E) < ∞ and σ(F) < ∞, then if T is
super-SS so is R. Moreover the order interval of operators [0, T] := {R : 0 6 R 6 T} is
“uniformly super-SS” in the sense that, when n→ ∞,

sup
R∈[0,T]

bn(R)→ 0.
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Proof. Let U be a free ultrafilter on N and EU , FU be the ultrapower of E
and F respect to U . Consider the operators 0 6 RU 6 TU : EU → FU and note
that, by Proposition 1.5, TU is SS since T is super-SS. Also σ(E), σ(F) < ∞ implies
σ(EU ), σ(FU ) < ∞ by the remark above, and σ(FU ) < ∞ implies that FU is order
continuous. Thus RU is SS by Theorem 3.3 and hence R is super-SS.

Note that the sequence βn := sup
R∈[0,T]

bn(R) is decreasing. Assume that inf
n

βn

> β > 0, then for every n there exists an operator Rn ∈ [0, T] with bn(Rn) > β.
Let U be a nontrivial ultrafilter on N and set R̃ = ∏U Rn. Then 0 6 R̃ 6 TU and
since TU is super-SS, so is R̃ by the preceding. On the other hand for every k > 1
we have by Proposition 1.3, the following wich is a contradiction:

bk(R̃) = lim
n,U

bk(Rn) > lim
n,U

bn(Rn) > β > 0.

The following example shows that the q-concavity condition in Proposi-
tion 3.4 above plays an important role:

EXAMPLE 3.5. Let E = (
⊕∞

n=1 ln
1 )p and F = (

⊕∞
n=1 l2n

∞ )q, be the usual di-
rect sum spaces with the p-norm and q-norm respectively and 1 6 p < q < ∞.
Consider for every n the operator Tn : ln

1 → l2n
∞ which sends an arbitrary finite se-

quence (ak)n
1 to the sequence (∑ ak)(1, 1, . . . , 1) of l2n

∞ . Consider also for all n the
isometry Rn : ln

1 → l2n
∞ represented by the (2n × n) matrix with {1,−1}-entries

defined as follows

Rn ≡ (xk,`) =


1 1 . . . 1 1
1 1 . . . 1 −1
1 1 . . . −1 1

. . . . . . . . . . . . . . . . . . . . . . . . .
−1 −1 . . . −1 −1


(we set xk,` = εk(`), where εk, for k = 1, . . . , 2n is an enumeration of {−1, 1}n).

Consider now the operators T =
⊕

Tn and R =
⊕

Rn from E into F. The
operator T is positive and factorizes through the natural injection i : lp ↪→ lq.
Indeed, the operator ϕ : E → lp defined as ϕ(xn)n = (σ(xn))n, where σ(xn) =

n
∑

i=1
xn,i , is well defined and bounded. Consider next the bounded operator ψ :

lq → F defined as ψ(an)n =
⊕

an12n , where 12n is the unit of l2n
∞ . Notice that

T = ψ i ϕ. Since i is super-SS as observed by Plichko (cf. Corollary 1 of [41]), the
operator T itself is super-SS.

On the other hand it is clear that the operator R cannot be super-SS since
Rn is an isometry for every n. Standard facts show that R is regular and that the
inequalities 0 6 R−, R+ 6 |R| 6 T hold true. From this we obtain that R+ and
R− cannot be simultanously super-SS since R is not. Notice that F is reflexive
and E has the subsequence splitting property (compare with the situation for SS
operators in Theorem 1.1 of [14]).
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To obtain a result on domination in the class of super-SC operators we ben-
efit from Proposition 2.13

PROPOSITION 3.6. Let 0 6 R 6 T : E → F be positive operators defined on a
Banach lattice E and taking values in a Banach lattice F. If s(E) > 1 and s(F) > 1, then
T super-SC implies R is also super-SC. Moreover the order interval [0, T] is uniformly
super-SC in the sense that

sup
R∈[0,T]

an(R)→ 0.

Proof. T super-SC implies that the conjugate operator T∗ : F∗ → E∗ is super-
SS by Proposition 2.13. Since s(E), s(F) > 1 imply σ(E∗), σ(F∗) < ∞, we see
that R∗ is super-SS by Proposition 3.4; hence R is super-SC by Proposition 2.13.
Moreover, by Propositions 2.6 and 3.4,

sup
R∈[0,T]

an(R) = sup
R∈[0,T]

bn(R∗) 6 sup
S∈[0,T∗ ]

bn(S).

Like for super-SS operators the problem of domination in the super-SC class
is not trivial. Indeed, if T, R : L1[0, 1] → l∞ are the operators defined in Exam-
ple 3.2 above, and J denotes the natural inclusion of L2[0, 1] into L1[0, 1], then the
conjugate operator (TJ)∗ : (l∞)∗ → L2[0, 1] is compact and hence SC; on the other
hand since the operator RJ is not SS, the operator (RJ)∗ cannot be SC (cf. [37]) and
hence not super-SC. It follows that the operators ((RJ)∗)+ and ((RJ)∗)− cannot
simultaneously be super-SC. However 0 6 ((RJ)∗)+, ((RJ)∗)− 6 (TJ)∗. Simi-
larly a counterexample is derived from Example 3.5 for reflexive spaces failing to
have non-trivial concavity.

In the case of endomorphisms 0 6 R 6 T : E → E it has been studied
when the compactness properties of T are inherited by some power of R under
no assumption on the Banach lattice E (see for instance [2], [31], [46]). Using
recent results in [15] we have the following

PROPOSITION 3.7. Let 0 6 R 6 T : E → E be positive operators on a Banach
lattice E. If T is super-SS (respectively super-SC) then R4 is also super-SS (respectively
super-SC). In fact the set {R4 : 0 6 R 6 T} is uniformly super-SS (respectively uni-
formly super-SC).

Proof. Since 0 6 RU 6 TU : EU → EU and TU is SS we get by Theorem 1.5
of [15] that (RU )4 = (R4)U is SS. Hence R4 is super-SS. When T is super-SC the
proof follows now from Proposition 2.13.

REMARK 3.8. The results of Proposition 3.4 could be uniformized not only
with respect to R ∈ [0, T], but also with T : E→ F having a sequence of Bernstein
numbers controlled by a given sequence b = (bn), with bn → 0 (and E, F having
q-lower estimate constants bounded from below: Mq(E), Mq(F) > M > 0). In
other words βn := sup{bn(R) : R ∈ [0, T]; bk(T) 6 bk for all k} converges to zero.
The sequence (βn) depends only on the sequence b and the constants q and M. It
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would be interesting to have an explicit estimation of this dependence. A similar
question holds for the results of Propositions 3.6 and 3.7.

4. SUPER-DSS OPERATORS

In this section we introduce the analogous “super" version of the class of
DSS operators and study some of its properties. We recall that a bounded op-
erator T defined in a Banach lattice E and with values in a Banach space Y is
disjointly strictly singular (DSS for short) if the restriction of T to the span of any
infinite sequence of pairwise disjoint of vectors is never an isomorphism. This
class, introduced in [22], has proven useful in comparing the lattice structure of
function spaces ([16]) as well as in the study of the domination problem for SS
operators ([14]).

We will say that a subspace of a Banach lattice E is disjointly generated if it
has a basis consisting of pairwise disjoint vectors.

DEFINITION 4.1. Let E be a Banach lattice, Y be a Banach space and T : E→
Y a bounded operator. We say that T is not super disjointly strictly singular if
there is a sequence (En)n of subspaces of E, with each En being an n-dimensional
disjointly generated subspace of E, and a constant C > 0 such that ‖Tx‖ > C‖x‖
for every x ∈

∞
∪

n=1
En. We say that T is super disjointly strictly singular (super-DSS

in short) otherwise.

Define

cn(T) = sup
{

inf
x∈S(En)

‖Tx‖ : En = [(xn
i )n

i=1], ‖xn
i ‖ = 1, xn

i ⊥xn
j = 0, i 6= j

}
,

where S(En) is the unit sphere of En and En varies with each choice of n disjoint
vectors {xi}n

i=1. Clearly ck(T) > ck+1(T) > 0 for all k.

PROPOSITION 4.2. An operator T : E→ Y is super-DSS if and only if cn(T)→
0 as n→ ∞.

We also have the following characterization of super-DSS operators

PROPOSITION 4.3. An operator T from a Banach lattice E to a Banach space Y is
super-DSS if and only if for every sequence (En)n of disjointly generated finite dimen-
sional subspaces of E, with dim En → ∞, there exists a sequence of disjointly gener-
ated finite dimensional subspaces (Fn)n, with dim Fn → ∞ and Fn ⊂ En, such that
‖T|Fn‖ → 0 as n→ ∞.

Proof. We only need to prove the non trivial implication (necessity). For
this we essentially follow Theorem 1 of [41]. However we do not consider de-
composition constants but use disjointness instead. Thus, let us assume that T
is super-DSS, and let (En)n be a sequence of subspaces of E, each En having
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a basis (xn
i )i=1,...,n consisting of pairwise disjoint vectors. For every n > 1 set

k(n) = max{k > 1 : k2 6 n}. Clearly k(n) → ∞ as n tends to infinity. Now for
every n write

En =
k(n)⊕
j=1

Gn
j ⊕Wn

where Gn
j = [xn

(j−1)k(n)+1, . . . , xn
jk(n)] and Wn = [xn

k(n)2+1, . . . , xn
n].

Since dim Gn
j = k(n) for all j = 1, . . . , k(n) we can find zn

j ∈ Gn
j of norm

one such that ‖Tzn
j ‖ 6 ck(n)(T) (Proposition 4.2). Since ck(n)(T) → 0 we can find

l(n) ∈ {1, . . . , k(n)} such that l(n)→
n

∞ and l(n)ck(n)(T)→
n

0.

Consider now the span Fn = [(zn
j )

l(n)
j=1 ] in

k(n)⊕
j=1

Gn
j . For an arbitrary norm-

one vector x =
l(n)
∑

j=1
an

j zn
j in Fn we have |an

j | = ‖an
j zn

j ‖ 6
∥∥∥ l(n)

∑
s=1

an
s zn

s

∥∥∥ = 1 since

zn
j ∧ zn

k = 0, j 6= k. Then

‖Tx‖ 6
l(n)

∑
j=1
|an

j | ‖Tzn
j ‖ 6

l(n)

∑
j=1
|an

j | ck(n)(T) 6 l(n) ck(n)(T)→
n

0.

Hence ‖T|Fn‖→0 since x was arbitrarily taken. This concludes the proof.

It is clear that every super-SS operator is super-DSS. However the converse
is not true (see Example 5.3 below). It is clear that if T is super-DSS and R is a
bounded operator then RT is super-DSS. Nevertheless super-DSS operators do
not form an operator ideal since being super-DSS is a non-stable property by
composition by the right. In fact, being DSS is not stable by composition by the
right ([21]).

Like Bernstein numbers, the numbers cn can be easily computed for an ul-
traproduct:

PROPOSITION 4.4. Let (Ti : Ei → Yi)i∈I be a bounded family of bounded oper-
ators, each defined on a Banach lattice Ei, and U an ultrafilter over the index set I. Let
T̃ = ∏U Ti be the corresponding ultraproduct of the family (Ti). Then, for every n > 1,

cn(T̃) = lim
i,U

cn(Ti).

Proof. The proof is similar to that of Proposition 1.3. Observe however that
for proving the inequality lim

i,U
cn(Ti) > cn(T̃) we need to prove first that if En =

[(ξ j)n
j=1], ξ j⊥ξl = 0, is a finite-dimensional subspace in Ẽ = ∏U Ei generated

by disjoint elements then it is possible to find n families (x(j)
i )i∈I , j = 1, . . . , n in

∏ Ei whose corresponding classes [x(j)]U coincide with ξ j for every j, and such

that x(j)
i ⊥x(l)

i for every i and j 6= l. This fact is routine, we recall simply the
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proof for the sake of completeness. To avoid unnecessary notation we will restrict
ourselves to the case n = 2. Since |ξ1| ∧ |ξ2| = 0, then for any families (x1

i ), (x2
i )

representing ξ1, respectively ξ2 we have

0 = lim
i,U
‖ |x1

i | ∧ |x2
i | ‖ = ‖ |ξ1| ∧ |ξ2| ‖.

For a fixed i consider the elements

y1
k = sign (x1

k)(|x
1
k | ∧ |x

2
k |) and y2

k = sign (x2
k)(|x

1
k | ∧ |x

2
k |),

and set x̂1
i = x1

i − y1
i and x̂2

i = xi
k − y2

i . Notice that |x̂1
k | ∧ |x̂

2
k | = 0.

Since y1
k and y2

k have the same sign as x1
k and x2

k respectively, we have the
equalities

|x̂1
k | = | |x

1
k | − |y

1
k | | = |x

1
k | − (|x1

k | ∧ |x
2
k |),

and similarly
|x̂2

k | = |x
2
k | − (|x1

k | ∧ |x
2
k |).

Since ‖y1
k‖ = ‖|x1

k | ∧ |x
2
k |‖ = ‖y2

k‖ tend to zero along U it follows that [x1
k ]U =

[x̂1
k ]U and [x2

k ]U = [x̂2
k ]U . Thus (x̂1

k), (x̂2
k) represent ξ1, respectively ξ2 as well.

We can deduce now a characterization of super-DSS operators in terms of
ultrapowers, analogous to that obtained for super-SS operators:

PROPOSITION 4.5. An operator T : E → Y is super-DSS if and only if the ultra-
power TU : EU → YU is DSS for every free ultrafilter U on N (and then TU is DSS for
any ultrafilter U on any set).

For the proof just mimic the proof of Proposition 1.5.

COROLLARY 4.6. The class of super-DSS operators between E and Y forms a
closed vector space.

Regarding domination results we benefit from the next result given in [13]:

PROPOSITION 4.7. Let 0 6 R 6 T : E → F be two positive operators between
the Banach lattices E and F. Assume that F is order continous. If T is DSS then R is
DSS.

If we jointly use Proposition 4.7 and Proposition 4.5, and notice that for a
Banach lattice F, the condition σ(F) < ∞ is equivalent to the order continuity of
FU for every ultrafilter U (cf. Proposition 4.6 of [18]), we obtain the following:

PROPOSITION 4.8. Let 0 6 R 6 T : E → F be two positive operators between
the Banach lattices E and F. Assume that σ(F) < ∞. If T is super-DSS then R is also
super-DSS.

In fact like in Proposition 3.4, but using now Proposition 4.4 one sees that
the interval [0, T] is uniformly super-DSS (i.e. sup{cn(R) : 0 6 R 6 T} → 0).
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Notice that the operator R in Example 3.5 is actually not super-DSS since the
subspaces ln

1 are sublattices of E = (
⊕∞

n=1 ln
1 )p; however the operator T is super-

DSS being super-SS. Thus, in absence of non trivial concavity in F, Proposition 4.8
is no longer true.

REMARK 4.9. In the case of endomorphisms 0 6 R 6 T : E → E we benefit
from Theorem 1.2 of [13] to obtain that if T is super-DSS then R2 must also be
super-DSS.

5. RELATIONS BETWEEN SINGULAR CLASSES

We pass to summarize the relations between the “singular" operator classes
considered so far and provide examples for rearrangement invariant spaces.

EXAMPLE 5.1 ([32], [44]). Let 1 < p < q < ∞. A bounded operator T : lp →
lq which is SS and not super-SS.

Indeed, consider two isomorphisms ϕ : lp → (
⊕∞

n=1 ln
2 )p and ψ : (

⊕∞
n=1 ln

2 )q
→ lq (see for instance pag. 73 of [28]). Consider also the inclusion J : (

⊕∞
n=1 ln

2 )p
→ (

⊕∞
n=1 ln

2 )q , and the composition T = ψJϕ : lp → lq. For every n call En =
ϕ−1(ln

2 ) and Fn = ψ(ln
2 ); then d(En, ln

2 ) 6 ‖ϕ‖‖ϕ−1‖ and d(Fn, ln
2 ) 6 ‖ψ‖‖ψ−1‖

where d(·, ·) stands for the Banach–Mazur distance. The operator T uniformly
preserves copies of ln

2 since T(En) = Fn for all n; hence it is not super-SS. However
T is SS as operator from lp into lq.

EXAMPLE 5.2. Let 1 < p < q < ∞. A bounded operator T : lp → lq which
is SC and yet not super-SC.

Consider the conjugate operator T∗ in Example 5.1 and note that T∗ is SC
by Proposition 3 of [36] but not super-SC by Proposition 2.13.

EXAMPLE 5.3. The inclusion i : L2[0, 1] ↪→ L1[0, 1] is super-DSS but not
super-SS.

Indeed, let (En)n be a sequence of subspaces of L2[0, 1] where En = [(xn
i )n

i=1]
is generated by n nonzero disjoint elements. Then En is isometric to `n

2 while i(En)
is isometric to `n

1 . Since the Banach–Mazur distance of `n
2 to `n

1 is
√

n, it follows
that the restrictions of i to the subspaces En’s cannot have uniformly bounded
isomorphism constants. This proves that i is super-DSS. On the other hand i is
not SS (hence not super-SS) since by Khintchine inequality it preserves the span
generated by the Rademacher functions which is isomorphic to l2.

An example of a DSS operator which is not super-DSS is the natural inclu-
sion ip,q from Ep = (

⊕∞
n=1 `n

2 )p into Eq = (
⊕∞

n=1 `n
2 )q (when 1 6 p < q < ∞).

Indeed, this operator is not super-DSS since it preserves sublattices `n
2 of arbitrary
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high dimension, but it is DSS, and even SS since every infinite dimensional sub-
space of Ep contains a copy of lp, while every infinite dimensional subspace of Eq
contains a copy of lq (so Ep and Eq are “totally incomparable”).

On the other hand all super properties imply the corresponding properties.
We summarize the previous lines in the following diagram (no reverse arrows
can be drawn):

super-SS −→ super-DSS

↓ ↓
SS −→ DSS

Given a Banach lattice E with a pairwise disjoint Schauder basis and a Ba-
nach space Y, it holds that a bounded operator T : E → Y is DSS if and only
if it is SS ([21]). For super-DSS and super-SS operators the situation is different.
Indeed, let T : lp → lq, 1 < p < q be the non super-SS operator considered
in Example 5.1. Like in Example 5.3, the operator T is super-DSS because the
Banach–Mazur distance of `n

p and `n
q goes to infinity as n→ ∞.

Converses to domination results in the sense of obtaining necessary condi-
tions on the Banach lattices involved from the (assumed) existence of a domina-
tion result for compact operators have been studied in [45]. In [13] and [14] it is
shown that if there is a domination result in the classes of DSS or SS operators (F
is assumed to be σ-Dedekind complete), then either E∗ or F must be order con-
tinuous. The same proof works for super-SS and super-DSS operators. However
one could conjecture that in the “super" situation the assumption of the existence
of a domination result should yield stronger conditions like non-trivial convexity
on E or concavity on F. This is not the case:

EXAMPLE 5.4. Consider E = (
⊕∞

n=1 ln
1 )p and F = (

⊕∞
n=1 l2n

∞ )q, for 1 < q <
p < ∞. An adaptation of a result by Pitt (cf. Proposition 2.c.3 of [28]) shows
that every bounded operator from E to F must be compact. Hence the domina-
tion result trivially holds in the classes of super-SS and super-DSS operators from
E to F. Yet the (reflexive) spaces E and F have trivial convexity and concavity
respectively.

We pass now to consider rearrangement invariant function spaces E on the
interval [0, 1]. We refer to [29] for definitions. We will show that the canonical
inclusion E ↪→ L1 is always super-SC and that the canonical inclusion L∞ ↪→ E is
always super-SS. First we prove that both inclusions are super weakly compact.

Recall that an operator T from X to Y is super weakly compact if every ultra-
power of T is weakly compact. This class is stable by duality: T is super weakly
compact if and only if T∗ is super weakly compact. Indeed, if T : X → Y is super-
weakly compact, every ultrapower TU is weakly compact; then (TU )∗ : (YU )∗ →
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(XU )∗ is weakly compact too. Let δX,U (respectively δY,U ) be the canonical em-
bedding of (X∗)U into (XU )∗ (respectively of (Y∗)U into (YU )∗). Then the equal-
ity δX,U ◦ (T∗)U = (TU )∗ ◦ δY,U shows that δX,U ◦ (T∗)U is weakly compact. Since
δX,U is an isomorphic injection, (T∗)U is weakly compact too, and T∗ is super-
weakly compact. Conversely if T∗ is super-weakly compact then T∗∗ is also by
the preceding. Then jY ◦ T = T∗∗ ◦ jX and T itself are super-weakly compacts too
because the class of super-weakly compact operators form an injective operator
ideal (these properties are trivially inherited from the class of weakly compact
operators).

The following result is equivalent to a statement given as a remark without
proof in p. 123 of [5].

PROPOSITION 5.5. Let X be a Banach space. Every weakly compact operator T :
X → L1[0, 1] is super weakly compact.

Proof. Let U be an ultrafilter, the ultrapower (L1)U can be decomposed in
two disjoint bands as (L1)U = C ⊕ C⊥, where C is the band of elements repre-
sented by L1-equi-integrable families which is lattice-isomorphically isometric to
the space L1(Ω̃, Ã, µ̃), where the probability space (Ω̃, Ã, µ̃) is the ultrapower of
the usual Lebesgue measure space ([0, 1],A, µ) (see for instance [20]). Note that
TU (BXU ) is a subset of L1(Ω̃, Ã, µ̃). Indeed, T(BX) is equi-integrable by Dunford–
Pettis criterion, since it is relatively weakly compact. Every ξ ∈ TU (BXU ) is
represented by a family (Txi)i, with xi ∈ BX , which is equi-integrable; hence
TU (BXU ) ⊂ C.

Let us show that TU (BXU ) is equi-integrable in L1(Ω̃, Ã, µ̃). Since T(BX) is
equi-integrable there is a function δ : (0, ∞)→ (0, ∞) such that for all ε > 0:

x ∈ BX , A ∈ A, µ(A) < δ(ε) ⇒ ‖χATx‖ < ε.

If ξ ∈ BXU and Ã ∈ Ã, with µ̃(Ã) < δ(ε), we have χÃTU ξ = [χAi Txi]U where
xi ∈ BX , [xi]U = ξ, and ∀i, Ai ∈ A, µ(Ai) < ε. Then ∀i ∈ I ‖χAi Txi‖ < ε which
implies ‖χÃTU ξ‖ < ε.

COROLLARY 5.6. Let E be a rearrangement invariant space. If E 6= L1 (respec-
tively E 6= L∞ ), then the inclusion iE : E ↪→ L1 (respectively L∞ ↪→ E ) is super weakly
compact.

Proof. Since E 6= L1 we have φE(t)/t → ∞ as t → 0, where φE is the fun-
damental function of E (i.e. φE(t) = ‖χ[0,t]‖E), and there exists an intermediate
reflexive rearrangement invariant space between E and L1 (cf. [23]): hence iE is
weakly compact. Apply Proposition 5.5 to conclude.

Also, when E 6= L∞ we have φE(t) → 0 as t → 0, and there exists an in-
termediate reflexive rearrangement invariant space G between L∞ and E. The
conjugate space G∗ is then a reflexive rearrangement invariant space, hence the
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inclusion G∗ ↪→ L1 is weakly compact, and thus super weakly compact by Propo-
sition 5.5. And, by duality, L∞ ↪→ G is also super weakly compact, and so is the
inclusion L∞ ↪→ E by ideal property of this class of operators.

PROPOSITION 5.7. Let E be a rearrangement invariant space. If E 6= L∞ then the
inclusion iE : L∞ ↪→ E is super-SS. If E 6= L1 then the inclusion E ↪→ L1 is super-SC.

Proof. Let E 6= L∞. The ultrapower inclusion (iE)U : (L∞)U ↪→ EU is weakly
compact by the previous corollary. Hence it is strictly singular since the AM-space
(L∞)U has the Dunford–Pettis property ([36]). Using Proposition 1.5 we conclude
that iE : L∞ ↪→ E is super-SS.

The case E 6= L1 is consequence of the first part and Proposition 2.13.

Regarding disjoint strict singularity it is known that for every rearrange-
ment invariant space E 6= L1 the canonical inclusion E ↪→ L1 is DSS (cf. [35]); a
stronger result is the following:

PROPOSITION 5.8. Every weakly compact disjointness preserving operator T from
a Banach lattice X to L1 is super-DSS.

Proof. The operator T is DSS, otherwise it would fix an isomorphic copy of
`1. Using Proposition 5.5 we have that any ultrapower TU of T is a weakly com-
pact operator with values in some L1-space and is also disjointness preserving
(see proof of Proposition 4.4); hence TU is DSS and thus T is super-DSS.

In particular, if E 6= L1 is a rearrangement invariant space then the inclusion
E ↪→ L1 is super-DSS. This can also follow from the proof of Theorem 2.1 in [35].

6. COMPARING DSS AND LSS OPERATORS CLASSES

In [12], and implicitly in [13], the class of lattice strictly singular operators
is formally introduced.

A bounded operator T from a Banach lattice E to a Banach space Y is said to
be lattice strictly singular (LSS for short) if for every (closed) infinite-dimensional
sublattice G of E the restriction T : G → Y is not an isomorphism onto its image.
Equivalently T is LSS if for every pairwise disjoint sequence (xn)n in E of positive
vectors the restriction of T to the span [(xn)n] is not an isomorphism onto its
image. It seems unknown whether it has a vector space structure as well as if it
actually constitutes a new class. Obviously every DSS operator is LSS. In [13] it is
shown that for order continuous Banach lattices F, a positive operator T : E → F
is LSS if and only if it is DSS. In [12] a few more cases are covered for regular
operators.

In this section we formally introduce the class of super-LSS operators not for
the sake of generalization but with the hope that its study will shed some light
to the question above. Thus Theorem 6.3 shows that in the super setting both
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classes are the same. As a consequence it is seen that an operator which is an
ultrapower of another operator is LSS if and only if it is DSS. Actually the proof
of this result (which uses a well-known theorem of Krivine and the spreading-
model construction by Brunel and Sucheston) essentially applies to the class of
stable Banach lattices (in the sense of [27]) and, as a consequence, we obtain that
LSS and DSS operators are the same in this case.

DEFINITION 6.1. A bounded operator T from a Banach lattice E to a Banach
space Y is said to be super-LSS if it is not possible to find any sequence of sublat-
tices (En)n, where En is spanned by n pairwise disjoint positive vectors, and any
α > 0 such that ‖Tx‖ > α‖x‖ for every x ∈ ⋃

n
En.

Of course every super-DSS operator is super-LSS. Notice also that there is
a similar characterization to the one given in Proposition 4.5 for super-DSS op-
erators: T is super LSS if and only if every ultrapower TU is LSS for every free
ultrafilter U on N (or equivalently for every ultrafilter).

The next proposition will be used in the proof of our equivalence result.

PROPOSITION 6.2. Let T : l1 → Y be a bounded operator with values in a Banach
space Y. Then T is LSS if and only if T is DSS.

Proof. If T : l1 → Y is not DSS then there is a pairwise disjoint normalized
sequence (xn)n in l1 such that the restriction of T to the span [(xn)n] is an isomor-
phism. We may assume that ‖Tx+

n ‖ > c, ‖Tx−n ‖ > c for some c > 0. Indeed,
if ‖Tx+

n ‖ tends to zero, then the sequences (Txn)n and (Tx−n )n have equivalent
basic subsequences by Proposition 1.a.9 of [28]. It follows that there is some sub-
sequence (xnk )k such that T is invertible on [(x−nk

)k] and we are done (a similar
situation holds if ‖Tx−n ‖ tends to zero). By Rosenthal’s dichotomy theorem (cf.
Theorem 2.e.5 of [28]), there is a subsequence (xnk )k such that either (Tx+

nk
)k is

equivalent to the unit basis of l1 or (Tx+
nk

)k is weakly Cauchy. Clearly we may
disregard the first case and assume the second one. Hence, there is a further sub-
sequence, still denoted by (xnk )k such that either (Tx−nk

)k is equivalent to the unit
basis of l1 or (Tx−nk

)k is weakly Cauchy. Again the first case can be disregarded.
Thus, both sequences (Tx+

nk
)k and (Tx−nk

)k are weakly Cauchy and so is (Txnk )k.
Since T is an isomorphism on [(xn)n], the sequence (xnk )k is weakly Cauchy and
in fact norm-convergent in l1 by Schur lemma. Its limit must clearly be 0, which
is a contradiction with being normalized.

THEOREM 6.3. Let E be a Banach lattice, Y a Banach space and T : E → Y a
bounded operator. Then T is super-LSS if and only if T is super-DSS.

Proof. Assume that T is not super-DSS; then according to Proposition 4.5
there exists some free ultrafilter U such that TU : EU → YU is not DSS. Hence, by
replacing T with TU , we can assume that there is a pairwise disjoint sequence of
norm-one vectors (xn)n in E such that T is invertible on the span [(xn)n] (note that
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the vectors xn may not be positive). From this point on we will make some re-
ductions that eventually will help to prove the result. Notice that the ultrapower
of an ultrapower of a Banach space (lattice) is an ultrapower of the initial space
(lattice). This justifies all the “passing to some ultrapower" reductions used along
the proof.

Step 1. We can assume that (xn)n is equivalent to the lp-canonical basis.
Indeed, by a well-known theorem of Krivine ([26]) lp is finitely representable

in the sequence (xn)n, that is, there exists some p ∈ [1, ∞] such that for all inte-
ger N there is some finite sequence (yN

m )m=1,...,N of normalized pairwise disjoint
blocks of the sequence (xn)n which is equivalent to the unit basis of lN

p (with uni-
formly bounded constants for all N). Consider the ultrapower EU for some free
ultrafilter U and TU : EU → YU (notice that E and Y were already assumed to be
ultrapowers). If ỹm denotes the class in EU of the sequence (yN

m )N (set yN
m = 0

when N < m), then it is seen that the sequence (ỹm)m is equivalent to the unit
basis of lp, and TU is an isomorphism onto its image when restricted to the span
[(ỹm)m]. To simplify notation let us replace from now on TU by T, EU by E and
YU by Y.

Step 2. We can assume that the sequences (x+
n )n and (x−n )n are equivalent to

the canonical basis of lp.
First notice that, by a standard perturbation argument, we can assume

inf
n
{‖x+

n ‖, ‖x−n ‖} > C > 0,

since otherwise we would obtain the invertibility of T on the span of a subse-
quence of either (x+

n )n or of (x−n )n, and the proof would be completed. Hence
we can assume that both (x+

n )n and (x−n )n are normalized unconditional basic
sequences. We apply again Krivine’s theorem to each sequence separately and
obtain that there is some q and some r such that lq is finitely representable in
(x+

n )n and lr is finitely representable in (x−n )n. In fact the unconditionality of the
sequence (x+

n )n allows to assume that the blocks obtained in Krivine theorem
are positive by simply replacing the coefficients by their absolute value. Call the
blocks zN

m = ∑
i

αN
m,ix

+
i and call also yN

m = ∑
i

αN
m,ixi. Clearly ‖zN

m‖ 6 ‖yN
m‖. If we

pass again to an ultrapower as in Step 1 we obtain a sequence (ỹ
′
m)m equivalent

to the unit basis of lp and a sequence (z̃
′
m)m equivalent to the unit basis of lq. No-

tice also that z̃
′
m = ỹ

′
m

+. Again we may assume that inf
m
‖z̃ ′m‖ > c > 0. Thus, so

far the situation has been reduced to the case that (xn)n is equivalent to the unit
basis of lp and (x+

n )n is equivalent to the unit basis of lq. Similarly we can assume
that (x−n )n is isomorphic to the unit basis of lr. Since we have the following, we
necessarily obtain that p 6 min(q, r):

max
{∥∥∥∑ αnx+

n

∥∥∥,
∥∥∥∑ αnx−n

∥∥∥} 6
∥∥∥∑ αnxn

∥∥∥.
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Assume that q > p. Then considering the blocks

ym = (2m + 1)−1/p
(m+1)2

∑
n=m2+1

xn

we have that (ym)m is still equivalent to the unit basis of lp but ‖y+
m‖ = (2m +

1)q−1−p−1
tends to zero. As above a perturbation argument shows that T is in-

vertible on the span of some subsequence (y−mk
)k and we are done. Hence we can

assume that q = p. Similarly we may assume that r = p.
Step 3. The sequences (Tx+

n )n and (Tx−n )n can be assumed to be seminor-
malized and unconditional.

Indeed, once again the seminormalization stems from the perturbation ar-
gument above. Notice that we can disregard the case p = 1 according to Propo-
sition 6.2.

Thus the sequences (x+
n )n and (x−n )n are weakly convergent and so are the

sequences (Tx+
n )n and (Tx−n )n. Since they are seminormalized we can assume,

by passing to a subsequence, that both are basic sequences. To deal with the
unconditionality we will apply Brunel–Sucheston’s result ([9]) to the sequence
(Tx+

n )n. Thus there exists a "good" subsequence, still denoted by (Tx+
n ), and a

norm |‖ · ‖| on R(N) such that for all natural M and all scalars α1, . . . , αM we have
the following, where (ei) are the unit vectors of R(N),

lim
k1→∞, k1<k2<···<kM

∥∥∥ M

∑
1

αiTx+
i

∥∥∥ → ∣∣∣∥∥∥ M

∑
1

αiei

∥∥∥∣∣∣.
Note that for every N,∣∣∣∥∥∥ N

∑
1

αiei

∥∥∥∣∣∣ 6 ‖T‖( N

∑
1
|αi|p

)1/p
,

from which it follows that N−1
∣∣∣∥∥∥ N

∑
1

ei

∥∥∥∣∣∣ → 0 as N tends to infinity. This implies

that the fundamental sequence (ei)i of the spreading model is unconditional ([7],
Chapter I, Proposition 4). By passing to a further subsequence we may assume
that the sequence (Tx−n )n is also "good" in Brunel–Sucheston’s sense.

We pass again to the ultrapower along a free ultrafilter U on N and consider

the class x̃k = [(xk+n)n]U in EU for every k. Then the equality
∥∥∥ M

∑
1

αkTx̃+
k

∥∥∥ =∣∣∣∥∥∥ M
∑
1

αkek

∥∥∥∣∣∣ easily holds true and from here the unconditionality of the sequence

(Tx̃+
k )k follows.

Similarly we get that the sequence (Tx̃−k )k is also unconditional.
Step 4. Both sequences (Tx+

k )k and (Tx−k )k can be assumed to be equivalent
to the unit basis of lp.
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Like in Step 1 there is some q and r such that lq and lr are finitely repre-
sentable in (Tx+

k )k and (Tx−k )k respectively. Notice that the blocks can be choosen
to have positive coefficients (here the unconditionality is crucial). Since

max
{∥∥∥∑ αkTx+

k

∥∥∥,
∥∥∥∑ αkTx−k

∥∥∥} 6 C‖T‖
(

∑ |αk|p
)1/p

,

we conclude as above that q, r > p. Now reasoning similarly as in Step 2 we
can deduce that p = q = r. Hence T is invertible on [(x+

k )k]. The proof is com-
pleted.

The proof of Theorem 6.3 easily adapts to the class of stable Banach spaces
(of J.L. Krivine and B. Maurey [27]). Recall that a Banach space E is called stable if
for every pair (xn)n, (yn)n of bounded sequences the following equality holds

lim
n→∞

lim
m→∞

‖xn + ym‖ = lim
m→∞

lim
n→ ∞

‖xn + ym‖,

whenever one of the iterated limits exists. Krivine-Maurey’s theorem ([27]) states
that every infinite-dimensional stable Banach space contains an almost isometric
copy of some lp, 1 6 p < ∞. In fact their proof shows that if (xn)n is a sequence in
X with no convergent subsequence, then a sequence of consecutive blocks ym =
Nm+1

∑
Nm+1

αnxn is asymptotically isometric to the unit basis of some lp, that is

∥∥∥ ∞

∑
j=m

λjyj

∥∥∥ 1+εm∼
( ∞

∑
j=m
|λj|p

)1/p
,

with εm → 0 as m grows to infinity. Among stable spaces are Lp spaces for 1 6
p < ∞ ([27]), Orlicz spaces ([17]), Lorentz spaces ([42]) and the corresponding
spaces of vector-valued functions with values in a stable Banach space ([4]).

Based on the ideas above we obtain the following result (which improves
previous ones given in [13] and [12] for regular operators):

PROPOSITION 6.4. Let E be a stable Banach lattice and let Y be a stable Banach
space. Let T : E → Y be a bounded operator. Assume that Y has an unconditional finite
dimensional decomposition. Then T is LSS if and only if T is DSS.

Proof. We essentially mimic the proof of Theorem 6.3, replacing at each
stage the finite sequences of blocks generating the ln

p-copies with infinite
sequences of blocks generating copies of lp. Thus, if T is not DSS then there exists
a disjoint sequence (xn)n which generates lp such that the restriction of T to the
span [(xn)n] is an isomorphism. As in the proof of Theorem 6.3 we can choose
a sequence of consecutive disjoint blocks (ym)m of (x+

n )n, respectively (zm)m of
(x−n )n, with positive coefficients which are equivalent to the canonical basis of lq,
respectively of lr. As in there it can be seen that p = q = r. Hence we can as-
sume case that (xn)n, (x+

n )n and (x−n )n are equivalent to the canonical basis of lp.
By applying Rosenthal’s dichotomy theorem we may disregard the case p = 1.
Then the sequences (Tx+

n )n and (Tx−n )n are weakly null and in fact they can be
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assumed to be seminormalized. Furthermore they have subsequences (Tx+
nk

)k
and (Tx−nk

)k which are unconditional basic sequences by the assumption on the
space Y. By applying Maurey–Krivine’s result again to these two sequences we
proceed as in Theorem 6.3 to conclude that T is invertible on [(x+

n )n] and hence
not LSS.

REMARK 6.5. The previous result applies to Y = Lp with 1 < p < ∞. In
contrast, Johnson, Maurey and Schechtmann produced a weakly null sequence
in L1 without unconditional subsequences ([24]). Thus, an attempt to adapt the
proof of Proposition 6.4 to the case where Y = L1 looks very unpromising.
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