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ABSTRACT. On a separable, infinite dimensional Banach space X, a bounded
linear operator T : X → X is said to be hypercyclic if there exists a vector x
in X such that its orbit Orb(T, x) = {x, Tx, T2x, . . .} is dense in X. However,
for a unilateral weighted backward shift or a bilateral weighted shift T to be
hypercyclic, we show that it suffices to merely require the operator to have an
orbit Orb(T, x) with a non-zero limit point.
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INTRODUCTION

Let X be a separable, infinite dimensional Banach space. A bounded linear
operator T : X → X is said to be hypercyclic if there exists a vector x in X such
that the orbit Orb(T, x) = {x, Tx, T2x, . . .} is dense in X. Such a vector x in X is
called a hypercyclic vector for T.

Among the many examples of operators that admit hypercyclic vectors are
the weighted shifts, which constitute a favorite testing ground for the literature of
operator theory. Given the canonical base {en : n > 0} for `p(Z+) with p > 1, we
say that a bounded linear operator T : `p(Z+) → `p(Z+) is a unilateral weighted
backward shift if there is a sequence of bounded positive weights {wn}n>1 such
that Ten = wnen−1, if n > 1 and Te0 = 0. Similarly, for the canonical base
{en : n ∈ Z} of `p(Z) with p > 1 a bounded linear operator T : `p(Z) → `p(Z)
is a bilateral weighted backward shift if there is a bounded positive weight sequence
{wn}n∈Z with Ten = wnen−1 for all n ∈ Z. The weighted backward shifts have
been well studied in the area of hypercyclicity, in fact relatively early on Salas [9]
characterized the hypercyclic shifts by offering a necessary and sufficient condi-
tion in terms of their weight sequences. In the present paper we relate the concept
of hypercyclicity to the geometry of an orbit, thus obtaining a new equivalent
condition for the hypercyclicity of these shifts.
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We would like to point out that our results are also a continuation of the
work of Bourdon and Feldman [2], who proved that if an operator T has a some-
where dense orbit Orb(T, x), then the same orbit will be everywhere dense in X,
and thus the operator T is hypercyclic. As it turns out, in the case of weighted
backward shifts, either unilateral or bilateral, their remarkable insight can be car-
ried even further. Indeed, in the present paper we show that for a shift to be
hypercyclic it suffices to require the operator to have an orbit Orb(T, x) with a
single non-zero limit point, thus relaxing Bourdon and Feldman’s condition of
having a dense orbit in some open subset of X. However, our condition does not
guarantee that the original orbit Orb(T, x) is dense in X, but we can demonstrate
how to construct a hypercyclic vector for T using the non-zero limit point of the
orbit. Even more interestingly, the condition above can be relaxed to simply re-
quiring that the orbit has infinitely many members in a ball whose closure avoids
the zero vector.

To summarize this behavior of weighted backward shifts we emphasize that
a shift T is not hypercyclic if and only if every set of the form Orb(T, x) ∪ {0} is
closed in X. Thus we uncover the existence of a zero-one law for the hypercyclic-
ity of these shifts, which states that either no orbit has a non-zero limit point in X
or some orbit has every vector in X as a limit point.

In [4] we show that this zero-one law for the hypercyclic behavior of shifts is
also shared by other classes of operators, in particular the adjoints of the multipli-
cation operators. However at this point it has been shown that this behavior does
not generalize to all classes of operators, namely we provide in [4] an example of
a linear fractional composition operator that is not hypercyclic and yet it has an
orbit with a non-constant limit point.

In Section 1, we provide several conditions that characterize the hyper-
cyclicity of a unilateral weighted backward shift. We then offer a technique for
constructing a hypercyclic vector for a unilateral weighted backward shift T hav-
ing e0 as a limit point of one of its orbits Orb(T, x). In Section 2, we give a proof
for the bilateral analogue of the above results which calls for different techniques.

Lastly, we would like to point out that very recently many authors have
studied the geometry of orbits in relation to hypercyclicity; for instance Badea,
Grivaux and Müller [1], Costakis and Manoussos [5] and Prăjitura [8].

1. THE UNILATERAL WEIGHTED BACKWARD SHIFT

Let {en : n > 0} be the canonical base for `p(Z+) for p > 1, denoted by `p

in the following. A vector x in `p is denoted by x = (x̂(0), x̂(1), . . .) =
∞
∑

i=0
x̂(i)ei,

where
∞
∑

i=0
|x̂(i)|p < ∞. A bounded and linear operator T : `p → `p is said to

be a unilateral weighted backward shift if there is a sequence of positive weights
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{wn}n>1 such that Ten = wnen−1, if n > 1 and Te0 = 0. In fact, the weight
sequence {wn}n>1 is necessarily bounded because of the boundedness of T, and
indeed ‖T‖ = sup{wn : n > 1}.

For a unilateral weighted backward shift T to be hypercyclic, Salas [9] pro-

vided a necessary and sufficient condition on the weights that sup
n>1

n
∏
j=1

wj = ∞.

Another characterization was obtained by Chan and Sanders [3], who showed
that T is hypercyclic if and only if T is weakly hypercyclic, which means that T
has an orbit Orb(T, x) that is dense in the weak topology of `p. In the following,
we show that the above equivalent conditions can be carried forward to other
conditions in terms of the geometry of an orbit.

THEOREM 1.1. Let T : `p → `p be a unilateral weighted backward shift. The
following are equivalent:

(i) T is hypercyclic.
(ii) For any vector f in `p, there exists a vector x = x( f ) in `p whose orbit under T

Orb(T, x)= {x, Tx, T2x, . . .} has f as a limit point.
(iii) The vector e0 is a limit point of a certain orbit Orb(T, x) with x in `p.
(iv) There exists an x in `p whose orbit Orb(T, x) has a non-zero limit point.
(v) There exists an x in `p whose orbit Orb(T, x) has a non-zero weak limit point.

(vi) There exists a vector x in `p whose orbit Orb(T, x) has infinitely many members
in an open ball whose closure avoids the origin; that is, there are a non-zero vector f in
`p and a positive r with r < ‖ f ‖ such that Orb(T, x) ∩ B( f , r) is infinite.

Before we provide a proof for the theorem, we have a few remarks to illus-
trate the result.

(1) For statement (iv), the limit point f cannot be chosen to be the zero vector.
Take wj = 1

2 for all j > 1. Let x = (x1, x2, . . .) be a vector in `p with infinitely
many non-zero entries xi. Then Tnx → 0 as n → ∞, so the zero vector is a limit
point of Orb(T, x), but T is clearly not hypercyclic.

(2) Regarding the equivalence of statements (i) and (iv), we remark that if an
orbit Orb(T, x) has a non-zero limit point, the vector x that generates the orbit is
not necessarily a hypercyclic vector. Take, for instance, the unilateral weighted
backward shift T : `1 → `1 whose weight sequence is given by wj = 2 for all

j > 1, and the vector x = (x1, x2, . . .) given by x2k = 2−2k
if k > 1 and xj = 0 if

j 6= 2k. Clearly x ∈ `1 and ‖T2k
x− e0‖ =

∞
∑

j=k+1
22k

2−2j
, which goes to 0 as a limit,

as k → ∞. However, T̂nx(0) = 0 if n 6= 2k, and T̂nx(0) = 1 if n = 2k. Hence x
is not a hypercyclic vector. In fact, for a similar reason x is not even a supercyclic
vector because the scalar multiples of Orb(T, x) cannot approximate e0 + e1.

(3) Statement (vi) cannot be relaxed to weakly open sets. That is, a unilateral
weighted backward shift T on `p may not be hypercyclic even if T has an orbit
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Orb(T, x) with infinitely many members inside a weakly open set whose weak
closure does not contain zero.

For example, let g =
∞
∑

j=1

1
2j e3·4j+1 . Clearly ‖g‖2 =

∞
∑

j=1

( 1
2j

)2 =
1
4

1− 1
4

= 1
3 .

Consider the weakly open set U =
{

f ∈ `2 : |〈 f − g, g〉| < 1
10
}

. Then if f ∈ U,
we have that ||〈 f , g〉| − ‖g‖2| < 1

10 , and thus 7
30 < |〈 f , g〉| < 13

30 . Let V =
{

f ∈
`2 : |〈 f , g〉| < 1

30
}

. Then if f ∈ V, f /∈ U, and hence U ∩V = ∅. But 0 ∈ V, so U
is a weakly open set whose weak closure avoids the origin.

We now proceed to define a bounded positive weight sequence for T as
follows. For any positive integer j in an interval of the form [1 + 2 · 4k, 4k+1],
where k > 1, we define

w1+2·4k = · · · = w3·4k =
[ 1

k · 2k−1

]1/4k

, w1+3·4k = · · · = w4k+1 = [k · 2k−1]1/4k
.

For those positive integers j outside the intervals of the form [1 + 2 · 4k, 4k+1],
for k > 1, we simply take wj = 1.

Note that sup{x1/4x
: x > 1} < ∞, and so {wj}j>1 is a bounded se-

quence. Hence the unilateral weighted backward shift T with the weight se-
quence {wj}j>1 is a bounded linear operator. Furthermore, from Salas’ criterion
for hypercyclicity for unilateral backward shifts (see [9]) we immediately see that
T is not hypercyclic since w1 · · ·wj 6 1 for all integers j > 1.

Now, let x =
∞
∑

j=1

1
3j e4j+1 . Clearly, ‖x‖2 =

∞
∑

j=1
( 1

3j )
2 = 1

9

∞
∑

j=1

1
j2 < ∞.

Furthermore, for any integer k > 2,

T4k
x =

1
3(k− 1)

e0 +
2k−1

3
e3·4k +

∞

∑
j=k+1

1
3j

w4j+1−4k+1 · · ·w4j+1 e4j+1−4k .

Since 4j+1 − 4k > 3 · 4j+1 whenever j > k + 1, the above summation is
obviously orthogonal to g. Hence, |〈T4k

x, g〉 − ‖g‖2| = |
〈 2k−1

3 e3·4k , g
〉
− 1

3 | =∣∣ 1
3 −

1
3

∣∣ = 0 for all k > 2. So, T4k
x ∈ U for all k > 2, however T is not hypercyclic.

We are now ready to prove the theorem.

Proof. It is clear that (i) implies (vi), (ii) implies (iii), (iii) implies (iv), which
in turn implies (v).

To show (i) implies (ii), suppose that T is hypercyclic. Then by definition,
there exists x ∈ `p such that Orb(T, x) is dense in `p. Let f ∈ `p. If f /∈ Orb(T, x),
then clearly f is a limit point of Orb(T, x). On the other hand, if f ∈ Orb(T, x) and
f is not a limit point of the orbit, then there is a neighborhood U of f that contains
no point of Orb(T, x) other than f . But then the points of U \ { f } are not in the
closure of Orb(T, x), which gives a contradiction.

To show (iv) implies (i), we suppose that there exist a vector x and a non-
zero vector f = ( f0, f1, f2, f3, . . .) in `p such that f is a limit point of the orbit
Orb(T, x). Since f j 6= 0 for some j > 0, we assume without loss of generality that
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f0 6= 0. Hence there exists an increasing sequence {nk}k>1 ⊂ N and an N > 0
such that

‖Tnk x− f ‖ <
1
2k <

| f0|
2

, for all k > N.

Let x = (x0, x1, x2, . . .) ∈ `p. Then

Tnk x = Tnk (x0, x1, x2, . . .) = (w1 · · ·wnk xnk , . . .).

Hence ‖Tnk x− f ‖ > |w1 · · ·wnk xnk − f0|. So there exists a sequence {nk}k>1

such that |w1 · · ·wnk xnk − f0| < | f0|
2 , for all k > N.

Thus | f0|
2 < |w1 · · ·wnk xnk | and so | f0|

2(w1···wnk ) < |xnk | for all k > N. Hence we

get that

| f0|p
2p(w1 · · ·wnk )

p < |xnk |
p, for all k > N.

Now, since x ∈ `p we have

| f0|p
2p

∞

∑
k=N

1
(w1 · · ·wnk )

p 6
∞

∑
k=N
|xnk |

p 6 ‖x‖p < ∞.

It follows that 1
(w1···wnk )p → 0, i.e. there exists an increasing sequence {nk}

such that w1 · · ·wnk → ∞ as k→ ∞.
Thus by Salas’ criterion for hypercyclicity of unilateral backward shifts that

sup
n>1

n
∏
j=1

wj = ∞ (see [9]), we have that T is hypercyclic.

To show (v) implies (iv), we suppose there exists a vector x in `p such that
the Orb(T, x) has f ∈ `p as a non-zero weak limit point. Since f 6= 0, let k > 0
such that fk 6= 0.

Considering the weakly open sets that contain f , we get that for all j > 1
there exists an nj > 1 such that for k as above, |〈Tnj x− f , ek〉| < 1

j .

That is |wk+1 · · ·wk+nj
xk+nj

− fk| < 1
j , for all j > 1.

Next, we inductively pick a subsequence {njk} of {nj} as follows:
(1) Let j1 = 1.
(2) Once we have chosen jm we pick jm+1 > jm such that k + njm < njm+1 and

∞
∑

i=jm+1

|xk+ni
|p 6 1

jm ·‖T‖
p·njm

. This can be done since x ∈ `p, so
∞
∑

i=1
|xk+ni

|p 6 ‖x‖p <

∞ and 1
jm ·‖T‖

p·njm
has been fixed in the previous m-th step.

Now, without loss of generality we can assume, by taking a subsequence if

necessary, that {nj} satisfies k + nj < nj+1 and
∞
∑

i=j+1
|xk+ni

|p 6 1
j·‖T‖p·nj .

Let y =
∞
∑

i=1
xk+ni

· ek+ni
. Clearly since x is in `p, so is y, as ‖y‖ 6 ‖x‖ < ∞.
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Then Tnm y =
∞
∑

i=1
xk+ni

· Tnm ek+ni
. But k + ni < ni+1 for all i > 1, and so

k + ni < nm for all i < m. Thus since T is a unilateral backward shift we conclude

that Tnm y =
∞
∑

i=m
xk+ni

· Tnm ek+ni
.

Furthermore, since the vectors Tnm ek+ni
and Tnm ek+nj

have disjoint support

for i 6= j, that is ̂Tnm ek+ni
(s) = 0 whenever ̂Tnm ek+nj

(s) 6= 0, we have that

‖Tnm y− fkek‖ 6 ‖(wk+1 · · ·wk+nm xk+nm − fk) · ek‖+
∥∥∥ ∞

∑
i=m+1

xk+ni
· Tnm ek+ni

∥∥∥
6 |wk+1 · · ·wk+nm xk+nm − fk|+

[ ∞

∑
i=m+1

|xk+ni
|p · ‖Tnm ek+ni

‖p
]1/p

6
1

mp +
[ ∞

∑
i=m+1

|xk+ni
|p · ‖T‖p·nm

]1/p
6

1
mp +

1
p
√

m
→ 0 as m→∞.

Thus Tnm y → fkek in norm as m → ∞, where fkek 6= 0 in `p. So Orb(T, y)
has a non-zero limit point.

To show (vi) implies (i), we suppose there exist non-zero vectors x and f in
`p, and a positive number r with 0 < r < ‖ f ‖ such that Orb(T, x) ∩ B( f , r) is
infinite.

For p > 1, we have that `p is reflexive, so the convex ball Ball(`p) :=

Ball(`p)
wk

= Ball(`p)
‖·‖

is weakly compact.
Now, since `p is a Banach space, by the Eberlein–Smulian Theorem, Ball(`p)

is weak limit point compact, so every infinite set has a weak limit point.
Since Orb(T, x) ∩ B( f , r) is infinite and included in B( f , r) which is weak

limit point compact, we conclude that the Orb(T, x) has a non-zero weak limit
point in `p as 0 /∈ B( f , r). Thus since (v) implies (i) we have that T is hypercyclic.

For the remaining case that p = 1, we will show that there exists a vector
y ∈ `1 such that Orb(T, y) has a non-zero limit point. Thus, since (iv) implies (i),
it follows that T is hypercyclic.

Claim 1. Without loss of generality we can assume that f has at most finitely many
non-zero entries.

Proof of Claim 1. Suppose f has infinitely many non-zero entries.
Since the set {h ∈ `1 : h has finitely many non-zero entries} is dense in `1,

we have that there exists h ∈ `1 with finitely many non-zero entries such that
‖ f − h‖ < ‖ f ‖−r

2 .
Thus for g ∈ `1 with ‖g− f ‖ < r, we have ‖g− h‖ 6 ‖g− f ‖+ ‖ f − h‖ <

r + ‖ f ‖−r
2 = ‖ f ‖+r

2 < ‖h‖ (since ‖ f ‖+ ‖ f ‖−r
2 < ‖h‖).

Therefore B( f , r) ⊂ B(h, ‖ f ‖+r
2 ), and hence for r′ = ‖ f ‖+r

2 we have that the
intersection Orb(T, x) ∩ B(h, r′) is infinite with 0 < r′ < ‖h‖.
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Now, by our Claim 1 assume that there exists an N > 0 such that fk = 0
for all k > N. By assumption there exist a vector x ∈ `1 and a strictly increasing
sequence {nj} ⊂ N such that Tnj x ∈ B( f , r) for all j, where 0 < r < ‖ f ‖.

Let E = {i > 0 : 0 6 i 6 N, fi 6= 0}.

Claim 2. For all j > 0 there exists i ∈ E such that | ̂(Tnj x− f )(i)| < r·| fi |
‖ f ‖ .

Proof of Claim 2. Suppose that there exists j0 > 0 such that for all i ∈ E,

| ̂(Tnj0 x− f )(i)| > r·| fi |
‖ f ‖ . Then ‖Tnj0 x − f ‖ > ∑

i∈E
| ̂(Tnj0 x− f )(i)| > ∑

i∈E

r·| fi |
‖ f ‖ =

r
‖ f ‖ · ∑

i∈E
| fi| = r, which gives a contradiction with Tnj0 x ∈ B( f , r).

Now, since E ⊂ {1, 2, . . . , N} is a finite set we get by our Claim 2 that there

exists an i ∈ E such that for infinitely many j we have | ̂(Tnj x− f )(i)| < r·| fi |
‖ f ‖ .

Without loss of generality we can assume, by taking a subsequence if nec-

essary, that there exists i ∈ E such that for all j > 0, | ̂(Tnj x− f )(i)| < r·| fi |
‖ f ‖ .

For notational simplicity assume further that i = 0.
By the reverse triangle inequality, | f0| − |T̂nj x(0)| < r·| f0|

‖ f ‖ , and hence for

α := | f0| · ‖ f ‖−r
‖ f ‖ > 0 we get that |T̂nj x(0)| > | f0| − r·| f0|

‖ f ‖ = | f0| · ‖ f ‖−r
‖ f ‖ = α > 0.

That is

(1.1) |T̂nj x(0)| > α > 0 for all j > 0.

Next, we pick a subsequence {njk} of {nj} as follows:
(1) Set j1 = 1.

(2) Inductively choose jk+1 so that jk+1 > jk and
∞
∑

i=jk+1

|xni | 6 1
‖T‖njk ·(jk+1)

.

Without loss of generality we assume that

(1.2)
∞

∑
i=k+1

|xni | 6
1

‖T‖nk · (k + 1)
.

Let y =
∞
∑

j=1

α

|T̂nj x(0)|
|xnj |enj . Clearly, by (1.1) we have that ‖y‖ 6 ‖x‖ < ∞,

and thus y ∈ `1.
Now since T is a backward shift and nj < nj+1 for all j > 1 we have that

Tnm y− αe0 =
(

α

|T̂nm x(0)|
|xnm | · Tnm enm − αe0

)
+

∞
∑

j=m+1

α

|T̂nj x(0)|
|xnj | · Tnm enj , where

|xnm | · Tnm enm = |xnm | · w1 · w2 · · ·wnm · e0 = |T̂nm x(0)|e0.

So ‖Tnm y− αe0‖ 6 0 +
∞
∑

j=m+1

α

|T̂nj x(0)|
|xnj |‖Tnm enj‖.

Hence (1.1), (1.2) and continuity of T give that ‖Tnm y−αe0‖6
∞
∑

j=m+1
|xnj |‖T‖nm

6 ‖T‖nm · 1
‖T‖nm ·(m+1) = 1

m+1 for all m > 1.
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Thus ‖Tnm y− αe0‖ → 0 as m → ∞, and hence Orb(T, y) has the non-zero
limit point αe0. So T is hypercyclic.

As an easy consequence of the equivalence of statements (i) and (iv) in the
above theorem, we have the following result.

COROLLARY 1.2. A unilateral weighted backward shift T : `p → `p is not hyper-
cyclic if and only if for every x in `p the set Orb(T, x) ∪ {0} is closed.

As we have pointed out in remark (2) after the statement of Thorem 1.1, an
orbit Orb(T, x) may have a non-zero limit point without having the vector x that
generates the orbit be hypercyclic for T. Nonetheless, we can demonstrate how
to construct a hypercyclic vector for T using the non-zero limit point of the orbit,
which is assumed to be e0 in the following.

Let 1 6 p < ∞. Let T : `p → `p be a unilateral weighted backward shift
with weight sequence {wj}j>1 and let c = ‖T‖ < ∞.

Suppose that there exists a vector x in `p such that the orbit Orb(T, x) has e0
as a limit point. We want to construct a hypercyclic vector y for T.

Let D = {(a0, a1, a2, . . .) ∈ `p : ai ∈ Q and ai 6= 0 for all but finitely many
i ∈ Z+}. Clearly D is a dense and countable set, so we can enumerate D =
{d1, d2, d3, . . .}.

Since Orb(T,x) has e0 as a limit point, there exists a sequence of positive
integers nk ↗ ∞ such that ‖Tnk x − e0‖ < 1

2k < 1
2 for all k > 1. By our proof in

Theorem 1.1 we get that 1
w1···wnk

→ 0 as k→ ∞.

In the next steps we will construct a sequence of positive integers {k j}j>1
whose terms we will then use to define the desired hypercyclic vector y for T.

For this purpose we will first construct the sequence {k j}j>1 subject to the

restriction that y ∈ `p, that is
∞
∑

j=0
|ŷ(j)|p < ∞. Furthermore, we require that there

exists a sequence {ml}l>1 such that for each l > 1 and each ε > 0 there exists an
l0 > 1 having ‖Tml0 y− dl‖ < ε. Thus each dl in D can be approximated arbitrarily
close by an element in the Orb(T, y).

We note that for the second condition it suffices to require that there exists a
sequence {ml}l>1 such that ‖Tml y− dl‖ < 1

2l for all l > 1. For if l > 1 and ε > 0,
there exists l0 large enough such that 1

2l0
< ε

2 and ‖dl − dl0‖ < ε
2 , by the density

of the set D. Then ‖Tml0 y− dl‖ 6 ‖Tml0 y− dl0‖+ ‖dl − dl0‖ < ε
2 + ε

2 < ε.
Step 1. In this step we will choose k1 ∈ N and define the first block of entries

of y. For this we require the following two conditions:

(a) Since d1 ∈ D we can write d1 =
N1
∑

j=0
αj(1)ej for some N1 > 0.

We choose k1 by requiring first that nk1 > N1, and thus having the entire
first block defined below fit inside y ∈ `p. The first block of y will have (N1 + 1)
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entries and will end at position nk1 ∈ {nk}k>1. We further note that in between
the blocks of y defined in each step, we set the vector y to have only zero entries.

Position nk1 − N1 nk1 − (N1 − 1) . . . nk1

Entry α0(1)
w1·w2···wnk1

−N1

α1(1)
w2·w3···wnk1

−(N1−1)
. . .

αN1 (1)
wN1+1·wN1+2·...wnk1

(b) Dealing with the requirement that y ∈ `p, we need

|α0(1)|
w1 · w2 · · ·wnk1

−N1

<
1
2

, (1)

|α1(1)|
w2 · w3 · · ·wnk1

−(N1−1)
<

1
22 , (2)

...
...

|αN1(1)|
wN1+1 · wN1+2 · · ·wnk1

<
1

2N1+1 , (N1 + 1).

Similar conditions for k2, k3, . . . will give us that ‖y‖p =
∞
∑

j=1

( 1
2j

)p
6

∞
∑

j=1

1
2j =

1, so y ∈ `p.
We achieve the above finite number of inequalities by using the fact that the

product 1
w1···wnk

→ 0 as k → ∞. Namely if k1 is large enough, 1
w1···wnk1

can be

made as small as needed.
Now we note that

|α0(1)|
w1 · w2 · · ·wnk1

−N1

=
|α0(1)|wnk1

−(N1−1) · · ·wnk1

w1 · w2 · · ·wnk1
−N1 · wnk1

−(N1−1) · · ·wnk1

6
|α0(1)| · cN1

w1 · w2 · · ·wnk1

.

So condition (1) can be satisfied by choosing the term k1 large enough such
that 1

w1·w2···wnk1
< 1

2|α0(1)|·cN1
. Similarly, all conditions (1) trough (N1 + 1) can be

satisfied by choosing k1 large enough such that 1
w1·w2···wnk1

< P1 , where P1 =

min
{ 1

2j+1|αj(1)|·cN1
: j = 0, . . . , N1

}
.

We note that P1 = 1
2N1+1 M1·cN1

, where M1 = max {|αj(1)| : j = 0, 1, . . . , N1}.
We have now chosen k1 ∈ N.
Step 2. This step is for choosing k2 ∈ N and defining the second block of

entries of y. Write d2=
N2
∑

j=0
αj(2)ej for some N2 > 0. We require the following of k2:

(a) To avoid the overlapping of entries in the second block of y ∈ `p with
entries in the first block, we need that nk2 − nk1 > N2. Also we would need
that nk2 > N2, but this follows from the previous condition. Clearly we require
that k2 > k1. The second block will have (N2 + 1) entries, ending at position
nk2 ∈ {nk}k>1.
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Position nk2 − N2 nk2 − (N2 − 1) . . . nk2

Entry α0(2)
w1·w2···wnk2

−N2

α1(2)
w2·w3···wnk2

−(N2−1)
. . .

αN2 (2)
wN2+1·wN2+2···wnk2

(b) For the requirement that y ∈ `p we need to choose k2 large enough such
that 1

w1·w2···wnk2
< P2 , where P2 = min

{ 1
2j+1+(N1+1) |αj(2)|·cN2

: j = 0, 1, . . . , N2
}

.

We note that P2 = 1
2N1+N2+2 M2·cN2

, where M2 = max
{
|αj(2)| : j=0, . . . N2,

}
.

(c) For the choice of k2, we need an extra condition since we now want to also
verify the condition that ‖Tm1 y− d1‖ < 1

2 .
Let m1 = nk1 − N1. The next conditions will clearly give us this last require-

ment.
Shifting the vector y by m1 = nk1 − N1 will produce the following changes

to the coefficients of the second block:

Position nk2 − N2 −m1 . . . nk2 −m1

Entry
α0(2)·wnk2

−N2−(m1−1) ···wnk2
−N2

w1·w2···wnk2
−N2

. . .
αN2 (2)·wnk2

−(m1−1) ···wnk2
wN2+1·wN2+2···wnk2

But each entry above is in absolute value bounded above by
|αj(2)|·cN2 ·cm1

w1···wnk2
,

which can be made as small as needed.
So we now choose k2 large enough such that 1

w1·w2···wnk2
< Q2 , where Q2 =

min
{ 1

22(N2+1)|αj(2)|·cN2+m1
: j = 0, 1, . . . , N2

}
= 1

22(N2+1)·M2·cN2+m1
.

We have now chosen k2 ∈ N.
Step 3. We will choose the general term k j ∈ N for j > 3 satisfying:

(a) k j > k j−1 and nkj
− nkj−1

> Nj;

(b) 1
w1·w2···wnkj

< 1

Mj ·c
Nj ·2

j+
j

∑
t=1

Nt

;

(c) 1
w1·w2···wnkj

< 1
Mj ·c

Nj+ml ·(Nj+1)·2j−1+l
, for all l = 1, 2, . . . , j − 1, where ml =

nkl
− Nl and m1 < m2 < m3 < · · · .

Note that the entries of y in the j-th block are: α0(j)
w1·w2···wnkj

−Nj
, α1(j)

w2·w3···wnkj
−(Nj−1)

,

. . .,
αNj

(j)
wNj+1·wNj+2···wnkj

.

Thus in Steps 1–3 we have chosen the sequence {kl}l>1 such that y ∈ `p and
‖Tml y− dl‖ < 1

2l for all l > 1 where dl ∈ D. Thus for all dl in the dense set D, we

have that dl ∈ Orb(T, y), so y is a hypercyclic vector for T.



HYPERCYCLICITY OF SHIFTS AS A ZERO-ONE LAW OF ORBITAL LIMIT POINTS 267

2. THE BILATERAL WEIGHTED BACKWARDS SHIFT

After examining how hypercyclicity relates to having an orbit with a non-
zero limit point for the unilateral weighted backward shifts in Section 1, we turn
to the study of bilateral weighted shifts.

Let {en : n ∈ Z} be the canonical basis for `p(Z) for p > 1. Then, a bounded
and linear operator T : `p(Z) → `p(Z) is said to be a bilateral weighted backward
shift if there is a sequence of bounded positive weights {wn : n ∈ Z} such that
Ten = wnen−1 for all n ∈ Z.

Analogous to the unilateral weighted shift we have the following result.

THEOREM 2.1. Suppose that T : `p(Z)→ `p(Z) is a bilateral weighted backward
shift. The following are equivalent:

(i) T is hypercyclic.
(ii) There exists an x in `p(Z) whose orbit Orb(T, x) has a non-zero limit point.

(iii) There exists a vector x in `p(Z) whose orbit Orb(T, x) has infinitely many mem-
bers in an open ball B(h, r), where 0 < r < ‖h‖.

Before we give a proof of the theorem, we remark that statement (ii) can-
not be relaxed to having an orbit with a non-zero weak limit point in `p(Z), as is
the case in Theorem 1.1. Chan and Sanders [3] showed the existence of a bilat-
eral weighted backward shift that is weakly hypercyclic, and thus has a non-zero
weak limit point, but the shift is not norm hypercyclic.

For a bilateral weighted shift to be hypercyclic, Salas [9] provided a neces-
sary and sufficient condition in terms of the weights: for every ε > 0 and every
q ∈ N there exists n arbitrarily large such that for every j ∈ Z with |j| 6 q we

have
n−1
∏

s=0
ws+j > 1

ε and
n
∏

s=1
wj−s < ε. However, as it turns out, this condition is not

as helpful in proving the above theorem as its counterpart for the unilateral case
that we have studied in Section 1. For that reason, we now offer a constructive
argument to prove Theorem 2.1.

Proof. It is clear that (i) implies (iii).
To show that statement (ii) implies (i), we suppose without loss of generality

that x = (. . . , x̂(−1), x̂(0), x̂(1), . . .) is a vector in `p(Z) such that e0 is the non-zero
limit point of the orbit Orb(T,x). We set p = 2 for notational simplicity.

Hence there is an increasing sequence of positive integers {ni} such that

‖Tni x− e0‖ <
1
2i for all i > 1.

Thus |w1 · w2 · · ·wni x̂(ni)− 1|< 1
2i < 1

2 for all i >1. This then implies that if
i > 1,

(2.1)
1

2w1 · · ·wni

< |x̂(ni)|.
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Since
∞
∑

i=1
|x̂(ni)|2 6 ‖x‖2 < ∞, the above inequality gives that

∞

∑
i=1

[ 1
w1 · · ·wni

]2
< ∞,

and thus

(2.2)
1

w1 · · ·wni

→ 0 as i→ ∞.

By considering the terms of the vector Tnj x with negative indices we have
that

j−1

∑
i=1
|w−(nj−ni−1) · · ·w0 · · ·wni · x̂(ni)|2 <

1
22j .

Now, focusing on the i-th term of the above summation and using (2.1), we
see that if 1 6 i 6 j− 1, then

(2.3) w−(nj−ni−1) · · ·w0 <
1

2j−1 .

Claim. Let y=(. . . , 0, ŷ(0), . . . , ŷ(k), 0, . . .) and a=(. . . , 0, â(−l), . . . , â(0), . . . ,
â(l), 0, . . .) in `2(Z) with k and l > 1. For all positive ε, there exist an integer m > k + l
and a vector z of the form z = (. . . , 0, ẑ(m − l), . . . , ẑ(m), . . . , ẑ(m + l), 0, . . .) such
that:

(i) Tmz = a;
(ii) ‖z‖ < ε;

(iii) ‖Tsz‖ < ε, if 1 6 s 6 k;
(iv) ‖Tmy‖ < ε.

Proof of Claim. Note that ‖T‖ = sup{|wi| : i ∈ Z} > 1.
Choose an integer i such that ni > k + l, where k and l are positive integers

given in the vectors y and a in the statement of the Claim. For this fixed ni and
for any j > i we denote m = nj − ni + k.

We first observe by (2.3) that

‖Tmy‖2 =
k

∑
r=0
|w−(m−r−1) · · ·w−(nj−ni−1) · · ·w0 · · ·wr · ŷ(r)|2

6 ‖T‖2k · ‖y‖2 ·
k

∑
r=0

[w−(m−r−1) · · ·w−(nj−ni−1) · · ·w0]2

6 ‖T‖2k · ‖y‖2 · ‖T‖2k
k

∑
r=0

[w−(nj−ni−1) · · ·w0]2

6 ‖T‖4k · ‖y‖2 · (k + 1) · 1
22(j−1)

.
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Next we need to find z such that Tmz = a, which is equivalent to having
wr+1 · · ·wm+r · ẑ(m + r) = â(r) whenever −l 6 r 6 l. Then,

‖z‖2 =
l

∑
r=−l
|ẑ(m + r)|2 =

l

∑
r=−l

∣∣∣ â(r)
wr+1 · · ·wm+r

∣∣∣2 6 ‖a‖2
l

∑
r=−l

[ 1
wr+1 · · ·wm+r

]2
.

Note that if −l 6 r 6 l, then m + r 6 m + l = nj − ni + k + l = nj − (ni −
k− l) < nj since ni > k + l.

Thus, ‖z‖2 6 ‖a‖2
l

∑
r=−l

[wm+r+1···wnj
wr+1···wnj

]2.

We now let c` = max
{

1, 1
w0

, 1
w−1w0

, . . . , 1
w−l+1···w0

}
and observe that the nu-

merator wm+r+1 · · ·wnj is a product of nj − (m + r) = nj − [nj − ni + k + r] =
ni − k− r factors.

Hence, ‖z‖2 is bounded above by

‖a‖2 ·‖T‖2(ni−k+l) ·
0

∑
r=−l

[ 1
wr+1 · · ·wnj

]2
+‖a‖2 · ‖T‖2(ni−k−1) ·

l

∑
r=1

[ 1
wr+1 · · ·wnj

]2

6‖a‖2 ·‖T‖2(ni−k+l) · c2
`

0

∑
r=−l

[ 1
w1 · · ·wnj

]2
+‖a‖2 · ‖T‖2(ni−k−1) ·

l

∑
r=1

[ w1 · · ·wr

w1 · · ·wnj

]2

6
[ 1

w1 · · ·wnj

]2
{‖a‖2 · ‖T‖2(ni−k+l) · c2

` · (l + 1) + ‖a‖2 · ‖T‖2(ni−k−1) · ‖T‖2l · l}.

Note that if 1 6 s 6 k, then ‖Tsz‖ 6 ‖T‖k‖z‖.
It is now evident that for any given ε > 0, we can use (2.2) to choose an

integer j > i so that (ii), (iii) and (iv) in the Claim are satisfied.

To finish the proof, it remains to show that our Claim implies that T is hy-
percyclic. For this, let D = {d1, d2, . . .} be a dense subset of `2(Z), where each di
is of the form di = (. . . , 0, d̂(−li), . . . , d̂(0), . . . , d̂(li), 0, . . .).

First, take y1 = 0 with k1 = 1, a1 = d1 and ε = 1
41 as in the statement of the

Claim. Then our Claim gives us that there exists an m1 ∈ N and a vector z1 with
ẑ1(i) = 0 whenever i > m1 + l1 such that:

(1) Tm1 z1 = d1;
(2) ‖z1‖ < 1

41 ;
(3) ‖Tz1‖ < 1

41 ;
(4) ‖Tm1 y1‖ = 0.

Inductively, we take k j = mj−1 + lj−1 and yj = z1 + z2 + · · ·+ zj−1. Clearly,
{k j}j>1 is an increasing sequence, as k j+1 = mj + lj > k j + 2lj for all j > 1.

Thus we note that ŷj(i) = 0 whenever i > k j.
Let ε = 1

4j in the statement of the Claim. Then our Claim implies that there
exist mj ∈ N and a vector zj with ẑj(i) = 0 whenever i > mj + lj so that:

(1) Tmj zj = dj;
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(2) ‖zj‖ < 1
4j ;

(3) ‖Tszj‖ < 1
4j , if 1 6 s 6 k j;

(4) ‖Tmj yj‖ < 1
4j .

Define the vector b by setting b =
∞
∑

i=1
zi. Since the sum is absolutely conver-

gent, we have that ‖b‖ =
∥∥∥ ∞

∑
i=1

zi

∥∥∥ 6
∞
∑

i=1
‖zi‖ <

∞
∑

i=1

1
4i < ∞, so b ∈ `2(Z).

Also note that b = yj + zj +
∞
∑

i=j+1
zi, so

‖Tmj b− dj‖ 6 ‖Tmj yj‖+ ‖Tmj zj − dj‖+
∥∥∥Tmj

( ∞

∑
i=j+1

zi

)∥∥∥
<

1
4j + 0 +

∞

∑
i=j+1

‖Tmj zi‖ <
1
4j +

∞

∑
i=j+1

1
4i =

∞

∑
i=j

1
4i → 0 as j→ ∞.

Thus ‖Tmj b− dj‖ → 0 as j → ∞, so by density of the set D = {d1, d2, . . .}
we have that b is a hypercyclic vector for T.

To show that (iii) implies (ii), we suppose that there exists a vector x in `p(Z)
whose orbit Orb(T,x) has infinitely many members in an open ball B(h, r), where
0 < r < ‖h‖. For notational simplicity we set p = 2.

Let s > 0 such that 1−s
1+s > r

‖h‖ . Since h ∈ `2(Z), there exists N > 1 such that

‖h‖2

(1+s)2 <
N
∑

i=−N
|ĥ(i)|2. Let {nj}j>1 be an increasing sequence of integers such that

Tnj x ∈ B(h, r) and set f j = Tnj x.
We now show that for each f j there exists an integer i with i 6 N such that

0 < s · |ĥ(i)| < | f̂ j(i)| whenever |i| 6 N.
To do that, we suppose on the contrary that there exists an f j so that | f̂ j(i)| 6

s · |ĥ(i)| whenever |i| 6 N. This would imply that, by our choice of N,

(1− s)2 ‖h‖2

(1 + s)2 < (1− s)2
N

∑
i=−N

|ĥ(i)|2 6
N

∑
i=−N, ĥ(i) 6=0

|ĥ(i)− f̂ j(i)|2 6‖h− f j‖2 < r2,

which would contradict our choice of s.
Since there are finitely many integers i with |i| 6 N, but infinitely many

j > 1, there exists an integer i0 with |i0| 6 N such that 0 < s · |ĥ(i0)| < | f̂ j(i0)|,
for infinitely many j.

We now assume i0 = 0 for notational simplicity. In addition, by taking a
subsequence of {nj} if necessary, we further assume that

(2.4) 0 < s · |ĥ(0)| < | f̂ j(0)|, whenever j > 1.
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Recall that f j = Tnj x, and thus

(2.5) f̂ j(0) = w1 · · ·wnj x̂(nj),

from which it follows that

∞ > ‖x‖2 >
∞

∑
j=−∞

|x̂(nj)|2 =
∞

∑
j=−∞

| f̂ j(0)|2

(w1 · · ·wnj)2 > s2|ĥ(0)|2
∞

∑
j=−∞

( 1
w1 · · ·wnj

)2
.

Hence

(2.6)
1

w1 · · ·wnj

→ 0 as j→ ∞.

This means that ‖T‖ = sup{wj : j ∈ Z} > 1.
We now switch our attention to the weights with negative indices. First, we

note that Tnj x ∈ B(h, r) for all j, and hence, there exists M > 0 so that ‖Tnj x‖ 6 M
for all j.

Secondly we note that if 1 6 i < j, then

Tnj(x̂(ni)eni ) = w−(nj−ni−1) · · ·w0 · · ·wni x̂(ni)eni−nj .

Thus,

M2 > ‖Tnj x‖2 >
∥∥∥j−1

∑
i=1

Tnj(x̂(ni)eni )
∥∥∥2

=
j−1

∑
i=1

(w−(nj−ni−1) · · ·w0 · · ·wni )
2|x̂(ni)|2

=
j−1

∑
i=1

(w−(nj−ni−1) · · ·w0)2| f̂i(0)|2, by (2.3)

> s2|ĥ(0)|2
j−1

∑
i=1

(w−(nj−ni−1) · · ·w0)2, by (2.2).

In other words, if 1 6 i < j, then

(2.7)
j−1

∑
i=1

(w−(nj−ni−1) · · ·w0)2 <
M2

s2|ĥ(0)|2
.

Claim. For every ε > 0 and every integer k > 1, there exist positive integers j and
m with m < j so that:

(i) k < m;
(ii) 2nm < nj;

(iii) w−(nj−nm−1) · · ·w0 < ε√
nk‖T‖nk ;

(iv) 1
w1···wnj

< ε
‖T‖2nm .

Proof of Claim. Let ε > 0 and k > 1 be given. Determine a positive integer
t > k + 1 so that M2

s2|ĥ(0)|2(t−k)
<
[

ε√
nk‖T‖nk

]2.

For that choice of t, we can determine j > t such that nj > 2nt and 1
w1···wnj

<

ε
‖T‖2nt

, by (2.6).
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Since k + 1 < t < j, we have, by (2.7),

t

∑
i=k+1

(w−(nj−ni−1) · · ·w0)2 <
M2

s2|ĥ(0)|2
.

The summation on the left-hand side has t− k positive terms, so there must
exist an integer m with k + 1 6 m 6 t such that

(w−(nj−nm−1) · · ·w0)2 <
M2

s2|ĥ(0)|2(t− k)
<
[ ε√

nk‖T‖nk

]2
,

and hence (iii) is satisfied.
Since k + 1 6 m 6 t < j, we see that (i), (ii) and (iv) are satisfied too.

To finish the proof, we use our Claim to construct a vector z whose orbit
Orb(T, z) has e0 as a limit point.

Take k = 1 and ε = 1
2 in our Claim. We then have positive integers j and

m with j > m so that (i) through (iv) are satisfied. For notational simplicity, we
can assume that m = 2 and j = 3, because we can certainly achieve that by
taking a subsequence of {ni} having the first three terms nk, nm and nj. Hence,
2n2 < n3, w−(n3−n2−1) · · ·w0 < 1

2
√

n1‖T‖n1 , and 1
w1···wn3

< 1
2‖T‖2n2

.

Inductively, for every odd integer k > 1, we take ε = 2−(k+1)/2 in the Claim,
and by choosing a subsequence of {ni}, we get three consecutive integers k <
m < j such that (i) through (iv) are satisfied. In this way we can assume that the
original sequence {ni} satisfies that, for any q > 1,:

(1) n2q−1 < n2q;
(2) 2n2q < n2q+1;
(3) w−(n2q+1−n2q−1) · · ·w0 < 1

2q√n2q−1‖T‖
n2q−1 ;

(4) 1
w1···wn2q+1

< 1
2q‖T‖2n2q

.

Let mi = n2i+1 − n2i + n2i−1 for i > 1 and set z =
∞
∑

i=1

1
w1···wmi

emi . Then,

‖z‖2 =
∞

∑
i=1

[ 1
w1 · · ·wmi

]2
=

∞

∑
i=1

[wmi+1 · · ·wn2i+1

w1 · · ·wn2i+1

]2

6
∞

∑
i=1

[ ‖T‖n2i−n2i−1

w1 · · ·wn2i+1

]2
6

∞

∑
i=1

[ ‖T‖n2i

2i‖T‖2n2i

]2
(by (4))

<
∞

∑
i=1

1
4i‖T‖2n2i

<
∞

∑
i=1

1
4i < ∞,

so clearly z is in `2(Z). Now,

Tmk z =
k−1

∑
i=1

w−(mk−mi−1) · · ·w0emi−mk + e0 +
∞

∑
i=k+1

1
w1 · · ·wmi−mk

emi−mk ,
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and so

‖Tmk z− e0‖2 =
k−1

∑
i=1

(w−(mk−mi−1) · · ·w0)2 +
∞

∑
i=k+1

( 1
w1 · · ·wmi−mk

)2
.

To estimate the first summation, we first note that its subindex mk − mi −
1 = n2k+1 − n2k + n2k−1 −mi − 1 = (n2k+1 − n2k − 1) + (n2k−1 −mi).

Since the summation index runs between 1 and k− 1, we have mi 6 mk−1 =
n2k−1 − n2k−2 + n2k−3, and so n2k−1 −mi > 0. Hence, using (3) and the fact that
{ni} is increasing and so n2k−1 > 2k− 1 > k− 1, we have that

k−1

∑
i=1

(w−(mk−mi−1) · · ·w0)2 6
k−1

∑
i=1
‖T‖2(n2k−1−mi)(w−(n2k+1−n2k−1) · · ·w0)2

<
k−1

∑
i=1

1
4kn2k−1

<
1
4i .

To estimate the second summand, we proceed as follows,

∞

∑
i=k+1

( 1
w1 · · ·wmi−mk

)2
=

∞

∑
i=k+1

(wmi−mk+1 · · ·wn2i+1

w1 · · ·wn2i+1

)2
.

Note that the number of weights in the numerator of the previous expres-
sion is given by n2i+1 − mi + mk = n2i+1 − (n2i+1 − n2i + n2i−1) + mk < n2i +
mk < 2n2i, because i > k + 1 and mk < n2k+1 by its definition.

Hence,

∞

∑
i=k+1

( 1
w1 · · ·wmi−mk

)2
<

∞

∑
i=k+1

( ‖T‖2n2i

w1 · · ·wn2i+1

)2

<
∞

∑
i=k+1

( ‖T‖2n2i

2i‖T‖2n2i

)2
(by (4))

=
∞

∑
i=k+1

1
4i <

1
3 · 4k .

By combining both estimates, we see that ‖Tmk z− e0‖2 < 1
4k + 1

3·4k , which
goes to 0 as k→ ∞. Hence, e0 is a limit point of the orbit Orb(T, z).

A much simpler argument for showing (ii) implies (i) can be made if we
require the bilateral weighted shift having e0 as a limit point of Orb(T,x) to be
invertible.

Since e0 is a limit point, there exists a sequence of integers nk ↗ ∞ such
that ‖Tnk x − e0‖ < 1

2k < 1
2 for all k > 1. Thus we have shown previously that

|w1 · w2 · · ·wnk x̂(nk)− 1| < 1
2 for all k > 1, and consequently that

nk
∏
j=1

wj → ∞.
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It also follows that |w−(nk−n1−1) · · ·w−1 · w0 · w1 · · ·wn1 x̂(n1)| < 1
2k for all

k > 2, and thus since 1
w1···wn1 |x̂(n1)|

< 2 we observe that w−(nk−n1−1) · · ·w−1 ·w0 <

1
2k · 2 = 1

2k−1 for all k > 2.

Furthermore, w−nk · · ·w−1 · w0 <
w−nk ···w−nk+n1

2k−1 for all k > 2.

Hence 0 < w−nk · · ·w−1 · w0 < ‖Tn1+1‖
2k−1 for all k > 2. Letting k → ∞ we get

that w−nk · · ·w−1 · w0 → 0, and therefore
nk
∏
j=1

w−j → 0.

Thus there is a sequence nk ↗ ∞ so that
nk
∏
j=1

wj → ∞ and
nk
∏
j=1

w−j → 0, so by

Feldman’s criterion for invertible bilateral shifts [6] we have that T is hypercyclic.
From this we can now deduce the following statement, using the fact that if

T is hypercyclic then so is T−1 (see Kitai [7]).

COROLLARY 2.2. If T : `p(Z) → `p(Z) is an invertible bilateral weighted shift
having an orbit with a non-zero limit point, then T−1 also has an orbit with a non-zero
limit point.

As we have pointed out before, Salas [9] proved that a bilateral weighted
shift T is hypercyclic if and only if for every ε > 0 and every q ∈ N there exists n

arbitrarily large such that for every j ∈ Z with |j| 6 q we have
n−1
∏

s=0
ws+j > 1

ε and

n
∏

s=1
wj−s < ε. We would like to point out that Theorem 2.1 offers a new equivalent

condition to check whether or not an operator T is hypercyclic. To illustrate the
applicability of our condition we offer an example of an operator T for which it is
not easy to check hypercyclicity using Salas’ condition, but quite easy using ours.

Let T be a bilateral weighted backward shift on `2(Z) with weight sequence
{wj}∞

−∞ defined as follows. Let k1 = 1 and n1 = 1. Recursively we take k j =
nj−1 + j and nj = nj−1 + k j + 1 for all j > 2. Let w0 = 1. We define the weights
with positive indices in consecutive blocks, setting the j-th block to have k j entries
of 2’s followed by the entry 1

2
kj

.

Similarly, we define the weights with negative indices in consecutive blocks
having the following entries:

block 1: one weight with value 1
21+l1

, followed by l1 entries of 2’s;

block 2: 1
23+l3

, then l3 entries of 2’s; 1
22+l2

, then l2 entries of 2’s;

block 3: 1
26+l6

, then l6 entries of 2’s; 1
25+l5

, then l5 entries of 2’s; 1
24+l4

, then l4
entries of 2’s, where

l1 = n2 − n1 − 2, l2 = n3 − n2 − l1 − 3, l3 = n3 − n1 − (l1 + l2)− 4,

l4 = n4 − n3 − (l1 + l2 + l3)− 5, l5 = n4 − n2 − (l1 + l2 + l3 + l4)− 6,

l6 = n4 − n1 − (l1 + l2 + l3 + l4 + l5)− 7, etc.
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Finally for all j > 1 we let pj = −(l1 + · · ·+ lj + 1 + · · ·+ j).
We list below the values of the terms of the sequences nj, k j and lj, that

we have used to construct the next two tables, where the nj positions have been
marked by ∗:

k1 = 1, n1 = 1,

k2 = 3, n2 = 5, l1 = 2,

k3 = 8, n3 = 14, l2 = 4, l3 = 3,

k4 = 18, n4 = 33, l4 = 5, l5 = 8, l6 = 3.

We define the vector x ∈ `2(Z) by setting x̂(ni) = 1
2ki

for i > 1 and 0
otherwise.

Looking at the effect of applying Tnj to the coordinates of the vector x, we
first note that the product of the positive weights in each block is 1. Thus, since
x̂(nj) = 1

2
kj

we have that T̂nj x(0) = 1, for all j > 1. Furthermore the non-zero

coordinate of the vector x in the (j + 1)-block is shifted by Tnj to the value 1
2

kj+1
·

2nj = 1
2

nj+j+1 · 2nj = 1
2j+1 . The other non-zero entries with positive indices of Tnj x

are given by the value 1
kj+s−nj

, where each k j+s − nj > 2j+1 and the sequence

{k j+s − nj}s>1 is strictly increasing to infinity as s→ ∞.
Considering the entries with negative indices of Tnj x, we find that shifting

by Tnj moves the coordinate x̂(nj) in the 0-th position, while x̂(ns) for 1 6 s < j
is moved in the p− 1 position for some p.

Furthermore the non-zero terms with negative indices of the vector Tnj x
are:

2−[1+2+···+(j+Sj)], 2−[1+2+···+((j−1)+Sj)], . . . , 2−[1+2+···+(1+Sj)],

where Sj =
j−1
∑

i=1
i. Thus as j→ ∞ we have that the entries above go to zero.

Finally to avoid any overlapping of the entries with negative indices while
shifting by Tnj (that is we want the non-zero entries of Tnj to be to the left of the
non-zero entries of Tnj−1 ), we verify that k j > nj−1 + 2.

Therefore by the observations listed above, we have that for the sequence
{nj}j>1, the vector x in `2(Z) and the bilateral weighted shift T with weights
{wj}j∈Z, Tnj x → e0 as j→ ∞. Hence by our theorem, T is hypercyclic.
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