
J. OPERATOR THEORY
67:1(2012), 215–236

© Copyright by THETA, 2012
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ABSTRACT. We consider pairs of commuting isometries that are annihilated
by a polynomial. We show that the polynomial must be inner toral, which is
a geometric condition on its zero set. We show that cyclic pairs of commuting
isometries are nearly unitarily equivalent if they are annihilated by the same
minimal polynomial.

INTRODUCTION

Isometries form one of the best-understood classes of operators on Hilbert
spaces. By the von Neumann–Wold decomposition, every isometry is the direct
sum of a unitary operator and a vector-valued shift. The non-unitary part of the
isometry is called the pure part.

Pairs of commuting isometries are more complicated. If the first isometry is
pure, it can be modeled as a vector-valued shift, multiplication by the coordinate
function on H2⊗L, where L is a Hilbert space of the appropriate dimension, and
H2 is the Hardy space. The second isometry then becomes multiplication by an
operator-valued inner function on L, i.e. an analytic operator-valued function on
the unit disk D whose boundary values are isometric a.e. [8], [18].

Although this description is very powerful, it leaves open many questions.
The purpose of this note is to study a restricted class of pairs of commuting isome-
tries V = (V1, V2), namely ones that satisfy an algebraic relation: q(V) = 0 for
some polynomial q of two variables. We shall call such a pair an algebraic isopair,
and we shall say that an isopair is pure if both isometries are pure. Pure algebraic
isopairs turn out to have a rich structure.

It is easy to find an algebraic isopair annihilated by the polynomial z2 −w2,
but a moment’s thought shows that none can be annihilated by z2 − 2w2. The
polynomial 1− zw can annihilate an isopair, but only if this is a pair of unitaries
whose joint spectrum is contained in

T2 ∩ {(z, w) : 1− zw = 0}.
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(Throughout the paper, we shall use the notation that D is the open unit disk
{z : |z| < 1}, T is the unit circle {z : |z| = 1}, and E is the exterior of the closed
disk {z : |z| > 1}.) No pure isopair is annihilated by 1− zw.

What polynomials q can be the minimal annihilating polynomial for some
pure isopair?

THEOREM 1.20. Let V = (V1, V2) be a pure algebraic isopair on a Hilbert space
H. Then there exists a square-free inner toral polynomial q that annihilates V. Moreover,
if p is any polynomial that annihilates V, then q divides p.

A polynomial q is called an inner toral polynomial if its zero set lies in D2 ∪
T2 ∪ E2; the zero set of an inner toral polynomial is called a distinguished variety.
We discuss these in Section 1.

Theorem 1.20 gives a way to construct algebraic isopairs. Start with an inner
toral polynomial q; put a nice measure µ on Zq ∩ T2; construct the Hardy space
H2(µ) that is the closure in L2(µ) of the polynomials; and look at the pair of
operators on H2(µ) given by multiplication by the coordinate functions. In a way
that will be made precise in Section 3, this construction in some sense gives you
all cyclic algebraic isopairs.

However, they also arise in another setting. In [6], [20], it is shown that
on every finitely connected planar domain R there is a pair of inner functions
(u1, u2) that map the domain conformally onto some distinguished variety inter-
sected with the bidisk. If ν is a measure on ∂R that is a log-integrable weight times
harmonic measure, one can form a Hardy space H2(ν) (provided every compo-
nent in the complement of R has interior, this is just the closure in L2(ν) of all
functions analytic in a neighborhood of R). Multiplication by u1 and u2 on H2(ν)
then give a pure cyclic algebraic isopair.

In Section 2, we show that a q-isopair (an isopair annihilated by q ∈ C[z, w])
can almost be broken up into a direct sum of isopairs corresponding to each of
the irreducible factors of q. Specifically, we have:

THEOREM 2.1. Let V = (V1, V2) be a pure algebraic isopair with minimal poly-
nomial q, and let q1, q2, . . . , qN be the (distinct) irreducible factors of q. If both V1 and V2
have finite dimensional cokernels, then V has a finite codimension invariant subspace K
on which

V|K = W1 ⊕W2 ⊕ · · · ⊕WN

where Wj is a qj-isopair, j = 1, . . . , N.

The restriction to K is essential. Our main result says that any two pure
cyclic algebraic isopairs are nearly unitarily equivalent if and only if they have the
same minimal polynomial. “Nearly” means after restricting to a finite codimen-
sional invariant subspace. So we say that two pairs are nearly unitarily equivalent
if and only if each one is unitarily equivalent to the other restricted to a finite codi-
mensional invariant subspace. We say a pair is nearly cyclic if, when restricted to
a finite codimensional invariant subspace, it becomes cyclic. We have:
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THEOREM 3.3. Any two nearly cyclic pure isopairs are nearly unitarily equiva-
lent if and only if they have the same minimal polynomial.

In Section 4, we find a function-theoretic consequence of the operator theory.
Given a polynomial q, one can ask when Y = Zq ∩ T2 is polynomially convex.
Apart from the trivial case of when q has factors of (z − eiθ) or (w − eiθ), the
answer is that Y fails to be polynomially convex if and only if q has an inner toral
factor.

THEOREM 4.1. Let q be a polynomial in two variables with no linear factors.
Then Y = Zq ∩T2 is polynomially convex if and only if q has no inner toral factor.

1. INNER ISOPAIRS

DEFINITION 1.1. An isopair is a pair V = (V1, V2) of commuting isometries.
An algebraic isopair is an isopair that satisfies a polynomial p ∈ C[z, w]:

p(V) = 0

in which case V may be called a p-isopair.

DEFINITION 1.2. An isopair V is pure if⋂
m>0

Vm
1 H = {0} =

⋂
n>0

Vn
2 H.

Suppose V = (V1, V2) is an isopair with V1 pure. Let k be the dimension of
the cokernel of V1 (which is the Fredholm index of V∗1 , and which we will call the
multiplicity of V1). Then standard model theory for isometries, as described for
example in [8] or [18], says that V can be modeled on the Hilbert space H2 ⊗ L,
where L is a Hilbert space of dimension k, and H2 is the Hardy space. There
is a B(L) valued inner function Φ so that V is unitarily equivalent to the pair
(Mz, MΦ), where Mz is multiplication by the independent variable (times IL) and
MΦ is multiplication by the operator-valued function Φ. If V1 is of finite multi-
plicity, k is finite and Φ is matrix-valued. If, in addition, V2 is of finite multiplicity,
then Φ is a matrix-valued rational inner function, i.e. an analytic matrix-valued
function, each of whose entries is rational with poles outside the closed unit disk,
and such that everywhere on the unit circle the matrix is unitary. Finally, if V2
is also pure, this means that Φ is not the direct sum of a constant unitary and
another inner function. We shall say in this case that the function Φ is pure.

EXAMPLE 1.3. A simple example is the pair V = (V1, V2) = (Mz2 , Mz3) on
the classical Hardy space H2. In this case V satisfies V3

1 − V2
2 = 0. This pair is

unitarily equivalent to the pair (Mz, MΦ) on H2 ⊗C2 where

Φ(z) =
(

0 z2

z 0

)
.
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The unitary equivalence U comes from mapping f = f1(z2) + z f2(z2) ∈ H2 to
( f1(z), f2(z))t ∈ H2 ⊗ C2, where here we are dividing f into its even and odd
parts. It is easy to check that this Hilbert space isomorphism intertwines the two
operator pairs:

UMz2( f1(z2) + z f2(z2)) = U(z2 f1(z2) + z3 f2(z2)) =
(

z f1(z)
z f2(z)

)
= Mz

(
f1(z)
f2(z)

)
(and similarly for Mz3 on H2 and MΦ on H2 ⊗C2).

Pure isopairs cannot be annihilated by arbitrary polynomials. We shall
show below (Theorem 1.20) that there is a minimal annihilating polynomial for
any algebraic isopair. This minimal polynomial must be inner toral. To define this,
let us first establish the notation that D is the open unit disk, T is the unit circle,
and E is the exterior of the closed unit disk in the plane.

DEFINITION 1.4. A distinguished variety is an algebraic set A in C2 such that

A ⊆ D2 ∪T2 ∪E2.

A polynomial is called inner toral if its zero set is a distinguished variety.

The terminology “inner toral” (and explanation for it) is from [3]. The
idea behind the name “distinguished variety” is that the variety exits the bidisk
through the distinguished boundary. There is a close connection between pure
algebraic isopairs and distinguished varieties. One theorem along these lines,
proved first in [1] and then, by a different method, in [13], is:

THEOREM 1.5. Let A be a distinguished variety. Then there is a pure rational
matrix-valued inner function Φ so that, if

(1.6) det(Φ(z)− wI) =
q(z, w)
p(z, w)

,

then A is the zero-set of q. Moreover, if Φ is any pure rational matrix-valued inner
function, and the polynomial q is defined by (1.6), then the zero set of q is a distinguished
variety.

A sort of converse to Theorem 1.5 is that the minimal annihilating polyno-
mial of any pure isopair is inner toral.

DEFINITION 1.7. V=(V1,V2) is an inner isopair if V is a pure isopair satisfying
the following, where q ∈ C[z, w] is inner toral:

q(V) = 0.

THEOREM 1.8. Every pure algebraic isopair is inner.

To prove Theorem 1.8, we shall need some preliminary results. First, we
shall establish some basic facts about cyclic isopairs.
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DEFINITION 1.9. An isopair V is cyclic if there exists f ∈ H such that the
following is dense inH:

C[V] f := {p(V) f : p ∈ C[z, w]}.

DEFINITION 1.10. We say a polynomial p ∈ C[z, w] has degree (n, m) if it
has degree n in z and m in w.

LEMMA 1.11. If V is a cyclic isopair satisfying p(V) = 0 where p has degree
(n, m), then for all (α, β) ∈ D2,

dim[ker(V1 − αI)∗ ∩ ker(V2 − βI)∗] 6 1;

dim ker(V1 − αI)∗ 6 m; dim ker(V2 − βI)∗ 6 n.

Proof. Applying appropriate Möbius transformations to V1 and V2, we can
assume without loss of generality that (α, β) = (0, 0). Let f be a cyclic vector.

Suppose g ∈ ker V∗1 ∩ ker V∗2 . Then

〈Q(V) f , g〉 = 〈Q(0, 0) f , g〉
for any Q ∈ C[z, w]. If dim(ker V∗1 ∩ ker V∗2 ) > 1 then we could find a nonzero
vector in ker V∗1 ∩ ker V∗2 perpendicular to f . This would contradict cyclicity. So,
dim ker V∗1 ∩ ker V∗2 6 1.

If dim ker V∗1 > m then we can choose g ∈ ker V∗1 perpendicular to V j
2 f for

j = 0, 1, . . . , m− 1. Now observe that

0 = p(V)∗g = p(0, V2)∗g.

Let Q ∈ C[z, w] and write

Q(0, w) = s(w)p(0, w) + r(w)

where r has degree less than m (by the Euclidean algorithm). Then,

Q(V)∗g = Q(0, V2)∗g = s(V2)∗p(0, V2)∗g + r(V2)∗g = r(V2)∗g

and so
〈Q(V) f , g〉 = 〈r(V2) f , g〉 = 0

since g is perpendicular to V j
2 f for j = 0, 1, . . . , m− 1. This contradicts cyclicity

(Q was arbitrary). So, dim ker V∗1 6 m.
Similarly, dim ker V∗2 6 n.

Let mult denote the multiplicity of an isometry:

mult Vi = dim ker V∗i .

We shall say that an isopair V=(V1, V2) has finite multiplicity if both V1 and V2 do.

LEMMA 1.12. Let V = (V1, V2) be a cyclic pure algebraic isopair and suppose V
is annihilated by an irreducible polynomial q ∈ C[z, w]. Then:

(i) q is inner toral,
(ii) deg q = (mult V2, mult V1), and
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(iii) q divides any polynomial p that satisfies p(V) = 0.

Proof. By Lemma 1.11, we have

(1.13) deg q > (mult V2, mult V1)

(in each component separately). Now, V has a model as a pair of multiplication
operators (Mz, MΦ) on H2 ⊗Ck where k = mult V1. Since V2 has finite multiplic-
ity (by Lemma 1.11), Φ must be a rational matrix valued inner function.

Let

f (z, w1, w2) =
q(z, w1)− q(z, w2)

w1 − w2
.

Letting

(1.14) Q(z, w) = f (zI, wI, Φ(z)) = (q(zI, wI)− q(zI, Φ(z)))(wI −Φ(z))−1,

we see that

(1.15) Q(z, w)(wI −Φ(z)) = q(z, w)I.

Now, Q is not identically zero (else q would be also), and Q has lower degree
in w than q. So, the nonzero entries of the matrix polynomial Q cannot vanish
identically on Zq, the zero-set of q.

As

(wI −Φ(z))Q(z, w) = q(z, w)I = 0 on Zq,

we have
wQ(z, w) = Φ(z)Q(z, w) on Zq.

So if p ∈ C[z, w] annihilates V, then

(1.16) p(zI, Φ(z))Q(z, w) = p(z, w)Q(z, w) = 0 on Zq.

As q is irreducible, and Q does not vanish identically on Zq, (1.16) shows that q
divides p, proving (iii).

Now consider d ∈ C(z)[w], given by

d(z, w) = det(wI −Φ(z)).

By Cayley–Hamilton, d(z, Φ(z)) ≡ 0, and therefore the numerator of d annihilates
V = (Mz, MΦ). By the above, q divides the numerator of d and since the degree
of the numerator of d is k = mult V1, we see that k is greater than or equal to the
degree of q in w. The reverse inequality is in (1.13), so these two numbers are
equal. Interchanging the roles of V1 and V2, we may conclude

deg q = (mult V2, mult V1)

and this proves the second claim of the proposition. Also, the zero set of d is
inner toral and this implies Zq is inner toral, since Zq ⊂ Zd. This proves the first
claim.
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If V is a cyclic isopair, then in particular it is a cyclic subnormal pair, and
so has another nice representation. For µ any compactly supported measure in
C2, let P2(µ) denote the closure of the polynomials in L2(µ). Then we have the
following representation; see [5], [15] and references therein for details.

THEOREM 1.17. Let V be a cyclic isopair on the Hilbert spaceH, with cyclic vector
u. Then there is a positive Borel measure µ on T2 and a unitary operator U from H onto
P2(µ) that maps u to the constant function 1, and such that U intertwines V with the
pair (Mz, Mw) of multiplication by the coordinate functions.

Theorem 1.17 makes it easy to prove that the minimal polynomial of a pure
algebraic isopair is square-free.

LEMMA 1.18. Suppose V is a pure p-isopair, and the irreducible factors of p are
pi, each with multiplicity ti:

p = ∏ pti
i .

Let q = ∏ pi. Then q(V) = 0.

Proof. Choose some vector u. Let

K = C[V]u

and let T = V|K. By Theorem 1.17, T is unitarily equivalent to (Mz, Mw) on some
P2(µ). As p(T) = 0, we must have that p vanishes on the support of µ. Therefore
so does q, and so

‖q(V)u‖2 =
∫
|q|2dµ = 0.

As u was arbitrary, we must have that q(V) = 0.

LEMMA 1.19. Suppose V is a pure q-isopair where q ∈ C[z, w] is a product of
distinct irreducible factors and V is not annihilated by any factor of q. Then, q is inner
toral and divides any polynomial that annihilates V.

Proof. First, we claim that any irreducible factor of q is inner toral. Let q0 be
an irreducible factor and write q = q0q1. Then, u := q1(V)u0 6= 0 for some u0 in
our Hilbert space. Consider the cyclic subspace K generated by u

K := C[V]u =
∨
{g(V)u : g ∈ C[z, w]},

where
∨

denotes the closed linear span. Let T = V|K be the pure q0-isopair
obtained by restricting V to the invariant subspace K. By Lemma 1.12, q0 must
be inner toral. As q0 was an arbitrary irreducible factor, all factors of q are inner
toral, and this implies q is inner toral.

Also, if g(V) = 0 for some g ∈ C[z, w], then g(T) = 0 and by Lemma 1.12
this implies q0 divides g. As q0 was an arbitrary irreducible factor of q, we see
that q divides g. This proves the second claim of the lemma.

Putting together what we have proved, we get the following theorem, which
contains Theorem 1.8.
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THEOREM 1.20. Let V be a pure algebraic isopair. Then there exists a square-
free inner toral polynomial q that annihilates V. Moreover, if p is any polynomial that
annihilates V, then q divides p.

We shall call the polynomial q the minimal polynomial of V.

2. DECOMPOSITION OF ALGEBRAIC ISOPAIRS

In this section we show how algebraic isopairs are nearly a direct sum of
algebraic isopairs annihilated by irreducible polynomials.

THEOREM 2.1. Let V be a pure algebraic isopair with minimal polynomial q, and
let q1, q2, . . . , qN be the (distinct) irreducible factors of q. If V has finite multiplicity, then
V has a finite codimension invariant subspace K on which

V|K = W1 ⊕W2 ⊕ · · · ⊕WN

where Wj is a qj-isopair, j = 1, . . . , N.

The space on which each Wj acts is the range of ∏
i 6=j

qi(V). As a quick exam-

ple, consider the reducible algebraic set z2 = w2. We can define a Hilbert space
by defining

‖p‖2 =
2π∫
0

|p(eiθ , eiθ)|2dθ +
2π∫
0

|p(eiθ ,−eiθ)|2dθ

for each p ∈ C[z, w] and then completing this to an H2 space. The pair (Mz, Mw)
will be a (z2 − w2)-isopair and the decomposition from the above proposition
consists of lettingK be the functions that vanish at (0, 0), and dividing this Hilbert
space into the functions that are a multiple of z− w and those that are a multiple
of z + w. K⊥ is the constant functions.

Before we prove the theorem we need the following.

LEMMA 2.2. Suppose p ∈ C[z, w] is inner toral and reducible p = p1 p2. If V is
a pure p-isopair, then we have the following (ran denotes the range):

ran p1(V) ⊥ ran p2(V).

Proof. Since p1 is inner toral, it is a fact that p1 is symmetric in the sense that

znwm p1(1/z, 1/w) = µp1(z, w)

where µ is a unimodular constant and (n, m) is the degree of p1 (see [13]). In fact,
we may assume µ = 1 by replacing p1 with an appropriate constant multiple.
Hence, if we write

p1(z, w) =
n

∑
j=0

m

∑
k=0

ajkzjwk
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it follows that ajk = a(n−j)(m−k). This can be used to deduce the following, since
V1, V2 are isometries:

p1(V)∗Vn
1 Vm

2 = p1(V).

Then,

p1(V)∗p2(V) = p1(V)∗(Vn
1 Vm

2 )∗Vn
1 Vm

2 p2(V) = (Vn
1 Vm

2 )∗p1(V)∗Vn
1 Vm

2 p2(V)

= (Vn
1 Vm

2 )∗p1(V)p2(V) = (Vn
1 Vm

2 )∗p(V) = 0.

So, for any f , g ∈ H

〈p2(V) f , p1(V)g〉 = 〈p1(V)∗p2(V) f , g〉 = 0.

Hence,
ran p1(V) ⊥ ran p2(V).

Proof of Theorem 2.1. Let p = q2q3 · · · qN (where q1, q2, . . . , qN come from the
statement of the proposition). We will show that V has a finite codimension in-
variant subspace on which V is the direct sum of a q1-isopair and a p-isopair. The
proposition will then follow by induction.

By Lemma 2.2, ran q1(V) and ran p(V) are orthogonal. Let K′ = (ran q1(V)
+ran p(V))⊥. The assumption that V has finite multiplicity implies that K′ is
finite dimensional as follows. First note that as in the previous lemma we may
assume that p and q1 are symmetric, so that we have the formulas:

p(V)∗ = V∗n1 V∗m2 p(V) q1(V)∗ = V∗j
1 V∗k2 q1(V)

where the degree of p is (n, m) and the degree of q1 is (j, k). If f ∈ K′, then
0 = p(V)∗ f = V∗n1 V∗m2 p(V) f and 0 = q1(V)∗ f = V∗j

1 V∗k2 q1(V). Since V is

assumed to have finite multiplicity, the kernels of V∗n1 V∗m2 and V∗j
1 V∗k2 are both

finite dimensional. Hence, the ranges of p(V)|K′ and q1(V)|K′ are both finite
dimensional (since they map into kerV∗n1 V∗m2 and kerV∗j

1 V∗k2 respectively).
Now, since q1 and p are relatively prime, there exist nonzero polynomials

A, B ∈ C[z, w], C ∈ C[z] such that

A(z, w)q1(z, w) + B(z, w)p(z, w) = C(z)

(let C be the resultant of q1 and p). Substituting V

A(V)q1(V) + B(V)p(V) = C(V1)

it is then apparent that C(V1)|K′ has finite dimensional range. If K′ were infinite
dimensional then C(V1) would have nontrivial kernel. This is impossible (a pure
isometry cannot have eigenvalues for instance), so K′ is finite dimensional.

It is clear that K1 = ran p(V) and K2 = ran q1(V) are mutually orthogonal
invariant subspaces for V. Also, V|K1 is a q1-isopair and V|K2 is a p-isopair. Since
K1⊕K2 has finite codimension, the proposition is proved with K = K1⊕K2.
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3. NEARLY CYCLIC ISOPAIRS

DEFINITION 3.1. An isopair V is nearly cyclic if there is a vector u such that
the following is of finite codimension:

C[V]u =
∨
{g(V)u : g ∈ C[z, w]}.

For example, the pair (Mz2 , Mz3) on H2(T), is not cyclic, because for any
f ∈ H2(T), we can find a function g orthogonal to C[z2, z3] f . Namely, write

f (z) = a + bz + higher order terms

and define g(z) = −b + az. Then, 〈 f , g〉 = 0 and since g is linear it is orthogonal
to multiples of z2. On the other hand, the pair (Mz2 , Mz3) is nearly cyclic:

C[Mz2 , Mz3 ]1 = H2 	C{z}.

DEFINITION 3.2. Two isopairs V = (V1, V2) on H and V′ = (V′1, V′2) on H′
are nearly unitarily equivalent if there is a finite codimension V-invariant subspace
K ofH, a finite codimensional V′-invariant subspace K′ ofH′, and unitary oper-
ators U : H → K′ and U′ : H′ → K′ such that

UVrU∗ = V′r |K′ r = 1, 2; U′V′rU′
∗ = Vr|K r = 1, 2.

(In words, each one is unitarily equivalent to the other restricted to a finite codi-
mensional invariant subspace).

The principal result of this section is:

THEOREM 3.3. Any two nearly cyclic pure isopairs are nearly unitarily equivalent
if and only if they have the same minimal polynomial.

For the rest of this section, fix some square-free inner toral polynomial q.
The necessity is obvious, as restricting an algebraic isopair to a finite codi-

mensional invariant subspace does not change the minimal polynomial. Let us
give an overhead view of the proof of sufficiency in Theorem 3.3. To show any
two nearly cyclic pure algebraic isopairs with the same annihilating polynomial
are nearly equivalent it suffices to show (1) that any such nearly cyclic isopair
has a finite dimensional extension to a cyclic isopair (and therefore the nearly
cyclic isopairs can be extended and restricted to cyclic ones) and (2) that all such
cyclic isopairs are nearly unitarily equivalent to one particular choice of a nearly
cyclic isopair W. The idea is if V is a given nearly cyclic isopair then we have the
following diagram

W → some cyclic → V → some cyclic →W

where the arrows denote restrictions to finite codimensional invariant subspaces.
The study of cyclic isopairs and the construction of W requires us to lift

many of our questions to a finite Riemann surface that desingularizes Zq ∩ D2.
Let Ω = Zq ∩ D2. As described in [2], there is a finite Riemann surface S and
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a holomap h from S onto Ω (a holomap is a proper holomorphic map that is
one-to-one and non-singular except on finitely many points). We shall let A(S)
denote the algebra of functions that are holomorphic on S and continuous up to
the boundary, and we shall let Ah(S) be the finite codimensional subalgebra that
is the closure of polynomials in h = (h1, h2). Note that Ah(S) can be described
by a finite number of (homogeneous) linear relations on derivatives of elements
of A(S) at a finite number of specified points. This implies that we can find an
element of g ∈ Ah(S) that multiplies A(S) into Ah(S):

gA(S) ⊂ Ah(S).

We simply must choose g to vanish to sufficient order at a finite number of points.
For example, if q(z, w) = z2 − w2, then Ω is two disks that intersect at their

centers. The Riemann surface S is then the disjoint union of two disks, D+ and
D− say. (S is disconnected because q is reducible). The map h sends ζ in D+

to (ζ, ζ), and sends η in D− to (η,−η). The algebra Ah(S) is the codimension
one subalgebra of functions that have the same value at the center of D+ and the
center of D−. If one chooses g to be the coordinate function on each disk, then
gA(S) is the algebra of all functions that vanish at both centers.

Let ω be harmonic measure on S at some point z0, fixed hereinafter. Let
A2(ω) be the closure in L2(ω) of A(S) and let W be Mh = (Mh1 , Mh2) on A2(ω).
Our eventual goal is to show that every cyclic isopair is nearly unitarily equiva-
lent to W.

In addition, we can elaborate on the structure of cyclic isopairs via h. Let V
be a cyclic q-isopair. We may model V as multiplication by coordinate functions
(Mz, Mw) on P2(µ) for some measure µ on Zq ∩ T2. Let ν = h∗(µ) be the pull-
back of µ to X := ∂S (i.e. ν(E) = µ(h(E)) for any Borel subset of X). Let A2(ν) be
the closure in L2(ν) of A(S), and let A2

h(ν) be the closure of Ah(S) in L2(ν).
Then V is unitarily equivalent to Mh = (Mh1 , Mh2) on A2

h(ν). As A2
h(ν) is

of finite codimension in A2(ν), V has a finite-dimensional extension to an isopair
VS that is unitarily equivalent to Mh on A2(ν). Let us record these observations
and a few more.

LEMMA 3.4. If V is a cyclic pure q-isopair, then there exists a positive Borel mea-
sure ν on X such that V is unitarily equivalent to Mh on A2

h(ν). Furthermore, the
measures ν and ω are mutually absolutely continuous and satisfy∫

log
dν

dω
dω > −∞.

Proof. By a result of J. Wermer [21], the algebra A(S) is a hypo-Dirichlet
algebra on X = ∂S , i.e. the real parts of functions in A(S) form a finite codimen-
sional subspace of CR(X). As V is pure, µ is non-atomic (an atom would yield
a bounded point evaluation on Zq ∩ T2 and the corresponding evaluation kernel
would be an eigenvector for V∗). Hence ν is non-atomic and VS is also pure.
(Note that a finite dimensional extension of a pure pair can only fail to be pure
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if the extension has a unitary summand and hence an eigenvalue. However, in
this case we can multiply elements of A2(ν) by some g ∈ Ah(S) and produce an
element of A2

h(ν). An eigenvector f of VS would then produce an eigenvector g f
of V, contradicting purity of V.)

Therefore A2(ν) 6= L2(ν), and A2(ν) has no L2 summand. Next, we claim
that ν is absolutely continuous with respect to ω, using an argument from [14].
Indeed, let us write νa and νs for the absolutely continuous and singular parts of
ν. Let E be an Fσ set such that νa(E) = 0 and νs(X \ E) = 0. By Forelli’s lemma
(II.7.3 of [7] applicable here because of Corollary 1 to Theorem 3.1 of [4]), there is a
sequence fn in A(S) with ‖ fn‖X 6 1, and such that fn(x) tends to 0 for every x in
E, and to 1 for ω-a.e. x. Some subsequence of fn converges weak-* to a function g.
By the dominated convergence theorem,

∫
gdω = 1, so g = 1 ω-a.e. Again using

dominated convergence, we see that for every h in L2(νs) we have
∫

ghdν = 0.
Therefore 1− g, which is in A2(ν)∩ L∞(ν), agrees with the characterictic function
of E ν-a.e., so

A2(ν) = A2(νa)⊕ A2(νs).

By the Kolmogorov–Krein theorem ([7], V.8.1), A2(νs) = L2(νs), so we conclude
that νs is null, as claimed.

As A2(ν) 6= L2(ν), it follows from the work of P. Ahern and D. Sarason on
hypo-Dirichlet algebras ([4], Corollary to Theorem 10.1), that

(3.5)
∫

log
dν

dω
dω > −∞.

The next proposition allows us to dispense with dealing with nearly cyclic
isopairs.

PROPOSITION 3.6. Any nearly cyclic pure q-isopair is unitarily equivalent to a
cyclic pure q-isopair restricted to a finite codimensional invariant subspace.

Proof. Let V be a nearly cyclic pure q-isopair on the Hilbert space H, let K
be a finite codimensional invariant subspace on which V is cyclic, and let F =
H	K (a finite dimensional subspace). Since V|K may be modeled as (Mz, Mw)
on P2(µ) for some measure µ supported on Zq ∩ T2, we shall simply identify
K= P2(µ) and V|K=(Mz, Mw). Then, the pair V can be written in block form as

V =
P2(µ) F

P2(µ)
F

(
(Mz, Mw) (B1, B2)

0 (A1, A2)

)
where (A1, A2) is a pair of commuting contractions on the finite dimensional
space F that (by purity) have no unimodular eigenvalues.

Let u : D→ D be a finite Blaschke product that annihilates A1:

u(A1) = 0.
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If we apply such a u to V1 (we can do this since u’s power series is absolutely
convergent in D) we get an isometry

u(V1) =
P2(µ) F

P2(µ)
F

(
Mu u(B1)
0 0

)
where Mu is multiplication by u on P2(µ). In particular, the range, say L, of u(V1)
is contained in P2(µ). Therefore, u(V1) : H → L can be thought of as a Hilbert
space isomorphism that intertwines V on H and (Mz, Mw) on L ⊂ P2(µ). This
proves V can be modeled as a restriction of (Mz, Mw) on P2(µ) (i.e. a cyclic pair)
to an invariant subspace (i.e. L). The key thing left to prove is that L has finite
codimension in P2(µ). For this it suffices to prove uP2(µ) has finite codimension
in P2(µ) since uP2(µ) ⊂ L.

To see this, it helps to use the A2(ν) model described above (in Lemma 3.4).
Namely, we need to prove u(h1)A2

h(ν) has finite codimension in A2
h(ν). Since

A2
h(ν) has finite codimension in A2(ν), it suffices to prove u(h1)A2(ν) has finite

codimension in A2(ν). This follows from the fact that u(z) vanishes finitely often
among (z, w) ∈ Zq (and therefore u(h1) has finitely many zeros on S) and so any
analytic function f in A(S) which vanishes to higher order at u(h1)’s zeros than
u(h1), is a multiple of u(h1): f /(u(h1)) ∈ A(S).

Thus, any nearly cyclic has an finite dimensional extension to a cyclic and by
definition a finite codimension restriction to a cyclic. So, now we let V be a pure
cyclic q-isopair, which we think of as Mh on A2

h(ν) and we let VS be the extension
of V to A2(ν). The following lemma is really a chain of lemmas, since we prefer
to introduce ideas from references as we need them. Recall that W refers to Mh
on A2(ω).

LEMMA 3.7. With notation as above, V is unitarily equivalent to W restricted to
a finite codimensional invariant subspace.

Proof. Suppose we can find a function f in A2(ω) that is nearly outer, in the
sense that the invariant subspace it generates,

[ f ] := A(S) f ,

is of finite codimension, and such that | f |2 =
dν

dω
. Let

[ f ]W := C[W] f = Ah(S) f ,

which will be of finite codimension in [ f ].
Then the map g · f 7→ g extends to a unitary between [ f ]W in A2(ω) and

A2
h(ν) that intertwines W|[ f ] and V. By Lemma 3.9, which we prove below, such

a nearly outer function exists.
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When does a nearly outer function exist with a given log-integrable modu-
lus? Let L be the codimension of Re(A(S)) in CR(X).

Ahern and Sarason proved that any log-integrable positive function can be
written as | f |2 for some f in A2(ω), and they conjectured that f can be chosen
so that [ f ] is of codimension no more than the codimension of <(A(S)) in CR(X)
[4]. This conjecture is still open, though it has been proved in the planar case by
G. Tumarkin and S.Ya. Khavinson [19].

However, using results of S.Ya. Khavinson [11], [12] for general finite Rie-
mann surfaces, which generalize results of D. Khavinson for the planar case [9],
[10], we can prove that f can be chosen with [ f ] of finite codimension.

The idea is that when we write down the Green integral (or Poisson integral)
of a measure, the resulting harmonic function’s conjugate function will in general
be multi-valued. To fix this, we need to worry about the periods on a homology
basis Kr for S. There are L = 2h + n− 1 such curves, where S has h handles and n
boundary components. Choose L disjoint arcs ∆ j in ∂S, and positive measures νj
supported on each arc, so that each νj is boundedly absolutely continuous with
respect to ω (in fact we may simply take νj to be harmonic measure restricted to
∆ j). Khavinson shows that after shrinking ∆ j if necessary, the matrix A of periods
of the harmonic conjugate of the Green integrals of the νj along the curves Kr
is non-singular [11], and hence may be used to “correct” the periods of other
functions (while at the same time we have some control over what is happening
on the boundary).

The Green kernel is defined by

P(z, ζ) =
1

2π

∂
∂nζ

G(z, ζ)
∂

∂nζ
G(z0, ζ)

z ∈ S, ζ ∈ ∂S,

where G(z, ζ) is the Green’s function with pole at z, and nζ is the outward normal.
The Green integral of a measure ν is then∫

∂S

P(z, ζ)dν(ζ).

(Note we are using z, ζ to refer to points of S, while these letters are typically
reserved for uniformizers on Riemann surfaces.)

Let

ωj(z) =
∫
∆ j

P(z, ζ)dνj(ζ).

Let us explicitly define:

DEFINITION 3.8. A function f ∈ A2(ω) is nearly outer if the following has
finite codimension in A2(ω):

[ f ] := A(S) f .
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LEMMA 3.9. Any log-integrable function w on ∂S is the modulus squared of a
nearly outer function.

Proof. First, we write down the Green integral of (1/2) log w∫
∂S

P(z, ζ)
1
2

log w(ζ)dω(ζ).

There exist real constants λj such that

(3.6) h(z) =
∫
∂S

P(z, ζ)
[1

2
log w(ζ)dω(ζ)−

L

∑
j=1

λjdνj(ζ)
]

has a single-valued harmonic conjugate ∗h, and h has boundary values given by

h(ζ) =

{
1
2 log w(ζ) ζ ∈ ∂S \⋃∆ j,
1
2 log w(ζ)− λj

dνj
dω (ζ) ζ ∈ ∆ j,

i.e.

(3.7) hdω =
1
2

log wdω−∑
j

λjdνj.

The function
g(z) = exp(h(z) + i ∗ h(z))

is outer in the sense that

log |g(z0)| =
1

2π

∫
∂S

log |g(ζ)|dω(ζ)

(by (3.6) and (3.7) since P(z0, ζ) = 1/2π).
It follows from [4] (Theorem 7.1 and the discussion following Theorem 9.1)

that it is also outer in the sense that [g] is all of A2(ν). If we can find a finite
Blaschke product F whose modulus on the boundary is

(3.10) log |F(ζ)| =
{

0 ζ ∈ ∂S \⋃∆ j,

λj
dνj
dω (ζ) ζ ∈ ∆ j,

then f = Fg will be a nearly outer function (g is outer and any function that
vanishes on the zeros of F will be divisible by F) satisfying | f |2 = w a.e. on ∂S.
We shall prove F exists in Lemma 3.11.

Following Schiffer–Spencer [16], Khavinson defines a basis for the space of
abelian differentials of the first kind via the Green’s function. Specifically, dZj is
defined using the local expression

Z′j(z) = − 1
π

∫
Kj

∂2G(z, ζ)
∂z∂ζ

dζ or Im Zj(z) = 2i
1

2π

∫
Kj

∂G(z, ζ)
∂ζ

dζ
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where again K1, . . . , KL form a canonical homology basis for S. It should be noted
that Im Zj is single valued on S \ Kj (and hence single valued everywhere when
Kj is a boundary cycle), but has a jump across Kj when Kj is a cycle corresponding
to a handle.

LEMMA 3.11. Given real constants λj, j = 1, . . . , L, there exists a bounded holo-
morphic function F : S → C with finitely many zeros in S and boundary modulus
satisfying

(3.12) log |F(ζ)| =
{

0 ζ ∈ ∂S \⋃∆ j,

λj
dνj
dω (ζ) ζ ∈ ∆ j.

Proof. Khavinson shows that for each point α in S there is a function B(z; α)
that has a single zero at α, and such that

(3.13) log |B(z; α)| =
{

0 z ∈ ∂S \⋃∆ j,

cj
dνj
dω z ∈ ∆ j.

Moreover, one finds the cj (real constants) by using the (invertible) period matrix
A and the abelian differentials dZj by the formula c1

...
cL

 = −2πA−1

 Im Z1(α)
...

Im ZL(α)

 .

Also, for each (d1, . . . , dL)t ∈ ZL, if we setc1
...

cL

 = −2πA−1

d1
...

dL


then there is a holomorphic function B on S with no zeros and boundary modulus
values satisfying equation (3.13).

Therefore to prove the lemma it suffices to show that we can take a finite
positive integer combination of vectors of the form (Im Z1(α), . . . , Im ZL(α))t and
obtain every element of RL/ZL, for then we could find a combination satisfying

− 1
2π

A

λ1
...

λL

 =
k

∑
j=1

Im Z1(αj)
...

Im ZL(αj)

 mod ZL

and upon modifying it by an element (d1, . . . , dL)t ∈ ZL, we would obtain a finite
Blaschke product with zeros at the α1, . . . , αk and the desired boundary modulus
values. For this it suffices to prove the following claim.
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Claim. As α1, . . . , αL vary over S, the following vectors have interior in RL:

(3.14)


L
∑

r=1
Im Z1(αr)

...
L
∑

r=1
Im ZL(αr)

 .

Indeed, given the claim, it follows that there is some finite N so that sums
of N vectors of the form (3.14) (i.e. with LN points αr) form a ball large enough
that it covers an entire cell of RL/ZL, and so a Blaschke product of degree LN
will satisfy (3.12).

Proof of Claim. There is no harm in assuming our argument takes place inside
some coordinate neighborhood. Consider the derivative of (3.14) with respect
to α1, . . . , αL. If the L-by-L matrix (Z′j(αr)) is of full rank, then for some choice
of unimodular τr the real matrix (Im (τrZ′j(αr))) is invertible (a linear algebra
exercise). This proves the claim in this case because if we replace αr by τrαr in
(3.14) and take derivatives we get a nonsingular Jacobian matrix.

Otherwise, there are real numbers cj, not all zero, so that, for every 1 6 r 6
L, we have

(3.15)
L

∑
j=1

cjZ′j(αr) = 0.

But (3.15) means that the differential ∑ cjdZj, which extends by reflection to the
double of S, vanishes at L points in S and L more on the reflection. The double
has genus L, and so a differential of the first kind must have exactly 2L− 2 zeroes
(see (3.5.1) of [16]). As the dZj’s are linearly independent, this forces all the cj’s to
be zero, a contradiction.

This chain of lemmas completes the proof of Lemma 3.7, which says that
any cyclic V is a finite codimensional restriction of W.

Proof of Theorem 3.3. In light of Lemma 3.7, it remains to show that V, a
cyclic q-isopair, can be restricted to a finite codimensional subspace to become
unitarily equivalent to W. Again we view V as Mh on A2

h(ν). Now Ah(S) has
finite codimension in A(S) and is defined by a finite number of linear relations
on derivatives (at a finite number of points) of elements of A(S) (see [2]). In par-
ticular, any element of A2(ν) that vanishes to high enough order at these finite
points will be inside A2

h(ν). This can be accomplished by multiplying A2(ν) by
an appropriate finite Blaschke product F. Then, FA2(ν) ⊂ A2

h(ν) and the operator
Mh restricted to FA2(ν) is unitarily equivalent to Mh on A2(σ) where σ = |F|2ν.
This proves V has a finite codimension restriction to Mh on A2(σ).

So it suffices to show that one can find a unitary equivalence between Mh on
A2(σ) restricted to an invariant subspace of finite codimension and Mh on A2(ω).
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But this can be done by finding a nearly outer function f with modulus | f |2 = dω
dσ

just as in Lemma 3.9.

REMARK 3.16. In the proof of Theorem 3.3, we did not strongly use the fact
that V and W are isopairs. We could more generally look at nearly cyclic pure
subnormal pairs whose spectral measures were supported on the boundary of
some hyperbolic algebraic set.

We can translate Theorem 3.3 into the matrix models and get the following
result.

COROLLARY 3.17. Suppose (Mz, MΦ) and (Mz, MΨ) are two nearly cyclic q-
isopairs on H2(T)⊗Ck (where as usual Φ and Ψ are k× k matrix valued rational inner
functions on D). Then there exists a matrix valued rational inner function F such that

(3.18) Φ(z) = F(z)Ψ(z)F(z)−1.

Note that in general an expression like FΨF−1 need not be holomorphic in
the disk.

Proof. By Theorem 3.3, (Mz, MΦ) has a restriction to a finite codimension
invariant subspace K that is unitarily equivalent to (Mz, MΨ). Since K is shift
invariant and of finite codimension, it is of the form F(H2 ⊗ Ck) where F is a
rational matrix valued inner function. However, since K is invariant under MΦ,
we see that ΦF(H2⊗Ck) ⊂ F(H2⊗Ck). This implies G = F−1ΦF is holomorphic
and also rational and inner. It is not hard to show that (Mz, MΦ) on F(H2⊗Ck) is
unitarily equivalent to the pair (Mz, MG) on H2 ⊗Ck (i.e. the map Fg 7→ g is the
required Hilbert space isomorphism that intertwines the operators). Therefore,
(Mz, MG) and (Mz, MΨ) are unitarily equivalent. This can only occur if G and Ψ
are unitarily equivalent. This proves (3.18) after replacing F with an appropriate
unitary multiple.

4. CONVEX HULLS

The operator-theoretic ideas of Sections 1 and 3 allow us to prove a result
in function theory, Theorem 4.1 below. E.L. Stout has proved a similar result for
irreducible analytic subvarieties (private communication).

The central issue is what one can say about the intersection of an algebraic
set A with the two-torus in C2. One immediate distinction is whether A ∩ T2 is
large in the sense that no polynomial can vanish on A ∩ T2 without vanishing
identically on A; if this holds we call the set A toral. (In two dimensions, as we
are here, this just means that A∩T2 is infinite, though the definition makes sense
in higher dimensions.) However, the two curves

A1 = {(z, w) : z = w} and A2 = {(z, w) : zw = 1}
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are both toral, yet X1 = A1 ∩T2 and X2 = A2 ∩T2 are qualitatively different. The
first bounds an analytic disk in D2; the second does not. Theorem 4.1 says that
one way to understand this is to observe that A1 is a distinguished variety, and
A2 is not.

We wish to exclude curves that contain horizontal or vertical planes (i.e.
zero sets of polynomials z− ζ1 or w− ζ2). If ζr is unimodular, such a zero set fills
a disk in the boundary of D2, and the polynomial hull of the intersection of this
disk with the torus is the closed disk. So, we exclude linear factors to make the
statement of the theorem concise; however one could drop this restriction and
conclude that the set X is not polynomially convex if and only if q has a factor
that is either inner toral or of the form (z− eiθ) or (w− eiθ).

Recall that a polynomial q is inner toral if Zq ⊆ D2 ∪T2 ∪E2.

THEOREM 4.1. Let q be a polynomial in two variables with no linear factors. Then
Y = Zq ∩T2 is polynomially convex if and only if q has no inner toral factor.

Proof. (i) First assume that Y is not polynomially convex, so there is some
point ζ in the polynomial hull of Y that is not in Y. As every point of T2 is a
peak point for A(D2), we cannot have ζ in T2. There exists a complex measure λ
supported on Y so that

(4.2) p(ζ) =
∫
Y

pdλ

for all polynomials p. Let dµ = |dλ| be the total variation of λ. Then by (4.2), for
every polynomial p we have

(4.3) |p(ζ)| 6 C
[ ∫

Y

|p|2dµ
]1/2

.

(A point ζ satisfying inequality (4.3) for all polynomials p is called a bounded point
evaluation for P2(µ).)

Claim. ζ ∈ D2.
Else, some component, say ζ1, is unimodular. Applying (4.3) to polynomials

of the form

p(z, w) =
( z + ζ1

2

)n
r(w)

and letting n tend to infinity, we would get

(4.4) |r(ζ2)| 6 C
[ ∫

Y∩{z=ζ1}

|r|2dµ
]1/2

.

As ζ2 is in D, (4.4) asserts that the measure µ|Y∩{z=ζ1} is a measure on the circle
that has a bounded point evaluation inside the disk. By Szegő’s theorem [17],
this means that Y ∩ {z = ζ1}must be the whole circle ζ1 ×T, and so q must have
(z− ζ1) as a factor, contrary to assumption.
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Let V1 be (Mz, Mw) on P2(µ), and let V be the pure part of V1. By Lemma 4.5,
V is non-zero. So, by Theorem 1.20, there is some square-free inner toral polyno-
mial p such that p(V) = 0, and p = 0µa-a.e. As both p and q vanish on the
support of µa, which is an infinite set, they must share a common factor, which is
an inner toral factor of q.

(ii) Suppose that q has a factor p that is inner toral. Then Zp ∩D2, which is
non-empty by Theorem 1.5, is contained in the polynomial hull of Zp ∩ T2, and
hence of Y.

LEMMA 4.5. Suppose µ is a measure on Zq ∩T2, and P2(µ) has a bounded point
evaluation ζ in D2. Then the isopair (Mz, Mw) on P2(µ) has a non-zero pure part, and
this is unitarily equivalent to (Mz, Mw) on P2(µa), where µa is the part of µ that is
absolutely continuous with respect to arc-length on T2.

Proof. Using the notation of Section 3, every point in h−1(ζ) (which can be
more than one point if ζ is a point of multiplicity of q) is a bounded point eval-
uation for A2

h(ν), and therefore for A2(ν). Just as in the proof of Lemma 3.4, the
Kolmogorov–Krein theorem says that

A2(ν) = A2(νa)⊕ L2(νs),

where νa and νs are, respectively, the absolutely continuous and singular parts of
ν with respect to harmonic measure ω. Therefore, every point in S is a bounded
point evaluation for A2(νa). Pushing back down to Ω = Zq ∩ T2 again, we find
that every point is a bounded point evaluation for P2(µa) where µa = h∗(νa).

To see that (Mz, Mw) on P2(µa) is pure, assume that one of the isometries,
Mz say, has a unitary part. Then there is some function f of norm one in P2(µa)
such that

(4.6) ‖M∗nz f ‖ = ‖Pzn f ‖ = ‖ f ‖

for all n, where P is the projection from L2(µa) onto P2(µa). From (4.6) we get
that

(4.7) M∗nz f = Pzn f = zn f ∀n.

Choose some bounded point evaluation ζ = (ζ1, ζ2) in D2 of P2(µa) such that
f (ζ) 6= 0. (Such a point must exist, for otherwise f ◦ h would be in A2

h(νa) and
vanish at every point of S, and so by [4] again would be identically zero.) Let kζ

be the kernel function at ζ, i.e. the unique function in P2(µa) satisfying

p(ζ) = 〈p, kζ〉 ∀ polynomials p.

Then

f (ζ) = 〈znzn f , kζ〉 = 〈zn f , Pznkζ〉.

Therefore
‖Pznkζ‖ > | f (ζ)| ∀n.
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But
Pznkζ = ζ

n
1 kζ ,

and this must tend to zero as n goes to infinity.

5. NON-CYCLIC ALGEBRAIC ISOPAIRS

We do not understand algebraic isopairs that are not nearly cyclic.
Let us say that an isopair V is essentially k-cyclic if there are k vectors u1, . . . , uk

so that ∨
{p1(V)u1, . . . , pk(V)uk : p1, . . . , pk ∈ C[z, w]}

is of finite codimension, and if no set of k− 1 vectors suffices.

QUESTION 5.1. Suppose V and V′ are both essentially k-cyclic isopairs with
the same minimal polynomial. Are they nearly unitarily equivalent?

QUESTION 5.2. Are all essentially k-cyclic algebraic isopairs nearly equiva-
lent to a direct sum of k cyclic algebraic isopairs?

Acknowledgements. Work partially supported by National Science Foundation Grants
DMS 0400826, DMS 0501079 and DMS 1048775.

REFERENCES

[1] J. AGLER, J.E. MCCARTHY, Distinguished varieties, Acta Math. 194(2005), 133–153.

[2] J. AGLER, J.E. MCCARTHY, Hyperbolic algebraic and analytic curves, Indiana Math.
J. 56(2007), 2899–2933.

[3] J. AGLER, J.E. M CCARTHY, M. STANKUS, Geometry near the torus of zero-sets of
holomorphic functions, New York J. Math. 14(2008), 517–538.

[4] P. AHERN, D. SARASON, The Hp spaces of a class of function algebras, Acta Math.
117(1967), 123–163.

[5] J.B. CONWAY, Towards a functional calculus for subnormal tuples: the minimal nor-
mal extension and approximation in several complex variables, in Operator Theory:
Operator Algebras and Applications, Part 1, (Durham, NH,1988), Proc. Sympos. Pure
Math., vol. 51, Amer. Math. Soc., Providence, RI 1990, pp. 105–112.

[6] S.I. FEDOROV, Harmonic analysis in a multiply connected domain. I, Math. USSR Sb.
70(1991), 263–296.

[7] T.W. GAMELIN, Uniform Algebras, Chelsea, New York 1984.

[8] H. HELSON, Lectures on Invariant Subspaces, Academic Press, New York 1964.

[9] D. KHAVINSON, On removal of periods of conjugate functions in multiply connected
domains, Michigan Math. J. 31(1984), 371–379.



236 JIM AGLER, GREG KNESE, AND JOHN E. MCCARTHY

[10] D. KHAVINSON, Factorization theorems for different classes of analytic functions in
multiply connected domains, Pacific Math. J. 108(1985), 295–318.

[11] S.YA. KHAVINSON, Theory of factorization of single-valued analytic functions on
compact Riemann surfaces with a boundary, Russian Math. Surveys 44(1989), 113–156.

[12] S.YA. KHAVINSON, Factorization of univalent analytic functions on compact bor-
dered Riemann surfaces, J. Soviet Math. 63(1993), 275–290.

[13] G. KNESE, Polynomials defining distinguished varieties, Trans. Amer. Math. Soc.
362(2010), 5635–5655.

[14] J.E. M CCARTHY, Quasisimilarity of rationally cyclic subnormal operators, J. Operator
Theory 24(1990), 105–116.

[15] J.E. M CCARTHY, Reflexivity of subnormal operators, Pacific J. Math. 161(1993), 359–
370.

[16] M. SCHIFFER, D.C. SPENCER, Functionals of Finite Riemann Surfaces, Princeton Univ.
Press, Princeton 1954.

[17] G. SZEGÖ, Beitrage zur Theorie der Toeplitzschen Formen, Math. Z. 6(1920), 167–202.
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