REALISING THE C*-ALGEBRA OF A HIGHER-RANK GRAPH AS AN EXEL'S CROSSED PRODUCT

NATHAN BROWNLOWE

Communicated by William Arveson

Abstract

We use the boundary-path space of a finitely-aligned k-graph Λ to construct a compactly-aligned product system X, and we show that the graph algebra $C^{*}(\Lambda)$ is isomorphic to the Cuntz-Nica-Pimsner algebra $\mathcal{N O}(X)$. In this setting, we introduce the notion of a crossed product by a semigroup of partial endomorphisms and partially-defined transfer operators by defining it to be $\mathcal{N O}(X)$. We then compare this crossed product with other definitions in the literature.

Keywords: Cuntz-Pimsner algebra, Hilbert bimodule, k-graph, crossed product.
MSC (2000): 46L05.

INTRODUCTION

In [6], Exel proposed a new definition for a crossed product of a unital C^{*} algebra A by an endomorphism α. Exel's definition depends not only on α, but also on the choice of transfer operator: a positive continuous linear map $L: A \rightarrow A$ satisfying $L(\alpha(a) b)=a L(b)$. We call a triple (A, α, L) an Exel system. In his motivating example, Exel finds a family of Exel systems whose crossed products model the Cuntz-Krieger algebras [4]. This marked the first time a crossed product by an endomorphism could successfully model Cuntz-Krieger algebras.

There are two obvious extensions of Exel's construction. Firstly, to a theory of crossed products of non-unital C^{*}-algebras capable of modeling the directedgraph generalisation of the Cuntz-Krieger algebras [20]. In [2], the authors successfully built such a theory, and they realised the graph algebras of locally-finite graphs with no sources as Exel crossed products ([2], Theorem 5.1). The crossed product in question was built from the infinite-path space E^{∞} and the shift map σ on E^{∞}. The hypotheses on E ensure that E^{∞} is locally compact, and σ is everywhere defined, and this allows an Exel system to be defined. The other extension of Exel's work is to crossed products by semigroups of endomorphisms and transfer operators. In [17], Larsen has a crossed-product construction for dynamical
systems (A, P, α, L) in which P is an abelian semigroup, α is an action of P by endomorphisms, and L is an action of P by transfer operators. Exel has also worked in this area with his theory of interaction groups [7], [8].

Motivated by these ideas, we construct a semigroup crossed product that can model the C^{*}-algebras of the higher-rank graphs, or k-graphs, of Kumjian and Pask [16]. The only restriction we place on the k-graphs Λ whose C^{*}-algebras we model is a necessary finitely-aligned hypothesis, so our result applies in the fullest possible generality. This does come at a price, however, as without a locally-finite hypothesis, or a restriction on sources, the space of infinite paths is not locally compact. To get a locally-compact space we need to consider the bigger boundary-path space $\partial \Lambda$, and on this space the shift maps $\sigma_{n}, n \in \mathbb{N}^{k}$, will not in general be everywhere defined. This means we can not form Exel systems, or even a dynamical system in the sense of Larsen [17]. We overcome this problem by first ignoring the crossed-product construction, and focusing on building a product system.

A product system of Hilbert A-bimodules over a semigroup P is a semigroup $X=\bigsqcup_{p \in P} X_{p}$ such that each X_{p} is a Hilbert A-bimodule, and $x \otimes_{A} y \mapsto x y$ determines an isomorphism of $X_{p} \otimes_{A} X_{q}$ onto $X_{p q}$ for each $p, q \in P$. Fowler introduced such product systems in [11]. Fowler also defined a Cuntz-Pimsner covariance condition for representations of product systems, and introduced the universal C^{*}-algebra $\mathcal{O}(X)$ for Cuntz-Pimsner covariant representations of X. This generalised Pimsner's C*-algebra for a single Hilbert bimodule [19]. In [23], Sims and Yeend looked at the problem of associating a C^{*}-algebra to product systems which satisfies a gauge-invariant uniqueness theorem, and noted in particular that Fowler's $\mathcal{O}(X)$ will not in general do the job. For a large class of semigroups, and a class of product systems called compactly-aligned, Sims and Yeend introduced a covariance condition for representations - called Cuntz-Nica-Pimsner covariance - and a C^{*}-algebra $\mathcal{N O}(X)$ universal for such representations. A gauge-invariant uniqueness theorem for $\mathcal{N O}(X)$ is proved in [3].

We build from $\partial \Lambda$ and the σ_{n} topological graphs in the sense of Katsura [14], and then we apply the construction from [14] to get Hilbert $C_{0}(\partial \Lambda)$-bimodules X_{n}. We glue the bimodules together to form the boundary-path product system X over \mathbb{N}^{k}. This gives a new class of product systems for which the Cuntz-NicaPimsner algebra $\mathcal{N O}(X)$ is tractable. The main result in this paper says that for Λ a finitely-aligned k-graph, the graph algebra $C^{*}(\Lambda)$ is isomorphic to $\mathcal{N} \mathcal{O}(X)$. A result, we feel, that gives extra credence to Sims and Yeend's construction, at least in the case for the semigroup \mathbb{N}^{k}. We then construct for each $n \in \mathbb{N}^{k}$ a partial endomorphism α_{n} on $C_{0}(\partial \Lambda)$ and a partially-defined transfer operator L_{n}, and we define the crossed product $C_{0}(\partial \Lambda) \rtimes_{\alpha, L} \mathbb{N}^{k}$ to be $\mathcal{N O}(X)$. This gives us our desired result: $C_{0}(\partial \Lambda) \rtimes_{\alpha, L} \mathbb{N}^{k} \cong C^{*}(\Lambda)$.

We begin with some preliminaries in Section 1. We state some necessary definitions from the k-graph literature, and we state the definition of the CuntzKrieger algebra of a k-graph. We then state the definitions from [23] needed to make sense of the notion of Cuntz-Nica-Pimsner covariance, and the Cuntz-Nica-Pimsner algebra of a compactly-aligned product system. In Section 2 we construct from a finitely-aligned k-graph Λ the boundary-path product system X. The proof that X is compactly-aligned requires substantial detail, so we leave this result for the appendix. In Section 3 we prove the existence of a canonical isomorphism $C^{*}(\Lambda) \rightarrow \mathcal{N O}(X)$. In Section 4 we introduce the crossed product $C_{0}(\partial \Lambda) \rtimes_{\alpha, L} \mathbb{N}^{k}$, and we discuss the relationship between this crossed product and the crossed product in [2]; Exel and Royer's crossed product by a partial endomorphism [10]; and Larsen's semigroup crossed product [17].

1. PRELIMINARIES

1.1. k-GRAPHS AND THEIR CUNTZ-KRIEGER ALGEBRAS. A higher-rank graph, or k-graph, is a pair (Λ, d) consisting of a countable category Λ and a degree functor $d: \Lambda \rightarrow \mathbb{N}^{k}$ satisfying the unique factorisation property: for all $\lambda \in \Lambda$ and $m, n \in \mathbb{N}^{k}$ with $d(\lambda)=m+n$, there are unique elements $\mu, v \in \Lambda$ such that $d(\mu)=m, d(v)=n$ and $\lambda=\mu \nu$. We now recall some definitions from the k-graph literature; for more details see [5].

For $\lambda, \mu \in \Lambda$ we denote

$$
\Lambda^{\min }(\lambda, \mu):=\{(\alpha, \beta) \in \Lambda \times \Lambda: \lambda \alpha=\mu \beta \text { and } d(\lambda \alpha)=d(\lambda) \vee d(\mu)\}
$$

A k-graph Λ is finitely-aligned if $\Lambda^{\min }(\lambda, \mu)$ is at most finite for all $\lambda, \mu \in \Lambda$. For each $v \in \Lambda^{0}$ we denote by $v \Lambda:=\{\lambda \in \Lambda: r(\lambda)=v\}$. A subset $E \subseteq v \Lambda$ is exhaustive if for every $\mu \in v \Lambda$ there exists a $\lambda \in E$ such that $\Lambda^{\min }(\lambda, \mu) \neq \varnothing$. We denote the set of all finite exhaustive subsets of Λ by $\mathcal{F E}(\Lambda)$. We denote by $v \mathcal{F E}(\Lambda)$ the set $\{E \in \mathcal{F E}(\Lambda): E \subseteq v \Lambda\}$.

For each $m \in(\mathbb{N} \cup\{\infty\})^{k}$ we get a k-graph $\Omega_{k, m}$ through the following construction. The set $\Omega_{k, m}^{0}:=\left\{p \in \mathbb{N}^{k}: p \leqslant m\right\}$, and

$$
\Omega_{k}^{*}:=\left\{(p, q) \in \Omega_{k, m}^{0} \times \Omega_{k, m}^{0}: p \leqslant q\right\} .
$$

The range map is given by $r(p, q)=p$; the source map by $s(p, q)=q$; and the degree functor by $d(p, q)=q-p$. Composition is given by $(p, q)(q, r)=(p, r)$.

For k-graph Λ we define a graph morphism x to be a degree-preserving functor from $\Omega_{k, m}$ to Λ. The range and degree maps are extended to all graph morphisms $x: \Omega_{k, m} \rightarrow \Lambda$ by setting $r(x):=x(0)$ and $d(x):=m$. We define the boundary-path space $\partial \Lambda$ to be the set of all graph morphisms x such that for all $n \in \mathbb{N}^{k}$ with $n \leqslant d(x)$, and for all $E \in x(n) \mathcal{F} \mathcal{E}(\Lambda)$, there exists $\lambda \in E$ such that $x(n, n+d(\lambda))=\lambda$. We know from Lemmas 5.13 of [5] that if $\lambda \in \Lambda x(0)$, then
$\lambda x \in \partial \Lambda$. We know from Lemma 5.15 of [5] that for each $v \in \Lambda^{0}$ there exists $x \in v \partial \Lambda=\{x \in \partial \Lambda: r(x)=v\}$.

We recall from [23] the following definition.
Definition 1.1. Let Λ be a finitely-aligned k-graph. A Cuntz-Krieger family in a C^{*}-algebra B is a collection $\left\{t_{\lambda}: \lambda \in \Lambda\right\}$ of partial isometries in B satisfying: (CK1) $\left\{t_{v}: v \in \Lambda^{0}\right\}$ consists of mutually orthogonal projections;
(CK2) $t_{\lambda} t_{\mu}=t_{\lambda \mu}$ whenever $s(\lambda)=r(\mu)$;
(CK3) $t_{\lambda}^{*} t_{\mu}=\sum_{(\alpha, \beta) \in \Lambda^{\min (\lambda, \mu)}} t_{\alpha} t_{\beta}^{*}$; and
(CK4) $\prod_{\lambda \in E}\left(t_{v}-t_{\lambda} t_{\lambda}^{*}\right)=0$ for every $v \in \Lambda^{0}$ and $E \in v \mathcal{F} \mathcal{E}(\Lambda)$.
The Cuntz-Krieger algebra, or graph algebra, $C^{*}(\Lambda)$ is the universal C^{*}-algebra generated by a Cuntz-Krieger Λ-family.
1.2. Product systems and their Cuntz-Nica-Pimsner algebras. In this subsection we state some key definitions from Sections 2 and 3 of [23]; see [23] for more details.

Suppose A is a C^{*}-algebra, and (G, P) is a quasi-lattice ordered group in the sense that: G is a discrete group and P is a subsemigroup of $G ; P \cap P^{-1}=\{e\}$; and with respect to the partial order $p \leqslant q \Longleftrightarrow p^{-1} q \in P$, any two elements $p, q \in G$ which have a common upper bound in P have a least upper bound $p \vee q \in P$. Suppose $X:=\bigcup_{p \in P} X_{p}$ is a product system of Hilbert A-bimodules. For each $p \in P$ and each $x, y \in X_{p}$ the operator $\Theta_{x, y}: X_{p} \rightarrow X_{p}$ defined by $\Theta_{x, y}(z):=x \cdot\langle y, z\rangle_{A}$ is adjointable with $\Theta_{x, y}^{*}=\Theta_{y, x}$. The span $\mathcal{K}\left(X_{p}\right):=\overline{\operatorname{span}}\left\{\Theta_{x, y}: x, y \in X_{p}\right\}$ is a closed two-sided ideal in $\mathcal{L}\left(X_{p}\right)$ called the algebra of compact operators on X_{p}. For $p, q \in P$ with $e<p \leqslant q$ there is a homomorphism $\iota_{p}^{q}: \mathcal{L}\left(X_{p}\right) \rightarrow \mathcal{L}\left(X_{q}\right)$ characterised by

$$
\begin{equation*}
\iota_{p}^{q}(S)(x y)=(S x) y \quad \text { for all } x \in X_{p}, y \in X_{p^{-1} q} \tag{1.1}
\end{equation*}
$$

For $p \nless q$ we define $\iota_{p}^{q}(S)=0_{\mathcal{L}\left(X_{q}\right)}$ for all $S \in \mathcal{L}\left(X_{p}\right)$. The product system X is called compactly-aligned if for all $p, q \in P$ such that $p \vee q<\infty$, and for all $S \in \mathcal{K}\left(X_{p}\right)$ and $T \in \mathcal{K}\left(X_{q}\right)$, we have $\iota_{p}^{p \vee q}(S) \iota_{q}^{p \vee q}(T) \in \mathcal{K}\left(X_{p \vee q}\right)$.

A representation ψ of X in a C^{*}-algebra B is a map $X \rightarrow B$ such that:
(1) each $\left.\psi\right|_{X_{p}}:=\psi_{p}: X_{p} \rightarrow B$ is linear, and $\psi_{e}: A \rightarrow B$ is a homomorphism;
(2) $\psi_{p}(x) \psi_{y}(q)=\psi_{p q}(x y)$ for all $p, q \in P, x \in X_{p}$, and $y \in X_{q}$; and
(3) $\psi_{e}\left(\langle x, y\rangle_{A}^{p}\right)=\psi_{p}(x)^{*} \psi_{p}(y)$ for all $p \in P$, and $x, y \in X_{p}$.

It follows from Pimsner's results [19] that for each $p \in P$ there is a homomorphism $\psi^{(p)}: \mathcal{K}\left(X_{p}\right) \rightarrow B$ satisfying $\psi^{(p)}\left(\Theta_{x, y}\right)=\psi_{p}(x) \psi_{p}(y)^{*}$ for all $x, y \in X_{p}$. A representation ψ of X is Nica-covariant if for all $p, q \in P$ and all
$S \in \mathcal{K}\left(X_{p}\right), T \in \mathcal{K}\left(X_{q}\right)$ we have

$$
\psi^{(p)}(S) \psi^{(q)}(T)= \begin{cases}\psi^{(p \vee q)}\left(\iota_{p}^{p \vee q}(S) \iota_{q}^{p \vee q}(T)\right) & \text { if } p \vee q<\infty, \\ 0 & \text { otherwise }\end{cases}
$$

We denote by ϕ_{p} the homomorphism $A \rightarrow \mathcal{L}\left(X_{p}\right)$ implementing the left action of A on X_{p}. We define $I_{e}=A$, and for each $q \in P \backslash\{e\}$ we write $I_{q}:=$ $\bigcap_{e<p \leqslant q} \operatorname{ker} \phi_{p}$. We then denote by \widetilde{X}_{q} the Hilbert A-bimodule

$$
\widetilde{X}_{q}:=\bigoplus_{p \leqslant q} X_{p} \cdot I_{p^{-1} q}
$$

and we denote by $\widetilde{\phi}_{q}$ the homomorphism implementing the left action of A on \widetilde{X}_{q}. The product system X is said to be $\widetilde{\phi}$-injective if every $\widetilde{\phi}_{q}$ is injective.

For $p, q \in P$ with $p \neq e$ there is a homomorphism $\widetilde{\iota}_{p}^{q}: \mathcal{L}\left(X_{p}\right) \rightarrow \mathcal{L}\left(\widetilde{X}_{q}\right)$ determined by $S \mapsto \bigoplus_{r \leqslant q} \iota_{p}^{r}(S)$ for all $S \in \mathcal{L}\left(X_{p}\right)$; and characterised by

$$
\begin{equation*}
\left(\widetilde{\iota}_{p}^{q}(S) x\right)(r)=\iota_{p}^{r}(S) x(r) \quad \text { for all } x \in \widetilde{X}_{q} . \tag{1.2}
\end{equation*}
$$

A representation ψ of a $\widetilde{\phi}$-injective product system X in a C^{*}-algebra B is CuntzPimsner covariant if $\sum_{p \in F} \psi^{(p)}\left(T_{p}\right)=0_{B}$ whenever $F \subset P$ is finite, $T_{p} \in \mathcal{K}\left(X_{p}\right)$ for each $p \in F$, and $\sum_{p \in F} \widetilde{L}_{p}^{s}\left(T_{p}\right)=0$ for large s (see Definition 3.8 of [23] for the meaning of "for large s "). A representation ψ of a $\widetilde{\phi}$-injective product system X is Cuntz-Nica-Pimsner covariant if it is both Nica covariant and CuntzPimsner covariant. It is proved in Proposition 3.12 of [23] that there exists a C*algebra $\mathcal{N O}(X)$, called the Cuntz-Nica-Pimsner algebra of X, which is universal for Cuntz-Nica-Pimsner covariant representations of X. We denote the universal Cuntz-Nica-Pimsner representation by $j_{X}: X \rightarrow \mathcal{N O}(X)$.
2. THE BOUNDARY-PATH PRODUCT SYSTEM OF A k-GRAPH

Let Λ be a finitely-aligned k-graph. For $\lambda \in \Lambda$ we denote the set $D_{\lambda}:=\{x \in$ $\partial \Lambda: x(0, d(\lambda))=\lambda\}$. For $n \in \mathbb{N}^{k}$ we denote

$$
\mathcal{A}^{n}:=\{(\lambda, F): \lambda \in \Lambda \text { with } d(\lambda) \geqslant n, F \subseteq s(\lambda) \Lambda \text { a finite set }\},
$$

and $\mathcal{A}:=\bigcup_{n \in \mathbb{N}^{k}} \mathcal{A}^{n}$. For $(\lambda, F) \in \mathcal{A}$ we denote $D_{\lambda F}:=\bigcup_{v \in F} D_{\lambda v}$. It is proved in Section 5 of [5] that the family of sets $\left\{D_{\lambda} \backslash D_{\lambda F}:(\lambda, F) \in \mathcal{A}\right\}$ is a basis of compact and open sets for a Hausdorff topology on $\partial \Lambda$, and $\partial \Lambda$ is a locally compact Hausdorff space. For each $n \in \mathbb{N}^{k}$ we denote $\partial \Lambda^{\geqslant n}:=\{x \in \partial \Lambda: d(x) \geqslant$ $n\}$ and $\partial \Lambda^{\nexists n}:=\partial \Lambda \backslash \partial \Lambda^{\geqslant n}$. We now use the subsets $\partial \Lambda^{\geqslant n}$ to construct topological graphs in the sense of Katsura [14], [15].

Proposition 2.1. Let $n \in \mathbb{N}^{k}$ with $\partial \Lambda^{\geqslant n} \neq \varnothing$. Denote by σ_{n} the shift on $\partial \Lambda^{\geqslant n}$ given by $\sigma_{n}(x)(m)=x(m+n)$, and $\iota: \partial \Lambda \geqslant n \rightarrow \partial \Lambda$ the inclusion mapping. Then $E_{n}:=\left(\partial \Lambda, \partial \Lambda \geqslant n, \sigma_{n}, \iota\right)$ is a topological graph.

Proof. We use the definition of convergence given in Remark 5.6 of [5]. Let $\left(x_{i}\right)$ be a sequence in $\partial \Lambda^{\nexists n}$ converging to x. If $x \in \partial \Lambda^{\geqslant n}$, then there exists $j \in$ $\{1, \ldots, k\}$ and a subsequence $\left(x_{i k}\right)$ of $\left(x_{i}\right)$ such that $d\left(x_{i k}\right)_{j}<d(x)_{j}$ for all $x_{i k}$. This contradicts that $\left(x_{i k}\right)$ converges to x, so we must have $x \in \partial \Lambda^{\ngtr n}$, and hence $\partial \Lambda^{\nexists n}$ is closed in $\partial \Lambda$. Hence $\partial \Lambda^{\geqslant n}$ is locally compact.

Let $x \in \partial \Lambda^{\geqslant n}$. Then $D_{x(0, n)}$ is an open neighbourhood of x, with $D_{x(0, n)} \subseteq$ $\partial \Lambda^{\geqslant n}$. The map $\left.\sigma_{n}\right|_{D_{x(0, n)}}: D_{x(0, n)} \rightarrow D_{s(x(0, n))}$ is a bijection, and $\sigma_{n}\left(D_{x(0, n)}\right)=$ $D_{s(x(0, n))}$ is open in $\partial \Lambda$. Now suppose $\lambda \in s(x(0, n)) \Lambda$ and $F \subseteq s(\lambda) \Lambda$. Then

$$
\left.\sigma_{n}\right|_{D_{x(0, n)}}\left(D_{x(0, n) \lambda} \backslash D_{x(0, n) \lambda F}\right)=D_{\lambda} \backslash D_{\lambda F}
$$

is open in $D_{s(x(0, n))}$, and

$$
\left(\left.\sigma_{n}\right|_{D_{x(0, n)}}\right)^{-1}\left(D_{\lambda} \backslash D_{\lambda F}\right)=D_{x(0, n) \lambda} \backslash D_{x(0, n) \lambda F}
$$

is open in $D_{x(0, n)}$. Hence, $\left.\sigma_{n}\right|_{D_{x(0, n)}}$ is continuous and open, and so it is a homeomorphism of $D_{x(0, n)}$ onto $D_{s(x(0, n))}$. Hence σ_{n} is a local homeomorphism. We know that ι is continuous, so the result follows.

We now use Katsura's construction [14] to form Hilbert bimodules. For $f, g \in C_{C}\left(\partial \Lambda^{\geqslant n}\right)$ and $a \in C_{0}(\partial \Lambda)$, we define

$$
\begin{align*}
(f \cdot a)(x) & :=f(x) a\left(\sigma_{n}(x)\right), \text { and } \tag{2.1}\\
\langle f, g\rangle_{n}(x) & :=\sum_{\sigma_{n}(y)=x} \overline{f(y)} g(y) . \tag{2.2}
\end{align*}
$$

We complete $C_{\mathrm{C}}\left(\partial \Lambda^{\geqslant n}\right)$ under the norm $\|\cdot\|_{n}$ given by $\langle\cdot, \cdot\rangle_{n}$ to get a Hilbert $C_{0}(\partial \Lambda)$-module $X_{n}=X\left(E_{n}\right)$. The formula

$$
\begin{equation*}
(a \cdot f)(x):=a(\iota(x)) f(x)=a(x) f(x) \tag{2.3}
\end{equation*}
$$

defines an action of $C_{0}(\partial \Lambda)$ by adjointable operators on X_{n}, which we denote by $\phi_{n}: C_{0}(\partial \Lambda) \rightarrow \mathcal{L}\left(X_{n}\right)$, and then X_{n} becomes a Hilbert $C_{0}(\partial \Lambda)$-bimodule. For $n \in \mathbb{N}^{k}$ with $\partial \Lambda^{\geqslant n}=\varnothing$ we set $X_{n}:=\{0\}$. Note that $X_{0}=C_{0}(\partial \Lambda)$.

Proposition 2.2. Let $m, n \in \mathbb{N}^{k}$ with $\partial \Lambda^{\geqslant m}, \partial \Lambda^{\geqslant n} \neq \varnothing$. Then the map

$$
\pi: C_{\mathrm{C}}\left(\partial \Lambda^{\geqslant m}\right) \times C_{\mathrm{c}}\left(\partial \Lambda^{\geqslant n}\right) \rightarrow C_{\mathrm{c}}\left(\partial \Lambda^{\geqslant m+n}\right)
$$

given by $\pi(f, g)(x)=f(x) g\left(\sigma_{m}(x)\right)$ is a surjective map which induces an isomorphism $\pi_{m, n}: X_{m} \otimes X_{n} \rightarrow X_{m+n}$ satisfying $\pi_{m, n}(f \otimes g)=f\left(g \circ \sigma_{m}\right)$.

To prove this proposition we need some results. To state these results we use the following notation.

Notation 2.3. (i) Recall from Definition 3.10 of [5] that given $\lambda \in \Lambda$ and $E \subseteq r(\lambda) \Lambda$ we denote

$$
\operatorname{Ext}(\lambda ; E):=\bigcup_{v \in E}\left\{\alpha \in \Lambda:(\alpha, \beta) \in \Lambda^{\min }(\lambda, v) \text { for some } \beta \in \Lambda\right\}
$$

For $\lambda, \mu \in \Lambda$ we denote $F(\lambda, \mu):=\operatorname{Ext}(\lambda ;\{\mu\})$. Since Λ is finitely-aligned, $F(\lambda, \mu)$ is a finite subset of $s(\lambda) \Lambda$, and so $(\lambda, F(\lambda, \mu)) \in \mathcal{A}$. We have

$$
\begin{equation*}
D_{\lambda F(\lambda, \mu)}=D_{\mu F(\mu, \lambda)} \tag{2.4}
\end{equation*}
$$

(ii) Let $\lambda, \mu \in \Lambda$ and $x \in \partial \Lambda$ with $d(x) \geqslant d(\lambda) \vee d(\mu)$. Then we denote by x_{λ}^{μ} the path

$$
x_{\lambda}^{\mu}:=x(d(\lambda), d(\lambda) \vee d(\mu))
$$

Lemma 2.4. Let $(\lambda, F),(\mu, G) \in \mathcal{A}$. Then we have

$$
\begin{equation*}
\left(D_{\lambda} \backslash D_{\lambda F}\right) \cap\left(D_{\mu} \backslash D_{\mu G}\right)=\bigsqcup_{(\alpha, \beta) \in \Lambda^{\min }(\lambda, \mu)} D_{\lambda \alpha} \backslash D_{\lambda \alpha F_{\alpha^{\prime}}} \tag{2.5}
\end{equation*}
$$

where

$$
F_{\alpha}:=\left(\bigcup_{v \in F} F(\lambda \alpha, \lambda v)\right) \cup\left(\bigcup_{\xi \in G} F(\lambda \alpha, \mu \xi)\right)
$$

Proof. The factorisation property ensures that the union in (2.5) is disjoint.
Let $x \in\left(D_{\lambda} \backslash D_{\lambda F}\right) \cap\left(D_{\mu} \backslash D_{\mu G}\right)$. Then $d(x) \geqslant d(\lambda) \vee d(\mu)$; the pair $\left(x_{\lambda}^{\mu}, x_{\mu}^{\lambda}\right) \in \Lambda^{\min }(\lambda, \mu)$; and $x \in D_{\lambda x_{\lambda}^{\mu}}$. Using (2.4) we have

$$
x \in D_{\lambda x_{\lambda}^{u} F\left(\lambda x_{\lambda}^{u}, \lambda v\right)}=D_{\lambda v F\left(\lambda v, \lambda x_{\lambda}^{u}\right)} \Longrightarrow x \in D_{\lambda F}
$$

which contradicts $x \in D_{\lambda} \backslash D_{\lambda F}$, so we must have $x \notin D_{\lambda x_{\lambda}^{\mu} F\left(\lambda x_{\lambda}^{\mu}, \lambda v\right)}$ for all $v \in F$. By symmetry, we also have $x \notin D_{\lambda x_{\lambda}^{\mu} F\left(\lambda x_{\lambda}^{\mu}, \mu\right)}$ for all $\xi \in G$. Hence $x \in D_{\lambda x_{\lambda}^{\mu}} \backslash$ $D_{\lambda x_{\lambda}^{\mu} F_{x_{\lambda}^{\mu}}}$.

Now suppose y is an element of the right-hand-side of (2.5). So there exists $(\alpha, \beta) \in \Lambda^{\min }(\lambda, \mu)$ with $y \in D_{\lambda \alpha} \backslash D_{\lambda \alpha F_{\alpha}}$. We have $y \in D_{\lambda \alpha} \subseteq D_{\lambda}$. Assume $y \in D_{\lambda v}$ for some $v \in F$. Then $d(y) \geqslant d(\lambda \alpha) \vee d(\lambda v)$; the pair $\left(y_{\lambda \alpha}^{\lambda \nu}, y_{\lambda v}^{\lambda \alpha}\right) \in$ $\Lambda^{\min }(\lambda \alpha, \lambda \nu)$; and $y \in D_{\lambda \alpha F(\lambda \alpha, \lambda v)} \subseteq D_{\lambda \alpha F_{\alpha}}$. This is a contradiction, and so $y \notin$ $D_{\lambda \nu}$ for all $v \in F$. Hence $y \in D_{\lambda} \backslash D_{\lambda F}$. By symmetry, we also have $y \in D_{\mu} \backslash D_{\mu G}$. Hence $y \in\left(D_{\lambda} \backslash D_{\lambda F}\right) \cap\left(D_{\mu} \backslash D_{\mu G}\right)$.

Lemma 2.5. Let $n \in \mathbb{N}^{k}$ and $(\lambda, F) \in \mathcal{A}$ with $D_{\lambda} \backslash D_{\lambda F} \subseteq \partial \Lambda^{\geqslant n}$. Then we have

$$
\begin{equation*}
D_{\lambda} \backslash D_{\lambda F}=\bigsqcup_{\mu \in s(\lambda) \Lambda^{d(\lambda) \vee n-d(\lambda)}} D_{\lambda \mu} \backslash D_{\lambda \mu \operatorname{Ext}(\mu ; F)} \tag{2.6}
\end{equation*}
$$

where $(\lambda \mu, \operatorname{Ext}(\mu ; F)) \in \mathcal{A}^{n}$ for each $\mu \in s(\lambda) \Lambda^{d(\lambda) \vee n-d(\lambda)}$.

Proof. The factorisation property ensures that the union in (2.6) is disjoint.
Suppose $x \in D_{\lambda} \backslash D_{\lambda F}$, and consider the path $\mu:=x(d(\lambda), d(\lambda) \vee n) \in$ $s(\lambda) \Lambda^{d(\lambda) \vee n-d(\lambda)}$. Then $x \in D_{\lambda \mu}$. If $x \in D_{\lambda \mu \operatorname{Ext}(\mu ; F)}$, then there exists $v \in F$ and $(\alpha, \beta) \in \Lambda^{\min }(\mu, v)$ with $x \in D_{\lambda \mu \alpha}=D_{\lambda \nu \beta} \subseteq D_{\lambda v} \subseteq D_{\lambda F}$. But this is a contradiction, and so we must have $x \in D_{\lambda \mu} \backslash D_{\lambda \mu \operatorname{Ext}(\mu ; F)}$.

Now, let $y \in D_{\lambda \mu} \backslash D_{\lambda \mu \operatorname{Ext}(\mu ; F)}$ for some $\mu \in s(\lambda) \Lambda^{d(\lambda) \vee n-d(\lambda)}$. Then $y \in D_{\lambda}$. If $y \in D_{\lambda v}$ for some $v \in F$, then the pair

$$
\left(y_{\lambda \mu}^{\lambda v}(d(\lambda), d(\lambda)+d(\mu) \vee d(v)), y_{\lambda v}^{\lambda \mu}(d(\lambda), d(\lambda)+d(\mu) \vee d(v))\right) \in \Lambda^{\min }(\mu, v)
$$

and $y \in D_{\lambda \mu \operatorname{Ext}(\mu ; F)}$. This is a contradiction, and so we must have $y \in D_{\lambda} \backslash D_{\lambda F}$.
Finally, for each $\mu \in s(\lambda) \Lambda^{d(\lambda) \vee n-d(\lambda)}$ the set $\operatorname{Ext}(\mu ; F)$ is finite because F is finite and Λ is finitely-aligned. We obviously have $d(\lambda \mu) \geqslant n$, and so $(\lambda \mu, \operatorname{Ext}(\mu ; F)) \in \mathcal{A}^{n}$.

Proof of Proposition 2.2. To show that π is surjective we let $f \in C_{\mathrm{C}}\left(\partial \Lambda^{\geqslant m+n}\right)$. For each $x \in \operatorname{supp} f$ there exists $(\lambda, F) \in \mathcal{A}$ with $x \in D_{\lambda} \backslash D_{\lambda F} \subseteq \partial \Lambda^{\geqslant m+n}$. So there exists a subset $\mathcal{J} \subseteq \mathcal{A}$ such that $\operatorname{supp} f \subseteq \underset{(\lambda, F) \in \mathcal{J}}{ } D_{\lambda} \backslash D_{\lambda F}$, where $D_{\lambda} \backslash$ $D_{\lambda F} \subseteq \partial \Lambda^{\geqslant m+n}$ for each $(\lambda, F) \in \mathcal{J}$. It follows from Lemma 2.5 that each $D_{\lambda} \backslash$ $D_{\lambda F}$ is a disjoint union of sets of the form $D_{\mu} \backslash D_{\mu G}$ with $(\mu, G) \in \mathcal{A}^{m+n}$, and so there exists a subset $\mathcal{J}^{\prime} \subseteq \mathcal{A}^{m+n}$ such that supp $f \subseteq \bigcup_{(\mu, G) \in \mathcal{J}^{\prime}} D_{\mu} \backslash D_{\mu G}$, where $D_{\mu} \backslash D_{\mu G} \subseteq \partial \Lambda^{\geqslant m+n}$ for each $(\mu, G) \in \mathcal{J}^{\prime}$. Since supp f is compact, there exists a finite number of pairs $\left(\mu_{j}, G_{j}\right) \in \mathcal{J}^{\prime}$ with supp $f \subseteq \bigcup_{j=1}^{h} D_{\mu_{j}} \backslash D_{\mu_{j} G_{j}}$. Now for each $1 \leqslant j \leqslant h$ let $\lambda_{j}:=\mu_{j}\left(m, d\left(\mu_{j}\right)\right)$, and consider the function $\mathcal{X}_{\cup_{j} D_{\lambda_{j}} \backslash D_{\lambda_{j} G_{j}}} \in$ $C_{\mathrm{c}}\left(\partial \Lambda^{\geqslant n}\right)$. Consider also $\tilde{f} \in C_{\mathrm{c}}\left(\partial \Lambda^{\geqslant m}\right)$ which is equal to f on $\partial \Lambda^{\geqslant m+n}$ and zero on the complement. Then we have $\pi\left(\widetilde{f}, \mathcal{X}_{\cup_{j} D_{\lambda_{j}} \backslash D_{\lambda_{j} G_{j}}}\right)=f$, and so π maps onto $C_{c}\left(\partial \Lambda^{\geqslant m+n}\right)$.

Routine calculations show that π is bilinear, and so it induces a surjective linear map $\pi_{m, n}: C_{\mathrm{c}}\left(\partial \Lambda^{\geqslant m}\right) \odot C_{\mathrm{c}}\left(\partial \Lambda^{\geqslant n}\right) \rightarrow C_{\mathrm{C}}\left(\partial \Lambda^{\geqslant m+n}\right)$ satisfying $\pi_{m, n}(f \otimes$ $g)(x)=f(x) g\left(\sigma_{m}(x)\right)$. It follows immediately from the formulas (2.1) and (2.3) that π preserves the left and right actions.

To see that $\pi_{m, n}$ preserves the inner product, we let $f, h \in C_{C}\left(\partial \Lambda^{\geqslant m}\right)$ and $g, l \in C_{\mathrm{c}}\left(\partial \Lambda^{\geqslant n}\right)$. Then for $x \in \partial \Lambda^{\geqslant m+n}$ we have

$$
\begin{aligned}
\langle f \otimes g, h \otimes l\rangle(x) & =\left\langle\langle h, f\rangle_{m} \cdot g, l\right\rangle_{n}(x)=\sum_{\sigma_{n}(y)=x} \overline{\langle h, f\rangle_{m}(y) g(y)} l(y) \\
& =\sum_{\sigma_{n}(y)=x}\left(\sum_{\sigma_{m}(z)=y} h(z) \overline{f(z)}\right) \overline{g(y)} l(y)
\end{aligned}
$$

$$
\begin{equation*}
=\sum_{\sigma_{m+n}(z)=x} \overline{g\left(\sigma_{m}(z)\right)} l\left(\sigma_{m}(z)\right) \overline{f(z)} h(z) \tag{2.7}
\end{equation*}
$$

Now

$$
\begin{aligned}
\left\langle\pi_{m, n}(f \otimes g), \pi_{m, n}(h \otimes l)\right\rangle_{m+n}(x) & =\sum_{\sigma_{m+n}(z)=x} \overline{\pi_{m, n}(f \otimes g)(z)} \pi_{m, n}(h \otimes l)(z) \\
& =\sum_{\sigma_{m+n}(z)=x} \overline{f(z) g\left(\sigma_{m}(z)\right)} h(z) l\left(\sigma_{m}(z)\right) \\
& =\langle f \otimes g, h \otimes l\rangle(x)
\end{aligned}
$$

and so $\pi_{m, n}$ preserves the inner product. Hence it extends to an isomorphism $\pi_{m, n}: X_{m} \otimes X_{n} \rightarrow X_{m+n}$.

REmARK 2.6. Suppose $\partial \Lambda^{\geqslant m}, \partial \Lambda^{\geqslant n} \neq \varnothing$ and $\partial \Lambda^{\geqslant m+n}=\varnothing$. We claim that $X_{m} \otimes X_{n}=\{0\}$. To see this is true, we assume the contrary. Then there exists $f \in C_{\mathrm{C}}\left(\partial \Lambda^{\geqslant m}\right)$ and $g \in C_{\mathrm{C}}\left(\partial \Lambda^{\geqslant n}\right)$ with $f \otimes g \neq 0$. It follows from equation (2.7) that

$$
\langle f \otimes g, f \otimes g\rangle(x)=\sum_{\sigma_{m+n}(z)=x}|f(z)|^{2}\left|g\left(\sigma_{m}(z)\right)\right|^{2}
$$

and this implies

$$
\begin{aligned}
\langle f \otimes g, f \otimes g\rangle \neq 0 & \Longleftrightarrow \sigma_{m+n}^{-1}(x) \neq \varnothing \text { for some } x \in \partial \Lambda \\
& \Longleftrightarrow \partial \Lambda^{\geqslant m+n} \neq \varnothing .
\end{aligned}
$$

This is a contradiction, and so we must have $X_{m} \otimes X_{n}=\{0\}=X_{m+n}$.
Now suppose that $\partial \Lambda^{\geqslant m} \neq \varnothing$ and $\partial \Lambda^{\geqslant n}=\varnothing$. Then we have $\partial \Lambda^{\geqslant m+n}=\varnothing$, and so $X_{n}=\{0\}=X_{m+n}$. Then $X_{m} \otimes X_{n}=X_{m} \otimes\{0\}=\{0\}=X_{m+n}$. So we can extend Proposition 2.2 to include all $m, n \in \mathbb{N}^{k}$, and we think of $\pi_{m, n}$ for m, n as in this remark as the trivial map from $\{0\}$ to itself.

Proposition 2.7. The family $X:=\bigsqcup_{n \in \mathbb{N}^{k}} X_{n}$ of Hilbert bimodules over $C_{0}(\partial \Lambda)$ with multiplication given by

$$
\begin{equation*}
x y:=\pi_{m, n}(x \otimes y) \tag{2.8}
\end{equation*}
$$

is a product system over \mathbb{N}^{k}.
Proof. We just need to check that $a x=a \cdot x$ and $x a=x \cdot a$ for all $x \in X_{n}$, $n \in \mathbb{N}^{k}$ and $a \in C_{0}(\partial \Lambda)$, but this follows from (2.1), (2.3) and the definition of multiplication (2.8).

We prove that X is compactly-aligned in the Appendix.
Given the definition (2.8) of multiplication within X, we now have the following restatement of Proposition 2.2. This corollary plays an important role in subsequent sections.

Corollary 2.8. Let $n \in \mathbb{N}^{k}$ and $h \in C_{c}\left(\partial \Lambda^{\geqslant n}\right)$. Then for every $l, m \in \mathbb{N}^{k}$ with $n=l+m$, there exists $f \in C_{C}\left(\partial \Lambda^{\geqslant l}\right)$ and $g \in C_{C}\left(\partial \Lambda^{\geqslant m}\right)$ with $h=f g$.

3. THE CUNTZ-NICA-PIMSNER ALGEBRA $\mathcal{N O}(X)$

Recall that we denote by $j_{X}: X \rightarrow \mathcal{N O}(X)$ the universal Cuntz-NicaPimsner representation of X. For each $m \in \mathbb{N}^{k}$ we denote by $j_{X, m}$ the restriction of j_{X} to X_{m}. For each $\lambda \in \Lambda$ the set D_{λ} is closed and open, and so the characteristic function $\mathcal{X}_{D_{\lambda}} \in C_{\mathcal{C}}(\partial \Lambda \geqslant d(\lambda)) \subset X_{d(\lambda)}$.

THEOREM 3.1. Let Λ be a finitely-aligned k-graph and X be the associated product system of Hilbert bimodules given in Proposition 2.7. Denote by $\left\{s_{\lambda}: \lambda \in \Lambda\right\}$ the universal Cuntz-Krieger Λ-family in $C^{*}(\Lambda)$. There exists an isomorphism $\pi: C^{*}(\Lambda) \rightarrow$ $\mathcal{N O}(X)$ such that $\pi\left(s_{\lambda}\right)=j_{X, d(\lambda)}\left(\mathcal{X}_{D_{\lambda}}\right)$.

To prove this result we first show that $S:=\left\{S_{\lambda}:=j_{X, d(\lambda)}\left(\mathcal{X}_{D_{\lambda}}\right): \lambda \in \Lambda\right\}$ is a set of partial isometries in $\mathcal{N O}(X)$ satisfying (CK1) and (CK2). We use the Nica covariance of j_{X} to show that S satisfies (CK3), and the Cuntz-Pimsner covariance of j_{X} to show that S satisfies (CK4). The universal property of $C^{*}(\Lambda)$ then gives us a map $\pi: C^{*}(\Lambda) \rightarrow \mathcal{N O}(X)$ with $\pi\left(s_{\lambda}\right)=j_{X}\left(\mathcal{X}_{D_{\lambda}}\right)$ for each $\lambda \in \Lambda$. We show that S generates $\mathcal{N} \mathcal{O}(X)$, and we use the gauge-invariant uniqueness theorem for $C^{*}(\Lambda)$ ([22], Theorem 4.2) to prove that π is injective.

Proposition 3.2. The set $S=\left\{S_{\lambda}: \lambda \in \Lambda\right\}$ is a family of partial isometries satisfying (CK1) and (CK2).

Proof. Let $\lambda \in \Lambda$. Using (2.1) and (2.2) we get $\mathcal{X}_{D_{\lambda}} \cdot\left\langle\mathcal{X}_{D_{\lambda}}, \mathcal{X}_{D_{\lambda}}\right\rangle_{d(\lambda)}=\mathcal{X}_{D_{\lambda}}$, and it follows that $S_{\lambda} S_{\lambda}^{*} S_{\lambda}=S_{\lambda}$. It follows from the properties of characteristic functions that $\left\{S_{v}=j_{X, 0}\left(\mathcal{X}_{D_{v}}\right)\right\}$ is a set of mutually orthogonal projections, thus (CK1) is satisfied. Relation (CK2) follows from the calculation

$$
\begin{aligned}
\mathcal{X}_{D_{\lambda}} \mathcal{X}_{D_{\mu}}(x) & =\pi_{d(\lambda), d(\mu)}\left(\mathcal{X}_{D_{\lambda}} \otimes \mathcal{X}_{D_{\mu}}\right)(x)=\mathcal{X}_{D_{\lambda}}(x) \mathcal{X}_{D_{\mu}}\left(\sigma_{d(\lambda)}(x)\right) \\
& = \begin{cases}1 & \text { if } x(0, d(\lambda))=\lambda \text { and } x(d(\lambda), d(\lambda)+d(\mu))=\mu, \\
0 & \text { otherwise },\end{cases} \\
& =\mathcal{X}_{D_{\lambda \mu}}(x)
\end{aligned}
$$

Proposition 3.3. The set S satisfies relation (CK3):

$$
S_{\lambda}^{*} S_{\mu}=\sum_{(\alpha, \beta) \in \Lambda^{\min }(\lambda, \mu)} S_{\alpha} S_{\beta}^{*} \quad \text { for all } \lambda, \mu \in \Lambda
$$

To prove this proposition we need the next result. For $\lambda, \mu \in \Lambda$ with $d(\lambda)=$ $d(\mu)$ we denote by $\Theta_{\lambda, \mu}$ the rank-one operator $\Theta_{\mathcal{X}_{D_{\lambda}}, \mathcal{X}_{D_{\mu}}} \in \mathcal{K}\left(X_{d(\lambda)}\right)$.

Lemma 3.4. Let $\lambda, \mu \in \Lambda$. Then we have

$$
\begin{equation*}
l_{d(\lambda)}^{d(\lambda) \vee d(\mu)}\left(\Theta_{\lambda, \lambda}\right) \iota_{d(\mu)}^{d(\lambda) \vee d(\mu)}\left(\Theta_{\mu, \mu}\right)=\sum_{(\alpha, \beta) \in \Lambda^{\min }(\lambda, \mu)} \Theta_{\lambda \alpha, \mu \beta} \tag{3.1}
\end{equation*}
$$

Proof. Let $f \in C_{C}\left(\partial \Lambda^{\geqslant d(\mu)}\right)$ and $g \in C_{\mathrm{C}}(\partial \Lambda \geqslant d(\lambda) \vee d(\mu)-d(\mu))$. We show that the operators in (3.1) agree on the product $f g \in C_{\mathrm{C}}(\partial \Lambda \geqslant d(\lambda) \vee d(\mu)$), and then the result will follow from Corollary 2.8 and the fact that $\mathrm{C}_{\mathrm{C}}\left(\partial \Lambda^{\geqslant d(\lambda) \vee d(\mu)}\right)$ is dense in $X_{d(\lambda) \vee d(\mu)}$.

We know that for each $\mu \in \Lambda$ we have $\Theta_{\mu, \mu}(f)=\mathcal{X}_{D_{\mu}} \cdot\left\langle\mathcal{X}_{D_{\mu}}, f\right\rangle_{d(\mu)}$. It follows from a routine calculation using (2.1) and (2.2) that $\Theta_{\mu, \mu}(f)=\mathcal{X}_{D_{\mu}} f$, where $\mathcal{X}_{D_{\mu}} f$ is a product of functions in $C_{\mathcal{C}}\left(\partial \Lambda^{\geqslant d(\mu)}\right)$. It now follows from (1.1) that

$$
\begin{equation*}
{ }_{l}^{l_{d(\mu)}^{d(\lambda) \vee d(\mu)}}\left(\Theta_{\mu, \mu}\right)(f g)=\left(\Theta_{\mu, \mu}(f)\right) g=\left(\mathcal{X}_{D_{\mu}} f\right) g \tag{3.2}
\end{equation*}
$$

We now use Corollary 2.8 to factor $\left(\mathcal{X}_{D_{\mu}} f\right) g=h l$, where $h \in C_{\mathrm{C}}(\partial \Lambda \geqslant d(\lambda)$) and $l \in C_{\mathrm{c}}\left(\partial \Lambda^{\geqslant d(\lambda) \vee d(\mu)-d(\lambda)}\right)$. For $x \in \partial \Lambda \geqslant d(\lambda) \vee d(\mu)$ we have

$$
\begin{aligned}
\iota_{d(\lambda)}^{d(\lambda) \vee d(\mu)}\left(\Theta_{\lambda, \lambda}\right) l_{d(\mu)}^{d(\lambda) \vee d(\mu)}\left(\Theta_{\mu, \mu}\right)(f g)(x) & =\iota_{d(\lambda)}^{d(\lambda) \vee d(\mu)}\left(\Theta_{\lambda, \lambda}\right)(h l)(x)=\left(\mathcal{X}_{D_{\lambda}} h\right) l(x) \\
& =\left\{\begin{array}{ll}
h l(x) & \text { if } x \in D_{\lambda,} \\
0 & \text { otherwise }
\end{array}= \begin{cases}f g(x) & \text { if } x \in D_{\lambda} \cap D_{\mu} \\
0 & \text { otherwise }\end{cases} \right.
\end{aligned}
$$

We know from Lemma 2.4 that $D_{\lambda} \cap D_{\mu}=\underset{(\alpha, \beta) \in \Lambda^{\min }(\lambda, \mu)}{\bigsqcup_{\lambda \alpha} \text {. So we have the }}$ following and the result follows:

$$
\begin{aligned}
\iota_{d(\lambda)}^{d(\lambda) \vee d(\mu)}\left(\Theta_{\lambda, \lambda}\right) \iota_{d(\mu)}^{d(\lambda) \vee d(\mu)}\left(\Theta_{\mu, \mu}\right)(f g)(x) & = \begin{cases}f g(x) & \text { if } x \in \underset{(\alpha, \beta) \in \Lambda^{\min }(\lambda, \mu)}{\bigsqcup_{\lambda \alpha}} D_{\lambda,} \\
0 & \text { otherwise. }\end{cases} \\
& =\left(\sum_{(\alpha, \beta) \in \Lambda^{\min (\lambda, \mu)}} \Theta_{\lambda \alpha, \mu \beta}\right)(f g)(x) .
\end{aligned}
$$

Proof of Proposition 3.3. It follows from the Nica covariance of j_{X} that

$$
S_{\lambda} S_{\lambda}^{*} S_{\mu} S_{\mu}^{*}=j_{X}^{(d(\lambda))}\left(\Theta_{\lambda, \lambda}\right) j_{X}^{(d(\mu))}\left(\Theta_{\mu, \mu}\right)=j_{X}^{(d(\lambda) \vee d(\mu))}\left(\iota_{d(\lambda)}^{d(\lambda) \vee d(\mu)}\left(\Theta_{\lambda, \lambda}\right) \iota_{d(\mu)}^{d(\lambda) \vee d(\mu)}\left(\Theta_{\mu, \mu}\right)\right)
$$

It follows from this equation and Lemma 3.4 that

$$
\begin{aligned}
S_{\lambda}\left(\sum_{(\alpha, \beta) \in \Lambda^{\min }(\lambda, \mu)} S_{\alpha} S_{\beta}^{*}\right) S_{\mu}^{*} & =\sum_{(\alpha, \beta) \in \Lambda^{\min }(\lambda, \mu)} S_{\lambda \alpha} S_{\mu \beta}^{*}=\sum_{(\alpha, \beta) \in \Lambda^{\min }(\lambda, \mu)} j_{X}^{(d(\lambda) \vee d(\mu))}\left(\Theta_{\lambda \alpha, \mu \beta}\right) \\
& =j_{X}^{(d(\lambda) \vee d(\mu))}\left(\sum_{(\alpha, \beta) \in \Lambda^{\min }(\lambda, \mu)} \Theta_{\lambda \alpha, \mu \beta}\right)=S_{\lambda} S_{\lambda}^{*} S_{\mu} S_{\mu}^{*}
\end{aligned}
$$

It then follows that

$$
\begin{aligned}
S_{\lambda}^{*} S_{\mu} & =\left(S_{\lambda}^{*} S_{\lambda} S_{\lambda}^{*}\right)\left(S_{\mu} S_{\mu}^{*} S_{\mu}\right)=S_{\lambda}^{*}\left(S_{\lambda} S_{\lambda}^{*} S_{\mu} S_{\mu}^{*}\right) S_{\mu}=S_{\lambda}^{*} S_{\lambda}\left(\sum_{(\alpha, \beta) \in \Lambda^{\min }(\lambda, \mu)} S_{\alpha} S_{\beta}^{*}\right) S_{\mu}^{*} S_{\mu} \\
& =\sum_{(\alpha, \beta) \in \Lambda^{\min }(\lambda, \mu)} S_{s(\lambda)} S_{\alpha}\left(S_{s(\mu)} S_{\beta}\right)^{*}=\sum_{(\alpha, \beta) \in \Lambda^{\min }(\lambda, \mu)} S_{\alpha} S_{\beta}^{*} .
\end{aligned}
$$

Recall from Section 1.2 that I_{n} is given by $I_{n}:=\bigcap_{0<m \leqslant n} \operatorname{ker} \phi_{m}$. To prove that S satisfies (CK4), we need to find families which span dense subspaces of the Hilbert bimodules $X_{m} \cdot I_{n-m}$, for $m, n \in \mathbb{N}^{k}$ with $m \leqslant n$. To do this, we must first find families which span dense subspaces of the bimodules X_{n} and the ideals I_{n}.

Proposition 3.5. For each $n \in \mathbb{N}^{k}$ we have $X_{n}=\overline{\operatorname{span}}\left\{\mathcal{X}_{D_{\lambda} \backslash D_{\lambda F}}:(\lambda, F) \in \mathcal{A}^{n}\right\}$.
Proof. Let $f \in C_{\mathrm{c}}\left(\partial \Lambda^{\geqslant n}\right)$. We can use the same argument as in the beginning of the proof of Proposition 2.2 to write supp $f \subseteq \bigcup_{j=1}^{h} D_{\mu_{j}} \backslash D_{\mu_{j} G_{j}}$, where $\left(\mu_{j}, G_{j}\right) \in$ \mathcal{A}^{n} and $D_{\mu_{j}} \backslash D_{\mu_{j} G_{j}} \subseteq \partial \Lambda^{\geqslant n}$ for each $1 \leqslant j \leqslant h$. We now take a partition of unity $\rho_{1}, \ldots, \rho_{h}$ subordinate to $\left\{D_{\mu_{j}} \backslash D_{\mu_{j} G_{j}}: 1 \leqslant j \leqslant h\right\}$, and for $f_{j}:=f \rho_{j} \in$ $C\left(D_{\mu_{j}} \backslash D_{\mu_{j} G_{j}}\right)$ we have

$$
\begin{equation*}
f=\sum_{j=1}^{h} f_{j} \tag{3.3}
\end{equation*}
$$

Now for each $1 \leqslant j \leqslant h$ we have $d\left(\mu_{j}\right) \geqslant n$. So σ_{n} is injective on $D_{\mu_{j}} \backslash D_{\mu_{j} G_{j}}$, and hence

$$
\begin{equation*}
\left\|f_{j}\right\|_{n}=\sup \left\{\left|f_{j}(x)\right|: x \in D_{\mu_{j}} \backslash D_{\mu_{j} G_{j}}\right\}=\left\|f_{j}\right\|_{\infty} . \tag{3.4}
\end{equation*}
$$

Now, it follows from Lemma 2.4 that for each $(\lambda, F) \in \mathcal{A}$ the set

$$
\operatorname{span}\left\{\mathcal{X}_{D_{\mu} \backslash D_{\mu G}}:(\mu, G) \in \mathcal{A} \text { and } D_{\mu} \backslash D_{\mu G} \subseteq D_{\lambda} \backslash D_{\lambda F}\right\}
$$

is a subalgebra of $C\left(D_{\lambda} \backslash D_{\lambda F}\right)$. An application of the Stone-Weierstrass Theorem shows that the closure of that span is equal to $C\left(D_{\lambda} \backslash D_{\lambda F}\right)$, and hence each f_{j} can be uniformly approximated by elements in $\operatorname{span}\left\{\mathcal{X}_{D_{\lambda} \backslash D_{\lambda F}}: d(\lambda) \geqslant n\right\}$. It now follows from (3.4) that f_{j} can be uniformly approximated by elements in $\operatorname{span}\left\{\mathcal{X}_{D_{\lambda} \backslash D_{\lambda F}}: d(\lambda) \geqslant n\right\}$ with respect to $\|\cdot\|_{n}$, and then (3.3) says that f can be approximated by elements in $\operatorname{span}\left\{\mathcal{X}_{D_{\lambda} \backslash D_{\lambda F}}: d(\lambda) \geqslant n\right\}$ with respect to $\|\cdot\|_{n}$. The result follows because $C_{C}\left(\partial \Lambda \backslash \partial_{n}\right)$ is dense in X_{n} with respect to $\|\cdot\|_{n}$.

DEFINITION 3.6. Let $i \in\{1, \ldots, k\}$ and e_{i} denote the standard basis element of \mathbb{N}^{k}. We say that $(\lambda, F) \in \mathcal{A}$ satisfies condition $K(i)$ if

$$
\mu \in s(\lambda) \Lambda \text { with } d(\mu) \geqslant e_{i} \Longrightarrow D_{\mu} \subseteq D_{v} \text { for some } v \in F
$$

Proposition 3.7. For each $n \in \mathbb{N}^{k}$ we have

$$
I_{n}=\overline{\operatorname{span}}\left\{\mathcal{X}_{D_{\lambda} \backslash D_{\lambda F}}: n_{i}>0 \Longrightarrow d(\lambda)_{i}=0 \text { and }(\lambda, F) \text { satisfies condition } \mathrm{K}(i)\right\} .
$$

To prove this proposition we need the following result.
Lemma 3.8. Let $i \in\{1, \ldots, k\}$ and $(\lambda, F) \in \mathcal{A}$. Then $D_{\lambda} \backslash D_{\lambda F} \subseteq \partial \Lambda \not e_{i}$ if and only if $d(\lambda)_{i}=0$ and (λ, F) satisfies condition $K(i)$. Moreover, we have

$$
\begin{align*}
\operatorname{ker} \phi_{e_{i}}= & \overline{\operatorname{span}}\left\{\mathcal{X}_{D_{\lambda} \backslash D_{\lambda F}}:(\lambda, F) \in \mathcal{A}, d(\lambda)_{i}=0\right. \tag{3.5}\\
& \quad \text { and }(\lambda, F) \text { satisfies condition } K(i)\} .
\end{align*}
$$

Proof. Suppose $D_{\lambda} \backslash D_{\lambda F} \subseteq \partial \Lambda^{\nexists e_{i}}$. Then we obviously have $d(\lambda)_{i}=0$. Suppose that (λ, F) does not satisfy condition $K(i)$. Then there exists $\mu \in s(\lambda) \Lambda$ with $d(\mu) \geqslant e_{i}$, and $x \in D_{\mu}$ with $x \notin D_{v}$ for all $v \in F$. Consider the boundary path λx. We have $d(\lambda x)_{i}>0$ and $\lambda x \in D_{\lambda} \backslash D_{\lambda F}$. But $d(\lambda x)_{i}>0 \Longrightarrow \lambda x \in \partial \Lambda \geqslant e_{i}$, and this is a contradiction, so (λ, F) satisfies condition $K(i)$.

Now suppose that $d(\lambda)_{i}=0$ and (λ, F) satisfies condition $K(i)$. Assume that $D_{\lambda} \backslash D_{\lambda F} \nsubseteq \partial \Lambda^{\nexists e_{i}}$, so there exists $x \in D_{\lambda} \backslash D_{\lambda F}$ with $x \in \partial \Lambda^{\geqslant e_{i}}$. This implies that $d(x)_{i}>0$. Consider the edge $\mu:=x\left(d(\lambda), d(\lambda)+e_{i}\right)$, which we know exists because $d(\lambda)_{i}=0$. We have $\mu \in s(\lambda) \Lambda$ and $d(\mu)=e_{i}$. The boundary path $\sigma_{d(\lambda)}(x)$ satisfies $\sigma_{d(\lambda)}(x) \in D_{\mu}$ and $\sigma_{d(\lambda)}(x) \notin D_{v}$ for all $v \in F$, and so $D_{\mu} \nsubseteq$ D_{v} for all $v \in F$. But this contradicts that (λ, F) satisfies condition $K(i)$, so we must have $D_{\lambda} \backslash D_{\lambda F} \subseteq \partial \Lambda^{\nexists e_{i}}$.

Now, it follows from Lemma 2.4 and an application of the Stone-Weierstrass Theorem for locally compact spaces that for any open subset U of $\partial \Lambda$ we have

$$
C_{0}(U)=\overline{\operatorname{span}}\left\{\mathcal{X}_{D_{\lambda} \backslash D_{\lambda F}}:(\lambda, F) \in \mathcal{A} \text { and } D_{\lambda} \backslash D_{\lambda F} \subseteq U\right\}
$$

It follows that

$$
\begin{aligned}
\operatorname{ker} \phi_{e_{i}} & =\left\{a \in C_{0}(\partial \Lambda):\left.a\right|_{\partial \Lambda \geqslant e_{i}}=0\right\}=\left\{a \in C_{0}(\partial \Lambda):\left.a\right|_{\overline{\partial \Lambda \geqslant e_{i}}}=0\right\} \\
& =C_{0}\left(\operatorname{int} \partial \Lambda^{\ngtr e_{i}}\right)=\overline{\operatorname{span}}\left\{\mathcal{X}_{D_{\lambda} \backslash D_{\lambda F}}:(\lambda, F) \in \mathcal{A} \text { and } D_{\lambda} \backslash D_{\lambda F} \subseteq \operatorname{int} \partial \Lambda^{\ngtr e_{i}}\right\} \\
& =\overline{\operatorname{span}}\left\{\mathcal{X}_{D_{\lambda} \backslash D_{\lambda F}}:(\lambda, F) \in \mathcal{A} \text { and } D_{\lambda} \backslash D_{\lambda F} \subseteq \partial \Lambda^{\ngtr e_{i}}\right\} \\
& =\overline{\operatorname{span}}\left\{\mathcal{X}_{D_{\lambda} \backslash D_{\lambda F}}:(\lambda, F) \in \mathcal{A}, d(\lambda)_{i}=0,(\lambda, F) \text { satisfies condition } K(i)\right\} .
\end{aligned}
$$

Proof of Proposition 3.7. We have
$\operatorname{ker} \phi_{n}=\left\{a \in C_{0}(\partial \Lambda):\left.a\right|_{\partial \Lambda \geqslant n}=0\right\}=\left\{a \in C_{0}(\partial \Lambda):\left.a\right|_{\partial \Lambda \geqslant n}=0\right\}=C_{0}\left(\operatorname{int} \partial \Lambda^{\geqslant n}\right)$.
Since $m \leqslant n \Longrightarrow \partial \Lambda^{\nexists m} \subseteq \partial \Lambda^{\nexists n}$, it follows that $m \leqslant n \Rightarrow \operatorname{ker} \phi_{m} \subseteq \operatorname{ker} \phi_{n}$. Hence $I_{n}=\bigcap_{\left\{i: n_{i}>0\right\}} \operatorname{ker} \phi_{e_{i}}$, and the result now follows from Lemma 3.8.

Notation 3.9. Let $n \in \mathbb{N}^{k}$. We define

$$
\begin{aligned}
& \mathcal{I}\left(I_{n}\right):=\left\{(\lambda, F) \in \mathcal{A}: D_{\lambda} \backslash D_{\lambda F} \neq \varnothing\right. \text { and } \\
& \left.\qquad n_{i}>0 \Longrightarrow d(\lambda)_{i}=0 \text { and }(\lambda, F) \text { satisfies condition } K(i)\right\}
\end{aligned}
$$

and for $\mu \in \Lambda$ we write $\mu \mathcal{I}\left(I_{n}\right):=\left\{(\mu \lambda, F):(\lambda, F) \in \mathcal{I}\left(I_{n}\right)\right.$ with $\left.s(\mu)=r(\lambda)\right\}$. The reason for introducing this notation is that we can now write

$$
I_{n}=\overline{\operatorname{span}}\left\{\mathcal{X}_{D_{\lambda} \backslash D_{\lambda F}}:(\lambda, F) \in \mathcal{I}\left(I_{n}\right)\right\}
$$

Proposition 3.10. Let $m, n \in \mathbb{N}^{k}$ with $m \leqslant n$. Then we have

$$
\begin{equation*}
X_{m} \cdot I_{n-m}=\overline{\operatorname{span}}\left\{\mathcal{X}_{D_{\lambda} \backslash D_{\lambda F}}:(\lambda, F) \in \mathcal{A}^{m} \cap \lambda(0, m) \mathcal{I}\left(I_{n-m}\right)\right\} \tag{3.6}
\end{equation*}
$$

Proof. We have $X_{m} \cdot I_{n-m}=\overline{\operatorname{span}}\left\{x \cdot a: x \in X_{m}, a \in I_{n-m}\right\}$. To prove that the right-hand side of (3.6) is contained in the left-hand side, we let $m, n \in \mathbb{N}^{k}$ with $m \leqslant n$, and suppose $(\lambda, F) \in \mathcal{A}^{m} \cap \lambda(0, m) \mathcal{I}\left(I_{n-m}\right)$. Then $(\lambda(m, d(\lambda)), F) \in$ $\mathcal{I}\left(I_{n-m}\right)$, and for $x \in \partial \Lambda^{\geqslant m}$ we have

$$
\begin{aligned}
\mathcal{X}_{D_{\lambda} \backslash D_{\lambda F}}(x) & = \begin{cases}1 & \text { if } x(0, d(\lambda))=\lambda \text { and } x(0, d(\lambda v)) \neq \lambda v, \text { for all } v \in F, \\
0 & \text { otherwise }\end{cases} \\
& =\mathcal{X}_{D_{\lambda}}(x) \mathcal{X}_{D_{\lambda(m, d(\lambda))} \backslash D_{\lambda(m, d(\lambda)) F}}\left(\sigma_{m}(x)\right)=\left(\mathcal{X}_{D_{\lambda}} \cdot \mathcal{X}_{D_{\lambda(m, d(\lambda))} \backslash D_{\lambda(m, d(\lambda)) F}}\right)(x)
\end{aligned}
$$

So $\mathcal{X}_{D_{\lambda} \backslash D_{\lambda F}}=\mathcal{X}_{D_{\lambda}} \cdot \mathcal{X}_{D_{\lambda(m, d(\lambda))} \backslash D_{\lambda(m, d(\lambda)) F}} \in X_{m} \cdot I_{n-m}$, and it follows that

$$
\overline{\operatorname{span}}\left\{\mathcal{X}_{D_{\lambda} \backslash D_{\lambda F}}:(\lambda, F) \in \mathcal{A}^{m} \cap \lambda(0, m) \mathcal{I}\left(I_{n-m}\right)\right\} \subset X_{m} \cdot I_{n-m}
$$

It follows from Proposition 3.7 and Proposition 3.5 that

$$
X_{m} \cdot I_{n-m}=\overline{\operatorname{span}}\left\{\mathcal{X}_{D_{\rho} \backslash D_{\rho F}} \cdot \mathcal{X}_{D_{\tau} \backslash D_{\tau G}}:(\rho, F) \in \mathcal{A}^{m} \text { and }(\tau, G) \in \mathcal{I}\left(I_{n-m}\right)\right\}
$$

So to prove that the left-hand side of (3.6) is contained in the right-hand side, it suffices to show that for $(\rho, F) \in \mathcal{A}^{m}$ and $(\tau, G) \in \mathcal{I}\left(I_{n-m}\right)$ the product $\mathcal{X}_{D_{\rho} \backslash D_{\rho F}}$. $\mathcal{X}_{D_{\tau} \backslash D_{\tau G}}$ is an element of the right-hand side. Since σ_{m}^{-1} is continuous, the intersection

$$
\begin{equation*}
\left(D_{\rho} \backslash D_{\rho F}\right) \cap \sigma_{m}^{-1}\left(D_{\tau} \backslash D_{\tau G}\right) \tag{3.7}
\end{equation*}
$$

is an open and compact subset of $D_{\rho} \backslash D_{\rho F}$. Since it is open, we know there exists a subset $\mathcal{J} \subseteq \mathcal{A}^{m}$ such that $\left(D_{\rho} \backslash D_{\rho F}\right) \cap \sigma_{m}^{-1}\left(D_{\tau} \backslash D_{\tau G}\right)=\underset{(\eta, H) \in \mathcal{J}}{\bigcup} D_{\eta} \backslash D_{\eta H}$; since it is compact, there is a finite number, say h, of pairs $\left(\eta_{j}, H_{j}\right) \in \mathcal{J}$ with

$$
\left(D_{\rho} \backslash D_{\rho F}\right) \cap \sigma_{m}^{-1}\left(D_{\tau} \backslash D_{\tau G}\right)=\bigcup_{j=1}^{h} D_{\eta_{j}} \backslash D_{\eta_{j} H_{j}}
$$

We know from Lemma 2.4 that the intersection of sets in the above finite union is a finite, disjoint union of sets of the same form. So it follows that there is a finite number, say l, of pairs $\left(\mu_{j}, L_{j}\right) \in \mathcal{A}^{m}$ and constants c_{j} such that

$$
\begin{equation*}
\mathcal{X}_{D_{\rho} \backslash D_{\rho F}} \cdot \mathcal{X}_{D_{\tau} \backslash D_{\tau G}}=\mathcal{X}_{\left(D_{\rho} \backslash D_{\rho F}\right) \cap \sigma_{m}^{-1}\left(D_{\tau} \backslash D_{\tau G}\right)}=\sum_{j=1}^{l} c_{j} \mathcal{X}_{D_{\mu_{j}} \backslash D_{\mu_{j} L_{j}}} \tag{3.8}
\end{equation*}
$$

To finish the proof, we need to show that each $\left(\mu_{j}, L_{j}\right) \in \mu_{j}(0, m) \mathcal{I}\left(I_{n-m}\right)$. Suppose $n_{i}>m_{i}$ and $d\left(\mu_{j}\right)_{i}>m_{i}$. Then for $x \in D_{\mu_{j}} \backslash D_{\mu_{j} L_{j}}$ we have $\sigma_{m}(x) \in D_{\tau} \backslash D_{\tau G}$
and $\sigma_{m}(x)_{i}>0$. Since $d(\tau)_{i}=0$, there exists a path $\alpha:=\sigma_{m}(x)\left(d(\tau), d(\tau)+e_{i}\right)$ satisfying $\alpha \in s(\tau) \Lambda^{e_{i}}$. Since (τ, G) satisfies condition $K(i)$, we have $D_{\alpha} \subseteq D_{\tilde{\xi}}$ for some $\xi \in G$. But this implies that $\sigma_{m}(x)=\tau \alpha \sigma_{m}(x)\left(d(\tau)+e_{i}, d(x)\right) \in D_{\tau \xi} \subseteq$ $D_{\tau G}$, which contradicts $\sigma_{m}(x) \in D_{\tau} \backslash D_{\tau G}$. So we must have $d\left(\mu_{j}\right)_{i}=m_{i}$.

Now suppose $n_{i}>m_{i}$ and there exists an edge $\zeta \in s\left(\mu_{j}\right) \Lambda^{e_{i}}$ with $D_{\zeta} \nsubseteq D_{v}$ for any $v \in L_{j}$. Let $x \in s(\zeta) \partial \Lambda$. Then $\mu_{j} \zeta x \in D_{\mu_{j}} \backslash D_{\mu_{j} L_{j}}$, which implies

$$
\begin{equation*}
\sigma_{m}\left(\mu_{j} \zeta x\right) \in D_{\tau} \backslash D_{\tau G} \tag{3.9}
\end{equation*}
$$

Since $d(\tau)_{i}=0$, there exists a path $\beta:=\sigma_{m}\left(\mu_{j} \zeta x\right)\left(d(\tau), d(\tau)+e_{i}\right)$ satisfying $\beta \in$ $s(\tau) \Lambda^{e_{i}}$. Since (τ, G) satisfies condition $K(i)$, we have $D_{\beta} \subseteq D_{\xi}$ for some $\xi \in G$. But this implies that $\sigma_{m}\left(\mu_{j} \zeta x\right)=\tau \beta \sigma_{m}\left(\mu_{j} \zeta x\right)\left(d(\tau)+e_{i}, d(x)\right) \in D_{\tau \xi} \subseteq D_{\tau G}$, which contradicts (3.9). So $D_{\zeta} \subseteq D_{v}$ for some $v \in L_{j}$, and hence (μ_{j}, L_{j}) satisfies condition $K(i)$.

Notation 3.11. Let $m, n \in \mathbb{N}^{k}$ with $m \leqslant n$. We denote

$$
\mathcal{I}\left(X_{m} \cdot I_{n-m}\right):=\left\{(\lambda, F): D_{\lambda} \backslash D_{\lambda F} \neq \varnothing,(\lambda, F) \in \mathcal{A}^{m} \cap \lambda(0, m) \mathcal{I}\left(I_{n-m}\right)\right\}
$$

So we have

$$
X_{m} \cdot I_{n-m}=\overline{\operatorname{span}}\left\{\mathcal{X}_{D_{\lambda} \backslash D_{\lambda F}}:(\lambda, F) \in \mathcal{I}\left(X_{m} \cdot I_{n-m}\right)\right\}
$$

Proposition 3.12. The set $S=\left\{S_{\lambda}: \lambda \in \Lambda\right\}$ satisfies (CK4)

$$
\prod_{\mu \in \mathcal{F}}\left(S_{v}-S_{\mu} S_{\mu}^{*}\right)=0
$$

for all $v \in \Lambda^{0}$ and all nonempty finite exhaustive sets $\mathcal{F} \subset r^{-1}(v)$.
To prove this proposition we need the following results. For a finite subset $G \subset \Lambda$ we denote by $\bigvee d(G)$ the element $\bigvee_{\mu \in G} d(\mu)$ of \mathbb{N}^{k}.

Lemma 3.13. Let $v \in \Lambda^{0}$ and $\mathcal{F} \subseteq v \Lambda$ a finite exhaustive set; $n \in \mathbb{N}^{k}$ with $n \geqslant \vee d(\mathcal{F})$ and $m \in \mathbb{N}^{k}$ with $m \leqslant n ;$ and $\lambda \in v \Lambda$ and $F \subseteq s(\lambda) \Lambda$ with $(\lambda, F) \in$ $\mathcal{I}\left(X_{m} \cdot I_{n-m}\right)$. Then there exists $\eta \in \mathcal{F}$ such that λ extends η.

Proof. Suppose λ does not extend any element of \mathcal{F}. Since $D_{\lambda} \backslash D_{\lambda F} \neq \varnothing$, there exists a boundary path $x \in D_{\lambda} \backslash D_{\lambda F}$. Since \mathcal{F} is exhaustive, there exists $\eta \in \mathcal{F}$ with $x(0, d(\eta))=\eta$. So $x \in D_{\eta} \cap\left(D_{\lambda} \backslash D_{\lambda F}\right)$, and the pair $\left(x_{\lambda}^{\eta}, x_{\eta}^{\lambda}\right) \in$ $\Lambda^{\min }(\lambda, \eta)$. Since λ does not extend η, there exists $i \in\{1, \ldots, k\}$ with $d(\lambda)_{i}<$ $d(\eta)_{i}$, and hence $d\left(x_{\lambda}^{\eta}\right) \geqslant e_{i}$. Since $m_{i} \leqslant d(\lambda)_{i}<d(\eta)_{i} \leqslant n_{i}$, we know (λ, F) satisfies condition $\mathrm{K}(i)$, and hence $D_{x_{\lambda}^{\eta}} \subseteq D_{v}$ for some $v \in F$. But this implies that $x \in D_{\lambda x_{\lambda}^{\eta}} \subseteq D_{\lambda v}$, which contradicts the fact $x \notin D_{\lambda F}$. So λ must extend an element of \mathcal{F}.

Lemma 3.14. Suppose $n \in \mathbb{N}^{k}$ and $\mu \in \Lambda$ with $d(\mu) \leqslant n$. Consider the element \tilde{x} given by $\tilde{x}:=\left(0, \ldots, 0, \mathcal{X}_{D_{\lambda} \backslash D_{\lambda F}}, 0, \ldots, 0\right) \in \widetilde{X}_{n}$, where $(\lambda, F) \in \mathcal{I}\left(X_{m} \cdot I_{n-m}\right)$ for
$m \leqslant n$. Then we have

$$
\tilde{l}_{d(\mu)}^{n}\left(\Theta_{\mu, \mu}\right)(\widetilde{x})= \begin{cases}\widetilde{x} & \text { if } \lambda \text { extends } \mu, \\ 0 & \text { otherwise } .\end{cases}
$$

Proof. It follows from (1.2) that for $r \leqslant n$ we have

$$
\tilde{\iota}_{d(\mu)}^{n}\left(\Theta_{\mu, \mu}\right)(\widetilde{x})(r)=l_{d(\mu)}^{r}\left(\Theta_{\mu, \mu}\right)(\widetilde{x}(r))= \begin{cases}\iota_{d(\mu)}^{m}\left(\Theta_{\mu, \mu}\right)\left(\mathcal{X}_{D_{\lambda} \backslash D_{\lambda F}}\right) & \text { if } r=m \tag{3.10}\\ 0 & \text { otherwise }\end{cases}
$$

Now assume $m \geqslant d(\mu)$. A straightforward calculation shows that

$$
\begin{equation*}
\mathcal{X}_{D_{\lambda} \backslash D_{\lambda F}}=\mathcal{X}_{D_{\lambda(d(\mu), d(\lambda))} \backslash D_{\lambda(0, d(\mu))}} \mathcal{X}_{D_{\lambda(d(\mu), d(\lambda)) F}} . \tag{3.11}
\end{equation*}
$$

We also have

$$
\begin{aligned}
\Theta_{\mu, \mu}\left(\mathcal{X}_{D_{\lambda(0, d(\mu))}}\right)(x) & =\left(\mathcal{X}_{D_{\mu}} \cdot\left\langle\mathcal{X}_{D_{\mu}}^{*}, \mathcal{X}_{D_{\lambda(0, d(\mu))}}\right\rangle_{d(\mu)}\right)(x) \\
& =\mathcal{X}_{D_{\mu}}(x)\left\langle\mathcal{X}_{D_{\mu}}^{*}, \mathcal{X}_{D_{\lambda(0, d(\mu))}}\right\rangle_{d(\mu)}\left(\sigma_{d(\mu)}(x)\right) \\
& = \begin{cases}\sum_{d(\mu)}(y)=\sigma_{d(\mu)}(x) \\
0 & \mathcal{X}_{D_{\mu}}(y) \mathcal{X}_{D_{\lambda(0, d(\mu))}}(y) \\
\text { if } x(0, d(\mu))=\mu,\end{cases} \\
& = \begin{cases}1 & \text { if } \lambda(0, d(\mu))=\mu \text { and } x(0, d(\mu))=\mu, \\
0 & \text { otherwise; }\end{cases} \\
(3.12) \quad & =\left\{\begin{array}{ll}
\mathcal{X}_{D_{\mu}}(x) & \text { if } \lambda \text { extends } \mu, \\
0 & \text { otherwise; }
\end{array}= \begin{cases}\mathcal{X}_{D_{\lambda(0, d(\mu))}}(x) & \text { if } \lambda \text { extends } \mu, \\
0 & \text { otherwise. }\end{cases} \right.
\end{aligned}
$$

It now follows from equations (3.11) and (3.12) that

$$
\begin{align*}
\iota_{d(\mu)}^{m}\left(\Theta_{\mu, \mu}\right)\left(\mathcal{X}_{D_{\lambda} \backslash D_{\lambda F}}\right) & =\iota_{d(\mu)}^{m}\left(\Theta_{\mu, \mu}\right)\left(\mathcal{X}_{D_{\lambda(0, d(\mu))}} \mathcal{X}_{D_{\lambda(d(\mu), d(\lambda))} \backslash D_{\lambda(d(\mu), d(\lambda)) F}}\right) \\
& =\Theta_{\mu, \mu}\left(\mathcal{X}_{D_{\lambda(0, d(\mu))}}\right) \mathcal{X}_{\left.D_{\lambda(d(\mu), d(\lambda))}\right) D_{\lambda(d(\mu), d(\lambda)) F}} \\
& = \begin{cases}\mathcal{X}_{D_{\lambda(0, d(\mu))}} \mathcal{X}_{D_{\lambda(d(\mu), d(\lambda))} \backslash D_{\lambda(d(\mu), d(\lambda)) F}} & \text { if } \lambda \text { extends } \mu, \\
0 & \text { otherwise; }\end{cases} \\
& = \begin{cases}\mathcal{X}_{D_{\lambda} \backslash D_{\lambda F}} & \text { if } \lambda \text { extends } \mu, \\
0 & \text { otherwise. }\end{cases} \tag{3.13}
\end{align*}
$$

Equations (3.10) and (3.13) now give the result.
We are now ready to prove that S satisfies relation (CK4). The proof runs through the main argument from the proof of Proposition 5.4 of [23].

Proof of Proposition 3.12. Fix $v \in \Lambda^{0}$ and a finite exhaustive set $\mathcal{F} \subset v \Lambda$. We must show that

$$
\prod_{\mu \in \mathcal{F}}\left(S_{v}-S_{\mu} S_{\mu}^{*}\right)=0
$$

Recall from [21] that for a nonempty subset G of $\mathcal{F}, \Lambda^{\min }(G)$ denotes the set $\{\lambda \in \Lambda: d(\lambda)=\bigvee d(G), \lambda$ extends μ for all $\mu \in G\}$. Recall also that $\bigvee \mathcal{F}:=$ $\bigcup_{G \subset \mathcal{F}} \Lambda^{\mathrm{min}}(G)$ is finite and is closed under minimal common extensions. We have

$$
\prod_{\mu \in \mathcal{F}}\left(S_{v}-S_{\mu} S_{\mu}^{*}\right)=S_{v}+\sum_{\substack{\varnothing \neq G \subset F \\ \lambda \in \Lambda^{\min }(G)}}(-1)^{|G|} S_{\lambda} S_{\lambda}^{*}=j_{X}^{(0)}\left(\Theta_{v, v}\right)+\sum_{\substack{\varnothing \neq G \subset F \\ \lambda \in \Lambda^{\min }(G)}}(-1)^{|G|} j_{X}^{(\bigvee d(G))}\left(\Theta_{\lambda, \lambda}\right),
$$

where the first equation can be obtained through repeated application of (CK3). Since j_{X} is Cuntz-Pimsner covariant, it suffices to show that for each $q \in \mathbb{N}^{k}$ there exists $r \geqslant q$ such that for all $s \geqslant r$, we have

$$
\widetilde{\iota}_{0}^{s}\left(\Theta_{v, v}\right)+\left.\sum_{\substack{\varnothing \neq G \subset F \\ \lambda \in \Lambda^{\min }(G)}}(-1)^{\mid G}\right|_{\tau_{\bigvee d(G)}^{s}}\left(\Theta_{\lambda, \lambda}\right)=0 .
$$

For this, fix $q \in \mathbb{N}^{k}$, let $r=q \vee(\bigvee d(\mathcal{F}))$ and fix $s \geqslant r$. It suffices to show that

$$
\begin{equation*}
\left(\widetilde{\iota}_{0}^{s}\left(\Theta_{v, v}\right)+\sum_{\substack{\varnothing \neq G \subset F \\ \lambda \in \Lambda^{\min }(G)}}(-1)^{|G|_{\bigvee},{ }_{V}(G)}\left(\Theta_{\lambda, \lambda}\right)\right)(\widetilde{x})=0 \tag{3.14}
\end{equation*}
$$

where $\tilde{x} \in \widetilde{X}_{s}$ is given by $\tilde{x}:=\left(0, \ldots, 0, \mathcal{X}_{D_{\rho} \backslash D_{\rho F}}, 0, \ldots, 0\right)$, for $(\rho, F) \in \mathcal{I}\left(X_{t} \cdot I_{s-t}\right)$, $t \leqslant s$. For any $\mu \in \mathcal{F}$ we have $s \geqslant d(\mu)$. It then follows from Lemma 3.14 that

$$
\widetilde{\iota}_{d(\mu)}^{s}\left(\Theta_{\mu, \mu}\right)(\widetilde{x})= \begin{cases}\widetilde{x} & \text { if } \rho \text { extends } \mu, \tag{3.15}\\ 0 & \text { otherwise }\end{cases}
$$

Fix a nonempty subset G of \mathcal{F}. Then

$$
\left(\prod_{\mu \in G} \widetilde{\iota}_{d(\mu)}^{s}\left(\Theta_{\mu, \mu}\right)\right)(\widetilde{x})= \begin{cases}\widetilde{x} & \text { if } \rho \text { extends each } \mu \in G \\ 0 & \text { otherwise }\end{cases}
$$

The factorisation property implies that ρ extends each $\mu \in G$ if and only if there exists $\lambda \in \Lambda^{\min }(G)$ such that ρ extends λ. The factorisation property also implies that if there does exist such a $\lambda \in \Lambda^{\min }(G)$, then it is necessarily unique. We therefore have

$$
\left(\prod_{\mu \in G} \widetilde{\iota}_{d(\mu)}^{s}\left(\Theta_{\mu, \mu}\right)\right)(\widetilde{x})=\left(\sum_{\lambda \in \Lambda^{\min (G)}} \widetilde{\iota}_{\vee}^{s} d(G)\left(\Theta_{\mu, \mu}\right)\right)(\widetilde{x})
$$

Since G was an arbitrary subset of \mathcal{F}, we have

$$
\begin{aligned}
\left(\prod_{\mu \in \mathcal{F}}\left(\tau_{0}^{s}\left(\Theta_{v, v}\right)-\widetilde{\imath}_{d(\mu)}^{s}\left(\Theta_{\mu, \mu}\right)\right)\right)(\widetilde{x}) & =\left(\widetilde{\iota}_{0}^{s}\left(\Theta_{v, v}\right)+\sum_{\varnothing \neq G \subset \mathcal{F}}\left((-1)^{|G|} \prod_{\mu \in G} \widetilde{\iota}_{d(\mu)}^{s}\left(\Theta_{\mu, \mu}\right)\right)\right)(\widetilde{x}) \\
& =\left(\widetilde{\iota}_{0}^{s}\left(\Theta_{v, v}\right)+\sum_{\substack{\varnothing \neq G \subset F \\
\lambda \in \Lambda^{\min }(G)}}(-1)^{|G|} \widetilde{\iota}_{\bigvee d(G)}^{s}\left(\Theta_{\lambda, \lambda}\right)\right)(\widetilde{x}) .
\end{aligned}
$$

Now we can apply Lemma 3.13 to see that there exists $\eta \in \mathcal{F}$ such that ρ extends η. It now follows from equation (3.15) that

$$
\begin{aligned}
& \left(\prod_{\mu \in \mathcal{F}}\left(\widetilde{\iota}_{0}^{s}\left(\Theta_{v, v}\right)-\widetilde{\iota}_{d(\mu)}^{s}\left(\Theta_{\mu, \mu}\right)\right)\right)(\widetilde{x}) \\
& \quad=\left(\prod_{\mu \in \mathcal{F} \backslash\{\eta\}}\left(\widetilde{\iota}_{0}^{s}\left(\Theta_{v, v}\right)-\widetilde{\iota}_{d(\mu)}^{s}\left(\Theta_{\mu, \mu}\right)\right)\right)\left(\left(\widetilde{\iota}_{0}^{s}\left(\Theta_{v, v}\right)-\widetilde{\iota}_{d(\eta)}^{s}\left(\Theta_{\eta, \eta}\right)\right)\right)(\widetilde{x})=0,
\end{aligned}
$$

and hence equation (3.14) is established.
Proof of Theorem 3.1. Lemma 3.2, Proposition 3.3 and Proposition 3.12 show that the set $S:=\left\{S_{\lambda}=j_{X}\left(\mathcal{X}_{D_{\lambda}}\right): \lambda \in \Lambda\right\}$ is a family of partial isometries satisfying the Cuntz-Krieger relations (CK1)-(CK4). It follows from the universal property of $C^{*}(\Lambda)$ that there exists a homomorphism $\pi: C^{*}(\Lambda) \rightarrow \mathcal{N} \mathcal{O}(X)$ such that $\pi\left(s_{\lambda}\right)=j_{X}\left(\mathcal{X}_{D_{\lambda}}\right)$ for each $\lambda \in \Lambda$. We know from Proposition 3.12 of [23] that $\mathcal{N O}(X)=\overline{\operatorname{span}}\left\{j_{X}(x) j_{X}(y)^{*}: x, y \in X\right\}$. For each $\lambda \in \Lambda$ and $F \subseteq s(\lambda) \Lambda$ we have $\mathcal{X}_{D_{\lambda} \backslash D_{\lambda F}}=\mathcal{X}_{D_{\lambda}}-\sum_{v \in F} \mathcal{X}_{D_{\lambda v}}$, and so

$$
j_{X}\left(\mathcal{X}_{D_{\lambda} \backslash D_{\lambda F}}\right)=j_{X}\left(\mathcal{X}_{D_{\lambda}}\right)-j_{X}\left(\sum_{v \in F} \mathcal{X}_{D_{\lambda v}}\right)=S_{\lambda}-\sum_{v \in F} S_{\lambda v}
$$

It then follows from Proposition 3.5 that S generates $\mathcal{N} \mathcal{O}(X)$, and hence π is surjective. It follows from Lemma 5.13(2) and Lemma 5.15 of [5] that each $D_{\lambda} \neq \varnothing$, and hence each $\mathcal{X}_{D_{\lambda}} \neq 0$. It then follows from Theorem 4.1 of [23] that each $S_{\lambda} \neq$ 0 . (Note that the quasi-lattice ordered group $\left(\mathbb{N}^{k}, \mathbb{Z}^{k}\right)$ satisfies condition (3.5) of [23], and so Theorem 4.1 of [23] can indeed be applied.) Since π intertwines the gauge actions of \mathbb{T}^{k} on $\mathcal{N O}(X)$ and $C^{*}(\Lambda)$, the gauge-invariant uniqueness theorem for $C^{*}(\Lambda)$ ([22], Theorem 4.2) implies that π is an isomorphism.

4. CONNECTIONS TO SEMIGROUP CROSSED PRODUCTS

We begin this section by building a crossed product from a finitely-aligned k-graph Λ. For each $n \in \mathbb{N}^{k}$ we define a partial endomorphism $\alpha_{n}: C_{0}(\partial \Lambda) \rightarrow$ $C_{0}\left(\partial \Lambda^{\geqslant n}\right)$ given by $\alpha_{n}(f)=f \circ \sigma_{n}$. We claim that for $f \in C_{\mathrm{C}}\left(\partial \Lambda^{\geqslant n}\right)$ the function $L_{n}(f)$ given by

$$
L_{n}(f)(x)= \begin{cases}\sum_{\sigma_{n}(y)=x} f(y) & \text { if } x \in \sigma_{n}(\partial \Lambda) \\ 0 & \text { otherwise }\end{cases}
$$

is well-defined and is an element of $C_{c}(\partial \Lambda)$. We can cover supp f with finitely many sets U_{i} such that $\sigma_{n}\left(U_{i}\right)$ is open, $\overline{\sigma_{n}\left(U_{i}\right)}$ is compact, and $\sigma_{n} \mid U_{i}$ is a homeomorphism. The function f must be zero on all but a finite number of points
in $\sigma_{n}^{-1}(x)$. Then near any $x \in \sigma_{n}(\partial \Lambda), L_{n}(f)=\sum_{\left\{i: x \in \sigma_{n}\left(U_{i}\right)\right\}} f \circ\left(\sigma_{n} \mid U_{i}\right)^{-1}$ is a finite sum of continuous functions with compact support. Since $\sigma_{n}(x)$ is open, $L_{n}(f) \in C_{\mathrm{c}}(\partial \Lambda)$, and the claim is proved. Routine calculations show that each L_{n} satisfies the transfer-operator identity: $L_{n}\left(\alpha_{n}(f) g\right)=f L_{n}(g)$ for all $f \in C_{0}(\partial \Lambda)$, $g \in C_{\mathrm{c}}\left(\partial \Lambda^{\geqslant n}\right)$. Adapting Exel's construction of a Hilbert bimodule [6] to accommodate the partial maps, and applying it to $\left(C_{0}(\partial \Lambda), \alpha_{n}, L_{n}\right)$, gives the Hilbert $C_{0}(\partial \Lambda)$-bimodule X_{n} from Section 2. So we consider the boundary-path product system X, and take the suggested route of Section 9 of [2] for defining a crossed product for the system $\left(C_{0}(\partial \Lambda), \mathbb{N}^{k}, \alpha, L\right)$:

DEFINITION 4.1. Let Λ be a finitely-aligned k-graph, and consider the product system X given in Proposition 2.7. We define the crossed product $C_{0}(\partial \Lambda) \rtimes_{\alpha, L}$ \mathbb{N}^{k} to be the Cuntz-Nica-Pimsner algebra $\mathcal{N O}(X)$.

COROLLARY 4.2. Let Λ be a finitely-aligned k-graph. Then $C_{0}(\partial \Lambda) \rtimes_{\alpha, L} \mathbb{N}^{k} \cong$ $C^{*}(\Lambda)$.

For the remainder of this section we discuss the relationship between the crossed product $C_{0}(\partial \Lambda) \rtimes_{\alpha, L} \mathbb{N}^{k}$ and the other crossed products in the literature which are given via transfer operators; namely, the non-unital version of Exel's crossed product [2], Exel and Royer's crossed product by a partial endomorphism [10], and Larsen's crossed product for semigroups [17]. The upshot of this discussion is that, when these crossed products can be defined, they coincide with $C_{0}(\partial \Lambda) \rtimes_{\alpha, L} \mathbb{N}^{k}$. To be make things clear, we use the following notation.

Notation 4.3. (i) For (A, β, \mathcal{L}) a dynamical system in the sense of Exel and Royer [10] we denote by $A \rtimes_{\beta, \mathcal{L}}^{\mathrm{ER}} \mathbb{N}$ the crossed product given in Definition 1.6 of [10].
(ii) For (A, β, \mathcal{L}) a dynamical system in the sense of [2], [6] we denote by $A \rtimes{ }_{\beta, \mathcal{L}}^{\mathrm{BRV}} \mathbb{N}$ the crossed product given in Section 4 of [2].
(iii) For P an abelian semigroup and $(A, P, \beta, \mathcal{L})$ a dynamical system in the sense of Larsen [17] we denote by $A \rtimes_{\beta, \mathcal{L}}^{\mathrm{Lar}} P$ the crossed product given in Definition 2.2 of [17].
4.1. Directed graphs. Suppose Λ is a 1-graph. Then for each $\lambda, \mu \in \Lambda$ we have $\left|\Lambda^{\min }(\lambda, \mu)\right| \in\{0,1\}$, and so Λ is finitely aligned. As shown in Examples 10.110.2 of [20], Λ is the path category of the directed graph $E:=\left(\Lambda^{0}, d^{-1}(1), r, s\right)$. We know from Proposition B. 1 of [22] that $C^{*}(\Lambda)$ coincides with the graph algebra $C^{*}(E)$ as given in [12]. We denote by E^{*} the set of finite paths in E and by E^{∞} the set of infinite paths in E. We define $E_{\text {inf }}^{*}:=\left\{\mu \in E^{*}:\left|r^{-1}(s(\mu))\right|=\infty\right\}$ and $E_{\mathrm{s}}^{*}:=\left\{\mu \in E^{*}: r^{-1}(s(\mu))=\varnothing\right\}$, so E_{inf}^{*} is the set of paths whose source is an infinite receiver, and E_{s}^{*} is the set of paths whose source is a source in E. Then the boundary-path space $\partial \Lambda$ coincides with $\partial E:=E^{\infty} \cup E_{\mathrm{inf}}^{*} \cup E_{\mathrm{s}}^{*}$. We now freely use directed graphs E in place of 1-graphs Λ in Definition 4.1.

Proposition 4.4. Let E be a directed graph. Then $\left(C_{0}(\partial E), \alpha, L\right)$ is a dynamical system in the sense of [10], and we have $C_{0}(\partial E) \rtimes_{\alpha, L} \mathbb{N} \cong C_{0}(\partial E) \rtimes_{\alpha, L}^{E R} \mathbb{N}$.

To prove this proposition we need the following result.
Proposition 4.5. Let (A, β, \mathcal{L}) be a dynamical system in the sense of [10], and consider the Hilbert A-bimodule M constructed in Section 1 of [10]. Then $A \rtimes_{\beta, \mathcal{L}}^{\mathrm{ER}} \mathbb{N}$ is isomorphic to Katsura's Cuntz-Pimsner algebra \mathcal{O}_{M} [13].

Proof. The arguments in Section 3 of [1] (or Section 4 of [2]) extend across to this setting, except $A \rtimes \underset{\beta, \mathcal{L}}{\mathrm{ER}} \mathbb{N}$ is defined by modding out redundancies (a, k) with $a \in(\operatorname{ker} \phi)^{\perp} \cap \phi^{-1}(\mathcal{K}(M))$ instead of $\overline{A \alpha(A) A} \cap \phi^{-1}(\mathcal{K}(M))$. But $(\operatorname{ker} \phi)^{\perp} \cap$ $\phi^{-1}(\mathcal{K}(M))$ is precisely the ideal involved in Katsura's definition of \mathcal{O}_{M} ([13], Definition 3.5).

Proof of Proposition 4.4. The construction of the Hilbert A-bimodule M from [10] gives X_{1}. We know from Proposition 5.3 of [23] that $\mathcal{N O}(X)$ is isomorphic to Katsura's $\mathcal{O}_{X_{1}}$. We know from Proposition 4.5 that $C_{0}(\partial E) \rtimes_{\alpha, L}^{E R} \mathbb{N} \cong \mathcal{O}_{M}$. So we have

$$
C_{0}(\partial E) \rtimes_{\alpha, L} \mathbb{N}=\mathcal{N} \mathcal{O}(X) \cong \mathcal{O}_{X_{1}}=\mathcal{O}_{M} \cong C_{0}(\partial E) \rtimes_{\alpha, L}^{\mathrm{ER}} \mathbb{N} .
$$

4.2. LOCALLY-FINITE DIRECTED GRAPHS WITH NO SOURCES. For a locally-finite directed graph $\Lambda:=E$ with no sources we have $\partial E=E^{\infty}$. We denote by σ the backward shift on E^{∞}, and α_{E} the endomorphism of $C_{0}\left(E^{\infty}\right)$ given by $\alpha_{E}(f)=$ $f \circ \sigma$. So $\alpha_{E}=\alpha_{1}$. For each $f \in C_{0}\left(E^{\infty}\right)$ we denote by $L_{E}(f)$ the function given by

$$
L_{E}(f)(x)= \begin{cases}\frac{1}{\left|\sigma^{-1}(x)\right|} \sum_{\sigma(y)=x} f(y) & \text { if } x \in \sigma\left(E^{\infty}\right) \\ 0 & \text { otherwise }\end{cases}
$$

So L_{E} is the normalised version of L_{1}. It is proved in Section 2.1 of [2] that L_{E} is a transfer operator for $\left(C_{0}\left(E^{\infty}\right), \alpha_{E}\right)$.

Proposition 4.6. Let E be a locally-finite directed graph with no sources. Then we have $C_{0}\left(E^{\infty}\right) \rtimes_{\alpha, L} \mathbb{N} \cong C_{0}\left(E^{\infty}\right) \rtimes_{\alpha_{E}, L_{E}}^{\text {BRV }} \mathbb{N}$.

Proof. Recall the construction of the Hilbert $C_{0}\left(E^{\infty}\right)$-bimodule $M_{L_{E}}$ ([2], Section 3), and in particular that $q: C_{0}\left(E^{\infty}\right) \rightarrow M_{L_{E}}$ denotes the quotient map. Since E is locally finite, the shift σ is proper. We can use this fact to find for each $x \in E^{\infty}$ an open neighbourhood V of $\sigma(x)$ such that $\left|\sigma^{-1}(v)\right|=\left|\sigma^{-1}(\sigma(x))\right|$ for each $v \in V$, and it follows that the map $d: E^{\infty} \rightarrow \mathbb{C}$ given by $d(x)=\sqrt{\left|\sigma^{-1}(\sigma(x))\right|}$ is continuous. Straightforward calculations show that $U: C_{C}\left(E^{\infty}\right) \rightarrow M_{L_{E}}$ given by $U(f)=q(d f)$ extends to an isomorphism of X_{1} onto $M_{L_{E}}$. So $\mathcal{O}_{X_{1}} \cong \mathcal{O}_{M_{L_{E}}}$. Since E has no sources, the homomorphism $\phi: C_{0}\left(E^{\infty}\right) \rightarrow \mathcal{L}\left(M_{L_{E}}\right)$ giving the left action on $M_{L_{E}}$ is injective, and so $(\operatorname{ker} \phi)^{\perp}=C_{0}\left(E^{\infty}\right)$. It then follows from

Corollary 4.2 of [2] that $C_{0}\left(E^{\infty}\right) \rtimes_{\alpha_{E}, L_{E}}^{\mathrm{BRV}} \mathbb{N} \cong \mathcal{O}_{M_{L_{E}}}$. Finally, we know from Proposition 5.3 of [23] that $\mathcal{N} \mathcal{O}(X) \cong \mathcal{O}_{X_{1}}$, so we have

$$
C_{0}\left(E^{\infty}\right) \rtimes_{\alpha, L} \mathbb{N}=\mathcal{N} \mathcal{O}(X) \cong \mathcal{O}_{X_{1}} \cong \mathcal{O}_{M_{L_{E}}} \cong C_{0}\left(E^{\infty}\right) \rtimes_{\alpha_{E}, L_{E}}^{\mathrm{BRV}} \mathbb{N} .
$$

4.3. Regular k-Graphs. We now examine how $C_{0}(\partial \Lambda) \rtimes_{\alpha, L} \mathbb{N}^{k}$ fits in with the theory of Larsen's semigroup crossed products [17].

If Λ is a row-finite k-graph with no sources, then $\partial \Lambda$ is the set Λ^{∞} of all graph morphisms from $\Omega_{k,(\infty, \ldots, \infty)}$ to Λ, and the shift maps are everywhere defined. So α is an action by endomorphisms. We say a k-graph Λ is regular if it is rowfinite with no sources, and there exists $M_{1}, \ldots, M_{k} \in \mathbb{N} \backslash\{0\}$ such that for each $i \in\{1, \ldots, k\}$ we have $\left|\Lambda^{e_{i}} v\right|=M_{i}$ for all $v \in \Lambda^{0}$. For each $x \in \Lambda^{\infty}$ and $n \in \mathbb{N}^{k}$ define

$$
\omega(n, x):=\left|\sigma_{n}^{-1}\left(\sigma_{n}(x)\right)\right|^{-1}=\prod_{i=1}^{k} M_{i}^{-n_{i}}
$$

Then for each $f \in C_{0}\left(\Lambda^{\infty}\right)$ the map $\mathcal{L}_{n}(f)$ given by

$$
\mathcal{L}_{n}(f)(x)= \begin{cases}\sum_{\sigma_{n}(y)=x} \omega(n, y) f(y) & \text { if } x \in \sigma_{n}\left(\Lambda^{\infty}\right) \\ 0 & \text { otherwise }\end{cases}
$$

is a transfer operator for $\left(C_{0}\left(\Lambda^{\infty}\right), \alpha_{n}\right)$. Simple calculations show that

$$
\sum_{\sigma_{n}(y)=x} \omega(n, y)=1
$$

for all $x \in \Lambda^{\infty}, n \in \mathbb{N}^{k}$, and that $\omega(m+n, x)=\omega(m, x) \omega\left(n, \sigma_{m}(x)\right)$ for all $x \in$ $\Lambda^{\infty}, m, n \in \mathbb{N}^{k}$. Hence Proposition 2.2 of [9], which still holds in the non-unital setting, gives an action \mathcal{L} of \mathbb{N}^{k} of transfer operators on $C_{0}\left(\Lambda^{\infty}\right)$. It follows that $\left(C_{0}\left(\Lambda^{\infty}\right), \mathbb{N}^{k}, \alpha, \mathcal{L}\right)$ is a dynamical system in the sense of Larsen ([17], Section 2).

Proposition 4.7. Let Λ be a regular k-graph. Then we have $C_{0}\left(\Lambda^{\infty}\right) \rtimes_{\alpha, L} \mathbb{N}^{k} \cong$ $C_{0}\left(\Lambda^{\infty}\right) \rtimes_{\alpha, \mathcal{L}}^{\text {Lar }} \mathbb{N}^{k}$.

Proof. We apply the construction in Section 3.2 of [17] to $\left(C_{0}\left(\Lambda^{\infty}\right), \mathbb{N}^{k}, \alpha, \mathcal{L}\right)$ to form a product system $M=\bigcup_{n \in \mathbb{N}^{k}} M_{\mathcal{L}_{n}}$, and then Proposition 4.3 of [17] says $C_{0}\left(\Lambda^{\infty}\right) \rtimes_{\alpha, \mathcal{L}}^{\text {Lar }} \mathbb{N}^{k}$ is isomorphic to Fowler's Cuntz-Pimsner algebra $\mathcal{O}(M)$ ([11], Proposition 2.9). Suppose $M_{1}, \ldots, M_{k} \in \mathbb{N} \backslash\{0\}$ such that for each $i \in\{1, \ldots, k\}$ we have $\left|\Lambda^{e_{i}} v\right|=M_{i}$ for all $v \in \Lambda^{0}$. For each $n \in \mathbb{N}^{k}$ denote $M_{n}:=\prod_{i=1}^{k} M_{i}^{-n_{i}}$. Then the map $f \mapsto q_{n}\left(\sqrt{M_{n}} f\right)$ from $C_{c}\left(\Lambda^{\infty}\right)$ to $M_{\mathcal{L}_{n}}$ extends to an isomorphism of X_{n} onto $M_{\mathcal{L}_{n}}$. These maps induce an isomorphism of the product systems X and M (observe the formulae for multiplication within X (Proposition 2.2) and M ([17], Equation 3.8). So $\mathcal{O}(X) \cong \mathcal{O}(M)$.

Recall that each X_{n} is constructed from the topological graph $\left(\Lambda^{\infty}, \Lambda^{\infty}, \sigma_{n}, \iota\right)$, where ι is the inclusion map. It then follows from Proposition 1.24 of [14] that each ϕ_{n} is injective and acts by compact operators. So we can apply Corollary 5.2 of [23] to see that $\mathcal{N} \mathcal{O}(X)$ coincides with $\mathcal{O}(X)$. So we have

$$
C_{0}\left(\Lambda^{\infty}\right) \rtimes_{\alpha, L} \mathbb{N}^{k}=\mathcal{N} \mathcal{O}(X)=\mathcal{O}(X) \cong \mathcal{O}(M) \cong C_{0}\left(\Lambda^{\infty}\right) \rtimes_{\alpha, \mathcal{L}}^{\mathrm{Lar}} \mathbb{N}^{k}
$$

4.4. CONCLUSION. The results in this section justify our decision to define the crossed product $C_{0}(\partial \Lambda) \rtimes_{\alpha, L} \mathbb{N}^{k}$ to be the Cuntz-Nica-Pimsner algebra $\mathcal{N} \mathcal{O}(X)$, and we propose that the same definition is made for a general crossed product by a quasi-lattice ordered semigroup of partial endomorphisms and partiallydefined transfer operators. The problem is that Sims and Yeend's Cuntz-NicaPimsner algebra is only appropriate for a particular family (containing \mathbb{N}^{k}) of quasi-lattice ordered semigroups. The "correct" definition of a Cuntz-Pimsner algebra of a product system over an arbitrary quasi-lattice ordered semigroup is yet to be found. (See [23], [3] for more discussion.)

5. APPENDIX

Recall that for (G, P) a quasi-lattice ordered group, and X a product system over P of Hilbert bimodules, we say that X is compactly-aligned if for all $p, q \in P$ such that $p \vee q<\infty$, and for all $S \in \mathcal{K}\left(X_{p}\right)$ and $T \in \mathcal{K}\left(X_{q}\right)$, we have $\iota_{p}^{p \vee q}(S) \iota_{q}^{p \vee q}(T) \in \mathcal{K}\left(X_{p \vee q}\right)$.

Proposition 5.1. The product system X constructed in Section 2 is compactlyaligned.

We start with a definition and some notation.
DEfinition 5.2. Let $n \in \mathbb{N}^{k}$. We say that a subset $\mathcal{J} \subseteq \mathcal{A}^{n}$ is disjoint if

$$
(\lambda, F),(\mu, G) \in \mathcal{J} \text { with }(\lambda, F) \neq(\mu, G) \Longrightarrow\left(D_{\lambda} \backslash D_{\lambda F}\right) \cap\left(D_{\mu} \backslash D_{\mu G}\right)=\varnothing .
$$

For $(\lambda, F),(\mu, G) \in \mathcal{A}^{n}$ we write

$$
\Theta_{(\lambda, F),(\mu, G)}:=\Theta_{\mathcal{X}_{D_{\lambda} \backslash D_{\lambda F}}, \mathcal{X}_{D_{\mu} \backslash D_{\mu G}} \in \mathcal{K}\left(X_{n}\right)}
$$

Let $m, n \in \mathbb{N}^{k}$. To prove Proposition 5.1 we first need to show that for each $\left(\lambda_{1}, F_{1}\right),\left(\lambda_{2}, F_{2}\right) \in \mathcal{A}^{m}$ and $\left(\mu_{1}, G_{1}\right),\left(\mu_{2}, G_{2}\right) \in \mathcal{A}^{n}$ we have

$$
\iota_{m}^{m \vee n}\left(\Theta_{\left(\lambda_{1}, F_{1}\right),\left(\lambda_{2}, F_{2}\right)}\right) \iota_{n}^{m \vee n}\left(\Theta_{\left(\mu_{1}, G_{1}\right),\left(\mu_{2}, G_{2}\right)}\right) \in \mathcal{K}\left(X_{m \vee n}\right)
$$

We do this by finding for each $(\alpha, \beta) \in \Lambda^{\min }\left(\lambda_{2}, \mu_{1}\right)$ finite subsets $\mathcal{H}_{(\alpha, \beta)}, \mathcal{J}_{(\alpha, \beta)} \subseteq$ $\mathcal{A}^{m \vee n}$ such that $\underset{(\alpha, \beta)}{\bigsqcup} \mathcal{H}_{(\alpha, \beta)}$ and $\underset{(\alpha, \beta)}{\bigsqcup} \mathcal{J}_{(\alpha, \beta)}$ are disjoint, and

$$
\begin{align*}
& l_{m}^{m \vee n}\left(\Theta_{\left(\lambda_{1}, F_{1}\right),\left(\lambda_{2}, F_{2}\right)}\right) \iota_{n}^{m \vee n}\left(\Theta_{\left(\mu_{1}, G_{1}\right),\left(\mu_{2}, G_{2}\right)}\right) \tag{5.1}\\
&=\sum_{(\alpha, \beta) \in \Lambda^{\min }\left(\lambda_{2}, \mu_{1}\right)} \sum_{\substack{(\kappa, H) \in \mathcal{H}_{(\alpha, \beta)}^{(\omega, J) \in \mathcal{J}_{(\alpha, \beta)}}}} \Theta_{(\kappa, H),(\omega, J)}
\end{align*}
$$

To find the correct $\mathcal{H}_{(\alpha, \beta)}$ and $\mathcal{J}_{(\alpha, \beta)}$, we evaluate both sides of (5.1) on products $f g$, where $f \in C_{\mathcal{C}}\left(\partial \Lambda^{\geqslant n}\right)$ and $g \in C_{\mathrm{c}}\left(\partial \Lambda^{\geqslant m \vee n-n}\right)$. For the left-hand-side of (5.1) we use (1.1) and Corollary 2.8 to factor

$$
\iota_{n}^{m \vee n}\left(\Theta_{\left(\mu_{1}, G_{1}\right),\left(\mu_{2}, G_{2}\right)}\right)(f g)=\Theta_{\left(\mu_{1}, G_{1}\right),\left(\mu_{2}, G_{2}\right)}(f) g=h l
$$

where $h \in C_{\mathrm{C}}\left(\partial \Lambda^{\geqslant m}\right)$ and $l \in C_{\mathrm{C}}\left(\partial \Lambda^{\geqslant m \vee n-m}\right)$. Then for $x \in \partial \Lambda^{\geqslant m \vee n}$ we have

$$
\begin{aligned}
& \iota_{m}^{m \vee n}\left(\Theta_{\left(\lambda_{1}, F_{1}\right),\left(\lambda_{2}, F_{2}\right)}\right) \iota_{n}^{m \vee n}\left(\Theta_{\left(\mu_{1}, G_{1}\right),\left(\mu_{2}, G_{2}\right)}\right)(f g)(x) \\
& =\iota_{m}^{m \vee n}\left(\Theta_{\left(\lambda_{1}, F_{1}\right),\left(\lambda_{2}, F_{2}\right)}\right)(h l)(x)=\Theta_{\left(\lambda_{1}, F_{1}\right),\left(\lambda_{2}, F_{2}\right)}(h) l(x) \\
& =\mathcal{X}_{D_{\lambda_{1}} \backslash D_{\lambda_{1} F_{1}}}(x)\left\langle\mathcal{X}_{D_{\lambda_{2}} \backslash D_{\lambda_{2} F_{2}}}, h\right\rangle_{m}\left(\sigma_{m}(x)\right) l\left(\sigma_{m}(x)\right) \\
& =\mathcal{X}_{D_{\lambda_{1}} \backslash D_{\lambda_{1} F_{1}}}(x)\left(\sum_{\sigma_{m}(y)=\sigma_{m}(x)} \overline{\mathcal{X}_{D_{\lambda_{2}} \backslash D_{\lambda_{2} F_{2}}}(y)} h(y)\right) l\left(\sigma_{m}(x)\right) \\
& = \begin{cases}h l\left(\lambda_{2}(0, m) \sigma_{m}(x)\right) & \text { if } x \in\left(D_{\lambda_{1}} \backslash D_{\lambda_{1} F_{1}}\right) \cap \sigma_{m}^{-1}\left(D_{\lambda_{2}\left(m, d\left(\lambda_{2}\right)\right)} \backslash D_{\lambda_{2}\left(m, d\left(\lambda_{2}\right)\right) F_{2}}\right), \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

A similar calculation to the one above gives

$$
\begin{aligned}
& h l\left(\lambda_{2}(0, m) \sigma_{m}(x)\right) \\
& =\Theta_{\left(\mu_{1}, G_{1}\right),\left(\mu_{2}, G_{2}\right)}(f) g\left(\lambda_{2}(0, m) \sigma_{m}(x)\right) \\
& =\left\{\begin{array}{lc}
f g\left(\mu_{2}(0, n) \sigma_{n}\left(\lambda_{2}(0, m) \sigma_{m}(x)\right)\right) & \text { if } \lambda_{2}(0, m) \sigma_{m}(x) \in\left(D_{\mu_{1}} \backslash D_{\mu_{1} G_{1}}\right) \cap \\
0 & \sigma_{n}^{-1}\left(D_{\mu_{2}\left(n, d\left(\mu_{2}\right)\right)} \backslash D_{\mu_{2}\left(n, d\left(\mu_{2}\right)\right) G_{2}}\right)
\end{array}\right.
\end{aligned}
$$

So we label conditions

$$
\begin{align*}
& x \in\left(D_{\lambda_{1}} \backslash D_{\lambda_{1} F_{1}}\right) \cap \sigma_{m}^{-1}\left(D_{\lambda_{2}\left(m, d\left(\lambda_{2}\right)\right)} \backslash D_{\lambda_{2}\left(m, d\left(\lambda_{2}\right)\right) F_{2}}\right), \text { and } \tag{5.2}\\
& \lambda_{2}(0, m) \sigma_{m}(x) \in\left(D_{\mu_{1}} \backslash D_{\mu_{1} G_{1}}\right) \cap \sigma_{n}^{-1}\left(D_{\mu_{2}\left(n, d\left(\mu_{2}\right)\right)} \backslash D_{\mu_{2}\left(n, d\left(\mu_{2}\right)\right) G_{2}}\right) \tag{5.3}
\end{align*}
$$

and then we have

$$
\begin{align*}
\iota_{m}^{m \vee n} & \left(\Theta_{\left(\lambda_{1}, F_{1}\right),\left(\lambda_{2}, F_{2}\right)}\right) \iota_{n}^{m \vee n}\left(\Theta_{\left(\mu_{1}, G_{1}\right),\left(\mu_{2}, G_{2}\right)}\right)(f g)(x) \tag{5.4}\\
& = \begin{cases}f g\left(\mu_{2}(0, n) \sigma_{n}\left(\lambda_{2}(0, m) \sigma_{m}(x)\right)\right) & \text { if } x \text { satisfies (5.2) and(5.3) } \\
0 & \text { otherwise }\end{cases}
\end{align*}
$$

Now, for each $(\alpha, \beta) \in \Lambda^{\min }\left(\lambda_{2}, \mu_{1}\right),(\kappa, H) \in \mathcal{H}_{(\alpha, \beta)}$ and $(\omega, J) \in \mathcal{J}_{(\alpha, \beta)}$ we have

$$
\begin{aligned}
\Theta_{(\kappa, H),(\omega, J)} & (f g)(x) \\
& =\mathcal{X}_{D_{\kappa} \backslash D_{\kappa H}}(x)\left\langle\mathcal{X}_{D_{\omega} \backslash D_{\omega \prime},} f g\right\rangle_{m \vee n}\left(\sigma_{m \vee n}(x)\right) \\
& =\mathcal{X}_{D_{\kappa} \backslash D_{\kappa H}}(x)\left(\sum_{\sigma_{m \vee n}(y)=\sigma_{m \vee n}(x)} \frac{\mathcal{X}_{D_{\omega} \backslash D_{\omega J}}(y)}{} g g(y)\right) \\
& = \begin{cases}f g\left(\tau(0, m \vee n) \sigma_{m \vee n}(x)\right) & \text { if } x \in\left(D_{\kappa} \backslash D_{\kappa H}\right) \cap \sigma_{m \vee n}^{-1}\left(D_{\omega} \backslash D_{\omega J}\right), \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

Since $\bigsqcup_{(\alpha, \beta)} \mathcal{H}_{(\alpha, \beta)}$ and $\bigsqcup_{(\alpha, \beta)} \mathcal{J}_{(\alpha, \beta)}$ are disjoint, we have

$$
\begin{align*}
& \left.\sum_{(\alpha, \beta) \in \Lambda^{\min }\left(\lambda_{2}, \mu_{1}\right)} \sum_{\substack{\kappa, H) \in \mathcal{H} \\
(\tau, J) \in \mathcal{J}}} \Theta_{(\kappa, H),(\omega, J)}\right)(f g)(x) \tag{5.5}\\
& = \begin{cases}f g\left(\tau(0, m \vee n) \sigma_{m \vee n}(x)\right) & \text { if } x \in{\underset{c}{(\alpha, \beta)}\left(D_{\kappa} \backslash D_{\rho H}\right) \cap \sigma_{m \vee n}^{-1}\left(D_{\omega} \backslash D_{\omega J}\right),}^{(\kappa, H),(\omega, J)} \\
0 & \text { otherwise }\end{cases}
\end{align*}
$$

Equation (5.1) now follows from (5.4), (5.5) and the following lemma.
Lemma 5.3. Let $m, n \in \mathbb{N}^{k}$, and suppose the pairs $\left(\lambda_{1}, F_{1}\right),\left(\lambda_{2}, F_{2}\right) \in \mathcal{A}^{m}$ and $\left(\mu_{1}, G_{1}\right),\left(\mu_{2}, G_{2}\right) \in \mathcal{A}^{n}$. Then for each pair $(\alpha, \beta) \in \Lambda^{\min }\left(\lambda_{2}, \mu_{1}\right)$ there exists finite and disjoint subsets $\mathcal{H}_{(\alpha, \beta)}, \mathcal{J}_{(\alpha, \beta)} \subseteq \mathcal{A}^{m \vee n}$ such that $x \in \partial \Lambda^{\geqslant m \vee n}$ satisfies equations (5.2) and (5.3) if and only if

$$
\begin{equation*}
x \in \bigsqcup_{(\alpha, \beta) \in \Lambda^{\min }\left(\lambda_{2}, \mu_{1}\right)}^{\substack{(\kappa, H) \in \mathcal{H}_{(\alpha, \beta)}^{(\omega, J) \in \mathcal{J}_{(\alpha, \beta)}}}}\left(D_{\kappa} \backslash D_{\kappa H}\right) \cap \sigma_{m \vee n}^{-1}\left(D_{\omega} \backslash D_{\omega J}\right) . \tag{5.6}
\end{equation*}
$$

Moreover, if x satisfies (5.2) and (5.3) and $x \in\left(D_{\kappa} \backslash D_{\kappa H}\right) \cap \sigma_{m \vee n}^{-1}\left(D_{\omega} \backslash D_{\omega J}\right)$, then we have

$$
\mu_{2}(0, n) \sigma_{n}\left(\lambda_{2}(0, m) \sigma_{m}(x)\right)=\omega(0, m \vee n) \sigma_{m \vee n}(x)
$$

Proof. Recall that for $\lambda, \mu \in \Lambda$ we denote by

$$
F(\lambda, \mu)=\left\{\alpha \in \Lambda:(\alpha, \beta) \in \Lambda^{\min }(\lambda, \mu) \text { for some } \beta \in \Lambda\right\} .
$$

Let $(\alpha, \beta) \in \Lambda^{\min }\left(\lambda_{2}, \mu_{1}\right)$. For each $(\gamma, \delta) \in \Lambda^{\min }\left(\lambda_{1}\left(m, d\left(\lambda_{1}\right)\right), \lambda_{2}\left(m, d\left(\lambda_{2}\right)\right) \alpha\right)$ we define

$$
\begin{aligned}
H_{\gamma, \alpha}:=\left(\bigcup_{v \in F_{1}} F\left(\lambda_{1} \gamma, \lambda_{1} v\right)\right) & \cup\left(\bigcup_{\zeta \in F_{2}} F\left(\lambda_{2}\left(m, d\left(\lambda_{2}\right)\right) \alpha \delta, \lambda_{2}\left(m, d\left(\lambda_{2}\right)\right) \zeta\right)\right) \\
& \cup\left(\bigcup_{\eta \in G_{1}} F\left(\mu_{1} \beta \delta, \mu_{1} \eta\right)\right),
\end{aligned}
$$

and

$$
\mathcal{H}_{(\alpha, \beta)}:=\left\{\left(\lambda_{1} \gamma, H_{\gamma, \alpha}\right) \in \mathcal{A}^{m \vee n}:(\gamma, \delta) \in \Lambda^{\min }\left(\lambda_{1}\left(m, d\left(\lambda_{1}\right)\right), \lambda_{2}\left(m, d\left(\lambda_{2}\right)\right) \alpha\right)\right\} .
$$

For each $(\rho, \tau) \in \Lambda^{\min }\left(\mu_{2}\left(n, d\left(\mu_{2}\right)\right), \mu_{1}\left(n, d\left(\mu_{1}\right)\right) \beta\right)$ we define

$$
\begin{aligned}
J_{\rho, \beta}:=\left(\bigcup_{\xi \in G_{2}} F\left(\mu_{2} \rho, \mu_{2} \xi\right)\right) & \cup\left(\bigcup_{\eta \in G_{1}} F\left(\mu_{1}\left(n, d\left(\mu_{1}\right)\right) \beta \tau, \mu_{1}\left(n, d\left(\mu_{1}\right)\right) \eta\right)\right) \\
& \cup\left(\bigcup_{\zeta \in F_{2}} F\left(\lambda_{2} \alpha \tau, \lambda_{2} \zeta\right)\right)
\end{aligned}
$$

and

$$
\mathcal{J}_{(\alpha, \beta)}:=\left\{\left(\mu_{2} \rho, H_{\rho, \beta}\right) \in \mathcal{A}^{m \vee n}:(\rho, \tau) \in \Lambda^{\min }\left(\mu_{2}\left(n, d\left(\mu_{2}\right)\right), \mu_{1}\left(n, d\left(\mu_{1}\right)\right) \beta\right)\right\} .
$$

The sets $\mathcal{H}_{(\alpha, \beta)}$ and $\mathcal{J}_{(\alpha, \beta)}$ are finite sets because Λ is finitely-aligned. Since the paths in the elements of $\mathcal{H}_{(\alpha, \beta)}$ are of the same length, the factorisation property ensures that each $\mathcal{H}_{(\alpha, \beta)}$ is disjoint. For the same reason, each $\mathcal{J}_{(\alpha, \beta)}$ is disjoint. This explains why the second union in (5.6) is a disjoint union. Moreover, the sets $\bigsqcup_{(\alpha, \beta)} \mathcal{H}_{(\alpha, \beta)}$ and $\underset{(\alpha, \beta)}{\bigcup_{(\alpha, \beta)}} \mathcal{J}_{(2,6)}$ are disjoint, and hence why the first union in (5.6 disjoint union.

To prove the 'only if' part of the statement, we assume $x \in \partial \Lambda^{\geqslant m \vee n}$ satisfies (5.2) and (5.3). We have to find pairs

$$
\begin{aligned}
& (\alpha, \beta) \in \Lambda^{\min }\left(\lambda_{2}, \mu_{1}\right) \\
& (\gamma, \delta) \in \Lambda^{\min }\left(\lambda_{1}\left(m, d\left(\lambda_{1}\right)\right), \lambda_{2}\left(m, d\left(\lambda_{2}\right)\right) \alpha\right), \text { and } \\
& (\rho, \tau) \in \Lambda^{\min }\left(\mu_{2}\left(n, d\left(\mu_{2}\right)\right), \mu_{1}\left(n, d\left(\mu_{1}\right)\right) \beta\right)
\end{aligned}
$$

such that
(a) $x \in D_{\lambda_{1} \gamma} \backslash D_{\lambda_{1} \gamma H_{\gamma, \alpha}}$, and
(b) $\sigma_{m \vee n}(x) \in D_{\mu_{2} \rho\left(m \vee n, d\left(\mu_{2} \rho\right)\right)} \backslash D_{\mu_{2} \rho\left(m \vee n, d\left(\mu_{2} \rho\right)\right) J_{\rho, \beta}}$.

Now, we know from (5.2) and (5.3) that $\lambda_{2}(0, m) \sigma_{m}(x) \in D_{\lambda_{2}} \cap D_{\mu_{1}}$, so we take

$$
\begin{equation*}
(\alpha, \beta):=\left(\lambda_{2}(0, m) \sigma_{m}(x)_{\lambda_{2}}^{\mu_{1}}, \lambda_{2}(0, m) \sigma_{m}(x)_{\mu_{1}}^{\lambda_{2}}\right) \in \Lambda^{\min }\left(\lambda_{2}, \mu_{1}\right) \tag{5.7}
\end{equation*}
$$

We know from (5.2) and (5.3) that $\sigma_{m}(x) \in D_{\lambda_{1}\left(m, d\left(\lambda_{1}\right)\right)} \cap D_{\lambda_{2}\left(m, d\left(\lambda_{2}\right)\right) \alpha}$, so we define (γ, δ) to be the pair

$$
\begin{equation*}
\left(\sigma_{m}(x)_{\lambda_{1}\left(m, d\left(\lambda_{1}\right)\right)}^{\lambda_{2}\left(m, d\left(\lambda_{2}\right)\right) \alpha}, \sigma_{m}(x)_{\lambda_{2}\left(m, d\left(\lambda_{2}\right)\right) \alpha}^{\lambda_{1}\left(m, d\left(\lambda_{1}\right)\right)}\right) \in \Lambda^{\min }\left(\lambda_{1}\left(m, d\left(\lambda_{1}\right)\right), \lambda_{2}\left(m, d\left(\lambda_{2}\right)\right) \alpha\right) \tag{5.8}
\end{equation*}
$$

We now have $\sigma_{m}(x) \in D_{\lambda_{1}\left(m, d\left(\lambda_{1}\right)\right) \gamma}$, and this along with (5.2) implies that $x \in$ $D_{\lambda_{1} \gamma}$. We also have

$$
\begin{equation*}
x \in D_{\lambda_{1} \gamma} \text { and } x \notin D_{\lambda_{1} F_{1}} \Longrightarrow x \notin D_{\lambda_{1} \gamma v^{\prime}} \text { for all } v^{\prime} \in \bigcup_{v \in F_{1}} F\left(\lambda_{1} \gamma, \lambda_{1} v\right) ; \tag{5.9}
\end{equation*}
$$

$$
\sigma_{m}(x) \in D_{\lambda_{2}\left(m, d\left(\lambda_{2}\right)\right) \alpha \delta} \text { and } \sigma_{m}(x) \notin D_{\lambda_{2}\left(m, d\left(\lambda_{2}\right)\right) F_{2}}
$$

$$
\Longrightarrow \sigma_{m}(x) \notin D_{\lambda_{2}\left(m, d\left(\lambda_{2}\right)\right) \alpha \delta \zeta^{\prime}} \text { for all } \zeta^{\prime} \in \bigcup_{\zeta \in F_{2}} F\left(\lambda_{2}\left(m, d\left(\lambda_{2}\right)\right) \alpha \delta, \lambda_{2}\left(m, d\left(\lambda_{2}\right)\right) \zeta\right)
$$

$$
\Longleftrightarrow \sigma_{m}(x) \notin D_{\lambda_{1}\left(m, d\left(\lambda_{1}\right)\right) \gamma \zeta^{\prime}} \text { for all } \zeta^{\prime} \in \bigcup_{\zeta \in F_{2}} F\left(\lambda_{2}\left(m, d\left(\lambda_{2}\right)\right) \alpha \delta, \lambda_{2}\left(m, d\left(\lambda_{2}\right)\right) \zeta\right)
$$

$$
\begin{equation*}
\Longleftrightarrow x \notin D_{\lambda_{1} \gamma \zeta^{\prime}} \text { for all } \bigcup_{\zeta \in F_{2}} F\left(\lambda_{2}\left(m, d\left(\lambda_{2}\right)\right) \alpha \delta, \lambda_{2}\left(m, d\left(\lambda_{2}\right)\right) \zeta\right) \tag{5.10}
\end{equation*}
$$

and

$$
\begin{align*}
\lambda_{2}(0, m) \sigma_{m}(x) \in & D_{\lambda_{2} \alpha \delta} \text { and } \lambda_{2}(0, m) \sigma_{m}(x) \notin D_{\mu_{1} G_{1}} \\
& \Longleftrightarrow \lambda_{2}(0, m) \sigma_{m}(x) \notin D_{\lambda_{2} \alpha \delta \eta^{\prime}} \text { for all } \eta^{\prime} \in \bigcup_{\eta \in G_{1}} F\left(\mu_{1} \beta \delta, \mu_{1} \eta\right) \\
& \Longleftrightarrow \sigma_{m}(x) \notin D_{\lambda_{2}\left(m, d\left(\lambda_{2}\right)\right) \alpha \delta \eta^{\prime}} \text { for all } \eta^{\prime} \in \bigcup_{\eta \in G_{1}} F\left(\mu_{1} \beta \delta, \mu_{1} \eta\right) \\
& \Longleftrightarrow \sigma_{m}(x) \notin D_{\lambda_{1}\left(m, d\left(\lambda_{1}\right)\right) \gamma \eta^{\prime}} \text { for all } \eta^{\prime} \in \bigcup_{\eta \in G_{1}} F\left(\mu_{1} \beta \delta, \mu_{1} \eta\right) \\
& \Longleftrightarrow x \notin D_{\lambda_{1} \gamma \eta^{\prime}} \text { for all } \eta^{\prime} \in \bigcup_{\eta \in G_{1}} F\left(\mu_{1} \beta \delta, \mu_{1} \eta\right) . \tag{5.11}
\end{align*}
$$

It follows from (5.9), (5.10) and (5.11) that $x \notin D_{\lambda_{1} \gamma H_{\gamma, \alpha}}$, and so (a) is satisfied.
We have $\sigma_{n}\left(\lambda_{2}(0, m) \sigma_{m}(x)\right) \in D_{\mu_{1}\left(n, d\left(\mu_{1}\right)\right) \beta}$, and it follows from (5.3) that $\sigma_{n}\left(\lambda_{2}(0, m) \sigma_{m}(x)\right) \in D_{\mu_{2}\left(n, d\left(\mu_{2}\right)\right)}$. So we take

$$
\begin{align*}
(\rho, \tau) & :=\left(\sigma_{n}\left(\lambda_{2}(0, m) \sigma_{m}(x)\right)_{\mu_{2}\left(n, d\left(\mu_{2}\right)\right)}^{\mu_{1}\left(n, d\left(\mu_{1}\right)\right) \beta}, \sigma_{n}\left(\lambda_{2}(0, m) \sigma_{m}(x)\right)_{\mu_{1}\left(n, d\left(\mu_{1}\right)\right) \beta}^{\mu_{2}\left(n, d\left(\mu_{2}\right)\right)}\right) \tag{5.12}\\
& \in \Lambda^{\min }\left(\mu_{2}\left(n, d\left(\mu_{2}\right)\right), \mu_{1}\left(n, d\left(\mu_{1}\right)\right) \beta\right)
\end{align*}
$$

and we have

$$
\begin{aligned}
\sigma_{n}\left(\lambda_{2}(0, m) \sigma_{m}(x)\right) \in & D_{\mu_{2}\left(n, d\left(\mu_{2}\right)\right) \rho} \\
& \Longrightarrow \sigma_{m \vee n}(x)=\sigma_{m \vee n}\left(\lambda_{2}(0, m) \sigma_{m}(x)\right) \in D_{\mu_{2} \rho\left(m \vee n, d\left(\mu_{2} \rho\right)\right)}
\end{aligned}
$$

Suppose for contradiction that there exists $\xi \in G_{2}$ and a pair $\left(\xi^{\prime}, \xi^{\prime \prime}\right)$ in the set $\Lambda^{\min }\left(\mu_{2} \rho, \mu_{2} \xi\right)$ with $\sigma_{m \vee n}(x) \in D_{\mu_{2} \rho\left(m \vee n, d\left(\mu_{2} \rho\right)\right) \xi^{\prime}}$. Then it follows from (5.12) that

$$
\begin{aligned}
\sigma_{n}\left(\lambda_{2}(0, m) \sigma_{m}(x)\right) & =\sigma_{n}\left(\lambda_{2}(0, m) \sigma_{m}(x)\right)(0, m \vee n-n) \sigma_{m \vee n}(x) \\
& =\mu_{2}\left(n, d\left(\mu_{2}\right)\right) \rho(0, m \vee n-n) \sigma_{m \vee n}(x)=\mu_{2} \rho(n, m \vee n) \sigma_{m \vee n}(x) \\
& \in D_{\mu_{2}\left(n, d\left(\mu_{2}\right)\right) \rho \xi^{\prime}}=D_{\mu_{2}\left(n, d\left(\mu_{2}\right)\right) \xi \xi^{\prime \prime}} \subseteq D_{\mu_{2}\left(n, d\left(\mu_{2}\right)\right) G_{2}}
\end{aligned}
$$

This contradicts equation (5.3), and so we must have

$$
\begin{equation*}
\sigma_{m \vee n}(x) \notin D_{\mu_{2} \rho\left(m \vee n, d\left(\mu_{2} \rho\right)\right) \xi^{\prime}} \text { for all } \xi^{\prime} \in \bigcup_{\xi \in G_{2}} F\left(\mu_{2} \rho, \mu_{2} \xi\right) \tag{5.13}
\end{equation*}
$$

Similar arguments show that

$$
\begin{equation*}
\sigma_{m \vee n}(x) \notin D_{\mu_{2} \rho\left(m \vee n, d\left(\mu_{2} \rho\right)\right) \eta^{\prime}}, \text { for all } \eta^{\prime} \in \bigcup_{\eta \in G_{1}} F\left(\mu_{1}\left(n, d\left(\mu_{1}\right)\right) \beta \tau, \mu_{1}\left(n, d\left(\mu_{1}\right)\right) \eta\right) \tag{5.14}
\end{equation*}
$$ and

$$
\begin{equation*}
\sigma_{m \vee n}(x) \notin D_{\mu_{2} \rho\left(m \vee n, d\left(\mu_{2} \rho\right)\right) \eta^{\prime}}, \text { for all } \zeta^{\prime} \in \bigcup_{\zeta \in F_{2}} F\left(\lambda_{2} \alpha \tau, \lambda_{2} \zeta\right) \tag{5.15}
\end{equation*}
$$

It follows from (5.13), (5.14) and (5.15) that $\sigma_{m \vee n}(x) \notin D_{\mu_{2} \rho\left(m \vee n, d\left(\mu_{2} \rho\right)\right) J_{\rho, \beta^{\prime}}}$ and so (b) is satisfied.

To prove the "if" part of the statement, we assume there exists

$$
\begin{aligned}
& (\alpha, \beta) \in \Lambda^{\min }\left(\lambda_{2}, \mu_{1}\right) \\
& (\gamma, \delta) \in \Lambda^{\min }\left(\lambda_{1}\left(m, d\left(\lambda_{1}\right)\right), \lambda_{2}\left(m, d\left(\lambda_{2}\right)\right) \alpha\right), \text { and } \\
& (\rho, \tau) \in \Lambda^{\min }\left(\mu_{2}\left(n, d\left(\mu_{2}\right)\right), \mu_{1}\left(n, d\left(\mu_{1}\right)\right) \beta\right)
\end{aligned}
$$

such that

$$
x \in\left(D_{\lambda_{1} \gamma} \backslash D_{\lambda_{1} \gamma H_{\gamma, \alpha}}\right) \cap \sigma_{m \vee n}^{-1}\left(D_{\mu_{2} \rho\left(m \vee n, d\left(\mu_{2} \rho\right)\right)} \backslash D_{\mu_{2} \rho\left(m \vee n, d\left(\mu_{2} \rho\right)\right) J_{\rho, \beta}}\right)
$$

We have

$$
\begin{aligned}
x \in D_{\lambda_{1} \gamma} \backslash D_{\lambda_{1} \gamma H_{\gamma, \alpha}} & \Longleftrightarrow x \in D_{\lambda_{1}} \backslash D_{\lambda_{1} F_{1}} \text { and } \\
x \in D_{\lambda_{1} \gamma} \backslash D_{\lambda_{1} \gamma H_{\gamma, \alpha}} & \Longleftrightarrow \sigma_{m}(x) \in D_{\lambda_{1}\left(m, d\left(\lambda_{1}\right)\right) \gamma} \backslash D_{\lambda_{1}\left(m, d\left(\lambda_{1}\right)\right) \gamma H_{\gamma, \alpha}} \\
& \Longleftrightarrow \sigma_{m}(x) \in D_{\lambda_{2}\left(m, d\left(\lambda_{2}\right)\right) \alpha \delta} \backslash D_{\lambda_{2}\left(m, d\left(\lambda_{2}\right)\right) \alpha \delta H_{\gamma, \alpha}} \\
& \Longleftrightarrow \sigma_{m}(x) \in D_{\lambda_{2}\left(m, d\left(\lambda_{2}\right)\right)} \backslash D_{\lambda_{2}\left(m, d\left(\lambda_{2}\right)\right) F_{2}} .
\end{aligned}
$$

So (5.2) is satisfied. We have

$$
\begin{aligned}
x \in D_{\lambda_{1} \gamma} \backslash D_{\lambda_{1} \gamma H_{\gamma, \alpha}} & \Longleftrightarrow \sigma_{m}(x) \in D_{\lambda_{1}\left(m, d\left(\lambda_{1}\right)\right) \gamma} \backslash D_{\lambda_{1}\left(m, d\left(\lambda_{1}\right)\right) \gamma H_{\gamma, \alpha}} \\
& \Longleftrightarrow \sigma_{m}(x) \in D_{\lambda_{2}\left(m, d\left(\lambda_{2}\right)\right) \alpha \delta} \backslash D_{\lambda_{2}\left(m, d\left(\lambda_{2}\right)\right) \alpha \delta H_{\gamma, \alpha}} \\
& \Longleftrightarrow \lambda_{2}(0, m) \sigma_{m}(x) \in D_{\lambda_{2} \alpha \delta} \backslash D_{\lambda_{2} \alpha \delta H_{\gamma, \alpha}} \\
& \Longleftrightarrow \lambda_{2}(0, m) \sigma_{m}(x) \in D_{\mu_{1} \beta \delta} \backslash D_{\mu_{1} \beta \delta H_{\gamma, \alpha}} \\
& \Longleftrightarrow \lambda_{2}(0, m) \sigma_{m}(x) \in D_{\mu_{1}} \backslash D_{\mu_{1} G_{1}} .
\end{aligned}
$$

We have

$$
\begin{aligned}
x \in D_{\lambda_{1} \gamma} & \Longrightarrow \lambda_{2}(0, m) \sigma_{m}(x)(n, m \vee n) \\
& =\left(\lambda_{2}(0, m) \lambda_{1}\left(m, d\left(\lambda_{1}\right)\right) \gamma\right)(n, m \vee n) \\
& =\left(\lambda_{2}(0, m) \lambda_{2}\left(m, d\left(\lambda_{2}\right)\right) \alpha \delta\right)(n, m \vee n) \\
& =\lambda_{2} \alpha \delta(n, m \vee n)=\lambda_{2} \alpha(n, m \vee n)=\mu_{1} \beta(n, m \vee n) \\
& =\left(\mu_{1}\left(n, d\left(\mu_{1}\right)\right) \beta\right)(n, m \vee n)=\left(\mu_{1}\left(n, d\left(\mu_{1}\right)\right) \beta \tau\right)(n, m \vee n) \\
& =\left(\mu_{2}\left(n, d\left(\mu_{2}\right)\right) \rho\right)(n, m \vee n) .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\sigma_{n}\left(\lambda_{2}(0, m) \sigma_{m}(x)\right) & =\left(\lambda_{2}(0, m) \sigma_{m}(x)\right)(n, m \vee n) \sigma_{m \vee n}\left(\lambda_{2}(0, m) \sigma_{m}(x)\right) \\
& =\left(\lambda_{2}(0, m) \sigma_{m}(x)\right)(n, m \vee n) \sigma_{m \vee n}(x) \\
& =\left(\mu_{2}\left(n, d\left(\mu_{2}\right)\right) \rho\right)(n, m \vee n) \sigma_{m \vee n}(x),
\end{aligned}
$$

and then we have

$$
\begin{aligned}
\sigma_{m \vee n}(x) \in & D_{\mu_{2} \rho\left(m \vee n, d\left(\mu_{2} \rho\right)\right)} \backslash D_{\mu_{2} \rho\left(m \vee n, d\left(\mu_{2} \rho\right)\right) J_{\rho, \beta}} \\
& \Longrightarrow \sigma_{n}\left(\lambda_{2}(0, m) \sigma_{m}(x)\right) \in D_{\mu_{2} \rho\left(n, d\left(\mu_{2} \rho\right)\right)} \backslash D_{\mu_{2} \rho\left(n, d\left(\mu_{2} \rho\right)\right) J_{\rho, \beta}} \\
& \Longrightarrow \sigma_{n}\left(\lambda_{2}(0, m) \sigma_{m}(x)\right) \in D_{\mu_{2}\left(n, d\left(\mu_{2}\right)\right)} \backslash D_{\mu_{2}\left(n, d\left(\mu_{2}\right)\right) G_{2}}
\end{aligned}
$$

So (5.3) is satisfied.
To prove the final part of the result, recall that, given $x \in \partial \Lambda^{\geqslant m \vee n}$ satisfying (5.2) and (5.3), we have the following formula for the pair (ρ, τ) in the set $\Lambda^{\min }\left(\mu_{2}\left(n, d\left(\mu_{2}\right)\right), \mu_{1}\left(n, d\left(\mu_{1}\right)\right) \beta\right)$:

$$
(\rho, \tau)=\left(\sigma_{n}\left(\lambda_{2}(0, m) \sigma_{m}(x)\right)_{\mu_{2}\left(n, d\left(\mu_{2}\right)\right)}^{\mu_{1}\left(n, d\left(\mu_{1}\right)\right) \beta}, \sigma_{n}\left(\lambda_{2}(0, m) \sigma_{m}(x)\right)_{\mu_{1}\left(n, d\left(\mu_{1}\right)\right) \beta}^{\mu_{2}\left(n, d\left(\mu_{2}\right)\right)}\right)
$$

We then have

$$
\begin{aligned}
\mu_{2}(0, n) \sigma_{n}\left(\lambda_{2}(0, m) \sigma_{m}(x)\right) & =\mu_{2}(0, n)\left(\sigma_{n}\left(\lambda_{2}(0, m) \sigma_{m}(x)\right)\right)(0, m \vee n-n) \sigma_{m \vee n}(x) \\
& =\mu_{2}(0, n)\left(\mu_{2}\left(n, d\left(\mu_{2}\right)\right) \rho\right)(0, m \vee n-n) \sigma_{m \vee n}(x) \\
& =\mu_{2} \rho(0, m \vee n) \sigma_{m \vee n}(x) .
\end{aligned}
$$

Proof of Proposition 5.1. We have already established equation (5.1). Since Λ is finitely-aligned, the sums in (5.1) are finite, and so

$$
l_{m}^{m \vee n}\left(\Theta_{\left(\lambda_{1}, F_{1}\right),\left(\lambda_{2}, F_{2}\right)}\right) l_{n}^{m \vee n}\left(\Theta_{\left(\mu_{1}, G_{1}\right),\left(\mu_{2}, G_{2}\right)}\right) \in \mathcal{K}\left(X_{m \vee n}\right)
$$

for every $m, n \in \mathbb{N}^{k},\left(\lambda_{1}, F_{1}\right),\left(\lambda_{2}, F_{2}\right) \in \mathcal{A}^{m}$ and $\left(\mu_{1}, G_{1}\right),\left(\mu_{2}, G_{2}\right) \in \mathcal{A}^{n}$. It then follows from Proposition 3.5 that $\iota_{m}^{m \vee n}\left(\Theta_{x_{1}, x_{2}}\right) \iota_{n}^{m \vee n}\left(\Theta_{y_{1}, y_{2}}\right) \in \mathcal{K}\left(X_{m \vee n}\right)$, for every $x_{1}, x_{2} \in X_{m}$ and $y_{1}, y_{2} \in X_{n}$. Hence, $\iota_{m}^{m \vee n}(S) \iota_{n}^{m \vee n}(T) \in \mathcal{K}\left(X_{m \vee n}\right)$, for every $S \in \mathcal{K}\left(X_{m}\right)$ and $\left(T \in \mathcal{K}\left(X_{n}\right)\right.$.

Acknowledgements. The author thanks Iain Raeburn for the many helpful discussions while this research was being conducted. This research was supported by the Australian Research Council.

REFERENCES

[1] N. Brownlowe, I. Raeburn, Exel's crossed product and relative Cuntz-Pimsner algebras, Math. Proc. Cambridge Philos. Soc. 141(2006), 497-508.
[2] N. Brownlowe, I. Raeburn, S.T. Vittadello, Exel's crossed product for nonunital C*-algebras, Math. Proc. Cambridge Philos. Soc. 149(2010), 423-444.
[3] T.M. Carlsen, N.S. Larsen, A. Sims, S.T. Vittadello, Co-universal algebras associated to product systems, and gauge-invariant uniqueness theorems, Math. Proc. London Soc. 103(2011), 563-600.
[4] J. Cuntz, W. Krieger, A Class of C^{*}-algebras and topological markov chains, Invent. Math. 56(1980), 251-268.
[5] C. Farthing, P.S. Muhly, T. Yeend, Higher-rank graph C^{*}-algebras: an inverse semigroup and groupoid approach, Semigroup Forum 71(2005), 159-187.
[6] R. Exel, A new look at the crossed-product of a C^{*}-algebra by an endomorphism, Ergodic Theory Dynamical Systems 23(2003), 1-18.
[7] R. Exel, Interactions, J. Funct. Anal. 244(2007), 26-62.
[8] R. Exel, A new look at the crossed product of a C*-algebra by a semigroup of endomorphisms, Ergodic Theory Dynamical Systems 28(2008), 749-789.
[9] R. Exel, J. Renault, Semigroups of local homeomorphisms and interaction groups, Ergodic Theory Dynamical Systems 27(2007), 1737-1771.
[10] R. Exel, D. Royer, The crossed product by a partial endomorphism, Bull. Braz. Math. Soc.???? 38(2007), 219-261.
[11] N.J. Fowler, Discrete product systems of Hilbert bimodules, Pacific J. Math. 204(2002), 335-375.
[12] N.J. Fowler, M. Laca, I. Raeburn, The C*-algebras of infinite graphs, Proc. Amer. Math. Soc. 128(2000), 2319-2327.
[13] T. Katsura, On C^{*}-algebras associated with C^{*}-correspondences, J. Funct. Anal. 217(2004), 366-401.
[14] T. KATSURA, A class of C^{*}-algebras generalizing both graph algebras and homeomorphism C*-algebras. I. Fundamental results, Trans. Amer. Math. Soc. 356(2004), 42874322.
[15] T. KATSURA, A class of C^{*}-algebras generalizing both graph algebras and homeomorphism C*-algebras. III. Ideal structures, Ergodic Theory Dynamical Systems 26(2006), 1805-1854.
[16] A. Kumjian, D. Pask, Higher rank graph C*-algebras, New York J. Math. 6(2000), 1-20.
[17] N.S. LARSEN, Exel crossed products over abelian semigroups, Ergodic Theory Dynamical Systems 30(2010), 1147-1164.
[18] N.S. LARSEN, I. Raeburn, Projective multi-resolution analyses arising from direct limits of Hilbert modules, Math. Scand. 100(2007), 317-360.
[19] M.V. Pimsner, A class of C^{*}-algebras generalizing both Cuntz-Krieger algebras and crossed products by \mathbb{Z}, Fields Inst. Comm. 12(1997), 189-212.
[20] I. Raeburn, Graph Algebras, CBMS Regional Conf. Ser. Math., vol. 103, Amer. Math. Soc., Providence, RI 2005.
[21] I. Raeburn, A. Sims, Product systems of graphs and the Toeplitz algebras of higherrank graphs, J. Operator Theory 53(2005), 399-429.
[22] I. Raeburn, A. Sims, T. Yeend, The C^{*}-algebras of finitely-aligned higher-rank graphs, J. Funct. Anal. 213(2004), 206-240.
[23] A. Sims, T. Yeend, C^{*}-algebras associated to product systems of Hilbert bimodules, J. Operator Theory 64(2010), 349-376.

[^0]Received December 29, 2009.

[^0]: NATHAN BROWNLOWE, School of Mathematics \& Applied Statistics, University of Wollongong, Wollongong, 2522, Australia

 E-mail address: nathanb@uow.edu.au

