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ABSTRACT. In this paper we want to apply the notion of product between ul-
trafilters to answer several questions which arise around Connes’ embedding
problem. We shall prove that an ultraproduct of hyperlinear groups is still hy-
perlinear and consequently the von Neumann algebra of the free group with
uncountable many generators is embeddable into Rω . This follows also from
a general construction that allows, starting from an hyperlinear group, to find
a family of hyperlinear groups. We shall prove also that the cross product of
an hyperlinear group via a profinite action is embeddable into Rω .
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1. PRELIMINARIES

We start by introducing the notion of product between ultrafilters. It is al-
ready known in Model Theory (see, for example, [2]), but it seems nobody ap-
plied it to Operator Algebras.

DEFINITION 1.1. Let U ,V be two ultrafilters respectively on I and J. The
tensor product U ⊗ V is the ultrafilter on I × J defined by setting

X ∈ U ⊗ V ⇔ {i ∈ I : {j ∈ J : (i, j) ∈ X} ∈ V} ∈ U .

Observe that this is indeed a maximal filter, i.e. an ultrafilter.

REMARK 1.2. This definition is equivalent to the following one:

X ∈ U ⊗ V ⇔ ∃A ∈ U such that ∀i ∈ A, πJ(X ∩ π−1
I (i)) ∈ V

where πI , πJ are the projections of I × J on the first and second component.
We prefer this second definition since it is easier to apply to prove the fol-

lowing
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THEOREM 1.3. Let {xj
i}(i,j)∈I×J ⊆ R be bounded. Then

lim
i→U

lim
j→V

xj
i = lim

(i,j)→U⊗V
xj

i .

Proof. Let x = lim
i→U

lim
j→V

xj
i . Fixed ε > 0, we notice from the definitions that

A=
{

i ∈ I :
∣∣∣ lim

j→V
xj

i − x
∣∣∣ < ε

2

}
∈ U and Ai =

{
j ∈ J :

∣∣∣xj
i − lim

j→V
xj

i

∣∣∣ < ε

2

}
∈ V .

Combining these two (by triangle inequality) we get

X = {(i, j) ∈ I × J : i ∈ A, j ∈ Ai} ⊆ {(i, j) ∈ I × J : |xj
i − x| < ε}.

Since X ∈ U ⊗ V and ε was arbitrary, it follows the thesis.

NOTATION 1.4. By ω, ω′ we shall denote free ultrafilters on N. R stands
for the hyperfinite type II1 factor. We shall use the classical notation Rω for the
ultrapower of R with regard to ω and denote by τ its trace. By L(G) we denote
the von Neumann group algebra of G.

2. MAIN SECTION

The main result is actually an easy consequence of Theorem 1.3, but it gives
a tool to pass by the limit on representations. We shall give some applications of
this procedure.

PROPOSITION 2.1. Let ω, ω′ be two ultrafilters on N. Then

(Rω)ω′ ∼= Rω⊗ω′ .

Proof. Those von Neumann algebras have the same algebraic structure. So
we only have to prove that they have the same trace. It is just a consequence of
Theorem 1.3.

We want to apply this result to hyperlinear groups. In order to fully benefit
from it we will introduce the notion of hyperlinear pair.

DEFINITION 2.2. By a central pair we mean (G, ϕ), where G is a group and
ϕ : G → C is a positive defined function, central (i.e. constant on conjugacy
classes) and ϕ(e) = 1. Let Cen(G) be the set of those functions on G.

REMARK 2.3. An important element of Cen(G) is the function δe, defined
by setting δe(g) = 0, ∀g 6= e.

REMARK 2.4. If (G, ϕ) is a central pair then we have a canonical bi-invariant
and bounded metric induced on G by:

d(g, h)2 = 2− ϕ(g−1h)− ϕ(h−1g) ∀g, h ∈ G.
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We recall that one can define the notion of ultraproduct of groups with bi-
invariant metric (see [8]). We can use this definition for our particular case of
central pairs.

DEFINITION 2.5. Let (Gn, ϕn)n∈N be a sequence of central pairs and ω an
ultrafilter. By the ultraproduct of the family we mean the central pair:

(G, ϕ) =
(

∏
n

Gn/N, lim
ω

ϕn

)
,

where ∏
n

Gn is just the cartesian product and N=
{
(gn)∈∏

n
Gn : lim

ω
ϕn(gn)→1

}
.

We shall denote by ∏
ω
(Gn, ϕn) the ultraproduct of central pairs.

NOTE 2.6. It is easy to recognize that our definition of N coincides with the

classical one: N =
{
(gn)n ∈ ∏ Gn : lim

ω
dn(gn, en)→ 0

}
.

DEFINITION 2.7. A central pair (G, ϕ) is called hyperlinear if there exists an
homomorphism θϕ : G → U(Rω) such that

τ(θϕ(g)) = ϕ(g) ∀g ∈ G.

Let Hyp(G) = {φ ∈ Cen(G) : (G, φ) is a hyperlinear pair}.

REMARK 2.8. We recall the original definition by Rădulescu: a countable
i.c.c. group G is called hyperlinear if there exists a monomorphism G → U(Rω).
It happens if and only if δe ∈ Hyp(G) (see Proposition 2.5 of [9]).

REMARK 2.9. If (G, ϕ) is a hyperlinear pair, then (G, ϕ) is also a central pair
and the induced distance is just the distance in norm 2 in Rω.

We can now use Proposition 2.1 in order to get the following

PROPOSITION 2.10. An ultraproduct of hyperlinear pairs is a hyperlinear pair.

Proof. Take a sequence (Gn, ϕn) of hyperlinear pairs and just embed each
pair in an Rω. The ultraproduct of the family with respect to ω′ will sit inside
(Rω)ω′ ∼= Rω⊗ω′ .

In case we cannot find a "good" ω for all hyperlinear pairs, we just need to
adapt our notion of product between two ultrafilters to a notion of ultraproduct
of ultrafilters. We shall not do this, as it is just a technical trick and assuming
continuum hypothesis these Rω are isomorphic between themselves anyway.

In order to give some information on the structure of Hyp(G), we recall that
a monoid is a set with a binary associative operation admitting a neutral element.
If (X, ·) is a monoid, an element x ∈ X is called an annihilator if x · y = y · x =
x, ∀y ∈ X. The set of annihilators of X is denoted by 0(X). Clearly Cen(G) is a
monoid with respect to the pointwise product and δe ∈ 0(Cen(G)).
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PROPOSITION 2.11. Hyp(G) is a submonoid of Cen(G). It is closed under ul-
tralimits and convex combinations. Moreover, for G countable, 0(Hyp(G)) 6= ∅ if and
only if G is hyperlinear in the classical sense of Rădulescu.

Proof. The constant function 1 forms with G a hyperlinear pair via the trivial
representation. Hyp(G) is closed under pointwise multiplication because Rω ⊗
Rω ⊂ Rω, τ(x⊗ y) = τ(x)τ(y) and so θϕ·ψ = θϕ ⊗ θψ will do the work.

For the second part note that
(

G, lim
ω

ϕn

)
⊂ ∏

ω
(G, ϕn) and use our last

proposition. For convex combination define an homomorphism of G in Rω ⊕ Rω

with the same convex combination of traces.
At last, if G is hyperlinear, then δe ∈ Hyp(G) and it is an annihilator. Con-

versely, let ψ ∈ 0(Hyp(G)), then ψ(g)ϕ(g) = ψ(g), for all ϕ ∈ Hyp(G) and for all
g ∈ G. We want to prove that ψ = δe. Suppose that there exists g ∈ G, g 6= e such
that ψ(g) 6= 0, then ϕ(g) = 1 for all ϕ ∈ Hyp(G). This is impossible by virtue of
Proposition 2.13.

COROLLARY 2.12. An i.c.c. group G embeds in U(Rω) if and only if L(G)
embeds into Rω.

Proof. If L(G) ⊆ Rω then clearly G ⊂ U(Rω). Conversely, let θ : G →
U(Rω) an embedding. Let τ be the normalized trace on Rω. Then |ϕ(g)| =
|τ(θ(g))| < 1 for any g 6= e (since G is i.c.c.) and ϕ ∈ Hyp(G). Because of
Proposition 2.11 we have that ϕn ∈ Hyp(G) and lim

n→ω
ϕn ∈ Hyp(G).

Now |ϕ(g)| < 1 for g 6= e so lim
n

ϕ(g)n = 0. This means that lim
n

ϕn = δe, so

δe ∈ Hyp(G). This is equivalent to L(G) embeds in Rω.

This is a simplification of the initial proof given by Rădulescu in [9] and also
note that our proof does not need the countability of G.

PROPOSITION 2.13. A countable group G is hyperlinear if and only if for any
g ∈ G \ {e} there is a hyperlinear pair (G, ϕg) such that |ϕg(g)| < 1.

Proof. The only if part is trivial. Conversely, we need to show that δe ∈
Hyp(G). Take G =

⋃
n

Fn, with Fn an increasing sequence of finite subsets of G.

Define ϕFn = ∏
g∈Fn

ϕg. According to Proposition 2.11 ϕFn ∈ Hyp(G) and by the

same proposition so is ϕ = lim
n→ω

ϕFn .

Now because of the hypothesis |ϕg(g)| < 1 and because of Fn is an increas-
ing sequence we deduce |ϕ(g)| < 1. As in the above corollary we now have
δe = lim

n
ϕn, so δe ∈ Hyp(G).

We end this section by presenting a motivation for our definition of Hyp(G).

PROPOSITION 2.14. If Cen(F∞) = Hyp(F∞) then every countable group is hy-
perlinear.
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Proof. Let G be a countable group. Let H be a normal subgroup of F∞ such
that G ∼= F∞/H. Let ϕH : F∞ → C be the characteristic function of H. We
shall prove that ϕH ∈ Cen(F∞). It is easy to see that δe ∈ Hyp(G) if and only if
ϕH ∈ Hyp(F∞). This will finish the proof.

Now H is normal in F∞. So for any g, h ∈ F∞, h ∈ H if and only if ghg−1 ∈
H. This proves that ϕH is central. To prove that it is also positive defined take
g1, . . . , gn ∈ F∞. Consider the matrix {ϕH(g−1

i gj)}i,j and notice that is the matrix
of an equivalence relation on a set with n elements (because H is a subgroup). By
permuting elements (gi)i we can assume that is a block matrix. This means that

n
∑

i,j=1
λiλj ϕ(g−1

i gj) is nonnegative. So ϕH is positive defined.

NOTE 2.15. Our sets Cen(G) and Hyp(G) can be generalized to a type II1
factor instead of just group algebras. Let M be such a factor and consider B =
{xn}n∈N ⊂ M a basis in L2(M, tr). Suppose that x0 = id. We shall consider now
ϕ : B → C such that ϕ(x0) = 1 and the linear extension of ϕ to M is positive
and tracial (may not be faithful). The problem is that such a linear extension may
not be well defined. We formalize this as follows: ϕ ∈ Cen(M) if and only if
whenever ϕ(x∗x) is well defined then so is ϕ(xx∗) and ϕ(x∗x) = ϕ(xx∗) > 0.

For ϕ ∈ Cen(M) we can define Mϕ by the GNS-construction. We define
ϕ ∈ Hyp(M) if and only if this Mϕ is embedable in Rω. As we saw, for M = L(G)
and ϕH for H a normal subgroup of G then L(G)ϕH = L(G/H).

As another example we may take the crossed product M = L∞(X)o G of
a non-free measure preserving action. Take { fi : i ∈ N} a basis for L∞(X) and
B = { fiug : i ∈ N, g ∈ G}. Define ϕ( fiug) =

∫
Xg

fi where Xg = {x ∈ X : gx =

x}. Then Mϕ = M(EG), the Feldmann–Moore construction for the equivalence
relation induced by G on X.

3. OTHER APPLICATIONS

3.1. CONSTRUCTION OF UNCOUNTABLE HYPERLINEAR GROUPS. Now we want
to present a construction that, starting from an hyperlinear group G, allows to
construct a family of countable and uncountable hyperlinear groups. An easy ap-
plication of this construction is that the von Neumann algebra of the free group
with uncountable many generators Fℵc is embeddable into Rω. The Hilbert–
Schmidt distance between two distinct universal unitaries of Fℵc will be equal
to
√

2, giving another proof of the non-separability of Rω.

DEFINITION 3.1. Let G be a countable group with generators g1, g2, . . .. Let
= be a family of infinite subsets of N such that F1, F2 ∈ = implies F1 ∩ F2 is finite.
Now let F = { f1, f2, . . .} ∈ =, define the sequence (gF

n)n = g fn . Let gF be the
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sequence gF
n modulo ω. We can multiply gF1 , gF2 component-wise, by using the

relations on G. The group generated by the elements gF is denoted by G(ω,=).
Notice that G(ω,=) does not depend only on ω and =, but also on the set

of generators chosen.

REMARK 3.2. The generators gF of G(ω,=) are different elements in G(ω,=).
This is because gF1

n = gF2
n holds only for a finite number of indexes, by the defini-

tion of =. Since a free ultrafilter does not contain finite sets, gF1 and gF2 must be
different.

REMARK 3.3. G(ω,=) can be countable (if the family = is countable), but
also uncountable. Indeed one can use the Zorn’s lemma to prove the existence of
an uncountable family = which verifies the property F1, F2 ∈ = implies F1 ∩ F2 is
finite. An elegant example privately suggested by Ozawa is the following: take
t ∈ [ 1

10 , 1), for example t = 0,132483 . . ., define

It = {1, 13, 132, 1324, 13248, 132483, . . .}

i.e. It is the set of the approximation of t. Then {It}t∈[ 1
10 ,1)

is an uncountable

family of subsets of N such that It ∩ Is is finite for all t 6= s.

PROPOSITION 3.4. If G is hyperlinear, then also G(ω,=) is hyperlinear.

Proof. We want to prove that G(ω,=) ⊂ ∏
ω
(G, δ) and that the latter is a

hyperlinear pair because of Proposition 2.10. Moreover we shall prove that if in
an ultraproduct of central pairs just δe appears, then the central positive defined
function of the ultraproduct will also be δe. This two affirmations will show that
δe ∈ Hyp(G(ω,=)), i.e. G(ω,=) is hyperlinear.

Recall that ∏
ω
(Gn, ϕn) =

(
∏
n

Gn/N, lim
ω

ϕn

)
, where ∏

n
Gn is just the carte-

sian product and N =
{
(gn) ∈ ∏

n
Gn : lim

ω
ϕn(gn) → 1

}
. So let Gn a copy of

G and ϕn = δe for each n. Then lim
ω

ϕn ∈ {0, 1}. If this limit is 1 for some ele-

ment, then that element is in N i.e. it is the identity in the ultraproduct. So indeed
lim

ω
δe = δe proving our second affirmation.

Now from the construction of G(ω,=) we see that G(ω,=) ⊂ ∏
n

Gn. If an

element g = (gn)n of G(ω,=) is in N then lim
ω

δe(gn) = 1 meaning that gn = e in

G for any n in a set in ω. From the definition of G(ω,=) this means that g = e.
We proved that G(ω,=) ⊂ ∏

ω
(G, δ).

It is well known that F∞, free group with countable many generators is
hyperlinear. We shall denote with Fℵc the free group with ℵc many generators
(set of continuum power).

COROLLARY 3.5. Fℵc is hyperlinear. In particular Rω is not separable.
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Proof. If Card(=) = ℵc then F∞(ω,=) = Fℵc , and we can apply the previ-
ous proposition.

Representing L(Fℵc) on Rω, the Hilbert–Schmidt distance between two el-
ements of Fℵc will be

√
2. Separability in the weak or in the strong topology

is the same and the last one coincide with the Hilbert–Schmidt topology on the
bounded sets (see [6]).

NOTE 3.6. We want to underline the importance of inseparability of Rω in
connection to Connes’ embedding conjecture: every separable type II1 factor can
be embedded into Rω (see [1]). Ge and Hadwin proved in [4] that the Contin-
uum Hypothesis implies that Rω ∼= Rω′ for any pair of free ultrafilters on N. So,
Connes’ embedding conjecture and Continuum Hypothesis imply the existence
of a universal type II1 factor, universal meaning that it contains a copy of each
type II1 factor. Ozawa proved in [7] that such a universal factor cannot be sepa-
rable. So, if Rω were separable, Connes’ embedding conjecture would be false or
undecidable.

PROBLEM 3.7. What kind of groups have the shape G(ω,=)? Is it true that
if {Ra}a∈A is the set of distinct relations on G and B ⊆ A, then there exist ω and
= such that the set of relations of G(ω,=) is {Ra}a∈B?

3.2. CROSS PRODUCT VIA PROFINITE ACTIONS. We want to apply Proposition 2.1
also to some other type II1 factors. For this we ask ourselves when the crossed
product L∞(X)oα G for a free action α embeds in Rω. Of course when this hap-
pens G has to be hyperlinear. We shall prove the converse in the easy case in
which α is profinite.

DEFINITION 3.8. Let α be an action of a group G on a von Neumann algebra
P. Then α is called profinite if there is an increasing sequence of finite dimensional

G-invariant subalgebras A1 ⊂ A2 ⊂ · · · such that P =
(⋃

n
An

)′′
.

PROPOSITION 3.9. Let G be a hyperlinear group and α be a profinite action of G
on X. Then L∞(X)oα G is embeddable into Rω.

Proof. The crossed product is generated on L2(X) ⊗ l2G by the operators
α(g)⊗ λ(g) for g ∈ G and m f ⊗ 1 for f ∈ L∞(X) (here λ is the regular represen-
tation of G on l2G and m f is the multiplication operator).

Let L∞(X) =
(⋃

n
An

)′′
with An G-invariant and finite dimensional. We can

then form An oα G and L∞(X) oα G =
(⋃

n
An oα G

)′′
. Looking at the above

definition of crossed product we can deduce that An oα G ⊂ Mkn ⊗ L(G). Here
entered the fact that An is finite dimensional. Now, because G is hyperlinear
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Mkn ⊗ L(G) ⊂ R⊗ Rω ⊂ Rω. We can then embed
⋃
n

An oα G in (Rω)ω′ so that

L∞(X)oα G ⊂ Rω⊗ω′ .
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