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ABSTRACT. Let B(X) be the algebra of all bounded linear operators on an
infinite dimensional complex Banach space X. We prove that an additive sur-
jective map ϕ on B(X) preserves the reduced minimum modulus if and only
if either there are bijective isometries U : X → X and V : X → X both linear
or both conjugate linear such that ϕ(T) = UTV for all T ∈ B(X), or X is re-
flexive and there are bijective isometries U : X∗ → X and V : X → X∗ both
linear or both conjugate linear such that ϕ(T) = UT∗V for all T ∈ B(X). As
immediate consequences of the ingredients used in the proof of this result, we
get the complete description of surjective additive maps preserving the mini-
mum, the surjectivity and the maximum moduli of Banach space operators.
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INTRODUCTION

Several results on linear preservers have been extended to the setting of ad-
ditive preservers, and, in many cases, their extensions demonstrated to be non-
trivial as the forms of additive preservers are some time not “nice" as the ones
of the corresponding linear preservers. In [23], Omladič and Šemrl characterized
surjective additive maps preserving the spectrum of bounded linear operators on
complex Banach spaces and showed that such maps are of standard forms. This
is an extension of the result due to Jafarian and Sourour [17] that describes linear
spectrum-preserving maps. In [3], Bai and Hou considered a more general situ-
ation and characterized surjective additive maps preserving the spectral radius
of Banach space operators, extending the result due to Brešar and Šemrl [9] from
the linear setting. For further results on additive preserver problems, we refer the
interested reader, for example, to [2], [3], [8], [10], [14], [15], [16], [24], [23], [27]
and the references therein.
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Recently, Mbekhta described unital surjective linear maps on B(H), the al-
gebra of all bounded linear operators on an infinite dimensional complex Hilbert
space H, preserving several spectral quantities such as the minimum, the surjec-
tivity and the reduced minimum moduli; see [20], [21]. In [20], he showed that a
unital surjective linear map on B(H) preserves the reduced minimum modulus if
and only if it is an isometry and conjectured that the same result remains true for
the nonunital linear case. Mbekhta’s articles [20] and [21], which were followed
quickly by several papers treating related problems, contain several good ideas
and results which opened the way for certain authors to consider more general
situations. His results were extended to a more general setting by characteriz-
ing (not necessarily unital) surjective linear maps between C∗-algebras preserv-
ing the minimum, surjectivity, maximum, and reduced minimum moduli and his
conjecture was positively settled; see [7]. In [26], Skhiri generalized Mbekhta’s re-
sult by characterizing surjective linear maps on B(X), the algebra of all bounded
linear operators on an infinite dimensional complex Banach space X, preserving
the reduced minimum modulus. As the main result of [26], he established the
following theorem.

THEOREM 0.1. A surjective linear map ϕ from B(X) onto itself for which ϕ(1) is
invertible preserves the reduced minimum modulus if and only if it is either an isometric
automorphism or isometric antiautomorphism multiplied by a bijective isometry inB(X).

This result has been also proved in Theorem 7.1 of [7] and Theorem 3.3 of
[25] for the Hilbert space operators case but without the extra condition that ϕ(1)
is invertible. In fact, much more has been established in [7] where it is shown that
a surjective linear map ϕ between C∗-algebras preserves the reduced minimum
modulus if and only if it is a selfadjoint Jordan isomorphism multiplied by a uni-
tary element. This result clearly shows that the condition that ϕ(1) is invertible in
the above theorem is superfluous even for the more general setting of the reduced
minimum modulus preservers between C∗-algebras.

In this paper, we completely describe additive surjective maps preserving
the reduced minimum modulus of Banach space operators. The obtained result,
which extends Theorem 7.1 of [7] and Theorem 3.3 of [25], improves the above
Skhiri’s result and shows that the condition that ϕ(1) is invertible in the above
theorem is also superfluous even for the Banach space operators case. Our proof
is simple and self-contained and also works to recapture and extend, to Banach
space operators case, the recent results from [4], [6], [21] which describe linear and
additive maps preserving the minimum modulus, the surjectivity modulus, and
the maximum modulus of Hilbert space operators. Unlike in [4], we avoid using
several deep results such as Herstein theorem’s [13] and the celebrated theorem
of Kadison [18].
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1. MAIN RESULTS

Throughout this paper, X and Y denote infinite dimensional complex Ba-
nach spaces, and B(X, Y) denotes the space of all bounded linear maps from X
into Y. As usual, when X = Y, we simply write B(X) instead of B(X, X). The
reduced minimum modulus of a map T ∈ B(X, Y) is defined by

γ(T) :=

{
inf{‖Tx‖ : dist(x, ker(T)) > 1} if T 6= 0,
∞ if T = 0.

The reduced minimum modulus measures the closedness of the range of opera-
tors in the sense that γ(T) is positive precisely when T has a closed range; see
for instance II.10 of [22]. Recall also that the minimum modulus and the surjectivity
modulus of T are defined respectively by

m(T) := inf{‖Tx‖ : x ∈ X, ‖x‖ = 1} and q(T) := sup{ε > 0 : εBY ⊆ T(BX)},

where BX denotes the closed unit ball of X. Note that m(T) > 0 if and only if T
is injective and has closed range, and that q(T) > 0 if and only if T is surjective.
The maximum modulus of T is defined by M(T) := max(m(T), q(T)). It is easy to
see that M(T) 6 γ(T) and that M(T) = M(T∗) = γ(T) = γ(T∗) provided that
M(T) > 0, where T∗ : Y∗ → X∗ is the adjoint of T acting between the dual spaces
of Y and X. Moreover, if T is a bijective map, then

(1.1) γ(T) = m(T) = q(T) = M(T) = ‖T−1‖−1.

Note that it follows from the above definitions that the spectral functions m(·)
and q(·) are contractive, and thus M(·) is a continuous function. But, unlike
these, the spectral function γ(·) is not continuous as the following simple exam-
ple shows:

γ

([
1 0
0 1/n

])
=

1
n
→ 0 6= 1 = γ

([
1 0
0 0

])
as n→ ∞.

Several spectra can be described in term of the above spectral quantities.

The generalized spectrum of an operator T ∈ B(X) is σg(T) :=
{

λ ∈ C : lim
z→λ

γ(T−

z) = 0
}

, and the surjectivity spectrum and the approximate point spectrum of

T are given by σsu(T) := {λ ∈ C : q(T − λ) = 0} and σap(T) := {λ ∈ C :
m(T − λ) = 0}. All these are closed subsets of σ(T), the spectrum of T, and
contain the boundary of σ(T); see for instance [22]. In particular, the spectral
radius, r(T), of T coincides with the maximum modulus of each of the previous
mentioned spectra. Thus, applying Theorem 3.2 of [3] or Theorem 1 of [9], one
immediately gets the complete description of additive or linear surjective maps
ϕ on B(X) preserving any one of the above spectra.
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Now, we are ready to state and prove a more general result than the
promised one. Its proof depends on some arguments quoted in Proof of Theo-
rem 7.2 of [7]. Given x ∈ X and f ∈ X∗, we write 〈x, f 〉 instead of f (x) and x⊗ f
for the rank one operator defined by x⊗ f (y) := 〈y, f 〉x, (y ∈ X).

THEOREM 1.1. For an additive surjective map ϕ : B(X) → B(X), there are
α, β > 0 such that βγ(T) 6 γ(ϕ(T)) 6 αγ(T) for all T ∈ B(X) if and only if either
there are bijective continuous mappings A : X → X and B : X → X both linear or
both conjugate linear such that ϕ(T) = ATB for all T ∈ B(X), or there are bijective
continuous mappings A : X∗ → X and B : X → X∗ both linear or both conjugate linear
such that ϕ(T) = AT∗B for all T ∈ B(X). The last case may occur only if X is reflexive.

Proof. Obviously, we only need to prove the "only if" part. Assume that
there are α, β > 0 such that

(1.2) βγ(T) 6 γ(ϕ(T)) 6 αγ(T)

for all T ∈ B(X), and let us prove that ϕ preserves the zeros of M(·) in both
directions (i.e., if T ∈ B(X), then M(T) = 0 ⇔ M(ϕ(T)) = 0). We first show
that ϕ is injective. Assume that ϕ(T0) = 0 for some T0 ∈ B(X), and note that it
follows from (1.2) that

β

α
γ(T + T0 − λ) 6 γ(T − λ) 6

α

β
γ(T + T0 − λ)

for all T ∈ B(X) and all λ ∈ C. It follows that

λ∈σg(T+T0)⇔lim
z→λ

γ(T+T0 − λ)=0⇔lim
z→λ

γ(T−λ)=0⇔λ ∈ σg(T),

and σg(T + T0) = σg(T) for all T ∈ B(X). As the boundary of the spectrum is con-
tained in the generalized spectrum, we have r(T + T0) = r(T) for all T ∈ B(X)
and T0 = 0 by Zemánek spectral characterization of the radical; see Theorem 5.3.1
of [1]. Therefore, ϕ is injective and is, in fact, a bijective map and its inverse sat-
isfies a similar inequality to (1.2). So, we only need to show that ϕ preserves the
zeros of M(·) in one direction.

Now, assume that T0 ∈ B(X) is an operator for which M(T0) > 0 and let us
show that M(R0) > 0 where R0 := ϕ(T0). Note that, since γ(R0) > βγ(T0) > 0,
the operator R0 has a closed range. To see that M(R0) > 0, it suffices to show that
R0 is surjective or ker(R0) is trivial. Assume by the way of contradiction that R0 is
not surjective and ker(R0) is not trivial, and pick up two unit vectors x 6∈ ran(R0)
and y ∈ ker(R0). Let f ∈ X∗ be a linear functional such that 〈y, f 〉 = 1, and r > 0
be a positive rational number. Since x 6∈ ran(R0), we have ker(R0 + rx ⊗ f ) =
ker(R0) ∩ ker( f ) and

r=‖(R0+ rx⊗ f )y‖>γ(R0+rx⊗ f )dist(y, ker(R0+rx⊗ f ))>δγ(R0+rx⊗ f ),

where δ := dist(y, ker( f )) which is of course positive. Since ϕ is surjective, there
is S0 ∈ B(X) such that ϕ(S0) = x⊗ f . Keep in mind that ϕ is Q-linear and note
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that it follows from (1.2) that

r > δγ(R0 + rx⊗ f ) = δγ(ϕ(T0 + rS0) > βδγ(T0 + rS0).

As the set of all operators with positive maximum modulus is open, it follows
that M(T0 + rS0) > 0 and thus

r > βδγ(T0 + rS0) = βδM(T0 + rS0)

for all sufficiently small rational numbers r. As the maximum modulus is a con-
tinuous function, the right side of the inequality tends to βδM(T0) > 0 as r goes to
0, and thus one gets a contradiction. We therefore have M(R0) = M(ϕ(T0)) > 0;
as desired.

Finally, apply next lemma to get the desired forms of ϕ.

The next lemma and its proof were sitting in Theorem 3.1 and its proof of
[14] and needed only a simple step to be discovered therein. It was also observed
in [4] but only in the Hilbert space operators case; see Corollary 2.3 of [4].

LEMMA 1.2. Assume that c(·) stands for any one of the spectral quantities m(·),
q(·) and M(·). If ϕ : B(X) → B(Y) is an additive surjective map preserving the zeros
of c(·) (i.e., if T ∈ B(X), then c(T) = 0⇔ c(ϕ(T)) = 0), then either there are bijective
continuous mappings A : X → Y and B : Y → X both linear or both conjugate linear
such that ϕ(T) = ATB for all T ∈ B(X), or there are bijective continuous mappings
A : X∗ → Y and B : Y → X∗ both linear or both conjugate linear such that ϕ(T) =
AT∗B for all T ∈ B(X). This case may occur only if X and Y are reflexive.

Proof. We only need to show that ϕ(1) is invertible and apply Theorem 3.3
of [14] to Φ := ϕ(1)−1 ϕ to get the desired conclusion.

Just as at the beginning of the proof of the previous theorem, one can show
that ϕ is injective. So, the map ϕ is, in fact, bijective and its inverse ϕ−1 preserves
the zeros of c(·) as well. Lemma 2.1 of [14] applied to ϕ and its inverse shows
that ϕ is an additive bijection between the ideals F (X) and F (Y) of all finite rank
operators on X and Y, and that ϕ preserves rank-one operators in both direc-
tions. The complete description of a such map ϕ when restricted to F (X), given
by Theorem 3.3 of [24], guaranties that for any given nonzero element g ∈ Y∗

(respectively y ∈ Y), there are x ∈ X, f ∈ X∗, and y ∈ Y (respectively g ∈ Y∗)
such that 〈x, f 〉 = 1 and ϕ(x⊗ f ) = y⊗ g, and thus

ϕ(1− x⊗ f ) = ϕ(1)− ϕ(x⊗ f ) = ϕ(1)− y⊗ g.

Note that, since c(ϕ(1)) > 0, the range ran(ϕ(1)) of ϕ(1) is closed and so are
ran(ϕ(1)− y⊗ g) and ran(ϕ(1)∗− g⊗ y). As c(ϕ(1)− y⊗ g) = c(1− x⊗ f ) = 0,
it follows that ϕ(1)− y⊗ g is not injective in case c(·) = m(·), and ϕ(1)∗ − g⊗ y
is not injective in case c(·) = q(·). Of course these two operators are not injective
in case c(·) coincides with M(·). So, to finish the proof of this lemma, we shall
discuss three cases.
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Case 1. Assume that c(·) = m(·), and note that ϕ(1) is injective as well.
Therefore, we only need to show that ϕ(1) is surjective. Take an arbitrary nonzero
element y ∈ Y, and note that, by what has been discussed above, there is g ∈ Y∗

such that ϕ(1)− y⊗ g is not injective and (ϕ(1)− y⊗ g)z = 0 for some nonzero
element z ∈ Y. The injectivity of ϕ(1) ensures that g(z) 6= 0 and implies that y lies
in ran(ϕ(1)). This shows that ϕ is surjective and implies that ϕ(1) is invertible;
as desired.

Case 2. Assume that c(·) = q(·) and note that ϕ(1)∗ is injective. Pick up an
arbitrary nonzero element g ∈ Y∗, and note that (ϕ(1)∗ − g⊗ y)h = 0 for some
y ∈ Y and 0 6= h ∈ Y∗. Just as above, we see that 〈y, h〉 6= 0 and g lies in the range
of ϕ(1)∗. This implies that ϕ(1)∗ is surjective and that ϕ(1) is invertible in this
case too; as desired.

Case 3. Assume finally that c(·) = M(·) and note that either ϕ(1) is injective
or ϕ(1)∗ is injective. If ϕ(1) is injective, then, just as in Case 1, we see that ϕ(1)
is invertible. When ϕ(1)∗ is injective, then, just as in Case 2, we see that ϕ(1) is
invertible in this case too.

The promised result describes additive surjective maps preserving the re-
duced minimum modulus of Banach space operators. It extends Theorem 7.1 of
[7] and Theorem 3.3 of [25] to the additive preservers and Banach space operators
setting, and shows that the condition that ϕ(1) is invertible in Theorem 4.2 of [26]
is superfluous.

THEOREM 1.3. An additive surjective map ϕ : B(X) → B(Y) preserves the
reduced minimum modulus (i.e., γ(ϕ(T)) = γ(T) for all T ∈ B(X)) if and only if either
there are bijective isometries U : X → Y and V : Y → X both linear or both conjugate
linear such that ϕ(T) = UTV for all T ∈ B(X), or there are bijective isometries U :
X∗ → Y and V : Y → X∗ both linear or both conjugate linear such that ϕ(T) = UT∗V
for all T ∈ B(X). The last case can not occur if any one of X and Y is not reflexive.

The proof of Theorem 1.3 uses the following lemmas quoted from Theo-
rem 3.1 and Corollary 3.2 of [26]. The proofs presented therein are long and re-
quire several computations and applications of Hahn–Banach Theorem. Here, we
propose simple and shorter proofs.

LEMMA 1.4. For a bijective mapping A ∈ B(X, Y), the following are equivalent:
(i) ‖ATA−1‖ = ‖T‖ for all invertible operators T ∈ B(X).

(ii) ‖ATA−1‖ 6 ‖T‖ for all invertible operators T ∈ B(X).
(iii) ‖ATA−1‖ > ‖T‖ for all invertible operators T ∈ B(X).
(iv) A is an isometry multiplied by a scalar.

Proof. Obviously, the implications (i)⇒(ii), (i)⇒(iii) and (iv)⇒(i) are always
there. So, we only need to establish the implications (ii)⇒(iv) and (iii)⇒(iv).

Assume that ‖ATA−1‖ 6 ‖T‖ for all invertible operators T ∈ B(X). In
particular, we have ‖1/n + A(x ⊗ f )A−1‖ = ‖A(1/n + x ⊗ f )A−1‖ 6 ‖1/n +
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x ⊗ f ‖ for all positive integers n, x ∈ X and f ∈ X∗. Taking the limit, as n
goes to ∞, of both sides of this inequality, we get that ‖Ax‖‖A−1∗ f ‖ = ‖A(x ⊗
f )A−1‖ 6 ‖x ⊗ f ‖ = ‖x‖‖ f ‖ for all x ∈ X and f ∈ X∗. Thus, ‖A‖‖A−1‖ 6 1
and ‖A‖‖x‖ 6 ‖x‖/‖A−1‖ 6 ‖Ax‖ 6 ‖A‖‖x‖ for all x ∈ X. This shows that
A/‖A‖ is a bijective isometry and establishes the implication (ii)⇒(iv).

Now, assume that ‖ATA−1‖> ‖T‖ for all invertible operators T ∈B(X). It
follows that ‖A−1SA‖6‖S‖ for all invertible operators S∈B(Y) and A−1/‖A−1‖
is a bijective isometry by the established implication (ii)⇒(iv). Hence A/‖A‖ is
a bijective isometry as well, and the implication (iii)⇒(iv) is established.

LEMMA 1.5. For two bijective transformations A ∈ B(X, Y) and B ∈ B(Y, X),
the following statements are equivalent:

(i) ‖ATB‖ = ‖T‖ for all invertible operators T ∈ B(X).
(ii) A and B are isometries multiplied by scalars λ and µ such that |λµ| = 1.

Proof. We only need to show that the first statement implies the other one.
So, assume that ‖ATB‖=‖T‖ for all invertible operators T∈B(X), and note that
‖AB‖=‖A−1B−1‖=1. Thus for every invertible operator T∈B(X), we have

‖ATA−1‖ = ‖A(TA−1B−1)B‖ = ‖TA−1B−1‖ 6 ‖T‖‖A−1B−1‖ = ‖T‖.
By Lemma 1.4, there is an isometry U and a scalar λ such that A=λU. By similar
argument, we see that B=µV for some isometry V and a scalar µ. These together
with the fact that ‖AB‖=1 imply that |λµ|=1, and the proof is complete.

We are now in a position to prove Theorem 1.3.

Proof of Theorem 1.3. Suppose that ϕ : B(X) → B(X) is an additive surjec-
tive map for which γ(ϕ(T)) = γ(T) for all T ∈ B(X). By Theorem 1.1, either
there are bijective continuous mappings A : X → X and B : X → X both linear
or both conjugate linear such that ϕ(T) = ATB for all T ∈ B(X), or there are
bijective continuous mappings A : X∗ → X and B : X → X∗ both linear or both
conjugate linear such that ϕ(T) = AT∗B for all T ∈ B(X).

Assume without loss of generality that the first possibility holds, and note:
1
‖T‖ = γ(T−1) = γ(ϕ(T−1)) =

1
‖ϕ(T−1)−1‖ =

1
‖B−1TA−1‖

for all invertible operators T ∈ B(X). By Lemma 1.5, there are isometries U :
X → Y and V : Y → X both linear or both conjugate linear, and scalars λ and µ
such that A = λU and B = µV and λµ = 1. Thus, for all T ∈ B(X):

ϕ(T) = ATB = (λU)T(µV) = UTV.

Before closing this section, we mention that the statement of Theorem 1.1
and Theorem 1.3 for the Hilbert space operators case need be slightly modified
in an obvious way, and that, in view of (1.1), Lemma 1.4 and Lemma 1.5 can
be stated in a similar way when replacing the norm by any one of the spectral
functions γ(·), m(·), q(·), and M(·).
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2. CONSEQUENCES AND COMMENTS

This section is devoted for some comments and applications of Lemma 1.2
and Lemma 1.5. Having these lemmas in hand, the same proof of Theorem 1.3,
with no extra efforts, yields the following two theorems. The first one describes
surjective additive maps from B(X) onto B(Y) preserving the minimum and the
surjectivity moduli of Banach space operators. While the other one characterizes
surjective additive maps from B(X) onto B(Y) preserving the maximum modu-
lus.

THEOREM 2.1. If ϕ : B(X) → B(Y) is an additive surjective map preserving
either the minimum modulus or the surjectivity modulus, then either there are bijective
isometries U : X → Y and V : Y → X both linear or both conjugate linear such that
ϕ(T) = UTV for all T ∈ B(X), or there are bijective isometries U : X∗ → Y and
V : Y → X∗ both linear or both conjugate linear such that ϕ(T) = UT∗V for all
T ∈ B(X).

From the definitions of the minimum and surjectivity moduli, these quanti-
ties are always preserved by maps of the form ϕ(T) = UTV, (T ∈ B(X)), where
U : X → Y and V : Y → X are both linear or both conjugate linear bijective
isometries. While if ϕ preserves the minimum modulus (respectively the sur-
jectivity modulus), then the second conclusion of the previous theorem can not
occur if any one of X and Y is not reflexive or if there is a noninvertible surjective
(respectively noninvertible bounded below) operator in B(X). We also mention
that in [12], Gowers and Maurey constructed an infinite-dimensional, separable,
reflexive complex Banach space X such that σ(T) is countable for all T ∈ B(X).
Therefore, σ(T) = σap(T) = σsu(T) for all T ∈ B(X), and every surjective or
bounded below linear operator in B(X) is invertible.

THEOREM 2.2. An additive surjective map ϕ : B(X) → B(Y) preserves the
maximum modulus (i.e., M(ϕ(T)) = M(T) for all T ∈ B(X)) if and only if either there
are bijective isometries U : X → Y and V : Y → X both linear or both conjugate linear
such that ϕ(T) = UTV for all T ∈ B(X), or there are bijective isometries U : X∗ → Y
and V : Y → X∗ both linear or both conjugate linear such that ϕ(T) = UT∗V for all
T ∈ B(X). The last case can not occur if any one of X and Y is not reflexive.

In [20] and [26], surjective linear maps on B(X) preserving and compress-
ing the generalized spectrum are characterized. Inspecting the proof of the main
result of [15], a little bit more can be obtained.

THEOREM 2.3. For an additive surjective map ϕ : B(X) → B(Y), the following
are equivalent:

(i) ϕ preserves the generalized spectrum (i.e., σg(ϕ(T)) = σg(T) for all T ∈ B(X)).
(ii) ϕ does not annihilate all rank-one idempotents, and compresses the generalized

spectrum (i.e., σg(ϕ(T)) ⊂ σg(T) for all T ∈ B(X)).
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(iii) ϕ decompresses the generalized spectrum (i.e., σg(ϕ(T)) ⊃ σg(T) for all T ∈
B(X)).

(iv) Either ϕ(T) = ATA−1, (T ∈ B(X)), for some isomorphism A ∈ B(X, Y), or
ϕ(T) = BT∗B−1, (T ∈ B(X)), for some isomorphism B ∈ B(X∗, Y). The last case
may occur only if X and Y are reflexive.

We close this paper with a remark. Assume that c(·) stands for any one of
the spectral quantities m(·), q(·), M(·) and γ(·), and let ϕ be a surjective linear
map on B(X). Having the paper [7] in hand, one can see that, only if a mild
condition on ϕ(1) is imposed, the conclusions of above results remain the same
if replacing the hypothesis “ϕ preserves the spectral quantity c(·)" by “ϕ satisfies
either c(ϕ(T)) 6 c(T) for all T ∈ B(X) or c(ϕ(T)) > c(T) for all T ∈ B(X)". For
further details, we refer the reader to [7].
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