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1. INTRODUCTION

Among the most interesting examples of C∗-algebras one finds the “dynam-
ical C∗-algebras”, meaning C∗-algebras constructed out of some dynamical sys-
tem. The interest in their study lies in the fact that they are algebraic representa-
tions of their accompanying systems, sometimes revealing features which are not
immediately seen with a naked eye.

The classical notion of a group action on a topological space, the most basic
form of a dynamical system, leads to the crossed product or covariance C∗-algebra
which, over the years, has proven to be an invaluable tool in the study of group
actions.

Dynamical systems often take slightly more sophisticated forms, such as
semigroup actions, pseudogroups, or topological groupoids and, in most cases,
crossed-product-like constructions may be performed providing C∗-algebras mir-
roring dynamical features algebraically.

The huge variety of dynamical C∗-algebras has prompted some to reverse
the order of things and to look for dynamical data attached to C∗-algebras which
are not necessarily born from a dynamical system. This point of view has been
enormously successful, so much so that it is now a standard tool in the study
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of C∗-algebras. When available it often gives important information on simplic-
ity, the structure of ideals, faithfulness of representations and K-theory, among
others.

One of the earliest attempts at uncovering dynamical data beneath unsus-
pecting algebraic systems is Feldman and Moore’s [9] description of Cartan sub-
algebras of von Neumann algebras via twisted measured equivalence relations.
Kumjian [13] and Renault [22] have later made these ideas to work in the context
of C∗-algebras and, thanks to them, we now know that Cartan subalgebras of
C∗-algebras may be described via twisted, essentially principal, étale groupoids.

Motivated by these developments, the second named author has recently
found a generalized notion of (non-commutative) Cartan subalgebras, for which
a similar characterization may be given [6]. The dynamical object underneath this
characterization comes in the form of a Fell bundle over an inverse semigroup, a
concept introduced by Sieben in a talk given at the Groupoid Fest in 1998 (see
[23], [6]). But, perhaps due to the fact that this concept is still deeply rooted in
algebra, it may not immediately appear to deserve the label of a dynamical system.

The present work intends to bridge this gap, clarifying the relationship be-
tween such Fell bundles and dynamics proper.

By definition a Fell bundle over an inverse semigroup S consists of a family
A = {As}s∈S of Banach spaces, equipped with bilinear multiplication operations
As ×At → Ast, conjugate-linear involution operations As → As∗ , and inclusion
maps As ↪→ At, whenever s 6 t. All these data are required to satisfy certain
natural axioms (see Definition 2.8 below).

The expression Fell bundle has its roots in Fell’s pioneering work [10] and
is used in this work primarily to refer to Fell bundles over inverse semigroups,
as briefly defined above, but the concept of Fell bundles over groupoids, as in-
troduced by Kumjian and Yamagami [25], [14], also plays a crucial role since the
latter provides examples of the former: given a Fell bundle B over an étale group-
oid G, let S be any inverse semigroup consisting of bisections of G, and for each
U ∈ S, let AU be the space of all continuous sections of B over U vanishing at in-
finity. The operations on B may be used to give the collection A = {AU}U∈S the
structure of a Fell bundle over S. Under mild conditions, we prove that the cross
sectional C∗-algebras of B and of A are isomorphic (see Theorem 2.13). In case
the groupoid G is Hausdorff, we follow a partition-of-unit argument appearing
in Theorem 7.1 of [20]. This idea also appears in the unpublished preprint ([23],
Proposition 3.5), by Nánbor Sieben. We also deal with the non-Hausdorff case by
using some ideas borrowed from [5], [17].

A special subcase of this construction is obtained when, starting from a
twisted groupoid (G, Σ), we form the associated Fell line bundle B over G.

Given any Fell bundleA over an inverse semigroup S, and given an element
e in the idempotent semilattice E(S), the fiber over e, namely Ae, is always a C∗-
algebra. In the special case of the above Fell bundle constructed from a twisted
étale groupoid (G, Σ), a bisection U is idempotent if and only if it is contained in
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the unit space G(0). In this case the fiber over U is just the algebra C0(U) of con-
tinuous complex-valued functions (the twist over the unit space is always trivial
so it may be disregarded when U ⊆ G(0)) vanishing at infinity on U, which is
obviously a commutative C∗-algebra. This suggests the terminology semi-abelian,
referring to Fell bundles for which Ae is commutative for every idempotent ele-
ment e.

Our main result shows that every semi-abelian Fell bundle arises from a
twisted étale groupoid in the above fashion. This gives substance to the statement
that Fell bundles over inverse semigroups are indeed dynamical objects, and it
also supports the claim that general Fell bundles (not necessarily semi-abelian
ones) should be considered as twisted groupoids with non-commutative unit space.

Our techniques borrow lavishly from Kumjian [13] and Renault [22], espe-
cially when constructing a groupoid from a semi-abelian Fell bundle. Our con-
struction of the twist is also heavily inspired by these works, although we have
found it more economical to construct the associated line bundle directly, without
first passing through the twist itself. Should the twist be needed, it can be easily
recovered as the circle bundle associated to our line bundle.

In the last section we apply our result to Cartan subalgebras. Given a (com-
mutative) Cartan subalgebra B of a C∗-algebra A, the results of [6] yield a Fell
bundle A over an inverse semigroup S, and an isomorphism A ∼= C∗r (A), send-
ing B onto C∗r (E), where E is the restriction of A to the idempotent semilattice
of S. Since B is commutative, A must be semi-abelian, so we may apply our re-
sults in order to obtain a twisted étale groupoid (G, Σ) together with a canonical
isomorphism A ∼= C∗r (G, Σ), which sends B onto C0(G(0)). This proves most of
Renault’s main result in [22].

It should be stressed that the groupoids that come out of our construction
are not necessarily Hausdorff, as opposed to the groupoids considered in [13]
and [22]. In fact, starting with Connes’ work on foliation groupoids [1], the re-
cent literature on non-Hausdorff groupoids has increased significantly provid-
ing efficient techniques which often only require small changes in relation to the
Hausdorff case.

Returning to the Hausdorff question, in our proof of Renault’s characteriza-
tion of Cartan subalgebras, we have not seen how to prove, without appealing to
Renault’s ideas, that the underlying groupoid is Hausdorff.

Since Renault’s proof relies on the existence of a conditional expectation, we
were led to conjecture that, ifA is a semi-abelian Fell bundle over an inverse semi-
group such that there exists a conditional expectation from C∗r (A) onto C∗r (E),
then the underlying groupoid should be Hausdorff. However this is not true as
shown by the example given in Proposition 5.3. We are therefore forced to accept
that Hausdorffness is not only a consequence of the existence of the conditional
expectation, but that it also depends on maximal abeliannes, as in Renault’s re-
sult.
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2. PRELIMINARIES

2.1. BANACH BUNDLES. In this section we will establish basic facts about upper-
semicontinuous Banach bundles that we need in the sequel. Even though this is
a well known theory, covered in detail in several references (see for instance [3],
[10], [16] and references therein), its applications to non-Hausdorff spaces have
not been widely considered up to now. Even though large parts of the theory
generalize nicely to certain non-Hausdorff spaces, most of the classical texts deal
exclusively with the Hausdorff case.

DEFINITION 2.1 ([3], [16]). Let X be a (not necessarily Hausdorff) topolog-
ical space. An upper-semicontinuous-Banach bundle over X is a pair A = (A, p)
consisting of a topological space A together with a continuous, open surjection
p : A → X. It is moreover assumed that for each x ∈ X, the fiber over x, namely
Ax := p−1(x), has the structure of a complex Banach space satisfying:

(i) the map v 7→ ‖v‖ is upper-semicontinuous from A to R+;
(ii) the map (v, w) 7→ v + w is continuous from {(v, w) ∈ A × A : p(v) =

p(w)} (seen as a topological subspace of A× A) to A;
(iii) for each λ ∈ C, the map v 7→ λv is continuous from A to A;
(iv) if {vi}i is a net in A such that p(vi)→ x and ‖vi‖ → 0, then {vi}i converges

to 0x, the zero element in Ax.
If the map v 7→ ‖v‖ is continuous from A to R+, we say thatA is a continuous

Banach bundle.

REMARK 2.2. Although the norm on A need not be continuous, upper-
semicontinuity forces ‖vi‖ to converge to 0 whenever vi converges to 0x for some
x ∈ X. With this in mind, as observed in [16] (see comments after Definition 3.1),
the same proof of Proposition II.13.10 in [10] can still be applied to an upper-semi-
continuous Banach bundle A in order to get a stronger version of property (iii):

(iii’) the map (λ, v) 7→ λv is continuous from C× A to A.

In what follows we are going to omit the bundle projection p and the total
space A from our notation and identify the latter with the bundle A itself. More-
over, we also usually identify A with the collection {Ax}x∈X of all fibers and
actually write A = {Ax}x∈X to denote all the data. We believe that this will not
cause any confusion.

As already mentioned, we need efficient methods of constructing Banach
bundles, and we shall now devote ourselves to generalizing Fell and Doran’s
main such tool ([10], Theorem II.13.18).

As a first step we suppose we are given a (not necessarily Hausdorff) topo-
logical space X and a pairwise disjoint collection of Banach spaces {Ax}x∈X . De-
note by A the disjoint union of the Ax and let p : A → X be the function which
assigns x to every element of Ax.
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DEFINITION 2.3. If U is any subset of X, and if ξ : U → A is a function such
that ξ(x) ∈ Ax for every x ∈ U, we say that ξ is a local section of A over U. In this
case, we denote the domain of ξ by dom(ξ) := U.

In Theorem II.13.18 of [10] one chooses a collection of globally defined sec-
tions satisfying certain assumptions and one constructs a topology on A with
respect to which the given sections are continuous.

However, there are examples of locally Hausdorff spaces X, for which the
trivial one-dimensional bundle admits no global continuous compactly supported
section (see Example 1.2 of [12]). To remedy this situation we work here with local
sections defined on open subsets of X.

Given a subset Γ of local sections of A, we shall write span Γ for the set of
the local sections of the form

n

∑
i=1

λiξi with λi ∈ C, ξi ∈ Γ and n ∈ N,

where by definition,

dom
( n

∑
i=1

λiξi

)
:=

n⋂
i=1

dom(ξi) and
( n

∑
i=1

λiξi

)
(x) :=

n

∑
i=1

λiξi(x).

Note that the set of all local sections ofA is not a vector space with respect to
the sum and scalar product defined above because the sum fails to have additive
inverses. However, it is a so called semi-vector space, that is, all the axioms of a
vector space are satisfied, except for the existence of additive inverses.

The following result, which is a non-Hausdorff version of Theorem II.13.18
in [10], is certainly well-known to specialists and is essentially the same as Propo-
sition 3.6 in [11]. However we have chosen to include the proof here for the
reader’s convenience.

PROPOSITION 2.4. Let Γ be a set of local sections of A whose domains dom(ξ)
are open subsets of X for all ξ ∈ Γ. Suppose that:

(i) given v ∈ A, there exists ξ ∈ Γ such that p(v) ∈ dom(ξ) and v = ξ(p(v));
(ii) the map x 7→ ‖ξ(x)‖ is upper-semicontinuous from dom(ξ) to R+ for all ξ ∈

span Γ, that is, if ξ ∈ span Γ and if α is a positive real number, then the following is
open in X:

{x ∈ dom(ξ) : ‖ξ(x)‖ < α}.
Then there exists a unique topology on A making it an upper-semicontinuous Ba-

nach bundle over X and such that all the local sections ξ of span Γ, viewed as functions
ξ : dom(ξ) → A, are continuous. A basis of open sets for this topology is given by the
sets of the following form, where ξ ∈ Γ, U is an open subset of dom(ξ), and ε > 0:

Ω(U, ξ, ε) = {v ∈ A : p(v) ∈ U, ‖v− ξ(p(v))‖ < ε}.
Moreover, A is a continuous Banach bundle with this topology if and only if the

maps dom(ξ) 3 x 7→ ‖ξ(x)‖ ∈ R+ are continuous for all ξ ∈ Γ.
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Proof. In order to see that the above sets do indeed form the basis of some
topology on A, let

v0 ∈ Ω(U1, ξ1, ε1) ∩Ω(U2, ξ2, ε2),
where εi > 0, ξi ∈ Γ, and Ui ⊆ dom(ξi), for i = 1, 2. Put x0 = p(v0), so x0 ∈ Ui,
and ‖v0 − ξi(x0)‖ < εi. Choose ε′i > 0 such that

‖v0 − ξi(x0)‖ < ε′i < εi,

and let η ∈ Γ, such that η(x0) = v0. Put

Vi = Ui ∩ {x ∈ dom(η) ∩ dom(ξi) : ‖η(x)− ξi(x)‖ < ε′i},
and observe that Vi is open by (ii). Notice that x0 ∈ Vi. Letting δ > 0 be such that
ε′i + δ < εi, we claim that

(2.1) v0 ∈ Ω(V1 ∩V2, η, δ) ⊆ Ω(U1, ξ1, ε1) ∩Ω(U2, ξ2, ε2).

To show that v0 is in the indicated set, notice that p(v0) = x0 ∈ Vi, and

‖v0 − η(p(v0))‖ = 0 < δ.

To show that Ω(V1 ∩V2, η, δ) ⊆ Ω(Ui, ξi, εi), pick any v belonging to the set
in the left-hand-side. So p(v) ∈ Vi ⊆ Ui. Moreover

‖v− ξi(p(v))‖ 6 ‖v− η(p(v))‖+ ‖η(p(v))− ξi(p(v))‖ 6 δ + ε′i < εi.

This shows that v ∈ Ω(Ui, ξi, εi), and hence concludes the proof of equation (2.1).
To see that the collection of all the Ω(U, ξ, ε) does indeed form the basis for a
topology on A it is therefore enough to check that its union equals A, but this is
clear from (i) because any v ∈ A lies in Ω(dom(ξ), ξ, ε), as long as v = ξ(p(v)).

Step 1. p is open. To see this it is enough to show that p sends basic open sets
to open sets, but this follows immediately from the fact that p(Ω(U, ξ, ε)) = U.

Step 2. The norm is upper-semicontinuous. We need to show that the set

Nα = {v ∈ A : ‖v‖ < α}
is open for every α > 0. So let v0 ∈ Nα, and choose ξ ∈ Γ, such that ξ(x0) = v0,
where x0 = p(v0). Pick α′ such that ‖v0‖ < α′ < α, and set

U = {x ∈ dom(ξ) : ‖ξ(x)‖ < α′},
so U is open by (ii) and x0 ∈ U. Choose ε > 0, such that α′ + ε < α, and let us
show that

(2.2) v0 ∈ Ω(U, ξ, ε) ⊆ Nα.

On the one hand p(v0) = x0 ∈ U, and on the other ‖v0 − ξ(p(v0))‖ = 0 < ε, so
v0 ∈ Ω(U, ξ, ε). Moreover, given any v ∈ Ω(U, ξ, ε), we have p(v) ∈ U, and

‖v‖ 6 ‖v− ξ(p(v))‖+ ‖ξ(p(v))‖ < ε + α′ < α.

This proves equation (2.2), and hence we see that Nα is indeed open.
Step 3. The sum is continuous. Let v0, w0 ∈ A, with p(v0) = p(w0), and

suppose that v0 + w0 lies in some basic open set Ω(U, ξ, ε). We need to provide
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an open subset ∆ of A×A, containing (v0, w0), and such that the sum operation
sends ∆ into Ω(U, ξ, ε), meaning that for every (v, w) ∈ ∆ such that p(v) = p(w),
one has v + w ∈ Ω(U, ξ, ε).

Set x0 = p(v0)= p(w0), so we have x0∈U, and we may pick ε′>0 such that

‖v0 + w0 − ξ(x0)‖ < ε′ < ε.

Choose η, ζ ∈ Γ, such that v0 = η(x0), and w0 = ζ(x0), and put

V = U ∩ {x ∈ dom(η) ∩ dom(ζ) ∩ dom(ξ) : ‖η(x) + ζ(x)− ξ(x)‖ < ε′},

and notice that V is open by (ii) and x0 ∈ V. Let δ > 0 be such that ε′ + 2δ < ε,
and observe that

(v0, w0) ∈ Ω(V, η, δ)×Ω(V, ζ, δ).

We claim that the set in the right-hand side fulfills the task assigned to ∆, above.
In fact, pick (v, w) ∈ Ω(V, η, δ)×Ω(V, ζ, δ), with p(v) = p(w). In order to

show that v + w ∈ Ω(U, ξ, ε), notice that x := p(v + w) ∈ V ⊆ U, and moreover

‖v + w− ξ(x)‖ = ‖v− η(x)‖+ ‖w− ζ(x)‖+ ‖η(x) + ζ(x)− ξ(x)‖ < 2δ + ε′ < ε.

This proves the continuity of the sum operation.
Step 4. Scalar multiplication is continuous. Given λ ∈ C, and v0 ∈ A such

that λv0 lies in some basic open set Ω(U, ξ, ε), we have x0 := p(λv0) = p(v0) ∈
U, and there exists ε′ such that

‖λv0 − ξ(x0)‖ < ε′ < ε.

Choose η ∈ Γ such that η(x0) = v0, and consider the open set

V = U ∩ {x ∈ dom(η) ∩ dom(ξ) : ‖λη(x)− ξ(x)‖ < ε′},

which clearly contains x0. Choosing δ > 0 such that

ε′ + |λ| δ < ε,

we claim that if w ∈ Ω(V, η, δ), then λw ∈ Ω(U, ξ, ε). In fact, by assumption we
have p(λw) = p(w) ∈ V ⊆ U, and

‖λw− ξ(p(w))‖ 6 ‖λw− λη(p(w))‖+ ‖λη(p(w))− ξ(p(w))‖
< |λ| ‖w− η(p(w))‖+ ε′ < |λ| δ + ε′ < ε,

so indeed λw ∈ Ω(U, ξ, ε).
Step 5. Proof of axiom from Definition 2.1(iv). Let {vi}i and x be as in

Definition 2.1(iv). Denoting by 0x the zero element of Ax, let Ω(U, ξ, ε) be a basic
neighborhood of 0x, so x ∈ U, and ‖ξ(x)‖ < ε. Pick ε′ such that

‖ξ(x)‖ < ε′ < ε,

and let
V = U ∩ {y ∈ dom(ξ) : ‖ξ(y)‖ < ε′}.
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Clearly V is open and x ∈ V. Choose δ > 0, such that ε′ + δ < ε. For all i bigger
than or equal to some i0, one therefore has p(vi) ∈ V, and ‖vi‖ < δ. For i > i0
one then has p(vi) ∈ U, and

‖vi − ξ(p(vi))‖ 6 ‖vi‖+ ‖ξ(p(vi))‖ < δ + ε′ < ε,

so vi ∈ Ω(U, ξ, ε), proving that vi → 0x. We conclude thatA is an upper-semicon-
tinuous Banach bundle with the topology which has the sets Ω(U, ξ, ε) as basis.
Now, to see that each ξ ∈ span Γ is continuous as a function ξ : dom(ξ) → A,
take any η ∈ Γ, suppose that U ⊆ dom(η) is an open subset, and take ε > 0.
Then we have

{x∈dom(ξ) : ξ(x)∈Ω(U, η, ε)}={x ∈ dom(ξ) : x ∈ U and ‖ξ(x)− η(x)‖ < 0}
=U∩{x∈dom(ξ)∩dom(η) : ‖ξ(x)−η(x)‖< ε},

which is open by (ii) since ξ − η ∈ span Γ. This says that ξ : dom(ξ) → A is
continuous.

To see that the topology on A is uniquely determined, assume that A has
a topology making it an upper-semicontinuous Banach bundle and such that all
the local sections in span Γ are continuous. Since the norm is upper-semicon-
tinuous, and since the map p−1(U) 3 v 7→ v − ξ(p(v)) ∈ A is continuous for
every ξ ∈ Γ and every open subset U ⊆ dom(ξ), the sets Ω(U, ξ, ε) must be open
inA. Moreover, given any open subset V ⊆ A and v0 ∈ V , we claim that there are
ξ ∈ Γ, U ⊆ dom(ξ) open and ε > 0 such that v0 ∈ Ω(U, ξ, ε) ⊆ V . By (i), there is
a local section ξ ∈ Γ such that x0 := p(v0) ∈ dom(ξ) and ξ(x0) = v0. Suppose,
by contradiction, that for any open subset U ⊆ dom(ξ) containing x0 and for any
ε > 0, the set Ω(U, ξ, ε) is not contained in V . This yields an element vU,ε ∈ A
which is not contained in V and satisfies p(vU,ε) ∈ U and ‖vU,ε− ξ(p(vU,ε))‖ < ε.
Then the net {p(vU,ε}U,ε converges to x0 (where the pairs U, ε are directed in the
canonical way) and the net wU,ε := vU,ε − ξ(p(vU,ε)) converges in norm to 0. By
Definition 2.1(iv), the net wU,ε converges to 0x0 inA. Since ξ and p are continuous,
ξ(p(vU,ε)) converges to ξ(p(x0)) = v0, and hence vU,ε converges to v0. This is a
contradiction because V is open, v0 ∈ V and vU,ε /∈ V for all U, ε. This proves our
claim. As a consequence, the sets Ω(U, ξ, ε) form a basis for the topology on A,
and therefore it must be the same topology we constructed above.

Finally, suppose thatA is a continuous Banach bundle with the above topol-
ogy. Since the ξ ∈ Γ are continuous and the norm on A is continuous, the maps
dom(ξ) 3 x 7→ ‖ξ(x)‖ ∈ R+ must be continuous for all ξ ∈ Γ. Conversely,
suppose these maps are continuous. To show that the map A 3 v 7→ ‖v‖ ∈ R+ is
continuous, it is enough to prove lower semi-continuity since we already know
it is upper-semicontinuous. Thus we have to show that the sets Mα := {v ∈ A :
‖v‖ > α} are open in A for all α > 0. Take v0 ∈ Mα and choose ξ ∈ Γ with
x0 = p(v0) ∈ dom(ξ) and ξ(x0) = v0. Pick α′ satisfying α < α′< ‖v0‖ and define
U :={x∈dom(ξ) : ‖ξ(x)‖>α′}. If 0< ε<α′−α, then every v∈Ω(U, ξ, ε) satisfies

‖v‖ > ‖ξ(p(v))‖ − ‖ξ(p(v))− v‖ > α′ − ε > α,
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so that v0 ∈ Ω(U, ξ, ε) ⊆ Mα. This concludes the proof.

2.2. FELL BUNDLES OVER GROUPOIDS AND INVERSE SEMIGROUPS. Let us begin
by precisely identifying the class of groupoids that will interest us.

DEFINITION 2.5 ([21]). A groupoid G is said to be a topological groupoid if
it is equipped with a (not necessarily Hausdorff) topology relative to which the
multiplication and inversion operations are continuous. We say that G is étale if,
in addition, the unit space G(0) is locally compact and Hausdorff in the relative
topology, and the range map r : G → G(0) (and consequently also the domain
map d : G → G(0)) is a local homeomorphism.

The following definition of Fell bundles over groupoids is the same given by
Alex Kumjian in [14] (see also [25]), except that Kumjian only works with Haus-
dorff groupoids and continuous Banach bundles. Continuous Banach bundles
would be enough for us, but our main results require non-Hausdorff groupoids.
Given our interest in étale groupoids, we shall restrict ourselves to this situation
although the concept below actually makes sense for any topological groupoid.

From now on we fix an étale groupoid G.

DEFINITION 2.6. A Fell bundle over G is an upper-semicontinuous Banach
bundle A = {Aγ}γ∈G over G together with a multiplication

· : A(2) = {(a, b) ∈ A×A : (p(a), p(b)) ∈ G(2)} → A,

where p : A → G is the bundle projection, and an involution

∗ : A → A, a 7→ a∗

satisfying the following properties:
(i) p(γ1γ2) = p(γ1)p(γ2), that is, Aγ1 · Aγ2 ⊆ Aγ1γ2 whenever (γ1, γ2) ∈

G(2), and the multiplication map Aγ1 ×Aγ2 → Aγ1γ2 , (a, b) 7→ a · b is bilinear;
(ii) the multiplication onA is associative, that is, (a · b) · c = a · (b · c) whenever

a, b, c ∈ A and this makes sense;
(iii) the multiplication · : A(2) → A is continuous, whereA(2) carries the topol-

ogy induced from the product topology on A×A;
(iv) ‖a · b‖ 6 ‖a‖‖b‖ for all a, b ∈ A;
(v) p(a∗) = p(a)∗ for all a ∈ A, that is, A∗γ ⊆ Aγ−1 for all γ ∈ G, and the

involution map ∗ : Aγ → Aγ−1 is conjugate linear;
(vi) (a∗)∗ = a, ‖a∗‖ = ‖a‖ and (a · b)∗ = b∗ · a∗ for all a, b ∈ A;

(vii) the involution ∗ : A 7→ A is continuous;
(viii) ‖a∗a‖ = ‖a‖2 for all a ∈ A; and

(ix) a∗a is a positive element of the C∗-algebra Ad(γ) for all γ ∈ G and a ∈ Aγ.
We say that A is saturated if the closed linear span of Aγ1 · Aγ2 equals Aγ1γ2

for all (γ1, γ2) ∈ G(2).
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Note that for a unit x ∈ G(0), the fiber Ax is in fact a C∗-algebra with re-
spect to the restricted multiplication and involution from A. This follows from
(i)–(viii) above, so that (ix) makes sense. Moreover, the restriction A(0) =A|G(0)

is an upper-semicontinuous C∗-bundle [18]. Conversely, if X is any locally com-
pact Hausdorff space, and if B is an upper-semicontinuous C∗-bundle over X,
then B is a Fell bundle in the sense above over X considered as a groupoid in the
trivial way.

PROPOSITION 2.7. LetA be an upper-semicontinuous Banach bundle over G, and
let Γ be a set of local sections of A satisfying the properties (i) and (ii) in Proposition 2.4.
Suppose that · : A(2) → A is a multiplication and ∗ : A → A is an involution on
A satisfying all the axioms (i)–(ix) in Definition 2.6 except, possibly, for (iii) and (vii).
Then:

(i) the multiplication · : A(2) → A is continuous if and only if the following map is
continuous for all ξ, η ∈ Γ:

G(2) ∩ (dom(ξ)× dom(η)) 3 (γ1, γ2) 7→ ξ(γ1) · η(γ2) ∈ A;

(ii) the involution ∗ : A → A is continuous if and only if the following map is
continuous for all ξ ∈ Γ:

G ⊇ dom(ξ) 3 γ 7→ ξ(γ)∗ ∈ A.

Proof. Although we do not have the same set of hypothesis, the same proof
of VIII.2.4 in [10] can be applied to our situation in order to prove (i). And (ii) is
also proved in a similar way (see also VIII.3.2 of [10]).

Next, we recall the definition of Fell bundles over inverse semigroups and
compare with the one over groupoids defined above. This concept was first in-
troduced by Nánbor Sieben in 1998 (see [23]), and we borrow some of his ideas.
Unfortunately, his results were not published, but the main ideas are contained
in the preprint [6] by the second named author.

DEFINITION 2.8. Let S be an inverse semigroup. A Fell bundle over S is a
collection A = {As}s∈S of Banach spaces As together with a multiplication · :
A × A → A, an involution ∗ : A → A, and linear maps jt,s : As → At whenever
s 6 t, satisfying the following properties:

(i) As · At ⊆ Ast and the multiplication is bilinear from As ×At to Ast for all
s, t ∈ S;

(ii) the multiplication is associative, that is, a · (b · c)=(a · b) · c for all a, b, c∈A;
(iii) ‖a · b‖ 6 ‖a‖‖b‖ for all a, b ∈ A;
(iv) A∗s ⊆ As∗ and the involution is conjugate linear from As to As∗ ;
(v) (a∗)∗ = a, ‖a∗‖ = ‖a‖ and (a · b)∗ = b∗ · a∗;

(vi) ‖a∗a‖ = ‖a‖2 and a∗a is a positive element of the C∗-algebra As∗s for all
s ∈ S and a ∈ As;

(vii) jt,s : As → At is an isometric linear map for all s 6 t in S;
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(viii) if r 6 s 6 t in S, then jt,r = jt,s ◦ js,r;
(ix) if s 6 t and u 6 v in S, then jt,s(a) · jv,u(b) = jtv,su(a · b) for all a ∈ As and

b ∈ Au; in other words, the following diagram, where µs,u and µt,v denote the
multiplication maps, commutes:

As ×Au
µs,u //

jt,s×jv,u
��

Asu

jtv,su
��

At ×Av µt,v
// Atv

(x) if s 6 t in S, then jt,s(a)∗ = jt∗ ,s∗(a∗) for all a ∈ As, that is, the diagram

As
∗

//

jt,s
��

As∗

jt∗ ,s∗
��

At ∗
// At∗

commutes; if As · At spans a dense subspace of Ast for all s, t ∈ S, we say that A
is saturated.

EXAMPLE 2.9. Let G be an étale groupoid, and let B = {Bγ}γ∈G be a Fell
bundle over G (as in Definition 2.6). Let S(G) be the inverse semigroup of all
bisections in G. Recall that an open subset U ⊆ G is a bisection if the restrictions
dU : U → d(U) and rU : U → r(U) of the source and range maps d : G → G(0)

and r : G → G(0) are homeomorphisms. Let S ⊆ S(G) be an inverse subsemi-
group. Given U ∈ S, define AU to be the space C0(BU) of continuous sections
vanishing at infinity of the restriction BU of B to U ⊆ G. Then the collection
A = {AU}U∈S (disjoint union of the AU’s) is a Fell bundle over S with respect to
the following structure:

(i) the multiplication AU ×AV → AUV is defined by

(ξ · η)(γ) := ξ(r−1
U (r(γ))) · η(d−1

V (d(γ)))

whenever ξ ∈ C0(BU), η ∈ C0(BV) and γ ∈ UV (recall that UV is defined as the
set of all products γ1γ2 with γ1 ∈ U, γ2 ∈ V and d(γ1) = r(γ2));

(ii) the involution AU → AU∗ is defined by

ξ∗(γ) := ξ(γ−1)∗

whenever ξ ∈ C0(BU) and γ ∈ U∗ := {γ−1 : γ ∈ U};
(iii) the inclusion maps jV,U : AU ↪→ AV are defined in the canonical way: if

U 6 V, that is, U ⊆ V, then we may extend a section ξ ∈ C0(BU) by zero outside
U and view it as a section ξ̃ ∈ C0(BV). Thus jV,U(ξ) := ξ̃, where ξ̃ denotes the
extension of ξ by zero.
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The proof that A is in fact a Fell bundle is not difficult and is left to the
reader. Let us just remark that the multiplication above is well-defined. More-
over, since U, V are bisections, there is a unique way to write γ ∈ UV as a prod-
uct γ = γ1γ2 with γ1 ∈ U and γ2 ∈ V. Indeed, we must have γ1 = r−1

U (r(γ))
and γ2 = d−1

V (d(γ)). Note that the multiplication we defined in A uses the mul-
tiplication of B. Thus (ξ · η)(γ) = ξ(γ1) · η(γ2) ∈ Bγ1 · Bγ2 ⊆ Bγ1γ2 = Bγ, so
ξ · η is in fact a section. Note that the associativity of the multiplication in A now
follows easily from the associativity of the products in G and B. Moreover, it also
follows that the multiplication in A is the usual convolution:

(ξ · η)(γ) = (ξ ∗ η)(γ) = ∑
γ=γ1γ2

ξ(γ1) · η(γ2).

We want to prove that the Fell bundles described in Example 2.9 have same
universal C∗-algebras. We consider two cases. First, if the groupoid G is Haus-
dorff, we shall follow an idea appearing in Theorem 7.1 of [20] which uses a
partition-of-unit argument. This idea does not seem to work in the non-Hausdorff
case. However, under suitable separability conditions, we adapt an idea appear-
ing in [5] together with a disintegration result of [17] to solve the non-Hausdorff
case as well.

We need to work with bundles with incomplete fibers, and for this we shall
need the following technical result:

LEMMA 2.10. Let A = {As}s∈S be a Fell bundle over an inverse semigroup S,
and suppose thatA0 = {A0

s}s∈S is a sub-bundle ofA satisfying the following properties:
(i) A0

s is a dense subspace of As for all s ∈ S;
(ii) A0

s · A0
t ⊆ A0

st and (A0
s )∗ ⊆ A0

s∗ for all s, t ∈ S;
(iii) A0

ss∗As ⊆ A0
s and AsA0

s∗s ⊆ A0
s for all s ∈ S; and

(iv) jt,s(A0
s ) ⊆ A0

t whenever s 6 t.
Then C∗(A) is the enveloping C∗-algebra of the quotient Cc(A0)/I0

A, where I0
A

is the ideal of Cc(A0) defined by

I0
A := span{aδs − jt,s(a)δt : a ∈ A0

s , s 6 t}.
Proof. Recall that IA = span{aδs − jt,s(a)δt : a ∈ As, s 6 t} is an ideal of

Cc(A) and C∗(A) is the enveloping C∗-algebra of the quotient Cc(A)/IA. By def-
inition, a pre-representation ofA, once linearly extended to Cc(A) = span{aδs : a
∈ As}, is a representation if and only if it vanishes on the ideal IA. Let π be
a pre-representation of A0 on some C∗-algebra C, that is, π is a map A0 → C
which respects the multiplication and involution of A0 (which are well-defined
by (ii)) and is linear when restricted to the fibers A0

s . Then π extends to a pre-
representation π̃ of A into C. In fact, (ii) implies that A0

e is an ideal of Ae for all
e ∈ E(S). It follows from Lemma 2.3 of [20] that the restriction πe : A0

e → C
of π to A0

e (which is a ∗-homomorphism) is contractive, that is, ‖πe(a)‖ 6 ‖a‖
for all a ∈ A0

e . Using the ∗-identity and the fact that π respects multiplication



FELL BUNDLES OVER INVERSE SEMIGROUPS AND TWISTED ÉTALE GROUPOIDS 165

and involution, this implies that all restrictions πs : A0
s → C are contractive and

therefore extend to π̃s : As → C. Of course, π̃ = {π̃s}s∈S is a pre-representation
since π is. Now assume that π vanishes on the ideal I0

A, that is, π is coherent in
the sense that π(a) = π(jt,s(a)) whenever a ∈ A0

s and s 6 t. Then the extension π̃
is also coherent. Indeed, take a bounded approximate unit (ei) forAs∗s contained
in A0

s∗s. If a ∈ As, then aei ∈ A0
s by (iii), so that

π̃(a) = π̃
(

lim
i

aei

)
= lim

i
π(aei) = lim

i
π(jt,s(aei)) = lim

i
π̃(jt,s(aei)) = π̃(jt,s(a)).

Conversely, if π̃ is coherent, so is its restriction π. We conclude that representa-
tions (that is, coherent pre-representations) of A0 correspond bijectively to repre-
sentations of A, whence the result follows.

As in Example 2.9, let B = {Bγ}γ∈G be a Fell bundle over an étale group-
oid G, and let A = {C0(BU)}U∈S be the associated Fell bundle over an inverse
subsemigroup S ⊆ S(G). Given U ∈ S, we define A0

U := Cc(BU). Then the
sub-bundle A0 = {A0

U}U∈S of A satisfies the properties (i)–(iv) in statement
of Lemma 2.10. The only non-trivial property to be checked is (iii). But if ξ ∈
C0(BU), η ∈ Cc(BU∗U) and K = supp(η) ⊆ U∗U = d(U), then (ξ · η)(γ) =
ξ(γ)η(d(γ)) for all γ ∈ U, so that supp(ξ · η) ⊆ d−1

U (K) is a compact subset of
U, and hence ξ · η ∈ Cc(BU). Analogously, Cc(BUU∗) · C0(BU) ⊆ Cc(BU). As a
consequence of Lemma 2.10, C∗(A) is the enveloping C∗-algebra of Cc(A0)/I0

A.
Under some mild conditions, we shall prove in what follows that C∗(A) is iso-
morphic to the full C∗-algebra C∗(B) of the Fell bundle B. First, let us recall the
definition of C∗(B).

DEFINITION 2.11. Given a Fell bundle B = {Bγ}γ∈G over a locally compact
étale groupoid G, we write Cc(B) for the vector space of sections ξ of B which

can be written as a finite sum of the form ξ =
n
∑

i=1
ξi, where each ξi : Ui → B

is a compactly supported, continuous local section of B over some Hausdorff
open subset Ui ⊆ G, extended by zero outside Ui and viewed as a global section
ξi : G → B.

Alternatively, since the bisections in G form a basis for its topology ([5],
Proposition 3.5), we may restrict to local sections ξi : Ui → B supported on bisec-
tions Ui in the above definition. Notice that bisections are open and Hausdorff by
definition. Also note that any open Hausdorff subset U ⊆ G is locally compact
with respect to the induced topology ([5], Proposition 3.7).

Let us warn the reader that, in general, if G is not Hausdorff, sections in
Cc(B) are not continuous with respect to the global topology. Of course, if G is
Hausdorff, Cc(B) coincides with the usual space of compactly supported, con-
tinuous (global) sections of B. In any case, the vector space Cc(B) always has
a canonical ∗-algebra structure. The multiplication on Cc(B) is the convolution
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product
(ξ ∗ η)(γ) = ∑

γ=γ1γ2

ξ(γ1)η(γ2)

and the involution is defined by ξ∗(γ) = ξ(γ−1)∗ for all ξ, η ∈ Cc(B). As ob-
served in Example 2.9, if ξ is supported in a bisection U ⊆ G and η is sup-
ported in a bisection V ⊆ G, then ξ ∗ η is supported in the bisection UV and
(ξ ∗ η)(γ) = ξ(γ1)η(γ2) whenever γ ∈ UV is (uniquely) written in the form
γ = γ1γ2 with γ1 ∈ U and γ2 ∈ V. In particular, this shows that the convolution
product is well-defined on Cc(B).

By definition, C∗(B) is the enveloping C∗-algebra of Cc(B). The same ar-
gument presented in Proposition 3.14 of [5] implies that ‖π(ξ)‖ 6 ‖ξ‖∞ for any
∗-representation π of Cc(B) whenever ξ ∈ Cc(B) is supported in some bisection
of G. Therefore the enveloping C∗-algebra of Cc(B) in fact exists.

DEFINITION 2.12 (Compare Proposition 5.4 of [5]). Let G be an étale group-
oid. We say that an inverse subsemigroup S ⊆ S(G) is wide if the following
properties hold:

(i) S is a covering for G, that is, G =
⋃

U∈S
U, and

(ii) given U, V ∈ S and γ ∈ G, there is W ∈ S such that γ ∈W ⊆ U ∩V.

THEOREM 2.13. Let B = {Bγ}γ∈G be a Fell bundle over an étale groupoid, and
let A = {C0(BU)}U∈S be the associated Fell bundle over a wide inverse subsemigroup
S ⊆ S(G). Consider the sub-bundle A0 = {Cc(BU)}U∈S of A as above. If G is either
Hausdorff, or G is second countable and the section algebras C0(BU) are separable for all
U ∈ S, then the canonical map Ψ : Cc(A0)→ Cc(B) defined by

Ψ
(

∑
U∈F

ξUδU

)
= ∑

U∈F
ξU

whenever F is a finite subset of S and ξU ∈ Cc(BU) for all U ∈ F, induces an isomor-
phism of C∗-algebras C∗(A) ∼= C∗(B).

Proof. By linearity, to show that Ψ is a ∗-homomorphism, it suffices to check
the equalities

Ψ((ξδU) · (ηδV)) = ξ ∗ η and Ψ((ξδU)∗) = ξ∗

for all ξ ∈ Cc(BU) and η ∈ Cc(BV), where U, V ∈ S. By definition of the ∗-algebra
structure of Cc(A0), we have (ξδU) · (ηδV) = (ξ · η)δUV and (ξδU)∗ = ξ∗δU∗ . And
we have already observed in Example 2.9 that ξ · η = ξ ∗ η. Moreover, Cc(B) is
generated by sums of the form ∑

U∈F
ξU as above because S covers G. Therefore,

Ψ is a surjective ∗-homomorphism as stated. Note that Ψ vanishes on the ideal
I0
A ⊆ Cc(A0) defined in Lemma 2.10 and hence induces a ∗-homomorphism Ψ̃ :

C∗(A) → C∗(B) by the same lemma. Since Ψ is surjective, so is Ψ̃. The most
difficult part of the proof is to show that Ψ̃ is injective. Here we consider two
cases:
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Case 1. G is Hausdorff. In this case we are going to follow the same idea as
in the proof of Theorem 7.1 in [20]. We first show that the kernel of Ψ is equal to

I = span{ξδU − ξδV : ξ ∈ Cc(B) and supp(ξ) ⊆ U ∩V}.

Of course, I ⊆ ker(Ψ). For the opposite inclusion, take a finite sum of the form
n
∑

i=1
ξiδUi , where Ui ∈ S and ξi ∈ Cc(BUi ), and suppose

Ψ
( n

∑
i=1

ξiδUi

)
=

n

∑
i=1

ξi = 0.

If n = 1, then ξ1 = 0 so that ξ1δU1 = 0 ∈ ker(Ψ). Thus we may assume n > 1.
Consider the set I of all subsets of {1, . . . , n} with at least two elements. Given
s ∈ I, we define

Vs :=
(⋂

i∈s

Ui

)
\
(⋃

i/∈s

supp(ξi)
)

.

Then V = {Vs}s∈I is an open cover of the compact subset K =
n⋃

i=1
supp(ξi) ⊆ G.

Let {ψs}s∈I be a partition of unit subordinate to the cover V . Note that ψsξi = 0
whenever i /∈ s, so that

∑
i∈s

ψsξi =
n

∑
i=1

ψsξi = ψs · 0 = 0.

Moreover, we have
n

∑
i=1

ξiδUi =
n

∑
i=1

(
∑
s∈I

ψsξiδUi

)
= ∑

s∈I

n

∑
i=1

ψsξiδUi = ∑
s∈I

(
∑
i∈s

ψsξiδUi

)
.

Thus, it suffices to show that ∑
i∈s

ψsξiδUi ∈ I for all s ∈ I. Now, given distinct

elements j, k ∈ s, we have

∑
i∈s

ψsξiδUi = ψsξ jδUj + ψsξkδUk + ∑
i∈s\{j,k}

ψsξiδUi

= ψsξ jδUj +ψsξkδUk + ∑
i∈s\{j,k}

ψsξiδUi + ∑
i∈s\{j,k}

ψsξiδUk− ∑
i∈s\{j,k}

ψsξiδUk

= ψsξ jδUj + ∑
i∈s\{j}

ψsξiδUk + ∑
i∈s\{j,k}

(ψsξiδUi − ψsξiδUk )

= ψsξ jδUj − ψsξ jδUk + ∑
i∈s\{j,k}

(ψsξiδUi − ψsξiδUk ),

where the last equality follows from ψsξ j + ∑
i∈I\{j}

ψsξi = ∑
i∈I

ψsξi = 0. Since

supp(ψsξi) ⊆ Ul for all i, l ∈ s, we get ∑
i∈s

ψsξiδUi ∈ I as desired. Next, we show

that I = I0
A. Of course, I0

A ⊆ ker(Ψ) = I . On the other hand, suppose ξ ∈ Cc(B)
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and supp(ξ) ⊆ U ∩ V with U, V ∈ S. Since S is wide and supp(ξ) is compact,
there are W1, . . . , Wm ∈ S such that

supp(ξ) ⊆
m⋃

i=1

Wi ⊆ U ∩V.

Let {φi}m
i=1 be a partition of unit subordinate to the cover {W1, . . . , Wm} of supp(ξ).

Then

ξδU − ξδV =
m

∑
i=1

φiξδU−
m

∑
i=1

φiξδV =
m

∑
i=1

φiξδU−
m

∑
i=1

φiξδWi +
m

∑
i=1

φiξδWi−
m

∑
i=1

φiξδV

=
m

∑
i=1

(φiξδU − φiξδWi ) +
m

∑
i=1

(φiξδWi − φiξδV)

is an element of I0
A because supp(φiξ) ⊆ Wi ∩ U ∩ V for all i = 1, . . . , m. We

conclude that ker(Ψ) = I0
A. Hence Ψ induces an isomorphism Cc(A0)/I0

A
∼=

Cc(B) of ∗-algebras and therefore also between their corresponding enveloping
C∗-algebras C∗(A) ∼= C∗(B).

Case 2. G is second countable and C0(BU) is separable for all U ∈ S. In this
case, we shall adapt an idea appearing in Lemma 8.4 of [5] to our situation, sup-
ported by Proposition 3.3 of [17], which is a kind of disintegration result for linear
functionals on Banach bundles. To show that Ψ̃ : C∗(A) → C∗(B) is injective, it
is enough to prove that any representation π of C∗(A) factors through a repre-
sentation π̃ of C∗(B) in the sense that π̃ ◦ Ψ̃ = π. By Lemma 2.10, C∗(A) is the
enveloping C∗-algebra of Cc(A0)/I0

A, so it is enough to work with representa-
tions of the latter. Now, every representation π of Cc(A0)/I0

A on a Hilbert space
H, once composed with the quotient homomorphism Cc(A0) → Cc(A0)/I0

A and
hence viewed as a representation of Cc(A0), has the form

π
(

∑
U∈F

ξUδU

)
= ∑

U∈F
πU(ξU)

where {πU}U∈S is a representation ofA0 = {Cc(BU)}U∈S onH. In fact, πU is just
the restriction of π to the copy of A0

U = Cc(BU) inside Cc(A0). Given η, ζ ∈ H,
we define the linear functional

ωU : Cc(BU)→ C, ωU(ξ) := 〈πU(ξ)η | ζ〉 for all ξ ∈ Cc(BU).

Since πU is norm contractive, that is, ‖πU(ξ)‖ 6 ‖ξ‖∞ (see proof of Lemma 2.10),
it follows that ωU is continuous with respect to the inductive limit topology. In
other words, ωU is a generalized Radon measure in the sense of [17]. By Proposi-
tion 3.3 in [17], there are bounded linear functionals εU,γ ∈ B∗γ with norm at most
one for each γ ∈ U, such that γ 7→ εU,γ(ξ(γ)) is a bounded measurable function
on U for all ξ ∈ Cc(BU), and

ωU(ξ) =
∫
U

εU,γ(ξ(γ))d|ωU |(γ),
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where |ωU | is the total variation measure associated to ωU as in Lemma 3.1 of [17]:

(2.3) |ωU |(ϕ) := sup{|ωU(ξ) : ‖ξ‖∞ 6 ϕ} for all ϕ ∈ C+
c (U).

As we have emphasize in the notation, all these objects depend a priori on the
bisection U ∈ S. However, we are now going to show that they are compatible
on intersections of bisections. First, given U, V ∈ S, we claim that

(2.4) ωU(ξ) = ωV(ξ) whenever ξ ∈ Cc(B) and supp(ξ) ⊆ U ∩V.

In fact, since S is wide and supp(ξ) is compact, we may find a cover {Wi}m
i=1

of supp(ξ) consisting of bisections Wi ∈ S contained in U ∩ V. Since U ∩ V is
Hausdorff, there is a partition of unit {ψi}m

i=1 subordinate to the cover {Wi}m
i=1 of

supp(ξ). Since supp(ψi · ξ) ⊆Wi ⊆ U ∩V and π is a representation, we have

πU(ψi · ξ) = πWi (ψi · ξ) = πV(ψ · ξ) for all i = 1, . . . , m.

Thus,

πU(ξ)=πU

( m

∑
i=1

ψi · ξ
)

=
m

∑
i=1

πU(ψi · ξ)=
m

∑
i=1

πV(ψi · ξ)=πV

( m

∑
i=1

ψi · ξ
)

=πV(ξ).

Therefore, ωU(ξ) = ωV(ξ) as claimed. It follows directly from (2.3) that |ωU |(ϕ)
= |ωV |(ϕ) whenever supp(ϕ) ⊆ U ∩ V or, equivalently, |ωU |(A) = |ωV |(A)
whenever A is a Borel measurable subset of U ∩ V. Since S countably covers G,
there is a positive Radon measure µ on G whose restriction to U equals |ωU | for
all U ∈ S (see Lemma A.1 of [16]). Moreover, following the construction of εU,γ
in Proposition 3.3 of [17] and using equation (2.4), it follows that εU,γ = εV,γ
whenever γ ∈ U ∩V. Therefore, we may define a linear functional

ω : Cc(B)→ C, ω(ξ) :=
∫
G

εγ(ξ(γ))dµ(γ),

where εγ := εU,γ whenever γ ∈ U. By definition, the restriction of ω to Cc(BU)
coincides with ωU for all U ∈ S.

All this implies that the map

π̃ : Cc(B)→ B(H), π̃
(

∑
U∈F

ξU

)
:= ∑

U∈F
πU(ξU) = π

(
∑

U∈F
ξUδU

)
is well-defined. In fact, if ∑

U∈F
ξU = 0, then〈

∑
U∈F

πU(ξU)η | ζ
〉

= ∑
U∈F

ωU(ξU) = ∑
U∈F

ω(ξU) = ω
(

∑
U∈F

ξU

)
= 0.

Since η, ζ ∈ H are arbitrary, we conclude that ∑
U∈F

πU(ξU) = 0. Therefore π̃ is a

well-defined map. Obviously it is linear, and since π is a representation of Cc(A0),
it is easy to see that π̃ is a representation of Cc(B). Moreover, by construction we
have π̃(Ψ(x)) = π(x) for all x ∈ Cc(A0), and this concludes the proof.
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2.3. TWISTED ÉTALE GROUPOIDS AND FELL LINE BUNDLES. If G is a locally com-
pact groupoid it is well known [2] that, at least in the Hausdorff case, there is a
one-to-one correspondence between twists over G (namely exact sequences

T× G(0) ι // Σ
π // G ,

where Σ is a locally compact groupoid, ι is a homeomorphism onto its image,
and π is a continuous open surjection) and Fell line bundles (namely Fell bundles
with one-dimensional fibers) over G. In particular, the so called full (respectively
reduced) twisted groupoid C∗-algebra of (G, Σ) turns out to be precisely the full
(respectively reduced) cross-sectional C∗-algebra of the corresponding Fell line
bundle.

Our techniques are specially well adapted to deal with Fell bundles and
hence we have decided to emphasize these as opposed to twists. Of course,
should one be interested in the underlying twist, it is readily available by con-
sidering unitary elements as explained in [2].

Now consider a Fell line bundle L over an étale locally compact group-
oid G. As a special case of Example 2.9, we may consider the Fell bundle A =
{C0(LU)}U∈S associated to L, where S is an inverse subsemigroup of S(G).

PROPOSITION 2.14. Let notation be as above. If G is Hausdorff or second count-
able, and if S is a wide inverse subsemigroup in S(G), then there is a canonical isomor-
phism C∗(L) ∼= C∗(A).

The proof is a direct consequence of Theorem 2.13.

3. SEMI-ABELIAN FELL BUNDLES AND TWISTED ÉTALE GROUPOIDS

This section contains the main result of this work. Given a semi-abelian
Fell bundle over an inverse semigroup, we are going to construct a twisted étale
groupoid in a canonical way. Later we are going to show that our construc-
tion preserves the associated ∗-algebras. Our techniques are inspired by those
of Kumjian and Renault in [13], [22].

3.1. THE CANONICAL ACTION AND THE GROUPOID OF GERMS.

DEFINITION 3.1. Let A = {As}s∈S be a Fell bundle over an inverse semi-
group S. We say that A is semi-abelian if for each idempotent e ∈ E = E(S), the
fiber Ae is a commutative C∗-algebra.

Let E be the restriction of A to the idempotent semilattice E of S. Note that
E is a Fell bundle over E. Moreover,A is semi-abelian if and only if E is an abelian
Fell bundle in the sense that ab = ba for all a, b ∈ E (see proof of Lemma 3.2
below). Of course, we could also say that an arbitrary Fell bundle A = {As}s∈S
is abelian if ab = ba for all a, b ∈ A, but we actually are not going to consider
this more restrictive notion in this work. (Note that in this case the underlying
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inverse semigroup S has to be commutative. Moreover, it is easy to see that A
is an abelian Fell bundle if and only if C∗(A) is a commutative ∗-algebra.) This
terminology is compatible with the one appearing in Chapter X of [10], where the
authors use the synonymous word "commutative" instead. However, we should
mention that our terminology conflicts with the one introduced in [2], where they
call a Fell bundle B = {Bγ}γ∈G over a groupoid G abelian if the fibers Bx over the
units x ∈ G(0) are commutative ∗-algebras.

LEMMA 3.2. A Fell bundleA is semi-abelian if and only if C∗(E) is a commutative
C∗-algebra.

Proof. If C∗(E) is commutative, then so is each Ae since Ae is an ideal of
C∗(E) by Corollary 4.6 of [6]. Conversely, assume that Ae is commutative for
all e ∈ E. To prove that C∗(E) is commutative it suffices to show that ab = ba
for every a ∈ Ae and b ∈ A f , where e, f ∈ E. Let (ei) be an approximate unit
of Ae. Since Ae is an ideal of C∗(E) we have ab, eib, ba ∈ Ae. Using that Ae is
commutative, we get the result

ab = lim
i

eiab = lim
i

aeib = lim
i

eiba = ba.

Let us assume from now on that A is a semi-abelian saturated Fell bun-
dle. Suppose that X is the spectrum of C∗(E) so that (we may identify) C∗(E) =
C0(X).

LEMMA 3.3. Given a ∈ A, we write dom(a) := {x ∈ X : (a∗a)(x) > 0} and
ran(a) := {x ∈ X : (aa∗)(x) > 0} = dom(a∗). Then there is a unique homeomor-
phism θa : dom(a)→ ran(a) satisfying

(a∗ba)(x) = (a∗a)(x)b(θa(x)) for all x ∈ dom(a) and b ∈ C0(X).

If a = u|a| is the polar decomposition of a in A′′, the enveloping von Neumann algebra
of A = C∗(A), where we view each fiber of A as a subspace of A, then

(u∗bu)(x) = b(θa(x)) for all x ∈ dom(a) and b ∈ C0(X).

Moreover, the following properties hold:
(i) If a ∈ Ae, where e ∈ E, then θa = iddom(a).

(ii) If a, b ∈ A, then θab = θa ◦ θb (composition of partial homeomorphisms ).
(iii) If a ∈ A, then θa∗ = θ−1

a .

Proof. Essentially this follows from Proposition 6 and Corollary 7 in [13]. In
fact, it is enough to observe that each fiber As ⊆ A is contained in the normalizer
of B = C∗(E) in A. Recall that a ∈ A normalizes B if a∗Ba ⊆ B and aBa∗ ⊆ B.

LEMMA 3.4. Suppose that s ∈ S, a1, a2 ∈ As and x ∈ dom(a1) ∩ dom(a2).
Then we have θa1(x) = θa2(x).

Proof. Since a∗1 a2 ∈ As∗s, Lemma 3.3 yields

θ−1
a1
◦ θa2 = θa∗1

◦ θa2 = θa∗1 a2 = iddom(a∗1 a2).
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So, it is enough to show that x ∈ dom(a∗1 a2), that is,

((a∗1 a2)∗(a∗1 a2))(x) = (a∗2 a1a∗1 a2)(x) > 0.

It is equivalent to show that (a∗2 a2)(x)(a∗2 a1a∗1 a2)(x) > 0 because x ∈ dom(a2).
Since the fibers over the idempotents commute with each other, we have the fol-
lowing and the result now follows:

(a∗2 a2)(a∗2 a1a∗1 a2) = a∗2 a1a∗2 a2a∗1 a2 = (a∗2 a2)(a∗1 a1)(a∗2 a2).

Let e ∈ E. SinceAe is an ideal in C∗(E), there is an open subset Ue ⊆ X such
that Ae = C0(Ue).

PROPOSITION 3.5. Given s ∈ S, there is a homeomorphism θs : Us∗s → Uss∗

such that θs|dom(a) = θa for all a ∈ As. Moreover, we have θs ◦ θt = θst for all s, t ∈ S.
In other words, θ is an action of S on X.

Proof. Given x ∈ Us∗s, we define θs(x) := θa(x), where a is any element in
As with (a∗a)(x) > 0. Note that such an element exists becauseA is saturated. By
Lemma 3.4, θs is a well-defined map Us∗s → Uss∗ and, by definition, the restriction
of θs to dom(a) is equal to θa. Since each θa is a homeomorphism, we deduce that
θs is continuous.

It remains to prove that θs ◦ θt = θst. Now, since θa ◦ θb = θab for all a ∈ As
and b ∈ At, it is enough to show that the domains of θs ◦ θt and θst coincide. If
x ∈ dom(θs ◦ θt), that is, if x ∈ Ut∗t = dom(θt) and θt(x) ∈ Us∗s = dom(θs), then
there is a ∈ As and b ∈ At with x ∈ dom(b) and θb(x) ∈ dom(a), that is,

x ∈ dom(θa ◦ θb) = dom(θab) = dom(ab) ⊆ U(st)∗(st) = dom(θst).

Conversely, if x ∈ dom(θst), there is c ∈ Ast such that x ∈ dom(c), that is,
(c∗c)(x) > 0. We claim that there is a ∈ As and b ∈ At with x ∈ dom(ab). In fact,
suppose this is not the case, so that (ab)∗(ab)(x) = 0 for all a ∈ As and b ∈ At.
Polarization in a and b yields

(a1b1)∗(a2b2)(x) = 0

for all a1, a2 ∈ As and b1, b2 ∈ At. This implies that (c∗1c2)(x) = 0 for all c1, c2 ∈
spanAsAt = Ast, which is a contradiction. This proves our claim. Therefore,
there is a ∈ As and b ∈ At with

x ∈ dom(ab) = dom(θab) = dom(θa ◦ θb) ⊆ dom(θs ◦ θt).

We are ready to define the groupoid G = G(A) associated to the semi-
abelian Fell bundle A. Indeed, we define the groupoid G to be the groupoid
of germs of the action θ of S on X constructed above:

G := {[s, x] : s ∈ S, x ∈ dom(θs) = Us∗s},

where, by definition, [s, x] = [t, y] if and only if x = y and there is e ∈ E with
x ∈ Ue and se = te. The source and range maps are defined by d([s, x]) = x and
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r([s, x]) = θs(x), respectively. Multiplication and inversion are given by

[s, x] · [t, y] := [st, y] whenever θt(y) = x, and [s, x]−1 := [s∗, θs(x)].

The topology on G is, by definition, generated by the basic open sets

(3.1) O(s, U) := {[s, x] : x ∈ U}
where s ∈ S and U ⊆ Us∗s is an open subset. In particular, Os := O(s,Us∗s) is
an open subset of G. Moreover, the restriction of d defines a homeomorphism
ds : Os → Us∗s.

See Section 4 of [5] for more details on the construction of groupoids of
germs, but please notice that our notion of germs differs from the one described
in Section 3 of [22].

With this structure, G is an étale groupoid and the unit space of G may be
identified with X through the following map, where ex ∈ E(S) is any idempotent
with x ∈ Uex :

X 3 x 7→ [ex, x] ∈ G(0).

3.2. THE CONSTRUCTION OF THE FELL LINE BUNDLE. Let A and B be C∗-algebras,
and let AXB be an imprimitivity Hilbert A-B-bimodule. If I is a closed ideal of A,
thenF (I) = I · X is a closed submodule ofX , and IndX (I) = span〈F (I) |F (I)〉B
is a closed ideal of B. Moreover, the maps I 7→ F (I) and I 7→ IndX (I) define bi-
jective correspondences between closed ideals of A, closed submodules of X and
closed ideals of B. Given a closed ideal J in B, the corresponding submodule is
X · J, and the corresponding ideal in A is spanA〈X · J | X · J〉. This fact is known
as the Rieffel correspondence.

If I is a closed ideal of A, then using an approximate unit for I, it is easy to
see that

(3.2) F (I) = I · X = {ξ ∈ X : A〈ξ | ξ〉 ∈ I}.
And similarly if J is a closed ideal of B, then

(3.3) X · J = {ξ ∈ X : 〈ξ | ξ〉B ∈ J}.
Given a saturated Fell bundle A = {As}s∈S over an inverse semigroup

S, note that each fiber As is an imprimitivity Hilbert Ass∗ -As∗s-bimodule in the
canonical way. For instance, the inner products are defined by

〈a |b〉As∗s
:= a∗b, Ass∗〈a |b〉 := ab∗ for all a, b ∈ As.

Now assume that A = {As}s∈S is a fixed saturated, semi-abelian Fell bun-
dle. Let X be the spectrum of the commutative C∗-algebra C∗(EA). Recall that
Ue denotes the open subset of X corresponding to the spectrum of the ideal Ae in
C∗(EA) ∼= C0(X).

DEFINITION 3.6. Given s ∈ S and x ∈ X, we define A(s,x) to be the closed
submodule of As corresponding to the ideal {b ∈ As∗s : b(x) = 0} in As∗s under
the Rieffel correspondence.
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LEMMA 3.7. With the notations above, we have the following properties for all
s, t ∈ S, a ∈ As and x, y ∈ X:

(i) A(s,x) = A(ss∗ ,θs(x)) · As = As · A(s∗s,x) whenever x ∈ Us∗s.
Moreover, if x /∈ Us∗s, then A(s,x) = As.

(ii) a ∈ A(s,x) ⇔ (a∗a)(x) = 0⇔ (aa∗)(θs(x)) = 0.
(iii) As · A(t,y) = A(st,y) and, if x ∈ Utt∗ , then A(s,x)At = A(st,θt∗ (x)).
(iv) A(s,x) · A(t,y) = A(st,y) whenever x ∈ Us∗s, y ∈ Ut∗t and θt(y) = x.
(v) A∗(s,x) = A(s∗ ,θs(x)) whenever x ∈ Us∗s.

Proof. Note that A(s∗s,x) = {b ∈ As∗s : b(x) = 0}. Thus, by definition,
A(s,x) = As · A(s∗s,x). Now, by equation (3.3), we have

A(s,x) = {a ∈ As : (a∗a)(x) = 0}.

We have (aa∗)(θs(x))=(a∗a)(x) for all a∈As and x∈Us∗s. Thus, if x∈Us∗s, then

A(s,x) = {a ∈ As : (aa∗)(θs(x)) = 0}.

Again, by equation (3.2) this is equal to A(ss∗ ,θs(x)) · As because

A(ss∗ ,θs(x)) = {b ∈ Ass∗ : b(θs(x)) = 0}.

If x /∈ Us∗s, then A(s∗s,x) = As∗s because, by definition, Us∗s is the spectrum of
As∗s. This proves (i) and (ii). To prove (iii), we use (i) to conclude that

As · A(t,y) = As · At · A(t∗t,y) = Ast · A(t∗t,y) = Ast · At∗s∗st · A(t∗t,y)

and

A(st,y) = Ast · A(t∗s∗st,y).

Since t∗s∗st 6 t∗t, we have At∗s∗st ⊆ At∗t and hence also A(t∗s∗st,y) ⊆ A(t∗t,y).
Thus, A(st,y) ⊆ As · A(t,y). On the other hand, both At∗s∗st and A(t∗t,y) are ideals
in C0(X), so that

At∗s∗st · A(t∗t,y) = At∗s∗st ∩A(t∗t,y) = {b ∈ At∗s∗st : b(y) = 0} = A(t∗s∗st,y).

This concludes the proof of the first assertion in (iii). To prove the second asser-
tion in (iii) we use a similar argument. First, if x /∈ Us∗s, then θt∗(x) /∈ θt∗(Us∗s ∩
Utt∗) = Ut∗s∗st (see Proposition 4.5 of [5]), so that A(s,x)At = AsAt = Ast =
A(st,θt∗ (x)) by (i). Now assume that x ∈ Us∗s. Using (i) again, we get

A(s,x) · At = A(ss∗ ,θs(x)) · Ast = A(ss∗ ,θs(x)) · Astt∗s∗ · Ast

and, on the other hand,

A(st,θ∗t (x)) = A(stt∗s∗ ,θst(θt∗ (x))) · Ast = A(stt∗s∗ ,θs(x)) · Ast.
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As above, it is easy to see that A(stt∗s∗ ,θs(x)) = A(ss∗ ,θs(x)) · Astt∗s∗ . To prove (iv),
we use (i), (iii) and the hypothesis θt(y) = x, to get

A(s,x) · A(t,y)
(i)
= A(ss∗ ,θs(x)) · Ast · A(t∗t,y)

θt(y)=x
= A(ss∗ ,θst(y)) · Astt∗s∗ · Ast · At∗s∗st · A(t∗t,y)

(iii)
= A(stt∗s∗ ,θst(y)) · Ast · A(t∗s∗st,y)

(i)
= A(st,y).

Finally, to prove (v), we use (i) and conclude that

A(s∗ ,θs(x)) = A(s∗s,θs∗ (θs(x))) · As∗ = A(s∗s,x) · As∗ = (As · A(s∗s,x))
∗ = A∗(s,x).

Having fixed our semi-abelian Fell bundle A = {As}s∈S above, we hence-
forth let G be the associated groupoid of germs constructed in Section 3.1.

DEFINITION 3.8. Let s ∈ S, and a, b ∈ As. Given x ∈ X, we shall say that

a x= b,

if ((a− b)∗(a− b))(x) = 0. Hence a x= b if and only if a− b ∈ A(s,x).

In the following we present some elementary properties of the relation de-
fined above.

LEMMA 3.9. Let s ∈ S, let a, b, c ∈ As, and let x ∈ X.
(i) If (a∗a)(x) = 0 (in particular if x /∈ Us∗s ), then a x= 0s (where “0s” stands for the

zero element of As ).
(ii) If a x= b, then for every t ∈ S, and c ∈ At, one has ca x= cb.

(iii) If a x= b, then for every e ∈ E(S), and every c ∈ Ae, one has ac x= bc.
(iv) If a x= b, then for every t ∈ S such that x ∈ Utt∗ , and every c ∈ At, one has

ac
θ−1

t (x)
= bc.

(v) If a x= b and b x= c, then a x= c.

(vi) If a x= b, then a∗
θs(x)
= b∗.

Proof. Item (i) is obvious. To prove (ii), suppose a x= b. Then a− b ∈ A(s,x),

so that ca− cb = c(a− b) ∈ AtA(s,x) = A(ts,x) by Lemma 3.7(iii). Thus ca x= cb.
To prove (iii), we compute

((ac− bc)∗(ac− bc))(x) = c(x) ((a− b)∗(a− b))(x) c(x) = 0.

It is also possible to prove (iii) by showing that A(s,x) · Ae = A(se,x). Note that
this follows from Lemma 3.7(iii) if x ∈ Ue. Item (iv) follows from Lemma 3.7(iii).
Finally, if a− b ∈ A(s,x) and b− c ∈ A(s,x), then a− c = (a− b) + (b− c) ∈ A(s,x).
This proves (v). Finally, (vi) follows from the relation (cc∗)(θs(x)) = (c∗c)(x)
applied to c = a− b ∈ As.
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DEFINITION 3.10. Consider the set F of triples (a, s, x) such that a ∈ As,
and x ∈ Us∗s. If one is given (a, s, x), (a′, s′, x′) ∈ F , we will say that

(a, s, x) ∼ (a′, s′, x′)

if there exists some e ∈ E(S), and some b ∈ Ae, with
(i) x = x′,

(ii) b(x) 6= 0,
(iii) se = s′e,
(iv) ab x= a′b.

REMARK 3.11. (i) Under the conditions of the above definition, the coordi-
nate "s" in (a, s, x) could just as well be dropped, since one usually assumes that
the fibers are pairwise disjoint, and hence there is only one s such that a ∈ As.
Nevertheless we believe it is convenient to mention s explicitly.

(ii) Since b identifies with a function on X, which is supported on Ue, the fact
that b(x) 6= 0 implies x ∈ Ue.

(iii) Observe that ab ∈ AsAe ⊆ Ase, and a′b ∈ As′Ae ⊆ As′e. Since se = s′e, we
see that both ab and a′b lie in the same fiber of A, and hence (iv) is meaningful.

PROPOSITION 3.12. The relation "∼" defined in Definition 3.10 is an equivalence
relation.

Proof. Given (a, s, x) ∈ F , one has (a, s, x) ∼ (a, s, x) by taking e = s∗s, and
any b ∈ Ae, with b(x) 6= 0. That our relation is symmetric is obvious.

With respect to transitivity suppose that (a, s, x) ∼ (a′, s′, x′) ∼ (a′′, s′′, x′′).
Take e and f in E(S), b ∈ Ae, and c ∈ A f , satisfying the conditions of Defini-
tion 3.10 with respect to each one of the two occurrences of "∼" above, respec-
tively. Noticing that x = x′ = x′′, let g = e f , and d = bc. Clearly

d ∈ AeA f ⊆ Ae f = Ag.

Moreover d(x) = b(x)c(x) 6= 0, and sg = se f = s′e f = s′ f e = s′′ f e = s′′g. By
Lemma 3.9(iii), we have

ad = abc x= a′bc = a′cb x= a′′cb = a′′d,

so the conclusion follows from Lemma (3.9)(v).

Recall that θ : S → I(X), s 7→ θs is an action of S on X = G(0). Here
I(X) denotes the inverse semigroup of all partial bijections of X. Moreover, it
induces an action θ̃ : S→ I(C0(X)) on the commutative C∗-algebra C0(X) in the
canonical way: θ̃s : C0(Us∗s)→ C0(Uss∗) is defined by θ̃s( f ) := f ◦ θ−1

s for all s ∈ S
and f ∈ C0(Us∗s). We are tacitly identifying C0(X) with C∗(E), where E = A|E.
Under this identification, Ae ⊆ C∗(E) corresponds to the ideal C0(Us∗s) ⊆ C0(X).
Thus, we may view θ̃ as an action of S on C∗(E).
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LEMMA 3.13. If s ∈ S, a ∈ As and d ∈ As∗s, then ad = θ̃s(d)a. Moreover,

ab∗c = cb∗a for all a, b, c ∈ As.

Proof. We first prove that ab∗b = bb∗a for all b ∈ As. We have

(ab∗b− bb∗a)(ab∗b− bb∗a)∗

= (ab∗b− bb∗a)(b∗ba∗ − a∗bb∗)

= ab∗bb∗ba∗ − ab∗(ba∗)(bb∗)− b(b∗a)(b∗b)a∗ + bb∗aa∗bb∗

= ab∗bb∗ba∗ − ab∗bb∗ba∗ − bb∗bb∗aa∗ + bb∗aa∗bb∗ = 0.

Therefore, ab∗b = bb∗a for all b ∈ As. By polarization, ab∗c = cb∗a for all b, c ∈
As. Note that θ̃s(b∗c) = cb∗ because (b∗c)(x) = (cb∗)(θs(x)) for all x ∈ Us∗s.
We conclude that ab∗c = θ̃s(b∗c)a for all b, c ∈ As. Since A∗sAs spans a dense
subspace of As∗s the assertion follows.

Now, we can show that the equivalence relation defined in Definition 3.10
also has a left hand side version in the following sense.

LEMMA 3.14. Given (a, s, x), (a′, s′, x′) ∈ F , we have (a, s, x) ∼ (a′, s′, x′) if
and only if there is f ∈ E(S) and c ∈ A f satisfying:

(i) x = x′,
(ii) c(y) 6= 0, where y = θs(x) = θs′(x),

(iii) f s = f s′, and
(iv) ca x= ca′.

Proof. Suppose that (a, s, x) ∼ (a′, s′, x′), so that x = x′ and there is e ∈ E(S)
and b ∈ Ae with b(x) 6= 0, se = s′e and ab x= a′b. Replacing e by es∗ss′∗s′

and using Lemma 3.9(iii) to multiply the equation ab x= a′b on the right by a
function in d ∈ A(s∗s)(s′∗s′) with d(x) 6= 0, we may assume that e 6 s∗s and
e 6 s′∗s′. Thus, we may assume b ∈ Ae ⊆ As∗s ∩ As′∗s′ . By Lemma 3.13, we
have ab = θ̃s(b)a and a′b = θ̃s′(b)a. Note that θ̃s(b) = θ̃se(b) = θ̃s′e(b) = θ̃s′(b).
Define c to be this common value. We have c = θ̃s(b) ∈ θ̃s(Ae ∩ As∗s) = Ases∗

by Proposition 4.5 of [5], and similarly c = θ̃s′(b) ∈ As′es′∗ . Defining f to be
gg′, where g := ses∗ and g′ := s′es′∗, we therefore have c ∈ A f . Moreover,
gs = ses∗s = se = s′e = s′es′∗s′ = g′s′, so that f s = f s′. We conclude that c ∈ A f

and ca x= ca′. Finally, note that c(y) = θ̃s(b)(y) = b(θ−1
s (y)) = b(x) 6= 0. Thus

we have shown (i)–(iv) provided (a, s, x) ∼ (a′, s′, x′). Conversely, if (i)–(iv) hold,
then we may use a similar argument to show that (a, s, x) ∼ (a′, s′, x′). In fact, as
before, we may assume f 6 ss∗ and f 6 s′s′∗. Then we use Lemma 3.13 again to
conclude that ca = aθ̃−1

s (c) and ca′ = aθ̃−1
s′ (c). Defining b := θ̃−1

s (c) = θ̃−1
s′ (c) and

e = (s∗ f s)(s′∗ f s), and proceeding as before, we conclude that b ∈ Ae, b(x) 6= 0,
and ab x= a′b. Therefore, (a, s, x) ∼ (a′, s′, x′), as desired.
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DEFINITION 3.15. The equivalence class of each (a, s, x) in F will be de-
noted by [a, s, x]. The quotient of F by this equivalence relation will be denoted
by L.

In what follows we shall give L the structure of a Fell line bundle over the
groupoid G constructed in Section 3.1.

PROPOSITION 3.16. Given [a, s, x], [a′, s′, x′] in L, we have [a, s, x] = [a′, s′, x′]
if and only if [s, x] = [s′, x′] in G, and ac x= a′c for all e ∈ E(S) with se = s′e and for
all c ∈ Ae. In particular, the following correspondence is a well-defined surjection from
L to G:

π : [a, s, x] 7→ [s, x].

Proof. If [a, s, x] = [a′, s′, x′], then, by definition, we have x = x′ and there is
f ∈ E(S) and d ∈ A f with s f = s′ f , d(x) 6= 0 and ad x= a′d. In particular, this
implies [s, x] = [s′, x′]. Now, take any e ∈ E(S) with se = s′e and any element
c ∈ Ae. By Lemma 3.9(iii), we have adc x= a′dc. Since dc = cd and d(x) 6= 0,
this implies ac x= a′c. Conversely, assume that [s, x] = [s′, x′] and ac x= a′c for all
e ∈ E(S) with se = s′e and c ∈ Ae. The equality [s, x] = [s′, x′] means that x = x′

and there is f ∈ E(S) with x ∈ U f and s f = s′ f . Since U f is the spectrum of the
commutative C∗-algebra A f , there is d ∈ Ae with d(x) 6= 0. And by hypothesis,

ad x= a′d, so that [a, s, x] = [a′, s′, x′].

From now on, for each γ ∈ G we let Lγ denote π−1(γ), and call it the fiber
of L over γ. The next result provides a linear structure on each fiber of L.

PROPOSITION 3.17. Given γ ∈ G and elements [a, s, x], [b, t, x] ∈ L which are in
the same fiber Lγ, we define

[a, s, x] + [b, t, x] := [ac + bc, se, x],

where e ∈ E(S) is any idempotent satisfying se = te and x ∈ Ue, and c ∈ Ae is any
function with c(x) = 1. Then this is a well-defined addition operation on Lγ. Moreover,
if s = t (so that a, b belong to the same fiber As ), then

[a, s, x] + [b, s, x] = [a + b, s, x].

Given λ ∈ C, we define
λ · [a, s, x] := [λa, s, x].

Then, this is a well-defined scalar product on Lγ. With this structure, Lγ is a complex
vector space. Moreover, the assignment

[a, s, x] 7→ ‖[a, s, x]‖ :=
√

(a∗a)(x)

is a well-defined norm on the fiber Lγ. Hence Lγ is a normed vector space.

Proof. First, note that if [a, s, x] and [b, t, x] are in the same fiber Lγ, then
[s, x] = π([a, s, x]) = π([b, t, x]) = [t, x], so that there is an idempotent e ∈ E(S)
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with se = te and x ∈ Ue. To show that the definition of the sum above does not
depend on the choices of e ∈ E(S) and c ∈ Ae, take another idempotent e′ ∈ E(S)
with se′ = te′ and x ∈ Ue′ , and another function c′ ∈ Ae′ with c′(x) = 1. We have
to show that

(3.4) [ac + bc, se, x] = [ac′ + bc′, se′, x].

Define f := ee′ ∈ E(S), and take any function d ∈ A f with d(x) 6= 0. Note that
x ∈ U f and r := (se) f = s f = (se′) f = (te′) f = t f = (te) f . Since c(x) = c′(x) =
1, it is easy to check that ξc x= ξc′ for all ξ ∈ Ar. In particular, (ad + bd)c x=
(ad + bd)c′, and hence (using that cd = dc and c′d = dc′)

(ac + bc)d = (ad + bd)c x= (ad + bd)c′ = (ac′ + bc′)d.

This verifies equation (3.4). Next, we show that the sum on L does not depend on
representatives: suppose that [a′, s′, x] = [a, s, x] and [b′, t′, x] = [b, t, x]. All these
elements belong to the same fiber Lγ. Hence, there is e ∈ E(S) with x ∈ Ue and
r := se = s′e = t′e = te. The equality [a′, s′, x] = [a, s, x] yields f ∈ E(S) and
c ∈ A f with c(x) 6= 0, s′ f = s f and a′c x= ac. And the equality [b′, t′, x] = [b, t, x]
yields g ∈ E(S) and d ∈ Ag with d(x) 6= 0, t′g = tg and b′d x= bd. Rescaling c and
d, we may assume that c(x) = d(x) = 1. Moreover, replacing the idempotents
e, f , g by the product e f g, and using Lemma 3.9(iii) to replace the functions c
and d by a function of the form hcd ∈ Ae f g, where h is any function in Ae with
h(x) = 1, we may further assume that e = f = g and c = d. Thus, all the elements
ac, bc, a′c, b′c belong to the same fiber Ar, and we have ac x= a′c and bc x= b′c, that
is ac− a′c ∈ A(r,x) and bc− b′c ∈ A(r,x). Therefore,

(ac + bc)− (a′c + b′c) = (ac− a′c) + (bc− b′c) ∈ A(r,x),

that is, ac + bc x= a′c + b′c. This shows that the sum on Lγ is well-defined. If a, b
belong to the same fiber As and if c ∈ Ae is such that c(x) = 1, where e ∈ E(S)
and x ∈ Ue, then [ac + bc, se, x] = [(a + b)c, se, x] = [a + b, s, x], so that

[a, s, x] + [b, t, x] = [a + b, s, x].

It is easy to see that the scalar product is also well-defined and that Lγ is a com-
plex vector space with this structure. To see that the map [a, s, x] 7→ (a∗a)(x)1/2

is well-defined, assume that [a, s, x] = [b, t, x]. First suppose that s = t, so that a, b
are in the same fiber As = At. In this case, the equality [a, s, x] = [b, t, x] means
that a x= b. Multiplying this equation on the left by a∗ and using Lemma 3.9(ii) we
get a∗a x= a∗b, that is, (a∗a)(x) = (a∗b)(x). Similarly, (b∗b)(x) = (b∗a)(x). Since
(a∗b)(x) = (b∗a)(x), we get (a∗a)(x) = (b∗b)(x). In the general case, if a and b
are in different fibers As and At, the equality [a, s, x] = [b, t, x] yields e ∈ E(S)
and c ∈ Ae with c(x) 6= 0, se = te and ac x= bc. Now, ac and bc are in the same
fiber Ase = Ate. The previous argument implies (ac)∗(ac)(x) = (bc)∗(bc)(x).
But (ac)∗(ac) = (c∗a∗ac)(x) = (c∗c)(x)(a∗a)(x) and similarly (bc)∗(bc)(x) =
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(c∗c)(x)(b∗b)(x). Since (c∗c)(x) > 0, we conclude that (a∗a)(x) = (b∗b)(x).
Therefore [a, s, x] 7→ (a∗a)(x)1/2 is a well-defined map, which is easily seem to be
a norm on Lγ.

Next, we prove that L has one-dimensional fibers:

PROPOSITION 3.18. Given γ = [s, x] ∈ G, take a ∈ As with (a∗a)(x) > 0.
Then, for any element [b, t, y] in the fiber Lγ, there is a unique λ ∈ C such that [b, t, y] =
λ · [a, s, x]. Hence, the singleton formed by the element [a, s, x] is a basis for Lγ and we
have Lγ

∼= C as complex vector spaces. Moreover, the map

λ 7→ λ · [a, s, x]√
(a∗a)(x)

defines an isomorphism C ∼−→ Lγ of normed vector spaces. In particular, each fiber Lγ of
L is a Banach space.

Proof. Since [b, t, y] ∈ Lγ, we have [t, y] = π([b, t, y]) = γ = [s, x]. Thus,
x = y and there is e ∈ E(S) such that x ∈ Ue and te = se. If c ∈ Ae = C0(Ue) is any
function with c(x) = 1, then we have [b, t, x] = [bc, te, x] and [a, s, x] = [ac, se, x].
In fact, if d ∈ Ae is any function with d(x) 6= 0, then it is easy to see that bcd x= bd
and acd x= ad. Hence, replacing b by bc, and a by ac, we may assume that both a, b
are in the same fiber, say As. Thus, we want to show that there is a unique λ ∈ C
satisfying [b, s, x] = λ · [a, s, x] = [λa, s, x]. Since both a, b belong to the same fiber
As, this is the same as to show that b x= λa. Multiplying this equation on the left
by a∗ (and using Lemma 3.9(ii)), we see that if λ exists, it has to be (a∗b)(x)

(a∗a)(x) . Now,
to see that this λ works, we compute

(3.5) (b− λa)∗(b− λa)(x) = (b∗b)(x)− λ(b∗a)(x)− λ(a∗b)(x) + |λ|2(a∗a)(x).

Note that

λ(b∗a)(x)=
(a∗b)(x)
(a∗a)(x)

(b∗a)(x)=
(a∗bb∗a)(x)

(a∗a)(x)
=

(a∗a)(x)(bb∗)(θs(x))
(a∗a)(x)

=(b∗b)(x).

Similarly, one proves that λ(a∗b)(x) = |λ|2(a∗a)(x) = (b∗b)(x), so that equa-
tion (3.5) equals zero. Therefore, b x= λa for λ = (a∗b)(x)

(a∗a)(x) . Finally, it is easy to see

that the map C 3 λ 7→ λ·[a,s,x]√
(a∗a)(x)

∈ Lγ is an isometric isomorphism of complex

vector spaces. Its inverse is the map [b, s, x] 7→ (a∗b)(x)√
(a∗a)(x)

. The element [a, s, x] is

therefore a basis vector for Lγ and Lγ
∼= C as complex normed vector spaces.

In order to define a topology on L we shall use Proposition 2.4. Given a ∈
As, we define the local section â of L by the formula

(3.6) â([s, x]) := [a, s, x] for all [s, x] ∈ Os.

Thus, by definition, the domain of â is the open subset dom(â) := Os ⊆ G. Recall
that Os = O(s,Us∗s) = {[s, x] : x ∈ Us∗s}.
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PROPOSITION 3.19. There is a unique topology on L making it a continuous Ba-
nach bundle and making all the local sections â with a ∈ A continuous for this topology.
Moreover, with this topology, L is a complex line bundle, that is, a locally trivial one-
dimensional complex vector bundle.

Proof. We are going to prove (i) and (ii) in Proposition 2.4 in order to find
the required topology. Property (i) is obvious since every element of L has the
form [a, s, x] for some a ∈ As and [s, x] ∈ Os. To prove (ii), suppose we have
finitely many elements si ∈ S, ai ∈ Asi and λi ∈ C for i = 1, . . . , n. We want to
show that the set

V =
{

γ ∈
n⋂

i=1

dom(âi) :
∥∥∥ n

∑
i=1

λi âi(γ)
∥∥∥ < α

}
is open in G for all α > 0. Given γ0 in V , it belongs to dom(âi) = Osi for all
i = 1, . . . , n, so it has equivalent representations of the form γ0 = [si, x0] for all
i = 1, . . . , n. Thus, there is e ∈ E(S) such that x0 ∈ Ue and t := s1e = · · · = sne.
Replacing e by the product (s∗1s1) · · · (s∗nsn)e, we may assume e 6 s∗i si and hence
Ue ⊆ Us∗i si for all i. Take a function b ∈ C0(Ue) ∼= Ae which is identically 1 on a

neighborhood U0 ⊆ Ue of x0. It is easy to see that b(x)aic
x= aibc for all x ∈ Ue and

all c ∈ Ae. In particular, aic
x= aibc and hence [ai, si, x] = [aib, sie, x] for all x ∈ U0.

Hence, O(t, U0) = O(si, U0) ⊆
⋂
i
Osi =

⋂
i

dom(âi), and if γ = [t, x] = [si, x] ∈

O(t, U0), we have

λi âi(γ) = [λiai, si, x] = [λiaib, sie, x] = λ̂iaib([sie, x]) = λ̂iaib(γ).

Note that λiaib∈Asie =At for all i. Defining a :=
n
∑

i=1
λiaib∈At, we conclude that

n

∑
i=1

λi âi(γ) = â(γ) for all γ ∈ O(t, U0).

Note that ‖â(γ)‖ =
√

(a∗a)(x) for all γ = [t, x] ∈ O(t, U0). Since
√

(a∗a)(x0) =
‖â(γ0)‖ < α and a∗a is continuous, there is a neighborhood U of x0 contained
in U0 such that ‖â(γ)‖ < α for all g in the open subset U := O(t, U) of G.
All this implies that γ0 ∈ U ⊆ V and therefore V is an open subset of G. By
Proposition 2.4, there is a unique topology on L turning it into an upper-semi-
continuous Banach bundle and making the local section â : Os → L continuous
for all a ∈ As, s ∈ S. As we have already noted, ‖â(γ)‖ =

√
(a∗a)(d(γ)) for all

γ ∈ dom(â). Since the map γ 7→
√

(a∗a)(d(γ)) is continuous from G to R+, we
conclude that the norm on L is continuous (again by Proposition 2.4). Therefore,
L is in fact a continuous Banach bundle, as desired. It remains to show that L
is locally trivial. However, the local sections â are continuous and do not van-
ish on O(s, dom(a)) ⊆ Os. Since (Os and hence also) O(s, dom(a)) is a locally
compact Hausdorff space, we may apply the usual methods to conclude that L
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is trivializable over O(s, dom(a)). A local trivialization is provided by the map
(λ, γ) 7→ λ · â(γ) from C×O(s, dom(a)) to L. See also Remark II.13.9 of [10].

Given v, w ∈ L, with (π(v), π(w)) ∈ G(2), we shall define the product vw as
follows. Write v = [a, s, x] and w = [b, t, y], so our assumption translates into

([s, x], [t, y]) ∈ G(2),

and hence x = θt(y).

PROPOSITION 3.20. With notation as above, putting

vw = [ab, st, y],

we get a well-defined operation on L, that is, the right-hand side does not depend on the
choice of representatives for v and w.

Proof. Suppose that v has another representation as v = [a′, s′, x′], in which
case x = x′, and there exists e ∈ E(S) and c ∈ Ae, such that

c(x) 6= 0, se = s′e and ac x= a′c.

To show that

(3.7) [ab, st, y] = [a′b, s′t, y],

we will check that the conditions of Definition 3.10 are satisfied for the idempo-
tent f = t∗et, and the element d = b∗cb ∈ A f , under the special case in which
(b∗b)(y) 6= 0. With respect to Definition 3.10(ii), Lemma 3.3 yields

d(y) = (b∗cb)(y) = (b∗b)(y) c(θt(y)) = (b∗b)(y) c(x) 6= 0.

Checking Definition 3.10(iii) we have st f = stt∗et = sett∗t = s′ett∗t = s′tt∗et =
s′t f . As for Definition 3.10(iv), recall that the fibers over idempotent elements are
commutative, so

abd = abb∗cb = acbb∗b
y
= a′cbb∗b = a′bb∗cb = a′bd,

where the crucial middle step is a consequence of Lemma 3.9(iv), given that
bb∗b ∈ At, and θ−1

t (x) = y. The verification of equation (3.7) is thus complete
when (b∗b)(y) 6= 0.

Suppose now that (b∗b)(y) = 0. Then it follows from Lemma 3.9(i) that

b
y
= 0t, and hence from Lemma 3.9(ii) we have

ab
y
= 0st and a′b

y
= 0s′t.

It follows that

[ab, st, y] = [0, st, y] and [a′b, s′t, y] = [0, s′t, y].

and it suffices to show that [0, st, y] = [0, s′t, y]. Let f = t∗et, as above, and notice
that since x ∈ Ue ∩ Utt∗ , one has

y = θt∗(x) ∈ θt∗(Ue ∩ Utt∗) = Ut∗et = U f .
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Choosing any c ∈ A f , such that c(x) 6= 0, one verifies the conditions in Defini-
tion 3.10, hence proving equation (3.7).

Next suppose that one is given another representation of w as w = [b′, t′, y′],
in which case y = y′, and there exists e ∈ E(S) and c ∈ Ae, such that c(x) 6=
0, te = t′e and bc

y
= b′c. It follows that

ste = st′e and abc
y
= ab′c,

the last relation being a consequence of Lemma 3.9(ii). Therefore

[ab, st, y] = [ab′, st′, y].

PROPOSITION 3.21. The following assignment is a well-defined operation on L:

[a, s, x] 7→ [a, s, x]∗ := [a∗, s∗, θs(x)].

Proof. Suppose [a, s, x] = [b, t, y] in L, that is, x = y and there is e ∈ E(S)
and c ∈ Ae such that se = te, c(x) 6= 0 and ac x= bc. Then θs(x) = θt(y),

es∗ = et∗ and c∗a∗
θs(x)
= c∗b∗ by Lemma 3.9(vi). And by Lemma 3.14 this implies

that [a∗, s∗, θs(x)] = [b∗, t∗, θt(y)].

THEOREM 3.22. With the multiplication defined in Proposition 3.20 and the in-
volution defined in Proposition 3.21, L is a Fell line bundle, that is, a one-dimensional,
locally trivial (continuous ) Fell bundle over the étale groupoid G.

Proof. We already know that L is a one-dimensional, locally trivial continu-
ous Banach bundle with the unique topology making the local sections â contin-
uous for all a ∈ A. Since the algebraic operations on L are essentially inherited
from A, it is easy to see that all the algebraic properties required in Definition 2.6
are indeed satisfied. Let us check axioms (iv), (viii) and (ix) in Definition 2.6.
Given [a, s, x], [b, t, y] ∈ L with θt(y) = x, Lemma 3.3 yields

‖[a, s, x] · [b, t, y]‖2 = ‖[ab, st, y]‖2 = (b∗a∗ab)(y) = (b∗b)(y)(a∗a)(θt(y))

= (b∗b)(y)(a∗a)(x) = ‖[a, s, x]‖2‖[b, t, y]‖2.

Thus ‖[a, s, x] · [b, t, y]‖ = ‖[a, s, x]‖ · ‖[b, t, y]‖. This, of course, proves (iv). To
prove (viii), we compute

‖[a, s, x]∗ · [a, s, x]‖=‖[a∗a, s∗s, x]‖=
√

((a∗a)∗(a∗a))(x)=(a∗a)(x)=‖[a, s, x]‖2.

To check (ix), it is enough to observe that

[a, s, x]∗ · [a, s, x] = [a∗a, s∗s, x] = [(a∗a)1/2, s∗s, x]∗ · [(a∗a)1/2, s∗s, x]

which is an element of the C∗-algebra L[s∗s,x] of the form w∗w, with w ∈ L[s∗s,x],
and therefore positive. The relation (a∗a)(x) = (aa∗)(θs(x)) for all a ∈ As and
x ∈ Us∗s implies that the involution is isometric: ‖[a, s, x]∗‖ = ‖[a, s, x]‖. Fi-
nally, we show that the multiplication and the involution on L are continuous. By
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Proposition 2.7 it is enough to prove the relations

(3.8) â(γ) · b̂(γ′) = âb(γγ′) and â(γ)∗ = â∗(γ−1)

for all a, b ∈ A, γ ∈ dom(â) and γ′ ∈ dom(b̂) with r(γ′) = d(γ). Suppose a ∈ As
and b ∈ At. By definition, we have

dom(â) = Os = {[s, x] : x ∈ Us∗s} and dom(b̂) = Ot = {[t, y] : y ∈ Ut∗t}.

Suppose γ = [s, x] and γ′ = [t, y] with r(γ′) = θt(y) = x = d(γ). Then

â(γ) · b̂(γ′) = [a, s, x] · [b, t, y] = [ab, st, y] = âb([st, y]) = âb(γγ′),

and
â(γ)∗ = [a, s, x]∗ = [a∗, s∗, θs(x)] = â∗([s∗, θs(x)] = â∗(γ−1).

DEFINITION 3.23. The Fell line bundle L = L(A) over G = G(A) con-
structed above from the Fell bundle A = {As}s∈S over S, will be called the Fell
line bundle associated to A.

As already observed in Section 2.3, Fell line bundles over G correspond bi-
jectively to twists over G. The twisted groupoid (G(A), Σ(A)) corresponding
to L(A) will be called the twisted groupoid associated to A. Thus G(A) is the étale
groupoid constructed in Section 3.1 and the extension groupoid Σ(A) is the space
of unitary elements of the Fell line bundle L(A) constructed above. The algebraic
and topological structure on Σ(A) is canonically induced from L(A). For in-
stance, the multiplication on Σ(A) is just the multiplication of L(A) restricted to
Σ(A), and the inversion on Σ(A) is the restricted involution from L(A). The pro-
jection Σ(A) � G(A) is the restriction of the bundle projection L(A) � G(A).
Finally, the inclusion T×X ↪→ Σ(A) is defined by (z, x) 7→ z · 1x for all z ∈ T and
x ∈ X = G(A)(0), where 1x denotes the unit element of the C∗-algebra L(A)x ∼= C
(the fiber over x).

It is also possible to construct the twist groupoid Σ = Σ(A) directly fromA
following the ideas appearing in [22]. For convenience, we outline here the main
steps into this procedure. We define Σ as the set

Σ := {[[a, s, x]] : a ∈ As, x ∈ dom(a)},

of equivalence classes [[a, s, x]], where, by definition, [[a, s, x]] = [[a′, s′, x′]] if and
only if x = x′, and there is b, b′ ∈ E such that b(y), b′(y) > 0 and ab = a′b′. The
surjection π : Σ → G is defined by π([[a, s, x]]) := [s, x]. It is easy to see that π is
well-defined.

The groupoid structure on Σ is defined in the same fashion as for G: the
source and range maps are d([[a, s, x]]) = x and r([[a, s, x]]) = θs(x) and the oper-
ations are

[[a, s, x]] · [[a′, s′, x′]] = [[aa′, ss′, x′]] whenever θs′(x′) = x and

[[a, s, x]]−1 = [[a∗, s∗, θs(x)]].
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With this structure, it is not difficult to see that Σ is in fact a groupoid. Before we
define the appropriate topology on Σ, let us define the inclusion map ι : T×X →
Σ: Given (z, x) ∈ T× X, define ι(z, x) := [[b, e, x]] ∈ Σ, where e ∈ E(S) and b is
any element of Ae with b(x) 6= 0 and b(x)

|b(x)| = z. Then ι is a well-defined injective
morphism of groupoids.

To specify a topology on Σ it is enough to define a system of open neighbor-
hoods of a point [[a, s, x]] ∈ Σ. This is given by the sets

(3.9) O(a, U, V) := {[[za, s, y]] : y ∈ U and z ∈ V},

where U is an open subset of dom(a) containing x and V ⊆ T is an open subset
containing 1. With this topology it is not difficult to see that Σ is a topological
groupoid, that π : Σ� G is an open continuous map and that ι : T× X ↪→ Σ is a
homeomorphism onto its image:

I = {[[b, e, x]] : x ∈ X, e ∈ E, b ∈ Ae and b(x) 6= 0}.

Moreover,

T× X
ι // Σ

π // G
is an exact sequence of topological groupoids and hence (G, Σ) is a twisted group-
oid.

Note that Σ has a canonical action of T:

z · [[a, s, x]] := [[za, s, x]] for all z ∈ T and [[a, s, x]] ∈ Σ.

It is easy to see that this is a well-defined free action of T on Σ and the surjec-
tion π : Σ → G induces an isomorphism from the orbit space Σ/T onto G. In
other words, Σ is a principal T-bundle over G. It is also possible to exhibit local
trivializations for the T-bundle Σ. In fact, given a ∈ As, the map

ψ : T× dom(a)→ Σ|U , ψ(z, x) := [[za, s, x]] = z · [[a, s, x]]

defines a homeomorphism, where Σ|U := π−1(U) is the restriction of Σ to the
open subset U = O(s, dom(a)) ⊆ G. Note that ψ is T-equivariant in the sense that
ψ(z, γ) = z · ψ(1, γ). Recall that U is a bisection, so we have a canonical home-
omorphism U ∼= dom(a) (which is given by the restriction of d to U). Through
this homeomorphism we may also obtain homeomorphisms ΣU ∼= T×U. These
homeomorphisms are compatible with the projections onto U, so they are in fact
isomorphisms of bundles over U.

PROPOSITION 3.24. Let (G, Σ) be a twisted étale groupoid and let L = (C ×
Σ)/T be the associated Fell line bundle. If S is a wide inverse subsemigroup of S(G) and
if A = {C0(LU)}U∈S is the Fell bundle over S defined from L as in Example 2.9, then
the twisted groupoid (G(A), Σ(A)) associated to A is isomorphic to (G, Σ).

Proof. By definition, the inclusion ι : T × X ↪→ Σ is a homeomorphism
onto its image ι(T× X) = π−1(X), where π is the surjection Σ → G. Thus the
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restriction Σ|X = π−1(X) is trivializable. It follows that L is trivializable over X,
and hence also over any open subset U ⊆ X. Thus LU ∼= C×U, so that

AU = C0(LU) ∼= C0(U) ⊆ C0(X) for every U ∈ E(S).

This gives a faithful representation of EA into C0(X). Since S covers G, the idem-
potent semilattice E(S) covers G(0) = X. Indeed, given x ∈ X, there is U ∈ S
with x ∈ U and hence x = d(x) ∈ d(U) = U∗U ∈ E(S). Thus the family
{C0(U) : U ∈ E(S)} spans a dense subspace of C0(X). It follows from Proposi-
tion 4.3 of [6] that the representation EA → C0(X) integrates to an isomorphism
C∗(EA) ∼= C0(X). So, the spectrum of C∗(EA) may be identified with X, and
through this identification, the spectrum ÂU of AU is U for all U ∈ E(S). Let us
now describe the action θ associated to A. Given U ∈ S, θU is a homeomorphism
from ÂU∗U ∼= U∗U = d(U) onto ÂUU∗ ∼= UU∗ = r(U) which satisfies

(a∗ba)(x) = (a∗a)(x)b(θU(x))

for all a∈AU=C0(LU), b∈C0(X) and x∈d(U). It is enough to consider b∈C0(r(U))
in order to characterize θU . Now, if γ ∈ U and x = d(γ), note that x = γ−1γ =
γ−1r(γ)γ. By definition of the multiplication on A (see Example 2.9), we have

(a∗a)(x) = a∗(γ−1)a(γ) = a(γ)a(γ) = |a(γ)|2

and
(a∗ba)(x) = a∗(γ−1)b(r(γ))a(γ) = |a(γ)|2b(r(γ)).

As a consequence, θU(x) = θU(d(γ)) = θU(r(γ)). In other words, θU is the
homeomorphism θ̃U : d(U) → r(U) given by θ̃U(x) = rU(d−1

U (x)). The maps
θ̃U always give an action of S on X. And by Proposition 5.4 of [5], the map φ :
G(A)→ G defined by φ([U, y]) = d−1

U (y) for all [U, y] ∈ G(A) is an isomorphism
of étale groupoids provided S is wide, which is our case here. Next, we are going
to find an isomorphism Σ(A) ∼= Σ. Recall that Σ may be identified with the set
of unitary elements in the Fell line bundle L through the map σ 7→ [1, σ]. In this
way, we define ψ : Σ(A)→ Σ by

ψ([[a, U, y]]) :=
a(γ)
|a(γ)| , where γ = d−1

U (y) ∈ G,

whenever a ∈ AU = C0(LU), y ∈ dom(a) ⊆ d(U) and x = θU(y) = rU(d−1
U (y)).

Notice that |a(γ)|2 = |a(γ)∗a(γ)| = |a∗(γ−1)a(γ)| = (a∗a)(y) > 0. To show that
ψ is well-defined, assume [[a, U, y]] = [[a, U′, y]] in Σ(A), so there are b, b′ ∈ EA
such that ab = a′b′ and b(y), b′(y) > 0. Suppose a ∈ AU , a′ ∈ AU′ , b ∈ AV
and b′ ∈ AV′ , where U, U′, V, V′ ∈ S. Since b, b′ ∈ EA, we have V, V′ ∈ E(S),
so that V, V′ ⊆ X. If γ = d−1

U (y), then γ = γd(γ) = γy ∈ UV ∩U′V′. Thus
(ab)(γ) = a(γ)b(y) and (a′b′)(γ) = a′(γ)b′(y). Since b(y) and b′(y) are positive
numbers, we get

a(γ)
|a(γ)| =

a(γ)b(y)
|a(γ)b(y)| =

(ab)(γ)
|(ab)(γ)| =

(a′b′)(γ)
|(a′b′)(γ)| =

a′(γ)b′(y)
|a′(γ)b′(y)| =

a′(γ)
|a′(γ)| .



FELL BUNDLES OVER INVERSE SEMIGROUPS AND TWISTED ÉTALE GROUPOIDS 187

Let us check that ψ is a groupoid homomorphism. Take [[a, U, y]], [[b, V, z]] ∈ Σ(A)
with a ∈ AU , b ∈ AV , and let γ1 ∈ U and γ2 ∈ V such that d(γ1) = y and
d(γ2) = z. Then γ = γ1γ2 ∈ UV and d(γ) = d(γ2) = z, so that (ab)(γ) =
a(γ1)b(γ2). Hence,

ψ([[a, U, y]][[b, V, z]]) = ψ([[ab, UV, z]]) =
(ab)(γ)
|(ab)(γ)|

=
a(γ1)
|a(γ1)|

b(γ2)
|b(γ2)|

= ψ([[a, U, y]])ψ([[b, V, z]]).

This shows that ψ respects multiplication. Here we have used that the multiplica-
tion in the Fell line bundle L restricts to the multiplication in the groupoid Σ ⊆ L.
Similarly, since the involution in L restricts to the inverse in Σ ⊆ L, we get that ψ
preserves inversion:

ψ([[a, U, y]]−1) = ψ([[a∗, U−1, θU(y)]]) =
a∗(γ−1

1 )
|a∗(γ−1

1 )|
=

a(γ1)∗

|a(γ1)|
= ψ([[a, U, y]])−1.

The pair (ψ, φ) of groupoid homomorphisms ψ : Σ(A) → Σ and φ : G(A) →
G we have defined is a morphism of extensions, that is, the following diagram
commutes:

T× X

id
��

ιA // Σ(A)

ψ

��

πA // G(A)

φ

��
T× X ι

// Σ π
// G

In fact, recall that ιA : T× X → Σ(A) is defined by ιA(z, x) = [[b, V, x]], where
V ∈ E(S) and b ∈ AV is such that b(x) 6= 0 and b(x)

|b(x)| = z. And the surjection
πA : Σ(A) → G(A) is defined by πA([[a, U, y]]) = [U, y] whenever a ∈ AU . By
definition, ψ(ιA(z, x)) = ψ([[b, V, x]]) = b(x)

|b(x)| = z. Here we view z ∈ T as the
element z[1, x] = [z, x] of the fiber Lx. On the other hand, ι(z, x) = z · x ∈ Σ is
identified with the element [1, z · x] = [z, x] ∈ Lx. This says that the left hand side
of the diagram above commutes. To see that the right hand side also commutes,
take [[a, U, y]] ∈ Σ. If a ∈ AU and γ = d−1

U (y) ∈ U, then φ(πA([[a, U, y]])) =
φ([U, y]) = d−1

U (y) = γ. On the other hand, ψ([[a, U, y]]) = a(γ)
|a(γ)| ∈ Σ ⊆ L is also

sent to γ via π : Σ → G because a(γ)
|a(γ)| belongs to the fiber Lγ and the restriction

of the bundle projection L → G to Σ equals π. Therefore the diagram commutes,
as desired. Since φ is bijective, the commutativity of the diagram forces ψ to be
bijective as well. For example, to prove the injectivity of ψ, assume that σ1, σ2 ∈
Σ(A) and ψ(σ1) = ψ(σ2). Applying π and using the commutativity of the right
hand side, we get φ(πA(σ1)) = φ(πA(σ2)). The injectivity of φ yields πA(σ1) =
πA(σ2), so there is a unique z ∈ T with σ2 = z · σ1. By the commutativity of the
left hand side ψ must be T-equivariant, so that ψ(σ1) = ψ(σ2) = z · ψ(σ1). Since
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the T-action is free, we conclude that z = 1 and hence σ1 = σ2. Analogously
one proves that ψ is surjective. It remains to check that ψ is a homeomorphism.
Since this is a local issue, we may restrict to local trivializations. As we have seen
above each a ∈ AU yields a local trivialization T× dom(a) ∼= ΣU through the
map (z, x) 7→ [[za, U, x]], where U = O(U, dom(a)) ⊆ G(A). On the other hand,
since |a(d−1

U (x))|2 = (a∗a)(x) > 0, a is a non-vanishing continuous section on
V = φ(U ) = {d−1

U (x) : x ∈ dom(a)}. This yields a local trivialization C×V ∼= LV
through the map (λ, γ) 7→ λa(γ), which induces a local trivialization T×V ∼= ΣV
through the map (z, γ) 7→ z a(γ)

|a(γ)| . Once composed with these trivializations, ψ :

ΣU → ΣV gives the map (z, x) 7→ (z, d−1
U (x)) from T× dom(a) to T× V , which

is a homeomorphism because dU is. Therefore, ψ is a homeomorphism.

REMARK 3.25. Let A = {As}s∈S be a saturated semi-abelian Fell bundle
over an inverse semigroup S, and let G be the étale groupoid of germs associated
to A as in Section 3.1. Then the inverse subsemigroup T = {Os : s ∈ S} ⊆ S(G)
is wide. In fact, the first property in Definition 2.12 is obvious because every
element γ ∈ G has the form γ = [s, x] with x ∈ Us∗s, so that γ ∈ Os for some
s ∈ S. To prove the second property, take s, t ∈ S and suppose that γ ∈ Os ∩Ot.
Then γ = [s, x] = [t, x] for some x ∈ Us∗s ∩ Ut∗t. Thus, there is e ∈ E(S) such that
x ∈ Ue and se = te. Define r := se = te ∈ S and note that r∗r = s∗se = t∗te, so
that Ur∗r = Us∗s ∩ Ut∗t ∩ Ue. In particular x ∈ Ur∗r. Since re = se = te, it follows
that [r, x] = [s, x] = [t, x] = γ belongs to Or. And if [r, y], y ∈ Ur∗r, is an arbitrary
element of Or, it belongs to Os ∩Ot because [r, y] = [s, y] = [t, y]. In fact, y ∈ Ue
and re = se = te.

3.3. CHARACTERIZATION OF SEMI-ABELIAN FELL BUNDLES. Let A be a semi-
abelian, saturated Fell bundle over S, let G be the étale groupoid of germs con-
structed in Section 3.1 with unit space G(0) = X, the spectrum of the commutative
C∗-algebra C∗(EA). Consider the Fell line bundle L over G associated to A as in
Section 3.2.

Given s ∈ S, we define Ls = L|Os to be the restriction of L to the open subset
Os = O(s,Us∗s) ⊆ G. We shall write Cs = C0(Ls) for the space of continuous
sections of Ls vanishing at infinity. Recall that each Os = {[s, x] : x ∈ Us∗s} is a
bisection of G and we have (see Proposition 7.4 of [5])

Os · Ot = Ost and O−1
s = Os∗ for all s, t ∈ S.

This says that the map s 7→ Os is a homomorphism from S to the inverse semi-
group S(G) of all bisections in G. The restrictions of d and r to Os will be de-
noted by ds and rs. Since Os is a bisection, ds : Os → Us∗s and rs : Os → Uss∗

are homeomorphisms. Moreover, from the definitions of d and r, it follows that
rs ◦ d−1

s = θs.

PROPOSITION 3.26. With notations as above, the family of Banach spaces C =
{Cs}s∈S is a Fell bundle over S with respect to the following algebraic operations:
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(i) the multiplication Cs × Ct → Cst is defined by

(ξ · η)(γ) := ξ(r−1
s (r(γ)))η(d−1

t (d(γ))) for all γ ∈ Ost, ξ ∈ Cs, η ∈ Ct;

(ii) and the involution Cs → Cs∗ is defined by

ξ∗(γ) = ξ(γ−1) for all γ ∈ Os∗ and ξ ∈ Cs.

The inclusion maps are defined in the canonical way: if s 6 t in S, then Os 6 Ot
in S(G), that is, Os ⊆ Ot. Thus each section ξ of Ls may be viewed as a section of Lt
extending it by zero outside Os. Hence we define the inclusion map jt,s : Cs → Ct by
jt,s(ξ) = ξ̃ for all ξ ∈ Cs, where ξ̃ denotes the extension of ξ by zero.

Proof. The proof consists of straightforward calculations and is left to the
reader. We just remark that the multiplication is well-defined. In fact, if γ ∈
Ost = Os ·Ot, there is a unique way to write γ = γ1 ·γ2 with γ1 ∈ Os and γ2 ∈ Ot
because Os and Ot are bisections. Moreover, this unique way is given by γ1 =
r−1

s (r(γ)) and γ2 = d−1
t (d(γ)). Note that the multiplication we defined on C

uses the multiplication of L as a Fell line bundle. Thus (ξ · η)(γ) = ξ(γ1)η(γ2) ∈
Lγ1 Lγ2 ⊆ Lγ1γ2 = Lγ, so that ξ · η is a section of L. Since all maps involved in
the multiplication are continuous, ξ · η is a continuous section and it vanishes at
infinity because ξ and η do.

THEOREM 3.27. Let A = {As}s∈S be a semi-abelian, saturated Fell bundle and
let C = {Cs}s∈S = {C0(Ls)}s∈S be the (semi-abelian, saturated ) Fell bundle constructed
above. Given a ∈ As, we define the function â : Os → L by

(3.10) â([s, x]) := [a, s, x] for all [s, x] ∈ Os.

Then â is a section of Ls and belongs to C0(Ls). Moreover, the map a 7→ â from A to
C, which shall henceforth be called the Gelfand map, is an isomorphism of Fell bundles
A ∼= C. In particular, we have isomorphisms of imprimitivity Hilbert bimodules

Ass∗As As∗s
∼= C0(Uss∗ )C0(Ls)C0(Us∗s) for all s ∈ S.

Proof. It is clear that â is a section of Ls since the bundle projection p : L→ G
is given by p([a, s, x]) = [s, x]. Moreover, by definition of the topology on L, all
the sections â are continuous. Note that

(3.11) ‖â([s, x])‖2 = ‖[a, s, x]‖2 = (a∗a)(x).

Since a∗a∈C0(Us∗s), this implies that â vanishes at infinity, that is, â∈C0(Ls) and

‖â‖ = sup
x∈Us∗s

√
(a∗a)(x) = ‖a∗a‖1/2 = ‖a‖.

Thus the map As 3 a 7→ â ∈ C0(Ls) is isometric. It is obviously linear by
definition of the linear structure on the fibers of L (see Proposition 3.17). To
prove its surjectivity, first take a section ξ ∈ Cc(Ls) with support contained in
O(s, dom(a)), where a is a fixed element of As. Since â does not vanish on
O(s, dom(a)) by equation (3.11), the line bundle L is trivializable overO(s, dom(a))
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∼= dom(a). More precisely, the restriction L|O(s,dom(a)) is isomorphic to C ×
O(s, dom(a)) ∼= C× dom(a) through the map C× dom(a) 3 (λ, x) 7→ λâ([s, x])
∈ L. Therefore, there is a continuous function h : dom(a)→ C such that

(3.12) ξ([s, x]) = h(x)â([s, x]) for all x ∈ dom(a).

Since ξ is supported in O(s, dom(a)), h belongs to Cc(dom(a)) ⊆ Cc(Us∗s) and
hence may be viewed as an element of As∗s ∼= C0(Us∗s). Moreover, in this way
equation (3.12) holds for all x ∈ Us∗s and from the (easily verified) relation ah x=
h(x)a, we obtain

âh([s, x]) = [ah, s, x] = h(x)[a, s, x] = h(x)â([s, x]) = ξ([s, x]).

Thus âh = ξ and therefore the image of the Gelfand map As → C0(Ls) contains
all the functions with compact support contained inO(s, dom(a)). Since the open
subsets O(s, dom(a)) with a ∈ As cover Os, a partition-of-unit argument shows
that any function in Cc(Ls) is in the image of the Gelfand map and therefore it is
surjective.

We have already seen in the proof of Theorem 3.22 (see (3.8)) that the Gelfand
map preserves the Fell bundle multiplications and involutions, that is,

â · b = â · b̂ and â∗ = â∗ for all s, t ∈ S, a ∈ As, b ∈ At.

Finally, we show that the Gelfand map preserves the inclusion mapsAs ↪→At and
C0(Ls) ↪→C0(Lt) whenever s6 t. For this all we have to check is the following: if
a∈As and we consider it as an element of At (so we are in fact identifying As⊆
At), then the function â vanishes outside Os. But as we have already observed
above, equation (3.11) implies that â is supported in O(s, dom(a))⊆Os.

The Fell bundle C = {C0(Ls)}s∈S over S constructed in Proposition 3.26 may
be also considered as a Fell bundle over the inverse semigroup

T = {Os : s ∈ S} ⊆ S(G).

The structure is basically the same. To avoid confusion, let us write B = {Bt}t∈T
for the Fell bundle C considered over T. Thus, if t = Os, then the fiber Bt is by
definition C0(Ls), and the algebraic operations and inclusion maps are defined as
in Proposition 3.26. Note that C is the pullback of B along the map O : S → T,
s 7→ Os. The map O is a surjective homomorphism of inverse semigroups, but
it is not injective in general. The most trivial example is when the Fell bundle
A = {As}s∈S is the zero Fell bundle, that is, As = {0} for all s ∈ S. In this case,
the associated twisted groupoid (G, Σ) is the empty groupoid, that is, G = Σ = ∅.
Thus S(G) (and hence also T) is the inverse semigroup with just one element, the
zero element (empty set): S(G) = T = {0}. Of course, the map O : S → {0} is
not injective since S might be an arbitrary inverse semigroup.

If O is injective, then B and C are isomorphic Fell bundles. Thus, by The-
orem 3.27, B is also isomorphic to the original Fell bundle A in this case. So, it
is interesting to give conditions on A that imply the injectivity of O : S → S(G).
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Before we go into this problem, let us prove that the C∗-algebras of A and B are
always isomorphic:

PROPOSITION 3.28. Let notation be as above. Then the Gelfand map from A to B
induces an isomorphism C∗(A) ∼= C∗(B) which restricts to an isomorphism C∗(EA) ∼=
C∗(EB) ∼= C0(X), where EA = A|E(S) and EB = B|E(T).

Proof. Since the Gelfand map from A to C = {C0(Ls)}s∈S is an isomor-
phism of Fell bundles, it is enough to show that the canonical morphism from
C = {C0(Ls)}s∈S to B = {C0(Lt)}t∈T (consisting of the homomorphism O : S →
T = {Os : s ∈ S} and the identity maps C0(Ls) → C0(Lt) between the fibers
whenever t = Os) induces an isomorphism C∗(C) ∼= C∗(B) which restricts to an
isomorphism C∗(EC) ∼= C∗(EB). The canonical morphism C → B induces the
map Rep(B) → Rep(C) which assigns to a representation (see Definition 3.1 of
[6]) π = {πt}t∈T of B, the representation π̃ = {π̃s}s∈S with π̃s = πOs for all
s ∈ S. The induced ∗-homomorphism C∗(C) → C∗(B) is automatically surjec-
tive, and to prove its injectivity, we show that every representation ρ = {ρs}s∈S
of C is equal to π̃ for some (necessarily unique) representation π ∈ Rep(B). In
fact, all we have to show is that, for all r, s ∈ S,

(3.13) πr( f ) = πs( f ) whenever Or = Os and f ∈ C0(Lr) = C0(Ls).

The equalityOr = Os implies that Ur∗r = Us∗s, Urr∗ = Uss∗ and θr = θs. Moreover,
given x ∈ Ur∗r = Us∗s, we have [r, x] = [s, x] because Or = Os. Hence, there is
e ∈ E(S) with x ∈ Ue and re = se. Multiplying e by (r∗r)(s∗s), we may assume
that e 6 (r∗r)(s∗s), that is, e 6 r∗r and e 6 s∗s. Defining Er,s = {e ∈ E(S) : re =
se, e 6 (r∗r)(s∗s)}, we conclude that

Ur∗r = Us∗s =
⋃

e∈Er,s

Ue.

As a consequence, we get

(3.14) C0(Ur∗r) = C0(Us∗s) = span
e∈Er,s

C0(Ue).

Now, given e ∈ Er,s, f ∈ C0(Lr) = C0(Ls) and h ∈ C0(Ue), we have

ρr( f )ρe(h) = ρre( f h) = ρse( f h) = ρs( f )ρe(h).

Since e 6 r∗r and ρ is a representation, we have ρe(h) = ρr∗r(h), so that

ρr( f )ρe(h) = ρr( f )ρr∗r(h) = ρr( f h).

Analogously, ρs( f )ρe(h) = ρs( f h). We conclude that ρr( f h) = ρs( f h) for all
h ∈ C0(Ue) with e ∈ Er,s, and by equation (3.14) this also holds for every h in
C0(Ur∗r) = C0(Us∗s). This is enough to prove (3.13) because by Cohen’s Factoriza-
tion Theorem, every element of C0(Lr) = C0(Ls) is a product of the form f h with
f ∈ C0(Lr) = C0(Ls) and h ∈ C0(Ur∗r) = C0(Us∗s). Therefore we get an isomor-
phism C∗(C) ∼= C∗(B). Its restriction to the idempotent parts gives an injective
∗-homomorphism C∗(EC)→ C∗(EB) (which is the identity map on the fibers). To



192 ALCIDES BUSS AND RUY EXEL

see that it is surjective, suppose s ∈ S and f = Os is idempotent in T. Although s
is not necessarily idempotent in S, we must have f = Os = O∗sOs = Os∗s. Since
the morphism EC → EB maps Cs∗s = C0(Ls∗s) onto B f = C0(Ls) = C0(Ls∗s) (it
is just the identity map), the surjectivity of the induced map C∗(EC) → C∗(EB)
follows, and therefore C∗(EC) ∼= C∗(EB) ∼= C0(X), as desired.

Let us now return to the injectivity problem of the map O : S→ S(G).

DEFINITION 3.29. Let A = {As}s∈S be a Fell bundle over an inverse semi-
group S. Let C∗(A) be the (full) cross-sectional C∗-algebra ofA, and let πu : A →
C∗(A) be the universal representation of A. We say that A is faithful if the map
s 7→ πu(As) is injective, that is, πu(As) = πu(At) if and only if s = t. We say that
A is semi-faithful if the restriction EA = A|E ofA to the semilattice of idempotents
E = E(S) is faithful.

Recall from [4] that an inverse semigroup S with zero is said to be continuous
if s ≡ t implies s = t, where ≡ is the following equivalence relation:

s ≡ t⇔ s∗s = t∗t and for any nonzero idempotent f 6 s∗s,

there is a nonzero idempotent e 6 f with se = te.

PROPOSITION 3.30. Let A = {As}s∈S be a saturated, semi-abelian Fell bundle
over an inverse semigroup S with zero element 0 such that A0 = {0}, and let L be
the associated Fell line bundle. If S is continuous and A is semi-faithful, then the map
s 7→ Os from S to the inverse semigroup T = {Os : s ∈ S} ⊆ S(G) is injective. Hence
A = {As}s∈S and B = {C0(Lt)}t∈T are isomorphic Fell bundles.

Proof. Recall that Os = {[s, x] : x ∈ Us∗s} for all s ∈ S. If s, t ∈ S are
such that Os = Ot, then Us∗s = Ut∗t, Uss∗ = Utt∗ and θs = θt. In particular
As∗s ∼= C0(Us∗s) = C0(Ut∗t) ∼= At∗t in C0(X) ∼= C∗(E). SinceA is semi-faithful, we
get s∗s = t∗t. Moreover, from the semi-faithfulness we haveAe = {0} if and only
if e = 0. Now, take any nonzero idempotent f 6 s∗s. Then ∅ 6= U f ⊆ Us∗s = Ut∗t.
Thus, if y ∈ U f , then [s, x] = [t, x], and hence there is e ∈ E(S) with se = te
and x ∈ Ue. In particular, Ue 6= ∅ so that Ae 6= {0} and hence e is a nonzero
idempotent. The product g = e f is a nonzero idempotent because x ∈ Ug =
Ue ∩ U f , and we have g 6 f and sg = tg. Hence s ≡ t and the continuity of S
implies s = t.

REMARK 3.31. The hypothesis A0 = {0} is not necessary for the injectivity
of s 7→ Os. As a simple example, consider S = {0, 1} (which is a semilattice and
therefore a continuous inverse semigroup). Define A0 = C and A1 = C × C.
With the inclusion C ↪→ C× {0} ⊆ C×C and the canonical algebraic operations
(inherited from C × C), A is a semi-abelian, saturated Fell bundle. Note that
C∗(A) = C∗(E) ∼= C × C ∼= C({x0, x1}), where x0, x1 are two distinct points.
With these identifications, we may say that U0 = {x0} and U1 = {x0, x1} = X.
Note that G ∼= X and Σ ∼= T × X in this case (this happens whenever S is a
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semilattice). Moreover, we may identify O0 ∼= U0 and O1
∼= U1. Thus the map

s 7→ Os is injective.

EXAMPLE 3.32. Consider a Fell bundle A over a discrete group G with unit
1. Rigorously, G is not continuous as an inverse semigroup because it has no
zero element. However, this is the only problem. One may add a zero element
0 to G turning it into a continuous inverse semigroup S = G ∪ {0} (not a group
anymore, of course), and extend A to a Fell bundle Ã over S simply defining
Ã0 = {0}. Note that A is saturated and semi-abelian if and only if Ã is. More-
over, if A is saturated, then the following assertions are equivalent:

(i) A is the zero Fell bundle;
(ii) A1 = {0};

(iii) there is g ∈ G with Ag = {0}.
In fact, if g ∈ G is such that Ag = {0}, then A1 = A∗gAg = {0}. And if

A1 = {0}, then A∗gAg = A1 = {0}, so that Ag = {0} for all g ∈ G. For groups,
the zero Fell bundle is the only case where the injectivity of s 7→ Os fails (unless
G = {1} is the trivial group). If fact, if A is a nonzero, semi-abelian, saturated
Fell bundle over G, then all the fibers Ag are nonzero by the equivalences above.
It follows that Ã is faithful. In particular, it is semi-faithful, so we may apply
Proposition 3.30 to conclude that s 7→ Os is injective from S to S(G). In particular,
its restriction from G to S(G) is also injective. One may also prove this directly
in the group case: the associated groupoid G is the transformation groupoid G ∼=
G nθ X, which as a topological space is just G × X and the groupoid operations
are d(s, x) = x, r(s, x) = θs(x), (s, x) · (t, y) = (st, y) whenever θt(y) = x, and
(s, x)−1 = (s−1, θs(x)). Bissections of this groupoid are sets of the form {s} ×U
where U ⊆ X is some open subset. Moreover, the bisection Os is just {s} × X
(here we are assuming As 6= {0} for all s ∈ G; otherwise we have Os = ∅ for all
s ∈ G). Hence the map s 7→ Os is clearly injective.

4. ISOMORPHISM OF REDUCED ALGEBRAS

4.1. THE REGULAR REPRESENTATION. In this section we will study reduced C∗-
algebras of Fell bundles over inverse semigroups and their relationship to the
reduced C∗-algebra of the associated Fell line bundle.

We begin by briefly recalling some facts about the reduced C∗-algebra of
Fell line bundles over (non necessarily Hausdorff) étale groupoids, referring the
reader to [21] for more details, such as the construction of the reduced C∗-algebra
in the non-étale case, although Renault only treats the Hausdorff case.

Throughout this section we suppose we are given an étale groupoid G and
a Fell line bundle L over G.
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For the time being we will also fix x ∈ G(0). Observe that Lx is a one-
dimensional C∗-algebra which is therefore isomorphic to C, so we will henceforth
tacitly identify Lx with C.

Denoting by Gx = d−1(x), let Hx be the collection of all square-summable
sections of L over Gx, that is all functions ξ : Gx →

⋃̇
γ∈Gx

Lγ, such that ξ(γ) ∈ Lγ,

for all γ ∈ Gx, and such that

(4.1) ∑
γ∈Gx

ξ(γ)∗ξ(γ) < ∞.

In regards to this sum notice that ξ(γ)∗ξ(γ) ∈ Lγ∗γ = Lx, which we are identify-
ing with C, as mentioned above.

It is well known thatHx becomes a Hilbert space with inner product

(4.2) 〈ξ |η〉 = ∑
γ∈Gx

ξ(γ)∗η(γ) for all ξ, η ∈ Hx.

Recall from Definition 2.11 that Cc(L) denotes the space of all sections of

the form
n
∑

i=1
fi where each fi is a compactly supported, continuous local section

fi : Ui → L over some open Hausdorff subset Ui ⊆ G (which can be taken to
be a bisection of G), extended by zero outside Ui and viewed as a global section
fi : G → L.

PROPOSITION 4.1. For every f ∈ Cc(L) there exists a bounded linear operator
πx( f ) onHx such that

πx( f )ξ |γ = ∑
γ1γ2=γ

f (γ1)ξ(γ2) for all ξ ∈ Hx, γ ∈ Gx.

Proof. Before we begin observe that any given summand “ f (γ1)ξ(γ2)”
above lies in the same fiber of L, namely Lγ1 Lγ2 = Lγ1γ2 = Lγ.

Let us now argue that the sum in the statement does indeed converge by
showing that only finitely many summands are nonzero. We begin by treating
the case in which f is supported on a given bisection U of G.

Given γ ∈ Gx suppose first that r(γ) /∈ r(U). Therefore there is no γ1 in U
such that r(γ) = r(γ1), and hence the above sum admits no nonzero summand,
and πx( f )ξ |γ = 0.

On the other hand, if r(γ) ∈ r(U), then r(γ) = r(γ1), for some γ1 ∈ U,
which is unique, given that U is a bisection. Setting γ2 = γ−1

1 γ, we see that
(γ1, γ2) is the unique pair satisfying γ1γ2 = γ, with γ1 ∈ U, and hence

(4.3) πx( f )ξ |γ = f (γ1)ξ(γ2).

This shows that the sum in the statement converges as it has at most one nonzero
summand.

Still supposing that f is supported on the bisection U, let us prove that
πx( f ) is well-defined and bounded. In order to do this we claim that the cor-
respondence γ 7→ γ2, defined as above for γ ∈ Gx ∩ r(U), is injective. In fact,
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suppose that γ and γ′ lie in Gx ∩ r(U) and that both lead up to the same γ2. This
means that there are γ1 and γ′1 in U such that

γ = γ1γ2 and γ′ = γ′1γ2.

Therefore d(γ1) = r(γ2) = d(γ′1), which implies that γ1 = γ′1, again because U
is a bisection. This obviously gives γ = γ′, concluding the proof of our claim.

Viewing γ2 as a function of γ, as above, we then have for all ξ ∈ Hx,

∑
γ∈Gx

‖(πx( f )ξ)(γ)‖2 = ∑
γ∈Gx∩r(U)

‖(πx( f )ξ)(γ)‖2

= ∑
γ∈Gx∩r(U)

‖ f (γγ−1
2 )ξ(γ2)‖26‖ f ‖2

∞ ∑
γ∈Gx∩r(U)

‖ξ(γ2)‖26‖ f ‖2
∞‖ξ‖2,

where the last inequality holds because γ2 is an injective function of γ. This
shows that ‖πx( f )ξ‖ 6 ‖ f ‖∞‖ξ‖, and hence that πx( f ) is well-defined and
bounded with ‖πx( f )‖ 6 ‖ f ‖∞.

In order to treat the general case, let f ∈ Cc(L). Then we may write f as a

finite sum f =
n
∑

i=1
fi, where each fi is supported in some bisection, in which case

it is clear that πx( f ) =
n
∑

i=1
πx( fi), and we see that πx( f ) is indeed bounded.

It is now easy to see that the correspondence f 7→ πx( f ) is a ∗-represen-
tation of Cc(L), and hence extends continuously to a representation, by abuse of
language also denoted πx, of C∗(L) onHx.

For each γ ∈ Gx choose a unit vector vγ in Lγ and set

δγ =

{
vγ if γ′ = γ,
0 otherwise.

As we shall see, the random choice of vγ above will have little, if any effect
in what follows. It is then easy to see that {δγ}γ∈Gx is an orthonormal basis ofHx.

Among the elements of Gx one obviously finds x itself, so δx is one of our
basis elements.

PROPOSITION 4.2. For every x ∈ G(0) one has δx is a cyclic vector for πx.

Proof. Let γ′ ∈ Gx, and let U be a bisection of G containing γ′. Choose
f ∈ Cc(L) supported on U and such that f (γ′) 6= 0. We claim that πx( f )δx is a
nonzero multiple of δ′γ. In order to see this, suppose that γ ∈ G is such that

πx( f )δx |γ 6= 0.

By definition there exists at least one pair (γ1, γ2) such that γ1γ2=γ, and f (γ1)δx(γ2)
6=0. This obviously implies that γ1∈U, and γ2 =x. In particular this says that
γ2∈G(0) and hence γ1 =γ, so we deduce that γ∈U. In addition

d(γ) = d(γ1) = r(γ2) = x.
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It follows that the source of both γ and γ′ coincide with x, and that both γ and
γ′ lie in U. Since U is a bisection we conclude that γ = γ′, thus showing that
πx( f )δx |γ vanishes whenever γ 6= γ′.

In order to compute the value of πx( f )δx |γ′ one observes that γ′ = γ′x, so
the unique pair (γ1, γ2) with γ1γ2 = γ′ and γ1 ∈ U, according to equation (4.3),
is (γ1, γ2) = (γ′, x). We then have

πx( f )δx |γ′ = f (γ′)δx(x).

Since this is nonzero we conclude that πx( f )δx is indeed a nonzero multiple of
δγ′ . This shows that any δγ′ lies in the cyclic space spanned by δx, and hence that
δx is a cyclic vector for πx, thus concluding the proof.

PROPOSITION 4.3. Given x ∈ G(0) let φx be the state associated to the represen-
tation πx and the cyclic vector δx, namely

φx( f ) = 〈πx( f )δx |δx〉

for all f ∈ Cc(L). Then φx( f ) = f (x).

Proof. It is clearly enough to prove the statement under the assumption that
f is supported on a bisection U of G. We begin by claiming that

(4.4) πx( f )δx |x = f (x)δx(x).

Suppose first that r(x) ∈ r(U). So we have by equation (4.3) that πx( f )δx |x =
f (γ1)δx(γ2), where (γ1, γ2) is the unique pair of elements in G such that γ1γ2 =
x, and γ1 ∈ U.

In order to find γ1 and γ2, recall that r(x) ∈ r(U), so there exists γ ∈ U such
that r(γ) = r(x) = x. Then γγ−1 = x, and we see that (γ1, γ2) = (γ, γ−1). Using
brackets to indicate boolean value we have

πx( f )δx |x = f (γ)δx(γ−1) = [x=γ−1] f (γ)δx(γ−1) = [x=γ] f (x)δx(x).

Notice that the last term above equals f (x)δx(x). While this is obvious when
f (x) = 0, notice that if f (x) 6= 0 we must have x ∈ U, and then the unique
element γ ∈ U with r(γ) = x is x itself, so x = γ, or equivalently [x=γ] = 1.

This proves equation (4.4) under the assumption that r(x) ∈ r(U), so sup-
pose now that r(x) /∈ r(U). In this case we have already seen that πx( f )δx |x
vanishes, so it is enough to check that the right hand side of equation (4.4) also
vanishes. But this is immediate since otherwise x ∈ U, whence r(x) ∈ r(U).

Having finished the proof of equation (4.4) we have

φx( f ) = 〈πx( f )δx |δx〉 = (πx( f )δx |x)δx(x)
(4.4)
= f (x)δx(x)δx(x) = f (x),

because δx(x) is a unit vector by construction.
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4.2. THE ISOMORPHISM. LetA = {As}s∈S be a semi-abelian Fell bundle over the
inverse semigroup S and let E be the restriction ofA to the idempotent semilattice
E(S). Therefore C∗(E) is an abelian C∗-algebra whose spectrum will be denoted
by X, so C∗(E) is isomorphic to C0(X).

For each e ∈ E(S) we will identify Ae as a closed two-sided ideal in C0(X),
and therefore there exists an open set Ue ⊆ X, such Ae = C0(Ue). By Proposi-
tion 3.5, for each s ∈ S, there exists a homeomorphism

θs : Us∗s → Uss∗ ,

such that for every f ∈ C0(Uss∗), and every as ∈ As,

(a∗s f as)x = (a∗s as)(x) f (θs(x)) for all f ∈ C0(Uss∗), as ∈ As, x ∈ Us∗s.

Moreover, s 7→ θs gives an action of S on X. Let G be the groupoid of germs for
this action as in Section 3.1 and let L be the Fell line bundle over G associated to
A as constructed in Section 3.2.

It is our goal in this section to prove that the reduced C∗-algebra of A is
isomorphic to the reduced C∗-algebra of L.

LEMMA 4.4. A necessary and sufficient condition for a given element [s, x] in G
to lie in G(0) is that there exists e ∈ E(S) such that e 6 s, and x ∈ Ue.

Proof. Given e as in the statement notice that se = e = ee, and hence in view
of the equivalence relation leading up to the notion of germs, we have

[s, x] = [e, x] ∈ G(0).

Conversely, suppose that [s, x] ∈ G(0). Then

[s, x] = [s, x]−1[s, x] = [s∗, θs(x)][s, x] = [s∗s, x].

Therefore, there exists f ∈ E(S) such that x ∈ U f , and s f = s∗s f . Setting e = s∗s f ,
we get

Ue = Us∗s ∩ U f 3 x, and se = ss∗s f = s f = s∗s f = e,

so that e 6 s, and the proof is complete.

Given a pure state φ on C∗(E) = C0(X), we wish to identify the state φ̃
on C∗(A) described in Proposition 7.4 of [6]. Since the pure states on C0(X) are
precisely the point evaluations, there must exist some x0 ∈ X, such that

φ( f ) = f (x0) for all f ∈ C0(X).

Recall from equation (7.3) of [6] that, given e ∈ E(S), we let φe be the state on
Ae = C0(Ue) given by restriction of φ. Evidently

(4.5) φe 6= 0⇔ x0 ∈ Ue.

Using Proposition 5.5 of [6], the above can be used as a characterization of
when is φ supported on Ae.
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If s ∈ S and e ∈ E(S) are such that e 6 s and φe 6= 0, then φe has a canonical
extension φ̃s

e to As given by Proposition 6.1 of [6]. In order to describe it, choose
h ∈ Ae such that h(x0) = 1. Then it is clear that

φe( f ) = φe(h)φe( f ) = φe(h f ),

so, by Proposition 6.3 of [6] we have

φ̃s
e(a) = φe(ha) = (ha)(x0) for all a ∈ As.

In order to compute the expression (ha)(x0), we use the isomorphism As ∼=
C0(Ls), that is, the Gelfand map constructed in Theorem 3.27, which we have
so far also used implicitly in identifying Ae = C0(Le) = C0(Ue). Thus, we are
going to identify a ∈ As with â ∈ C0(Ls). Under our identification we have

(ha)(x0) = ĥa([e, x0]) = ĥâ([e, x0]) = ĥ([e, x0])â([s, x0]) = · · ·

because the only way of writing [e, x0] as a product of elements in Oe and Os is

[e, x0] = [e, x0][s, x0].

Continuing with our computation of (ha)(x0) above, we have

· · · = 1 · â([s, x0]) = â([e, x0]),

where the last equality is simply due to the fact that [s, x0] = [e, x0]. Returning
with the identification between X and G(0), we may then write

φ̃s
e(a) = a(x0).

Suppose, on the other hand that s is such that there is no e in supp(φ) with
e 6 s. By the characterization of supp(φ) given in equation (4.5), we deduce that
there is no e in E(S) such that x0 ∈ Ue and e 6 s. Choosing any idempotent f such
that x ∈ U f we then claim that [ f , x0] /∈ Os. In order to prove this suppose the
contrary and hence [ f , x0] = [s, x], for some x ∈ Us∗s. This would imply x = x0
and the existence of e ∈ E(S), with x0 ∈ Ue and f e = se. Setting e′ = f e we would
then have x0 ∈ Ue′ and e′ 6 s, a situation which has been explicitly ruled out
by our hypothesis. Therefore [ f , x0] /∈ Os and hence any f ∈ Cc(Ls) vanishes on
[ f , x0]. In particular, for any as ∈ As, we have

âs([ f , x0]) = 0 = φ̃(as).

We have therefore proved the following:

PROPOSITION 4.5. Let x0 ∈ X and let φ be the pure state on C0(X) given by
evaluation on x0. Then the canonical extension φ̃ of φ to C∗(A) given by Proposition 7.4
of [6] is such that

φ̃(as) = âs(x0) for all s ∈ S and as ∈ As.
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Consider the canonical inclusion from Cc(Ls) into Cc(L) ⊆ C∗(L). An argu-
ment similar to that given in Proposition 3.14 of [5] shows that this inclusion is
continuous for the sup-norm on Cc(Ls), and hence it extends to C0(Ls) → C∗(L).
Moreover, these maps form a representation of the Fell bundle {C0(Ls)}s∈S into
C∗(L). Using the Gelfand isomorphisms As ∼= C0(Ls) (see Theorem 3.27), we
get a representation of A into C∗(L), which therefore integrates to a (surjective)
∗-homomorphism

Ψ : C∗(A)→ C∗(L).

In fact, this is essentially the same ∗-homomorphism appearing in Theorem 2.13
for the case B = L (which is therefore an isomorphism if G is Hausdorff or second
countable).

THEOREM 4.6. The homomorphism Ψ : C∗(A) → C∗(L) above factors
through the corresponding reduced C∗-algebras providing an isomorphism

Ψr : C∗r (A)→ C∗r (L).

Proof. For x0 ∈ X denote by πx0 the representation of C∗r (L) given by Propo-
sition 4.1. On the other hand, let φ̃ be the state on C∗(A) mentioned in Proposi-
tion 4.5 in terms of x0, and let ρx0 be the GNS representation of C∗(A) associated
to φ̃.

We claim that πx0 ◦ Ψ is a representation equivalent to ρx0 . Since δx0 is a
cyclic vector for πx0 by Proposition 4.2, we see that it is also cyclic for πx0 ◦ Ψ
simply because Ψ is onto. The associated vector state is given, on any as ∈ As, by

〈πx0(Ψ(as))δx0 |δx0〉
(4.3)
= Ψ(as)(x0)

(4.5)
= φ̃(as).

The claim therefore follows from the uniqueness of the GNS representation. With
respect to the respective reduced norms ‖ · ‖r, we then have, for every a ∈ C∗(A),

‖Ψ(a)‖r = sup
x0∈X
‖πx0(Ψ(a))‖ = sup

x0∈X
‖ρx0(a)‖ = ‖a‖r,

from where the result readily follows.

Let (G, Σ) be the twisted groupoid associated to A as in Section 2.3. Since
the reduced C∗-algebra of (G, Σ) is, by definition, the reduced C∗-algebra of L,
the above result also gives a canonical isomorphism

C∗r (A) ∼= C∗r (G, Σ).

5. APPLICATION: CARTAN SUBALGEBRAS

In this section we will apply the results so far developed to prove part
of Renault’s Theorem [22] on the characterization of Cartan subalgebras of C∗-
algebras.
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Based on previous work by Vershik, Feldman, Moore, and Kumjian [24], [8],
[9], [13], Renault gave the following:

DEFINITION 5.1 ([22], Definition 5.1). A closed ∗-subalgebra B of a separa-
ble C∗-algebra A is a Cartan subalgebra if:

(i) B contains an approximate unit of A;
(ii) B is maximal abelian in A;

(iii) B is regular in the sense that the normalizer of B in A, namely

N(B) = {a ∈ A : aBa∗ ⊆ B, a∗Ba ⊆ B},

generates A; and
(iv) there exists a faithful conditional expectation from A to B.

Renault has proved ([22], Theorem 5.6) that, whenever B is a Cartan subal-
gebra of A, there exists a twisted, essentially principal, étale, Hausdorff groupoid
(G, Σ), such that A is isomorphic to C∗r (G, Σ) via an isomorphism which carries
B onto C0(G(0)).

In [6] the second named author has recently introduced a generalization
of the notion of Cartan subalgebras to include situations in which the maximal
abelian algebra B is no longer abelian. To describe this result we need to recall that,
given a closed ∗-subalgebra B of a C∗-algebra A, a virtual commutant of B in A is a
B-bimodule map

φ : J → A,

where J is an ideal in B. Virtual commutants are akin to elements in the relative
commutant B′ ∩ A, since given any a ∈ B′ ∩ A, the following map is a virtual
commutant with domain J = B:

φa : b ∈ B 7→ ab ∈ A.

DEFINITION 5.2 ([6], Definition 12.1). A closed ∗-subalgebra B of a separa-
ble C∗-algebra A is said to be a generalized Cartan subalgebra if it satisfies (i), (iii)
and (iv) of Definition 5.1 and, instead of (ii), it is required that:

(ii)’ every virtual commutant of B in A has its range contained in B.

In Theorem 14.5 of [6] it is proved that if B is a generalized Cartan subal-
gebra of A, there exists a Fell bundle A = {As}s∈S, over a countable inverse
semigroup S, such that A is isomorphic to C∗r (A) via an isomorphism which car-
ries B onto C∗r (E), where E is the restriction of A to the idempotent semilattice of
S. We observe that by Proposition 4.3 of [6] there is no difference between C∗r (E)
and C∗(E), but we use the former to standardize our notation.

In the remainder of this section we will show how Theorem 14.5 of [6] com-
bines with the results of this paper to prove most of the conclusions of Renault’s
Theorem. We therefore fix, throughout, a separable C∗-algebra A and a Cartan
subalgebra B, according to Definition 5.1.
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Given that B is abelian it is easy to prove that property of Definition 5.1(ii)
implies Definition 5.2(ii)’ (see Proposition 9.8 of [6]), so B is also a generalized
Cartan subalgebra. By Theorem 14.5 of [6] we therefore deduce that there exists
a countable inverse semigroup S and a Fell bundle A = {As}s∈S, such that A '
C∗r (A), and B ' C∗r (E), as above.

If e ∈ E(S) then, by Corollary 8.9 of [6], Ae identifies with an ideal of B,
and hence Ae is commutative. In other words, A is a semi-abelian Fell bundle.
Moreover by the construction of the Fell bundle in Theorem 14.5 of [6], it is also
saturated (see Proposition 13.3 of [6]).

Let G be the étale groupoid associated toA as in Section 3.1, and let L be the
Fell line bundle over G associated toA as constructed in Section 3.2. As observed
in Section 2.3 this is tantamount to saying that we have a twisted groupoid (G, Σ).
We conclude from Theorem 4.6 that

A ' C∗r (A) ' C∗r (L) = C∗r (G, Σ),

where the isomorphisms involved restrict to give

B ' C∗(E) ' C0(G(0)).

In order to get the whole of Renault’s result we still need to show that G is
Hausdorff and essentially principal but, unfortunately, we cannot offer an argu-
ment entirely based on our results which leads to the conclusion that G is Haus-
dorff.

Being unable to fully prove Renault’s result we conclude this section with
some remarks on the Hausdorff question.

Of course, should we know that G is Hausdorff, it would quickly follow
that G is essentially principal by Proposition 4.2 of [22]. However we remark that
there are non-Hausdorff, essentially principal, étale groupoids for which C0(G(0))
is not maximal abelian in C∗r (G) ([7], Proposition 2.4), and hence Proposition 4.2
of [22] is not valid for non-Hausdorff groupoids.

Returning to the question of whether the groupoid G associated to A is
Hausdorff, one might wonder if it is possible to answer it affirmatively via some
quick argument based on the postulated existence of the conditional expectation.
(In Proposition 5.4 of [22] Renault does achieve this in a non-trivial way.) An in-
dication that lured us in this direction is the fact that Hausdorff étale groupoids
do possess a very standard conditional expectation obtained by restricting func-
tions to the unit space ([22], Proposition 4.3), a process which is not available in
the non-Hausdorff case.

However we have found an example which proves that the existence of the
conditional expectation, by itself (without the assumption that the groupoid be
essentially principal), is not enough to guarantee that the groupoid is Hausdorff.

PROPOSITION 5.3. There exists a non-Hausdorff, étale groupoid G, such that
C0(G(0)) is the image of a faithful conditional expectation defined on C∗r (G).
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Proof. Partly as an illustration of our methods, we will first construct a semi-
abelian Fell bundle over an inverse semigroup, which will then give rise by Sec-
tion 3.1 to the groupoid we need.

Consider the commutative semigroup S = {e, 1, σ} endowed with the mul-
tiplication operation

· e 1 σ

e e e e
1 e 1 σ
σ e σ 1

Notice that e is a zero-element and 1 is a unit for S. It is easy to see that S is an
inverse semigroup and that all of its elements are self-adjoint.

In presenting our Fell bundle A = {As}s∈S, each fiber As will be taken to
be a subset of the cartesian product C([−1, 1])× S, as follows:

(i) Ae = C0[−1, 0)× {e},
(ii) A1 = C[−1, 1]× {1},

(iii) Aσ = C[−1, 1]× {σ}.
The Banach space structure of eachAs is that of its first coordinate, while the

multiplication and involution on A are defined coordinatewise. The inclusions
j1,e and jσ,e are given by

j1,e( f , e) = ( f , 1) and jσ,e( f , e) = ( f , σ) for all f ∈ C0[−1, 0).

Clearly C∗r (E) identifies with A1 = C[−1, 1], so that G(0) = [−1, 1], and one may
check that the groupoid of germs G consists of the following distinct elements:

[e, x] for x ∈ [−1, 0); [1, x] for x ∈ [0, 1]; [σ, x] for x ∈ [0, 1].

Incidentally, notice that [e, x] = [1, x] = [σ, x] for all x ∈ [−1, 0). The topology of
G is such that the open bisections

O1 = {[1, x] : x ∈ [−1, 1]} = G(0) and Oσ = {[σ, x] : x ∈ [−1, 1]}
are each canonically homeomorphic to [−1, 1], but G is not Hausdorff since it is
impossible to separate the germs [1, 0] and [σ, 0] from one another.

The reduced C∗-algebra of G, which is isomorphic to the reduced C∗-algebra
ofA, may be described as the algebra of all continuous complex-valued functions
on the topological subspace X of R2 given by X = ([−1, 1]×{0})∪ ([0, 1]×{1}).

- x

6

y

• •1

• •
-1 1
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The natural identification of fibers within C(X), say πs : As → C(X) for s ∈ S,
may be given as follows: for each f ∈ C0[−1, 0), one puts

πe( f , e) |(x,y) =

{
f (x) if x < 0, and y = 0,
0 otherwise.

For f ∈ C0[−1, 1],

πσ( f , σ) |(x,y) =

{
f (x) if y = 0,
− f (x) if x > 0, and y = 1,

while
π1( f , 1) |(x,y) = f (x) for all (x, y) ∈ X.

The subalgebra C0(G(0)), or equivalently C∗r (E) (= π1(A1)), may be de-
scribed as the subalgebra of C(X) formed by the functions which do not depend
on the second variable y.

It therefore remains to show that there does indeed exists a conditional ex-
pectation as required. But this may be simply given, for every g ∈ C(X), by

E(g) |(x,y) =

{
g(x, 0) if x < 0, and y = 0,
p(x)g(x, 0) + (1− p(x))g(x, 1) if x > 0,

where p : [0, 1]→ [0, 1] is any continuous function such that p(0) = 1. As long as
the set of points x where p(x) ∈ (0, 1) is dense in [0, 1], one can prove that E is a
faithful conditional expectation as desired.

6. CONCLUDING REMARKS

In this work we have studied a natural connection between Fell bundles
over étale groupoids and inverse semigroups. As we have seen in Section 2.2,
Fell bundles over étale groupoids give rise to Fell bundles over inverse semi-
groups, but the latter seems to be slightly more general objects. This idea essen-
tially appears in the unpublished work [23] by Nándor Sieben, and we would
like to thank him for providing access to his work. In [6] the second named au-
thor gives a first application to Fell bundles over inverse semigroups proving that
they provide examples of noncommutative Cartan subalgebras. Of course, this
gives a special reason to study those objects and we are strongly inspired by this
work and some of his references, especially the articles [13], [22] by Kumjian and
Renault.

Although arbitrary Fell bundles over inverse semigroups are more gen-
eral than over étale groupoids, our main result shows that in the semi-abelian
case both can be "disintegrated" and are essentially equivalent to twisted étale
groupoids or, equivalently, Fell line bundles (over étale groupoids). For group-
oids, this result is proved in Theorem 5.6 of [2], but it can be essentially also
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obtained from our main result by first "integrating" a given semi-abelian Fell bun-
dle (in [2] those Fell bundles are called just "abelian") over an étale groupoid as
in Section 2.2, obtaining in this way a semi-abelian Fell bundle over an inverse
semigroup and then "disintegrating" (that is, applying our main result to) it as in
Section 3 yielding the desired twisted étale groupoid.
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