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1. INTRODUCTION

On the Euclidean space Rn, for 0 < α < n, the fractional integral or the
Riesz potential Iα is defined by

Iα f (x) =
1

γ(α)

∫
Rn

f (y)
|x− y|n−α

dy,

with γ(α) = πn/2Γ(α/2)/Γ(n/2 − α/2). The celebrated result for Iα is the
Hardy–Littlewood–Sobolev inequality (see [18]). The strong type (p, q), where
1 < p < ∞ and 1/q = 1/p − α/n, was obtained by Hardy–Littlewood [14]
when n = 1 and by Sobolev [17] for general n. The weak type (1, n/(n− α))
first appeared in Zygmund [21]. In 1980, Taibleson and Weiss [20] extended
the Hardy–Littlewood–Sobolev inequality to the standard Hardy spaces. The
weighted (Lp, Lq) boundedness of Iα was established by Muckenhoupt and Whee-
den [16] in 1974; the weighted (Hp, Lq) and weighted (Hp, Hq) boundedness of
Iα was established by Strömberg and Wheeden [19] in 1985.

In 2003, Bownik [2] introduced the anisotropic Hardy spaces Hp
A associated

with a dilation A. Many of the classical results arising from the real variable study
of Hardy spaces of Fefferman–Stein [10] and also the parabolic Hardy spaces of
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Calderón–Torchinsky [6], [7] are generalized. Recently, Bownik et al. [4] intro-
duced weighted anisotropic Hardy spaces. In this article, we study the bounded-
ness of fractional integral operator associated to a quasi-norm acting on weighted
anisotropic Hardy spaces Hp

w,A.
We first recall the definition of fractional integral operator associated to

a quasi-norm introduced by Ding and Lan [8]. Let T : S (Rn) 7→ S ′(Rn)
be a continuous linear operator. By the Schwartz kernel theorem there exists
S ∈ S ′(Rn ×Rn) such that

(1.1) 〈T f , g〉 = 〈S, g⊗ f 〉 for all f , g ∈ S (Rn),

where g⊗ f (x, y) = g(x) f (y). Let Ω = {(x, y) ∈ Rn ×Rn : x 6= y}. We say that
S ∈ S ′ is regular on Ω if there exists a locally integrable function K(x, y) on Ω
such that

S(h) =
∫
Ω

K(x, y)h(x, y)dxdy for all h ∈ S (Rn ×Rn) supported on Ω.

We introduce the fractional operators associated to a quasi-norm ρ.

DEFINITION 1.1. Let 0 < α < 1, γ > 0, and T : S (Rn) 7→ S ′(Rn) be a
continuous linear operator. We say that T is a fractional integral operator associated
to a quasi-norm ρ of order α with regularity γ, denoted by Tρ

α,γ, if there is a constant
C > 0 such that a distribution S given by (1.1) is regular on Ω with kernel K(x, y)
satisfying:

(i) for all (x, y) ∈ Ω, |K(x, y)| 6 Cρ(x− y)−1+α;
(ii) if (x, y), (x′, y) ∈ Ω and ρ(x− y) > b2σρ(x′ − x), then

|K(x′, y)− K(x, y)| 6 C
ρ(x′ − x)γ

ρ(x− y)1−α+γ
;

(iii) if (x, y), (x, y′) ∈ Ω and ρ(x− y) > b2σρ(y′ − y), then

|K(x, y′)− K(x, y)| 6 C
ρ(y′ − y)γ

ρ(x− y)1−α+γ
,

where b > 1 is a constant and σ is a fixed positive integer that will be defined
later. Tρ

α,0 will denote a continuous linear operator T satisfying condition (i) only.
If T is a convolution fractional integral operator with kernel K(x), then the above
conditions (ii) and (iii) reduce to

|K(x− y)− K(x)| 6 C
ρ(y)γ

ρ(x)1−α+γ
when ρ(x) > b2σρ(y).

In particular, if K(x, y) = ρ(x − y)−1+α, we denote the corresponding fractional
operator simply by Tρ

α .

Ding and Lan showed that Tρ
α,0 is bounded from Lp to Lq.
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LEMMA 1.2 ([8]). Let 0 < α < 1, 1 < p < 1/α, and 1/q = 1/p− α. Then Tρ
α,0

is of type (p, q), and is of weak type (1, 1/(1− α)).

In this article, we first extend this result to weighted case. Here the weight
belongs to A(p, q) or Ap, the Muckenhoupt weight classes associated to a matrix
A, which was introduced by Bownik and Ho [3] and will be defined later.

THEOREM 1.3. If 0 < α < 1, 1 < p < 1/α, 1/q = 1/p− α, and w ∈ A(p, q),
then there is a constant C independent of f such that( ∫

Rn

|Tρ
α,0 f (x)w(x)|qdx

)1/q
6 C

( ∫
Rn

| f (x)w(x)|pdx
)1/p

.

Set w(E) =
∫
E

w(x)dx for any subset E ⊆ Rn. If we consider the operator

Tρ
α , we have the converse of Theorem 1.3, including p = 1.

THEOREM 1.4. For 0 < α < 1, 1 6 p < 1/α, and 1/q = 1/p − α, if w is a
nonnegative function on Rn such that

(1.2) [wq({x∈Rn : |Tρ
α f (x)|>λ})]1/q6

C
λ

( ∫
Rn

| f (x)w(x)|pdx
)1/p

for all λ>0,

where C is independent of λ and f , then w ∈ A(p, q).

Finally, we show that Tρ
α,γ is bounded from weighted Hp

A to weighted Lq.

THEOREM 1.5. Let 0 < α < 1, 1/(1 + α) 6 p 6 1, 1/q = 1/p− α. If there
exists p > 1 such that α − 1 − γ + p/p < 0 and wp/p ∈ A(p, q), where 1/q =
1/p− α, then Tρ

α,γ is bounded from Hp
wp ,A to Lq

wq .

We immediately have the following corollary.

COROLLARY 1.6. Let 0 < α < 1, 1/(1 + α) 6 p 6 1, and 1/q = 1/p− α. If
α− 1− γ + 1/p < 0 and wp/(1−α) ∈ A1, then Tρ

α,γ is bounded from Hp
wp ,A to Lq

wq .

Throughout the article C denotes a positive constant not necessarily the
same at each occurrence. The conjugate exponent of p > 1 is denoted by p′ =
p/(p− 1).

2. PRELIMIMINARIES

In this section, we review some facts about the weighted anisotropic Hardy
spaces. For more details, we refer the reader to [2], [4]. An n × n real matrix
A is called an expansive matrix, sometimes called a dilation, if |λ| > 1 for all
eigenvalues λ’s of A. Suppose λ1, . . . , λn are eigenvalues of A (taken accord-
ing to the multiplicity) so that 1 < |λ1| 6 · · · 6 |λn|. A set ∆ ⊆ Rn is said
to be an ellipsoid if ∆ = {x ∈ Rn : |Px| < 1}, for some nondegenerate n × n
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matrix P. For a dilation A, there exists an ellipsoid ∆ and r > 1 such that
∆ ⊆ r∆ ⊆ A∆, where |∆|, the Lebesgue measure of ∆, equals to 1. Set Bk := Ak∆

for k ∈ Z. We have Bk ⊆ rBk ⊆ Bk+1, and |Bk| = bk, where b = |detA| > 1.
Let B denote the collection of dilated balls associated with the dilation A, i.e.,
B = {x + Bk : x ∈ Rn, k ∈ Z}. Let σ be the smallest positive integer so that
2B0 ⊆ Bσ := AσB0. A homogeneous quasi-norm associated with an expansive ma-
trix A is a measurable mapping ρA : Rn 7→ [0, ∞) satisfying

ρA(x) > 0 for x 6= 0,

ρA(Ax) = |det A|ρA(x) for x ∈ Rn,

ρA(x + y) 6 CA(ρA(x) + ρA(y)) for x, y ∈ Rn,

where CA > 1 is a constant. One can show that all homogeneous quasi-norms
associated with a fixed dilation A are equivalent (see Lemma 2.4 of [2]). Define
the step homogeneous quasi-norm ρ on Rn induced by dilation A as

ρ(x) =

{
bj if x ∈ Bj+1\Bj,
0 if x = 0.

Then for any x, y ∈ Rn, ρ(x + y) 6 bσ(ρ(x) + ρ(y)). Let λ−, λ+ be any numbers
satisfying 1 < λ− < |λ1| 6 |λn| < λ+. Then there exists a constant c > 0 such
that, for all x ∈ Rn,

c−1ρ(x)ln λ−/ ln b 6 |x| 6 cρ(x)ln λ+/ ln b for ρ(x) > 1,

c−1ρ(x)ln λ+/ ln b 6 |x| 6 cρ(x)ln λ−/ ln b for ρ(x) 6 1.

We say that a C∞ complex valued function ϕ on Rn belongs to the Schwartz
class S if

‖ϕ‖β,m := sup
x∈Rn

ρ(x)m|∂β ϕ(x)| < ∞ for every multi-index β and integer m > 0.

The dual of S , the space of tempered distributions on Rn, is denoted by S ′. For
N ∈ N∪ {0}, denote

SN = {ϕ ∈ S : ‖ϕ‖β,m 6 1 for |β| 6 N, m 6 N}.

For ϕ ∈ S and k ∈ Z, define the dilation of ϕ to the scale k by

ϕk(x) = b−k ϕ(A−kx).

In particular, if we take A = 2I where I is the identity matrix, then the dilations
associated with A are the usual isotropic dyadic dilations. Suppose f ∈ S ′. The
nontangential maximal function of f with respect to ϕ is defined as

Mϕ f (x) := sup{| f ∗ ϕk(y)| : x− y ∈ Bk, k ∈ Z}.

For given N ∈ N∪ {0} we define the nontangential grand maximal function of f as

MN f (x) := sup
ϕ∈SN

Mϕ f (x).
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We say that a nonnegative measurable function w belongs to the Mucken-
houpt weight class associated to A, denoted by w ∈ Ap, p > 1, if there is a
constant C > 0 such that

sup
B∈B

( 1
|B|

∫
B

w(y)dy
)( 1
|B|

∫
B

w(y)−1/(p−1)dy
)p−1

6 C.

Here we define 0 ·∞ to be 0. For p = 1, we say w ∈ A1 if

sup
B∈B

( 1
|B|

∫
B

w(y)dy
)(

ess sup
y∈B

w(y)−1
)
6 C.

Finally, A∞ :=
⋃

p>1
Ap. It is known that if w ∈ Ap for 1 < p < ∞, then w ∈ Ar for

all r > p and w ∈ Aq for some 1 < q < p. We denote qw = inf{q > 1 : w ∈ Aq}
the critical index of w ∈ A∞. For 1 < p, q < ∞, a nonnegative measurable function
w is said to belong to A(p, q), if there exists constant C > 0 such that

(2.1) sup
B∈B

( 1
|B|

∫
B

w(y)qdy
)1/q( 1

|B|

∫
B

w(y)−p′dy
)1/p′

6 C.

In the case p = 1, (2.1) should be interpreted to mean

(2.2) sup
B∈B

( 1
|B|

∫
B

w(y)qdy
)1/q(

ess sup
y∈B

1
w(y)

)
6 C.

A closely related notion to Ap is the reverse Hölder condition. If there exist
r > 1 and a fixed constant C > 0 such that( 1

|B|

∫
B

w(y)rdy
)
6 C

( 1
|B|

∫
B

w(y)dy
)

for every B ∈ B,

then w is said to satisfy the reverse Hölder condition of order r and written by w ∈
RHr. It follows from Hölder’s inequality that w ∈ RHr implies w ∈ RHs for
s < r. It is well-known that w ∈ A∞ if and only if w ∈ RHr for some r > 1.
Moreover, if w ∈ RHr for r > 1, then w ∈ RHr+ε for some ε > 0. Thus we write
rw = sup{r > 1 : w ∈ RHr} to denote the critical index of w for the reverse Hölder
condition.

We summarize some properties about Ap, A(p, q) and RHr (cf. [3], [4], [9],
[11], [16]), which will be used in the sequel.

PROPOSITION 2.1. (i) If w ∈ Aq ∩RHr for some q > 1 and r > 1, then there
exist constants C1, C2 > 0 such that

C1

( |E|
|B|

)q
6

w(E)
w(B)

6 C2

( |E|
|B|

)(r−1)/r

for any measurable subset E of B ∈ B.
(ii) w ∈ Ap if and only if w1−p′ ∈ Ap′ .
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(iii) If w ∈ Ap with 1 6 p < ∞, then there exists a small enough ε > 0 such that
w1+ε ∈ Ap.

(iv) w ∈ A(p, q) implies that wp ∈ Ap and wq ∈ Aq.
(v) Suppose that 0 < α < 1, 1 < p < 1/α, and 1/q = 1/p− α. Then w ∈ A(p, q)

if and only if wq ∈ Aq(1−α).

We recall the definition of weighted anisotropic Hardy spaces introduced in
[4]. Let 0 < p < ∞ and w ∈ A∞ with critical index qw. Write

Np,w :=

{
[(qw/p− 1) ln b/ ln λ−] + 2 if 0 < p 6 qw,
2 if p > qw,

where [·] denotes the integer function. For each N > Np,w, the weighted anisotropic
Hardy space associated with a dilation A is defined by

Hp
w,A := { f ∈ S ′ : MN f ∈ Lp

w},

with the quasi-norm ‖ f ‖Hp
w,A

= ‖MN f ‖Lp
w

. The definition of Hp
w,A does not de-

pend on the choice of N provided N > Np,w (cf. [4]).

3. COMPARISON WITH THE FRACTIONAL MAXIMAL FUNCTION

Consider the fractional maximal function Mα defined by

Mα f (x) = sup
k∈Z

1
|Bk|1−α

∫
x+Bk

| f (y)|dy.

In particular, for α = 0, Mα is just the Hardy–Littlewood maximal function MHL
(with respect to a dilation A with a quasi-norm ρ). The same techniques as in the
case α = 0 (see [5], for example) show that Mα is bounded from Lp(Rn) to Lq(Rn)
for 1 < p < 1/α and 1/q = 1/p− α, and is of weak type (1, 1/(1− α)).

We may use Mα to majorize Tρ
α,0 as follows.

THEOREM 3.1. If w ∈ A∞, 0 < q < ∞, and 0 < α < 1, then there is a constant
C, independent of f , such that∫

Rn

|Tρ
α,0 f (x)|qw(x)dx 6 C

∫
Rn

[Mα f (x)]qw(x)dx

and

sup
λ>0

λqw({x ∈ Rn : |Tρ
α,0 f (x)| > λ}) 6 C sup

λ>0
λqw({x ∈ Rn : |Mα f (x)| > λ}).

To prove Theorem 3.1, we need the following lemma.
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LEMMA 3.2. For 0 < α < 1, there exists a constant K depending only on α such
that if B̃ ∈ B satisfies {x ∈ B̃ : Tρ

α (| f |)(x) 6 r} 6= ∅ for some r > 0, then

|{x∈ B̃ : |Tρ
α f (x)|> rλ and Mα f (x)6rβ}|6K|B̃|

( β

λ

)1/(1−α)
∀ λ>4bσ and β>0.

Proof. Suppose B̃ = x0 + Bj. Let g(x) = f (x)χx0+Bj+σ
(x) and h(x) = f (x)−

g(x). Assume that there is an x1 ∈ B̃ such that Mα f (x1) 6 rβ; otherwise, the
conclusion is trivial. By Lemma 1.2, there is a constant C, depending only on α,
such that

|{x ∈ Rn : |Tρ
α g(x)| > rλ/2}| 6 C

( 1
rλ

∫
Rn

|g(x)|dx
)1/(1−α)

∀ r > 0.

Let P = x1 + Bj+2σ. Then x0 + Bj+σ ⊆ P, and hence∫
Rn

|g(x)|dx 6
∫
P

| f (x)|dx 6 Mα f (x1)b(1−α)(j+2σ) 6 rβb(1−α)(j+2σ),

which implies

(3.1) |{x ∈ Rn : |Tρ
α g(x)| > rλ/2}| 6 Cbj+2σ

( β

λ

)1/(1−α)
.

Let z ∈ B̃ satisfy Tρ
α (| f |)(z) 6 r. If x ∈ B̃ and y /∈ x0 + Bj+σ, then ρ(z − y) 6

bσ(ρ(z− x) + ρ(x− y)) 6 2bσρ(x− y) since ρ(z− x) 6 bj 6 ρ(x− y). Therefore

|Tρ
α h(x)| =

∣∣∣ ∫
x0+Bc

j+σ

f (y)dy
ρ(x− y)1−α

∣∣∣ 6 (2bσ)1−α
∫

x0+Bc
j+σ

| f (y)|dy
ρ(z− y)1−α

6 (2bσ)1−αTρ
α (| f |)(z) 6 2bσr for x ∈ B̃.

For λ > 4bσ, {x ∈ B̃ : |Tρ
α f (x)| > rλ and Mα f (x) 6 rβ} is a subset of {x ∈ Rn :

|Tρ
α g(x)| > rλ/2}. Then the proof follows from (3.1) by choosing K = Cb2σ.

We also need a Whitney type covering lemma.

LEMMA 3.3 ([4]). Let Ω be an open proper subset of Rn. For each integer m > 0,
there exists a positive constant R depending only on m, a sequence {xj}j ⊆ Ω and a
sequence {lj}j ⊆ Z such that:

(i) Ω =
⋃
j
(xj + Blj

);

(ii) (xi + Bli−2σ) ∩ (xj + Blj−2σ) = ∅ for all i, j with i 6= j;
(iii) (xj + Blj+m) ∩Ωc = ∅ and (xj + Blj+m+1) ∩Ωc 6= ∅ for all j;
(iv) (xi + Bli+m−2σ) ∩ (xj + Blj+m−2σ) 6= ∅ implies that |li − lj| 6 σ;
(v) for each j, the cardinality of {i : (xi + Bli+m−2σ)∩ (xj + Blj+m−2σ) 6= ∅} is less

than R.

Now we are ready to prove Theorem 3.1.
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Proof of Theorem 3.1. Since |Tρ
α,0 f (x)| 6 CTρ

α (| f |)(x), it suffices to show∫
Rn

[Tρ
α (| f |)(x)]qw(x)dx 6 C

∫
Rn

[Mα f (x)]qw(x)dx,(3.2)

sup
λ>0

λqw({x∈Rn : Tρ
α (| f |)(x)>λ})6C sup

λ>0
λqw({x∈Rn : Mα f (x)>λ}).(3.3)

Without loss of generality, we may assume f > 0 for replacing f by | f |. We also
assume that f (x) and w(x) are locally integrable, otherwise the conclusions are
trivial.

Given r > 0, by Lemma 3.3 (by taking m = 2σ) we decompose the set
{x ∈ Rn : Tρ

α f (x) > r} into dilated balls {xj + Blj
}j with the following properties:

(a) {xj + Blj−2σ} are mutual disjoint,
(b) for every j, {xj + Blj

}j have at most R overlaps,

(c) Tρ
α f (x) 6 r at some point of xj + Blj+2σ+1.

Let K be as in Lemma 3.2 and λ = 4bσ. Since w ∈ A∞, it follows from Proposi-
tion 2.1 that, by choosing ε = (1/2R)λ−q, there exists a δ > 0 such that if B ∈ B,
E is a subset of B and |E| 6 δ|B|, then w(E) 6 εw(B). Set D = λδ1−α(Kb2σ+1)α−1.
For β ∈ (0, D], let Qj = xj + Blj

and Ej = {x ∈ Qj : Tρ
α f (x) > rλ and Mα f (x) 6

rβ}. By Lemma 3.2, |Ej| 6 K(β/λ)1/(1−α)|xj + Blj+2σ+1| = δ|Qj| which yields
w(Ej) 6 (1/2R)λ−qw(Qj). Summing on j shows that

w({Tρ
α f>rλ and Mα f6rβ})6w

(⋃
j

Ej

)
6∑

j
w(Ej)6

1
2R

λ−qw(Qj)6
1
2

λ−qw({Tρ
α f>r}).

This implies

(3.4) w({Tρ
α f > rλ}) 6 w({Mα f > rβ}) + 1

2
λ−qw({Tρ

α f > r}) ∀ β ∈ (0, D].

We assume that f has compact support and write supp( f ) ⊆ Bl0 . Given
x ∈ Bc

l0+2σ, choose a point u ∈ Bl0 such that ρ(x− u) = min{ρ(x− y) : y ∈ Bl0}.
(The existence of u is due to the discrete values of ρ.) Let l1 be the smallest integer
satisfying Bl0 ⊆ x + Bl1 := P. We may write x ∈ Bl0+2σ+m+1 \ Bl0+2σ+m for some
integer m > 0. Since Bl0 * x + Bl1−1, there exists a point y1 ∈ Bl0 but y1 /∈ x +

Bl1−1, which implies bl1−1 6 ρ(x− y1) 6 bσ(ρ(x) + ρ(y1)) 6 bl0+3σ+m + bl0+σ−1.
We also note that ρ(x − u) > b−σρ(x) − ρ(u) > bl0+σ+m − bl0−1. Thus, if we
take N1 = (b3σ+m+2 + bσ+1)/(bσ+m+1 − 1) > 1, then |P| = bl1 6 N1ρ(x − u).
Therefore,

Tρ
α f (x)6

1
ρ(x−u)1−α

∫
Bl0

f (y)dy6
|P|1−α

ρ(x−u)1−α
Mα f (x)6N1−α

1 Mα f (x) for x∈Bc
l0+2σ.
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Choose β = min(D, Nα−1
1 ). The above estimate yields

{Tρ
α f > r} ∩ Bc

l0+2σ ⊆ {Mα f > rβ}.(3.5)

Both (3.4) and (3.5) show that

w({Tρ
α f > rλ}) 6 2w({Mα f > rβ}) + 1

2
λ−qw({Tρ

α f > r} ∩ Bl0+2σ).(3.6)

Multiply both sides of (3.6) by rq−1 and integrate from 0 to some positive N and
a change of variables, the left side becomes

(3.7) λ−q
Nλ∫
0

rq−1w({Tρ
α f > r})dr.

With a change of variables for the first integral on the right, the right side becomes

2β−q
Nβ∫
0

rq−1w({Mα f > r})dr +
1
2

λ−q
N∫

0

rq−1w({Tρ
α f > r} ∩ Bl0+2σ)dr.(3.8)

The second term in (3.8) is bounded by half of (3.7) since λ > 1, and is finite by
the local integrablity of w. Therefore

1
2

λ−q
Nλ∫
0

rq−1w({Tρ
α f > r})dr 6 2β−q

Nλ∫
0

rq−1w({Mα f > r})dr.

By letting N → ∞, the above inequality reduces to

λ−q

2q

∫
Rn

(Tρ
α f (x))qw(x)dx 6

2β−q

q

∫
Rn

(Mα f (x))qw(x)dx.(3.9)

To prove (3.9) for f without compact support, let fi(x) = f (x)χBi (x). Then
(3.9) can be applied to fi. Taking the limit as i → ∞ and using the monotone
convergence theorem, we show (3.9) for general f . This proves (3.2).

To prove (3.3), multiplying both sides of (3.6) by rq and taking supremum
on 0 < r < N for a given N, we have

sup
0<r<N

rqw({Tρ
α f > rλ})6 sup

0<r<N
2rqw({Mα f > rβ})+ sup

0<r<N

1
2

( r
λ

)q
w({Tρ

α f > r}∩Bl0+2σ),

which is equivalent to

sup
0<r<λN

( r
λ

)q
w({Tρ

α f > r}) 6 sup
0<r<Nβ

2
( r

β

)q
w({Mα f > r})

+ sup
0<r<N

1
2

( r
λ

)q
w({Tρ

α f > r} ∩ Bl0+2σ).

Therefore
1
2

sup
0<r<λN

( r
λ

)q
w({Tρ

α f > r}) 6 2 sup
0<r<Nβ

( r
β

)q
w({Mα f > r}).
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Let N → ∞ and get

sup
r>0

rqw({Tρ
α f > r}) 6 4

(λ

β

)q
sup
r>0

rqw({Mα f > r})(3.10)

for f with compact support. For general f , let fi(x) = f (x)χBi (x). Then (3.10)
can be applied to fi. Taking the limit as i → ∞ gives (3.10) for general f . This
shows (3.3) and the proof of Theorem 3.1 is completed.

4. PROOFS OF THEOREMS 1.3 AND 1.4

Bernardis and Salinas ([1], Theorem 1.6) established a weighted norm in-
equality for fractional maximal function Mα on spaces of homogeneous type as
follows.

PROPOSITION 4.1. Suppose 0 6 α < 1 and 1 < p 6 q < ∞. Let (W, V) be a
pair of weights with V−1/(p−1) ∈ A∞. Then

‖Mα f ‖Lq
W
6 C‖ f ‖Lp

V
for all f ∈ Lp

V(R
n)

if and only if

(4.1)
W(B)p/q[V−1/(p−1)(B)]p−1

|B|(1−α)p
6 C < ∞ for all B ∈ B.

For 0 6 α < 1, 1 6 p < 1/α, 1/q = 1/p − α, W = wq, and V = wp,
inequality (2.1) implies (4.1). Furthermore, by (ii) and (iv) of Proposition 2.1, if
w ∈ A(p, q), then V−1/(p−1) = w−p/(p−1) ∈ Ap′ ⊆ A∞. By Proposition 4.1, we
obtain

THEOREM 4.2. If 0 < α < 1, 1 < p < 1/α, 1/q = 1/p− α, and w ∈ A(p, q),
then there is a constant C, independent of f , such that( ∫

Rn

[Mα f (x)w(x)]qdx
)1/q

6 C
( ∫
Rn

| f (x)w(x)|pdx
)1/p

.

Theorem 1.3 follows immediately from Theorems 3.1 and 4.2 since wq ∈
Aq ⊆ A∞ by Proposition 2.1(iv).

Proof of Theorem 1.4. For p > 1, fix B ∈ B and let D =
∫
B

w(x)−p′dx. If

D = 0, there is nothing to prove. If D = ∞, then w−1 is not in Lp′(B), and
hence there is a nonnegative function g ∈ Lp(B) such that

∫
B

g(x)w(x)−1dx =

∞. Let f (x) = g(x)w(x)−1 on B and f (x) = 0 otherwise. Then Tρ
α f ≡ ∞ and∫

B
[ f (x)w(x)]pdx =

∫
B

g(x)pdx. By the assumption (1.2),
∫
B

w(x)qdx 6 Cλ−q for all

λ > 0. Thus,
∫
B

w(x)qdx = 0 and (2.1) follows. For the general case 0 < D < ∞, let
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f (x) = w(x)−p′χB(x). Then Tρ
α f (x) > D|B|α−1 for x ∈ B. Plugging λ = D|B|α−1

into (1.2), we get∫
B

w(x)qdx 6
C

(D|B|α−1)q

( ∫
B

[w(x)−p′w(x)]pdx
)q/p

,

which reduces to (2.1).
For p = 1, fix a dilated ball B ∈ B and let D = esssup

y∈B
w(y)−1. If D = 0, then

(2.2) holds. Otherwise, given ε > 0, there is a subset E of B with positive measure
such that w(x) < D−1 + ε for all x ∈ E. Set f = χE. Then Tρ

α f (x) > |E||B|−1+α

for x ∈ B. Choose λ = |E||B|α−1and (1.2) shows that( ∫
B

w(x)qdx
)1/q

6 C|B|1−α(D−1 + ε).

Since ε is arbitrary, this shows (2.2) and completes the proof of Theorem 1.4.

5. PROOFS OF THEOREM 1.5 AND COROLLARY 1.6

We recall the definition of weighted atoms. Let w ∈ A∞ with the crit-
ical index qw. For 0 < p 6 1, qw < q 6 ∞, and s ∈ N ∪ {0} with s >
[(qw/p − 1)] ln b/ ln λ−], a function a ∈ Lq

w(Rn) is said to be a (p, q, s)w-atom if
(i) supp(a) ⊆ x0 + Bj for some x0 ∈ Rn and j ∈ Z, (ii) ‖a‖Lq

w
6 w(x0 + Bj)

1/q−1/p,

(iii)
∫
Rn

a(x)xβdx = 0 for |β| 6 s.

Proof of Theorem 1.5. Let α, γ, p, p, q, q, and w be given as in Theorem 1.5. By
Theorems 6.2 and 7.2 of [4], it suffice to show that

‖Tρ
α,γa‖Lq

wq
6 C for all (p, p, s)wp -atom a,

where C is a constant independent of a. Let a be any (p, p, s)wp -atom with
supp(a) ⊆ x0 + Bl , ‖a‖Lp

w
6 w(x0 + Bl)

1/p−1/p, and
∫
Rn

a(x)xβdx = 0 for |β| 6 s.

We write

‖Tρ
α,γa‖Lq

wq
=
( ∫
Rn

|Tρ
α,γa(x)|qwq(x)dx

)1/q

6
( ∫

x0+Bl+2σ

|Tρ
α,γa(x)|qwq(x)dx

)1/q
+
( ∫

x0+Bc
l+2σ

|Tρ
α,γa(x)|qwq(x)dx

)1/q

:= K1 + K2.
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Hölder’s inequality, Theorem 1.3, and the size condition of a yield

K1 6
( ∫

x0+Bl+2σ

|Tρ
α,γa(x)|qwqp/p(x)dx

)1/q( ∫
x0+Bl+2σ

wp(x)dx
)1/q−1/q

6 C
( ∫
Rn

|a(x)|pwp(x)dx
)1/p

[wp(x0 + Bl+2σ)]
1/q−1/q 6 C.

For K2, we need an estimate of Tρ
α,γa(x) for x ∈ x0 + Bc

l+2σ. If x ∈ x0 +

Bc
l+2σ and y ∈ x0 + Bl , then ρ(x − x0) > b2σρ(y − x0). By the condition (iii) of

Definition 1.1 and the vanishing moment condition of a,

|Tρ
α,γa(x)| =

∣∣∣ ∫
x0+Bl

a(y)(K(x, y)− K(x, x0))dy
∣∣∣

6 Cρ(x− x0)
α−1−γ

∫
x0+Bl

|a(y)|ρ(y− x0)
γdy

6 Cblγρ(x− x0)
α−1−γ

∫
x0+Bl

|a(y)|dy for x ∈ x0 + Bc
l+2σ.

Thus,

K26Cblγ
∫

x0+Bl

|a(y)|dy
( ∫

x0+Bc
l+2σ

ρ(x− x0)
(α−1−γ)qwq(x)dx

)1/q

6Cblγ
∫

x0+Bl

|a(y)|dy
( ∞

∑
j=0

∫
x0+(Bl+2σ+j+1\Bl+2σ+j)

ρ(x− x0)
(α−1−γ)qwq(x)dx

)1/q
(5.1)

6Cblγ
∫

x0+Bl

|a(y)|dy
( ∞

∑
j=0

b(l+2σ+j)(α−1−γ)q
∫

x0+Bl+2σ+j+1

wq(x)dx
)1/q

=Cbl(α−1)
∫

x0+Bl

|a(y)|dy
( ∞

∑
j=0

bj(α−1−γ)q
∫

x0+Bl+2σ+j+1

wq(x)dx
)1/q

.

Hölder’s inequality and the size condition of a give us

∫
x0+Bl

|a(y)|dy 6 ‖a‖
Lp

wp

( ∫
x0+Bl

w(y)−p/(p−1)dy
)1−1/p

(5.2)

6 [wp(x0 + Bl)]
1/p−1/p

( ∫
x0+Bl

w(y)−p/(p−1)dy
)1−1/p

.
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Proposition 2.1(iv) shows wp ∈ Ap and wqp/p ∈ Aq. Using Hölder’s inequality,
Proposition 2.1(i), and applying (2.1) to wqp/p∫
x0+Bl+2σ+j+1

wq(x)dx

6
( ∫

x0+Bl+2σ+j+1

wqp/p(x)dx
)q/q( ∫

x0+Bl+2σ+j+1

wp(x)dx
)1−q/q

= C[wqp/p(x0 + Bl)]
q/q[wp(x0 + Bl)]

q(1/p−1/p)(5.3)

×
{wqp/p(x0 + Bl+2σ+j+1)

wqp/p(x0 + Bl)

}q/q{wp(x0 + Bl+2σ+j+1)

wp(x0 + Bl)

}q(1/p−1/p)

6 Cbjqp/p[wqp/p(x0 + Bl)]
q/q[wp(x0 + Bl)]

q(1/p−1/p)

6 Cbql(1−α)bjqp/p[wp(x0 + Bl)]
q(1/p−1/p)

( ∫
x0+Bl

w(y)−
p

p−1 dy
)q(−1+1/p)

.

Combining (5.1)–(5.3) gives us

K2 6 C
( ∞

∑
j=0

bjq(α−1−γ+p/p)
)1/q

6 C.

This completes the proof of Theorem 1.5.

Proof of Corollary 1.6. Since wp/(1−α) ∈ A1, it follows from Proposi-
tion 2.1(iii) that there exists an ε > 0 such that wp(1+ε)/(1−α) ∈ A1, which still
holds for any smaller ε′ < ε. Let p = (α + ε)/(α + αε) > 1 and 1/q = 1/p− α.
Then (1 + ε)/(1− α) = q/p. Since wpq/p ∈ A1 ⊆ Aq(1−α), Proposition 2.1(v)
yields wp/p ∈ A(p, q). On the other hand, noting that α− 1− γ + 1/p < 0 and
p = (α + ε)/(α + αε) → 1 as ε → 0, we can choose a small enough ε > 0 such
that α− 1− γ + p/p < 0. Then Corollary 1.6 follows from Theorem 1.5.

REMARK 5.1. In the proof of Theorem 1.5, we use only zero vanishing mo-
ment of an atom. Readers might expect to get a wider range of p by using the
higher moments of an atom. In reality, the higher moments cannot be applied
since the kernel of Tρ

α,γ does not have much regularity. As a consequence, Theo-
rem 1.5 holds only for some subrange of 0 < p 6 1. In order to strengthen the
regularity of the fractional integral operators (without weights), Ding and Lan
used differentiation to define such operators in Definition 1.1 of [8]; however,
their approach does not work for our situation.

REMARK 5.2. Gatto et al. [12], [13], [15] studied fractional integral opera-
tors on the more general setting of spaces of homogeneous type. They showed
that many classical results about fractional integral operators are valid, and many
of classical proofs can be adapted, if some mild conditions are imposed on the
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spaces. The weighted norm inequalities for fractional integral operators on spaces
of homogeneous type were obtained by Bernardis and Salinas [1]. However, there
is no suitable definition of anisotropic structure for spaces of homogeneous type
as far as the authors know.
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