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ABSTRACT. We characterize by means of a vector norm inequality the space
of operators that factorize through a p-summing operator from an Lr-space
to an Ls-space. As an application, we prove a domination result in the sense
of Dodds–Fremlin for p-summing operators on Banach lattices with cotype
2, showing moreover that this cannot hold in general for spaces with higher
cotype. We also present a new characterization of Banach lattices satisfying a
lower 2-estimate in terms of the order properties of 2-summing operators.
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1. INTRODUCTION

Factorization of operators on Banach spaces through Lp-spaces is a funda-
mental tool for obtaining results in operator theory. The Maurey–Rosenthal fac-
torization technique provides such a factorization for operators between Banach
lattices when the adequate concavity/convexity requirements on the spaces and
the operator are fulfilled. In [4],[6], it was proved that the principles that lie un-
der the arguments that prove these theorems can also be generalized in order to
include in the same scheme other factorization theorems that can be considered
as independent. Essentially, a separation argument based on the Hahn–Banach
Theorem (or equivalently, Ky Fan’s lemma) applied to bilinear forms defined by
the operators provides a domination result (in the sense of Pietsch) that can be
translated in order to obtain the factorization result. A relevant result that can be
proved as an application of this technique is the one that relates an inequality of
the form ∥∥∥( n

∑
k=1
|T(λkxk)|s

)1/s∥∥∥
F
6 K‖(λk)‖t

∥∥∥( n

∑
k=1
|xk|r

)1/r∥∥∥
E
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for an operator T : E → F (where E is an r-convex Banach lattice, T is s-concave
and 1/s = 1/t + 1/r) with the factorization

E(µ) T //

M f
��

F(ν)

Lr(µ)
R // Ls(ν)

Mg

OO

(see Theorem 3.1 in [6]). Notice that in this case, the operator R that appears in
the scheme is clearly bounded and carries the concavity properties of the original
operator T.

Let us assume now that the original operator T is p-summing. We want
to factor T through a scheme as the one given above but with the additional
requirement that the operator that provides the factorization also carries the p-
summability. We shall show which is the inequality that must be fulfilled by an
operator T for this to happen. Since by the ideal property of p-summing opera-
tors the converse is always true, the inequality must be stronger than the one that
characterize p-summing operators. Thus, the first part of this paper is devoted to
characterizing the space of operators that factorize through a p-summing opera-
tor defined between an Lr-space and an Ls-space.

In the second part of the paper we use the results in the second section to
study the domination problem (in Dodds–Fremlin’s sense) for p-summing opera-
tors. Recall that Dodds–Fremlin theorem [8] asserts that given positive operators
0 6 R 6 T : E→ F between Banach lattices such that E and F∗ are order continu-
ous then R is compact whenever T is. This problem has also been studied for the
classes of weakly compact ([17], [12]), and strictly singular operators ([9], [10])
among others. However, the same problem for non-closed operator ideals (such
as the ideal of p-summing operators) does not seem to have been studied in the
literature. The main reason for this appears to be the fact that, in general, “local
properties” of Banach spaces, such as summability, just do not fit properly within
the lattice structure. So, in general we cannot hope to get a statement of the kind:
if 0 6 R 6 T : E → F with T p-summing, then R is p-summing (see Proposition
3.6). Hence, it might be even more surprising that such a statement holds if E and
F have cotype 2. Namely, if πp(T) denotes the p-summing constant of T, that is

πp(T) = sup
{( m

∑
i=1
‖Txi‖p

)1/p
: sup
‖x∗‖E∗61

( m

∑
i=1
|〈x∗, xi〉|p

)1/p
6 1

}
;

we show in Theorem 3.3 that for some fixed constant C < ∞, πp(R) 6 Cπp(T)
whenever 0 6 R 6 T : E→ F and both E and F have cotype 2.

In Section 4 we also present some remarks concerning the constant involved
in the domination results, showing that we cannot expect it to be one even in the
simplest cases. More precisely, we show that this is not the case for absolutely
summing operators between `2

1 and `2
2, nor for 2-summing operators between `3

1
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and `2
2. Notice that in these cases the domination theorems hold trivially due to

Grothendieck’s inequality, moreover these spaces have cotype 2.
Our notation regarding Banach lattices and operators is standard. Our fun-

damental references on Banach lattices and p-summing operators are [13] and [7],
respectively.

2. FACTORIZATION THEOREMS FOR CONCAVE-SUMMING OPERATORS
BETWEEN BANACH LATTICES

Let us start by recalling the definitions of convexity/concavity and lower/
upper estimates for Banach lattices. The connections among these notions and
type/cotype of Banach lattices can be found in 1.d-1.f of [13].

Given a Banach lattice E and a Banach space X, an operator T : E → X is
q-concave for 1 6 q 6 ∞, if there exists a constant M < ∞ so that( n

∑
i=1
‖Txi‖q

)1/q
6 M

∥∥∥( n

∑
i=1
|xi|q

)1/q∥∥∥, if 1 6 q < ∞,

or

max
16i6n

‖Txi‖ 6 M
∥∥∥ n∨

i=1

|xi|
∥∥∥, if q = ∞,

for every choice of vectors (xi)
n
i=1 in E. The smallest possible value of M is de-

noted by M(q)(T).
Similarly, an operator T : X → E is p-convex for 1 6 p 6 ∞, if there exists a

constant M < ∞ such that∥∥∥( n

∑
i=1
|Txi|p

)1/p∥∥∥ 6 M
( n

∑
i=1
‖xi‖p

)1/p
, if 1 6 p < ∞,

or ∥∥∥ n∨
i=1

|Txi|
∥∥∥ 6 M max

16i6n
‖xi‖, if p = ∞,

for every choice of vectors (xi)
n
i=1 in X. The smallest possible value of M is

denoted by M(p)(T). Recall that a Banach lattice is q-concave (respectively p-
convex) whenever the identity operator is q-concave (respectively p-convex).

A Banach lattice E satisfies a lower (respectively upper) p-estimate when-
ever there exists a constant M < ∞ such that∥∥∥ n

∑
i=1

xi

∥∥∥ > M−1
( n

∑
i=1
‖xi‖p

)1/p
(respectively

∥∥∥ n

∑
i=1

xi

∥∥∥ 6 M
( n

∑
i=1
‖xi‖p

)1/p
)

for every choice of pairwise disjoint elements (xi)
n
i=1 in E.
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DEFINITION 2.1. Given a Banach lattice E, a subset A ⊂ E is called r-convex
(for 1 6 r < ∞) if it is solid and for any x1, . . . , xn ∈ A and scalars (ai)

n
i=1 such

that
n
∑

i=1
|ai|r 6 1, we have that

( n
∑

i=1
|aixi|r

)1/r
∈ A.

Recall that a subset A of a Banach lattice is solid if x ∈ A whenever |x| 6 |y|
and y ∈ A. It is easy to see that if A ⊂ E is r-convex, then it is s-convex for every
1 6 s 6 r. In particular, every r-convex set is convex.

Recall that given a Banach space X, the prepolar of a set A ⊂ X∗ is the set

A0 = {x ∈ X : 〈ϕ, x〉 6 1 ∀ϕ ∈ A}.

The following fact is based on a standard construction (see for instance [15]).

LEMMA 2.2. Given a Banach lattice E and A ⊆ BE∗ an r-convex set, then the
prepolar set A0 generates an r′-concave Banach lattice (where 1/r + 1/r′ = 1) which we
denote by E(A), whose norm is given by the Minkowski functional of A0 and such that
there is a (continuous) extended quotient mapping QA : E→ E(A) with dense range.

Proof. Let φ denote the Minkowski functional corresponding to A0. Hence,
for x ∈ E we have

φ(x) = inf{λ > 0 : x ∈ λA0} = inf{λ > 0 : 〈ϕ, x〉 6 λ ∀ϕ ∈ A}.

Since A is solid, it follows that A0 is a convex, balanced and solid subset of E
with 0 ∈ A0. Hence, φ(·) defines a lattice semi-norm on E. Now, notice that
since A ⊆ BE∗ , it follows immediately that BE = (BE∗)0 ⊆ A0, so in particular
φ(x) 6 ‖x‖ for every x ∈ E.

Now, let Iφ = {x ∈ E : φ(x) = 0}, which is clearly a closed ideal of E.
Let E(A) denote the completion of the quotient E/Iφ endowed with the norm
induced by φ. It is a Banach lattice. Moreover, since φ(x) 6 ‖x‖E, the quotient
mapping extends to a lattice homomorphism QA : E → E(A), whose range is
clearly dense.

Let us see now that E(A) is an r′-concave Banach lattice. First notice that
by the definition of Iφ, the duality between an element ϕ of A and any element
x + Kerφ ∈ E/Iφ is well defined by 〈ϕ, x + Kerφ〉 = 〈x, ϕ〉.

Let us take ε > 0. Given x1, . . . , xn in E+, by the definition of φ, there are

ϕ1, . . . , ϕn ∈ A such that 〈xi, ϕi〉 > ε/n+φ(xi). Hence, since
( n

∑
i=1
|ai ϕi|r

)1/r
∈ A,

by Proposition 1.d.2(iii) of [13], for any positive (ai)
n
i=1 with

n
∑

i=1
ar

i 6 1, we have

n

∑
i=1

aiφ(xi) 6
n

∑
i=1

ai〈xi, ϕi〉+ ε 6
〈( n

∑
i=1
|xi|r

′)1/r′
,
( n

∑
i=1
|ai ϕi|r

)1/r〉
+ ε

6 φ
(( n

∑
i=1
|xi|r

′)1/r′)
+ ε.
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Therefore, taking suprema over all (ai)
n
i=1 with

n
∑

i=1
ar

i 6 1, we get

( n

∑
i=1

φ(xi)
r′
)1/r′

6 φ
(( n

∑
i=1

xr′
i

)1/r′)
.

Since this inequality holds for all x1, . . . , xn in E+ and QA is a lattice homomor-
phism whose image is dense in E(A), this implies that E(A) is r′-concave.

EXAMPLE 2.3. Let E = L2(0, 1) and consider

A = { f ∈ L2(0, 1) : ‖ f ‖L2 6 1, f χ[1/2,1] = 0}.

Clearly A is 2-convex in E, and the construction of Lemma 2.2 in this case yields
that E(A) = L2(0, 1/2), and QA : L2(0, 1) → L2(0, 1/2) is the corresponding
band projection.

EXAMPLE 2.4. Let E = Lp(0, 1) and A = BLq′
for q < p (1/p + 1/p′ = 1 =

1/q + 1/q′). It follows that A is q′-convex in Lp′(0, 1), and in this case we have
E(A) = Lq(0, 1) and QA : Lp(0, 1) ↪→ Lq(0, 1) is the formal inclusion.

The following result follows the lines of Theorem 3.1 in [6] (see also [4]).
It is a specialized version of this result in which the factorizing operator R is
required to be p-summing. Recall that if E(µ) is a Banach function space, we
write E′ for its Köthe dual and E∗ for its dual. Also recall that the p-power of a
Banach function space E(µ) (also called p-concavification cf. [13]) is the space of
elements E(µ)[p] = { f ∈ L0(µ) : | f |1/p ∈ E(µ)}. This is a quasi-Banach lattice
endowed with the quasi-norm ‖ f ‖E(µ)[p] = ‖| f |1/p‖p

E, which is equivalent to a
norm whenever the space E(µ) is p-convex (see [14] for details).

In the following results we assume for the aim of simplicity that M(p)(E) =
1 and M(s)(F) = 1; by Proposition 1.d.8 in [13], this is not a restriction on the
lattices E and F.

THEOREM 2.5. Let 1 < s 6 p < ∞ and t such that 1/s = 1/p + 1/t. Let
1 6 r 6 ∞. Let E(µ) be a Banach function space and F(ν) be an s-concave Banach
function space. Let T : E(µ)→ F(ν) be an operator. Then the following are equivalent:

(i) There is an r′-convex weak*-closed set A ⊆ BE∗ and a constant K > 0 such that
for every x1, . . . , xn ∈ E(µ) and λ1, . . . , λn ∈ K,∥∥∥( n

∑
k=1
|T(λkxk)|s

)1/s∥∥∥
F
6 K‖(λk)‖t sup

x∗∈A

( n

∑
k=1
|〈xk, x∗〉|p

)1/p
.

(ii) There exist an r-concave Banach function space E(A), a lattice homomorphism
QA (of norm one), a positive function g ∈ BM(Ls(ν),F(ν)) (i.e. defining a multiplication
operator) and a p-summing operator R : E(A)→ Ls(ν) such that the following diagram
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commutes:

E(µ) T //

QA
��

F(ν)

E(A)
R // Ls(ν)

Mg

OO

Moreover, in the factorization πp(R) 6 K.

Proof. Let us prove (i)⇒ (ii). It is a direct consequence of Theorem 3.2 in [6],
that is based on Theorem 1 in [4]; however, since the assumptions in the definition
of Banach function space in these papers are more restrictive than the ones that
we assume here (a version of the Fatou property is assumed there) we give a
sketch of the proof for showing that this requirement is not needed. For doing
this we consider two cases.

Case 1. F is q-convex for some q > 1. By duality the condition in (i) is equiva-
lent to( n

∑
k=1
|〈T(λkxk), y∗k 〉|

)
6 K‖(λk)‖t sup

x∗∈A

( n

∑
k=1
|〈xk, x∗〉|p

)1/p∥∥∥( n

∑
k=1
|y∗k |

s′
)1/s′∥∥∥

F∗

for every x1, . . . , xn ∈ E, λ1, . . . , λk ∈ R and y∗1 , . . . , y∗k ∈ F∗. Also by duality, this
is equivalent to( n

∑
k=1
|〈T(xk), y∗k 〉|

t′
)1/t′

6 K sup
x∗∈A

( n

∑
k=1
|〈xk, x∗〉|p

)1/p∥∥∥( n

∑
k=1
|y∗k |

s′
)1/s′∥∥∥

F∗

for every x1, . . . , xn ∈ E and y∗1 , . . . , y∗k ∈ F∗. Now, notice that the map x  
〈x, ·〉 ∈ `∞(A) defines an homogeneous representation of E in the r-convex lattice
`∞(A), in the sense of [4]. In the same way the map y∗  y∗ ∈ F∗ is the trivial
homogeneous representation of F∗ in F∗, and so the argument follows the lines
of the proof of Theorem 1 of [4]; note that since the space F∗ is s′-convex we
obtain that (F∗)[s′ ] is a Banach function space. Moreover, F∗ is also q′-concave
with q′ < ∞, since F is q-convex. This implies that F∗ is order continuous (cf.
1.a of [13]). Using all this, we can define the convex family of concave functions
Φ : P(A)× B((F∗)[s′ ])

∗ → R, where P(A) is the set of probability measures on the
compact set A, each Φ depending on finite families of vectors x1, . . . , xn ∈ E and
y∗1 , . . . , y∗n ∈ F∗, as

Φ(δ, ψ) := K
t′

p

∫
A

( n

∑
k=1
|〈xk, x∗〉|p

)
dδ+K

t′

s′
(〈 n

∑
k=1
|y∗k |

s′ , ψ
〉)
−

n

∑
k=1
|〈T(xk), y∗k 〉|

t′ .

Notice that the Dirac deltas of points of A, when considered in the integral,

attain the maximum in the expression sup
x∗∈A

( n
∑

k=1
|〈xk, x∗〉|p

)1/p
and the norm in

F∗ is attained by the elements of B((F∗)[s′ ])
∗ . Ky Fan’s lemma gives a probability
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measure η ∈ B`∞(A)∗ and another positive functional ϕ ∈ B((F∗)[s′ ])
∗ such that for

all x ∈ E and y∗ ∈ F∗,

|〈T(x), y∗〉|t′ 6 K
t′

p

( ∫
A

|〈x, x∗〉|p dη
)
+ K

t′

s′
ϕ(|y∗|s′).

A simple trick using the homogeneity of these expressions (see the end of the
proof of Theorem 1 in [4]) gives also

|〈T(x), y∗〉| 6 K
( ∫

A

|〈x, x∗〉|p dη
)1/p

ϕ(|y∗|s′)1/s′ .

Now, we take into account that F and F∗ are order continuous, as has been
already mentioned above. Then clearly (F∗)[s′ ] is order continuous too. There-
fore ((F∗)[s′ ])′ = ((F∗)[s′ ])∗ and M(Ls(µ), F) = M(F∗, Ls′(µ)) = (((F∗)[s′ ])′)[1/s′ ]
(isometrically).

Thus, we obtain that there is a probability measure η and a function 0 6
ω ∈ L0(µ) in BM(Ls(µ),F) such that

|〈T(x), y∗〉| 6 K
( ∫

A

|〈x, x∗〉|pdη
)1/p( ∫

|y∗|s′ωs′dν
)1/s′

for every x ∈ E and y∗ ∈ F∗.
Consequently, we obtain the inequality

(2.1)
( ∫ ( |T(x)|

ωs′

)s
ωs′dν

)1/s
=
( ∫ |T(x)|s

ωs dν
)1/s

6 K
( ∫

A

|〈x, x∗〉|pdη
)1/p

.

Case 2. F is not q-convex for any q > 1. In this case a convexification procedure
must be used, exactly as it is described in the proof of Theorem 3.2 of [6]: since F is
a Banach function space, the 1/2-th power F[1/2] of F is 2-convex. Then, changing
the multiplication by scalars defined in both spaces `∞(A)[1/2]r = `∞(A) and
F[1/2], it is possible to define a homogeneous form uT : `∞(A) × (F[1/2])

′ → R
such that the arguments in (i) can also be applied (notice that the bilinearity of
the map (x, y∗)  〈T(x), y∗〉 has not been used in the arguments above: only
homogenity is needed). Therefore, the inequality (2.1) obtained in Case 1 also
holds for this case.

By Pietsch’s domination theorem, the inequality (2.1) can be understood as
p-summability of the operator T : E(A)→ Ls(dν/ωs), at least for the elements of
E(A) that are the image by QA of elements in E, for which the operator is defined.
But notice that we have shown that the operator T can be considered as taking
values in Ls(dν/ωs), and by Lemma 2.2 the operator T can be extended to E(A),
since the image of E by QA is dense in E(A). Let us denote this extension by
T0 : E(A) → Ls(µ/ωs), for which we have πp(T0) 6 K. Now, if we consider
the multiplication isometry M1/ω : Ls(µ/ωs) → Ls(µ), then the map M1/ω ◦ T0
is also p-summing. Therefore, we have that the composition R = M1/ω ◦ T0 is
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a p-summing operator from E(A) to Ls(ν) with πp(R) 6 ‖M1/ω‖πp(T0) 6 K.
Considering the multiplication operator Mg given by g = ω, this provides the
desired factorization.

The converse is given by the following straightforward computations. For
every x1, . . . , xn ∈ E(µ) and λ1, . . . , λn ∈ R,

∥∥∥( n

∑
k=1
|λkT(xk)|s

)1/s∥∥∥
F

=
∥∥∥( n

∑
k=1
|λk Mg(R(QA(xk)))|s

)1/s∥∥∥
F
6
∥∥∥g
( n

∑
k=1
|λkR(QA(xk))|s

)1/s∥∥∥
F

6 ‖Mg‖
( n

∑
k=1

∫
|λkR(QA(xk))|s dµ

)1/s
6‖Mg‖ ‖(λk)‖t

( n

∑
k=1
‖R(QA(xk))‖p

)1/p

6 ‖Mg‖ ‖(λk)‖t πp(R) sup
y∗∈U

( n

∑
k=1
|〈xk, y∗〉|p

)1/p

where U = Q∗A(BE(A)∗) is an r′-convex weak*-closed set included in BE∗ . This
proves the result.

REMARK 2.6. A key observation for the next section, which follows from
the previous proof, is the fact that the factorization given in Theorem 2.5 behaves
well with respect to the Banach lattices order. That is, if 0 6 S 6 T : E→ F and T
satisfies the conditions of the theorem, then there is a similar factorization for S.
Namely,

E S //

QA
��

F

E(A)
P // Ls

Mg

OO

where 0 6 P 6 R : E(A) → Ls. Notice that this does not follow directly from
Pietsch’s Factorization theorem (see also Remark 3.4).

COROLLARY 2.7. Let 1 < s 6 p < ∞ and let t be such that 1/s = 1/p + 1/t.
Let 1 6 r 6 ∞. Let E(µ) and F(ν) be r-convex and s-concave Banach function spaces,
respectively. Suppose also that E is σ-order continuous and let T : E(µ) → F(ν). Then
the following are equivalent:

(i) There is an r′-convex weak*-closed set A ⊆ BE∗ such that for every x1, . . . , xn ∈
E(µ) and λ1, . . . , λn ∈ K,

∥∥∥( n

∑
k=1
|T(λkxk)|s

)1/s∥∥∥
F
6 ‖(λk)‖t sup

x∗∈A

( n

∑
k=1
|〈xk, x∗〉|p

)1/p
.
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(ii) There exist positive functions f ∈ M(E(µ), Lr(µ)) and g ∈ M(Ls(ν), F(ν)), as
well as a p-summing operator R : Lr(µ)→ Ls(ν) such that

E(µ) T //

M f
��

F(ν)

Lr(µ)
R // Ls(ν)

Mg

OO

Moreover, in this case πp(R) 6 K.

Proof. Let us see (i)⇒ (ii). An application of Theorem 2.5 gives a factoriza-
tion T = Mg ◦ R0 ◦ QA where R0 : E(A) → Ls(ν) is p-summing. Therefore, the
positive operator QA is defined from an r-convex Banach function space into an
r-concave Banach lattice, so by Krivine’s theorem ([13], Theorem 1.d.11) QA fac-
torizes through a scheme QA = S ◦M f , where M f : E(µ)→ Lr(µ) is a multiplica-
tion operator and S : Lr(µ) → E(A) (see also Corollary 5 of [4] or Corollary 6.17
of [14]). Notice also that R = R0 ◦ S is p-summing, since R0 is. The desired fac-
torization is thus obtained. For the converse, just adapt the final computations in
the proof of Theorem 2.5.

REMARK 2.8. A simple duality argument shows that in the case that E is
not σ-order continuous the result remains valid whenever T′(F′(ν)) ⊂ E′(µ).

REMARK 2.9. Notice that a simple argument similar to the one that proves
Theorem 2.5 gives the equivalence between the following statements for an oper-
ator T between Banach function spaces E(µ) and F(ν).

(i) There exist an r-convex set A ⊆ BE∗ and a constant K > 0 such that for
every x1, . . . , xn ∈ E,

( n

∑
k=1
‖T(xk)‖p

)1/p
6 K sup

ϕ∈A

( n

∑
k=1
|〈xk, ϕ〉|p

)1/p
.

(ii) There is an r-concave Banach lattice E(A), a (norm one) lattice homomor-
phism QA : E → E(A) with dense range and a p-summing map R such that the
following diagram commutes:

E(µ) T //

QA ##F
FF

FF
FF

F
F(ν)

E(A)

R

<<xxxxxxxx

Moreover, if this holds, πp(R) 6 K. Note that r-convexity/s-concavity con-
ditions for E or F respectively are not needed in this case.
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3. DODDS–FREMLIN DOMINATION FOR p-SUMMING OPERATORS

As an application of the factorization results given in the previous section,
we present several results regarding the domination problem for p-summing op-
erators. We are interested in finding out conditions on Banach lattices E and
F such that whenever 0 6 R 6 T : E → F and T is p-summing, then R is
also p-summing. Precisely, if πp(T) denotes the p-summing norm of T, then
we would like to know whether or not there exists a constant C < ∞ such that
πp(R) 6 Cπp(T) whenever 0 6 R 6 T : E → F. In the next section, we present
some remarks concerning the constant C involved, in particular we show that this
constant cannot be avoided (i.e. C = 1) even in the simplest finite dimensional
cases.

Notice that this problem is not trivial in general. Indeed, Examples 3.12 and
3.14 of [9] provide positive operators which are p-summing and dominate oper-
ators which are not strictly singular. A direct application of Dvoretzky–Rogers
theorem (cf. p. 2 of [7]) shows these dominated operators are not p-summing as
well.

Recall that a sequence (xn) in a Banach space X is weakly p-summable if

sup
x∗∈BX∗

(
∑
n
|〈x∗, xn〉|p

)1/p
is bounded, equivalently xn = T(en) for some T : `p′ →

X (where (en) is the unit vector basis of `p′ and 1/p + 1/p′ = 1). Similarly, (xn) is

called strongly p-summable when
(

∑
n
‖xn‖p

)1/p
converges. Hence, an operator

T : E → F is p-summing if it maps weakly p-summable sequences into strongly
p-summable. The main obstruction that avoids a general domination result for
p-summing operators stems from the fact that weak summability is not a lattice
property. Namely, the sequence (|xn|) need not be weakly p-summing although
(xn) was. This is just because an operator T : `p′ → E need not have a bounded
modulus (cf. [1]).

There is a connection with the restricted class of “positive p-summing” op-
erators, introduced in [3], which are exactly those for which the aforementioned
problem is no longer an obstruction. In particular, a domination theorem holds
trivially for this class. Notice that this terminology might be misleading: a p-
summing operator which is positive need not be a “positive p-summing” opera-
tor.

Our analysis mainly focuses on the class of 2-summing operators, whereas
many of the results given here can be easily extended to the general case of p-
summing operators.

In order to motivate the first positive results, we consider operators on a
Hilbert space. In finite dimension, an operator T : `n

2 → `n
2 can be considered as

an n× n matrix (aij)
n
i,j=1. Clearly, `n

2 with the coordinate-wise ordering becomes
a Banach lattice, where two operators T = (aij) and R = (bij) satisfy 0 6 R 6 T
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whenever 0 6 bij 6 aij for every i, j = 1, . . . , n. Notice that for operators on
Hilbert space, the classes of 2-summing operators and Hilbert–Schmidt operators
coincide. Moreover

π2(aij) =
( n

∑
i=1

n

∑
j=1

a2
ij

)1/2
.

Hence, it is clear that π2(R) 6 π2(T) whenever 0 6 R 6 T : `n
2 → `n

2 . Note that
the same proof works for operators on the infinite dimensional `2. We present
below a more general argument for operators into a general Hilbert space (see
Proposition 3.2).

However, there exist other simple cases in which a domination theorem
holds. Recall that a Banach lattice E is an AM-space if ‖x ∨ y‖ = ‖x‖ ∨ ‖y‖ for
any x, y ∈ E+. Typically, these spaces are of the form C(K) or L∞(µ).

PROPOSITION 3.1. Let 0 6 R 6 T : E → F be positive operators from an
AM-space E to Banach lattice F. If T is p-summing for some 1 6 p < ∞, then R is
p-summing.

Proof. By Theorem 1.d.10 of [13], every positive operator from a C(K) is p-
summing if and only if it is p-concave. The result follows from the fact that( n

∑
k=1
‖R(xk)‖p

)1/p
6
( n

∑
k=1
‖T(|xk|)‖p

)1/p
6 M(p)(T)

∥∥∥( n

∑
k=1
|xk|p

)1/p∥∥∥.

The following proposition will be useful.

PROPOSITION 3.2. Let 0 6 R 6 T : E → L2(µ). If T is absolutely summing,
then so is R. Moreover, π1(R) 6 Cπ1(T).

Proof. If T is absolutely summing, then it is 1-concave (see p. 56 of [13]). In
particular, R is also 1-concave, and by Krivine’s theorem ([13], Theorem 1.d.11)
R can be factored through an L1 space. Thus, by Grothendieck’s theorem (cf.
Theorem 3.4 of [7]) R is absolutely summing.

As we will see in Section 4, we cannot remove the constant C in Proposi-
tion 3.2. This can be shown even considering operators from `2

1 to `2
2.

We present next our main result on domination. Recall that a Banach lattice
has cotype 2 if and only if it is 2-concave. In a certain sense, Theorem 2.5 allows
us to reduce to the case of operators into L2(µ), and then apply Proposition 3.2.

THEOREM 3.3. Let 1 6 p < ∞. Given Banach lattices E and F with cotype 2
and 0 6 S 6 T : E → F, if T is a p-summing operator, then S is also p-summing with
πp(S) 6 Cpπp(T). Here Cp is a universal constant (depending only on p and the cotype
constants of E and F).

Proof. First of all, since both E and F have cotype 2, it follows that for every
1 < p < ∞, the class of p-summing operators coincides with that of absolutely
summing operators (cf. Corollary 11.16 of [7]). In particular, T is 2-summing.
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Now, using Pietsch Domination theorem (cf. 2.12 of [7]), together with Khint-
chine’s inequality, we can deduce that for every x1, . . . , xn ∈ E, the following
inequality holds

( 1∫
0

∥∥∥ n

∑
i=1

ri(t)T(xi)
∥∥∥2

dt
)1/2

6 C′ sup
{( n

∑
i=1
|〈x∗, xi〉|2

)1/2
: x∗ ∈ BE∗

}
.

Actually, C′ can be taken equal to B2π2(T), where B2 is the constant appearing in
Khintchine’s inequality for L2 (cf. 12.5 of [7]).

Furthermore, since F is a 2-concave Banach lattice, Maurey–Khinchine’s in-
equality (cf. Theorem 1.d.6 of [13]) yields that for every x1, . . . , xn ∈ E, we have∥∥∥( n

∑
i=1
|T(xi)|2

)1/2∥∥∥ 6 C′′ sup
{( n

∑
i=1
|〈x∗, xi〉|2

)1/2
: x∗ ∈ BE∗

}
.

In particular, this means that for every x1, . . . , xn in E, and λ1, . . . , λn ∈ K
we have ∥∥∥( n

∑
i=1
|T(λixi)|2

)1/2∥∥∥
F
6 ‖(λi)‖∞ sup

x∗∈A

( n

∑
i=1
|〈x∗, xi〉|2

)1/2
,

where A = BE∗ is a 2-convex set because E is 2-concave. Therefore, Theorem 2.5
with s = r = 2 (and t = ∞) implies that we can factor T in the following way

E T //

R !!D
DD

DD
DD

D F

L2(µ)

Mg

==zzzzzzzz

where R : E → L2(µ) is 2-summing and Mg : L2(µ) → F is a multiplication
operator for some g ∈ M(L2(µ), F). Moreover, it can be seen from the proof of
Theorem 2.5 that if 0 6 S 6 T, then S also factors as

E S //

U !!D
DD

DD
DD

D F

L2(µ)

Mg

==zzzzzzzz

with 0 6 U 6 R : E→ L2(µ).
Now, since R : E→ L2(µ) is absolutely summing (cf. Corollary 11.16 of [7]),

Proposition 3.2 implies that U : E → L2(µ) is absolutely summing. In particular,
we get that S is p-summing (for 1 6 p < ∞) and the proof is finished.
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REMARK 3.4. An important step in the previous proof was the fact that a
positive operator T : E→ F (where E and F have cotype 2 and F′ is order contin-
uous) which is 2-summing can be factored as

E T //

R !!D
DD

DD
DD

D F

L2(µ)

Mg

==zzzzzzzz

where R : X → L2(µ) is a positive 2-summing operator and g is a positive func-
tion. This fact, which is a consequence of Theorem 2.5, is still true without any
condition on E.

It is worth noting here that this factorization cannot be obtained as a particu-
lar case of the canonical factorization for 2-summing operators given by Pietsch’s
theorem, since this factorization cannot be expected to respect positivity (cf. [7]).
Notice that this would imply, in particular, that any positive 2-summing operator
factorizes through an L∞(µ) by positive operators. We provide an easy coun-
terexample showing this cannot happen in general.

EXAMPLE 3.5. Given n ∈ N, consider the identity operator idn : `n
1 → `n

1 .
It is well known that π2(idn) 6

√
n (see [5]). On the other hand, it is easy to see

that ι(idn) = n, where ι denotes the integral norm of the operator. Now, it can be
proved that any positive operator T : L∞(µ)→ L1(µ) is integral with ‖T‖ = ι(T)
(see [5]). This fact, together with the ideal property of integral operators, tells us
that ‖u‖‖v‖ > n for every pair of positive operators u : `n

1 → L∞(µ), v : L∞(µ)→
`n

1 such that id = v ◦ u. A standard argument from local theory shows that there
exist 2-summing positive operators from L1(ν) into L1(ν) which do not factorize
through any L∞(µ) by positive operators.

The following result tells us that we cannot expect a positive answer to the
domination problem when the range space has cotype greater than 2. Recall that
a Banach lattice E satisfies a lower 2-estimate whenever there is a constant M < ∞
such that, for every choice of pairwise disjoint elements (xi)

n
i=1 in E, we have( n

∑
i=1
‖xi‖p

)1/p
6 M

∥∥∥ n

∑
i=1

xi

∥∥∥.

It is well-known that a Banach lattice E which has cotype 2 must also satisfy a
lower 2-estimate, and if E satisfies a lower 2-estimate, then E has cotype q for
every q > 2 [13]. However, there exist Banach lattices which satisfy a lower 2-
estimate but are not of cotype 2 (cf. Example 1.f.19 of [13]).

PROPOSITION 3.6. Let E be a Banach lattice with finite cotype. Suppose that for
some constant C < ∞, the 2-summing operators from E to a Banach lattice F satisfy
π2(R) 6 Cπ2(T) whenever 0 6 R 6 T : E→ F. Then F satisfies a lower 2-estimate.
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Proof. We proceed by contradiction. Suppose that F does not satisfy a lower
2-estimate. Hence, for every N ∈ N there exist xN

1 , . . . , xN
m disjoint in F+ such that( m

∑
i=1
‖xN

i ‖2
)1/2

> N
∥∥∥ m

∑
i=1

xN
i

∥∥∥.

Now, since E has finite cotype, it can be represented as a Banach lattice of
measurable functions on some (Ω, Σ, µ) such that, for some p < ∞, the inclusions
Lp(µ) ↪→ E ↪→ L1(µ) are bounded, say with norm one (cf. p. 14 of [11]). We can
therefore consider a family (rk) of Rademacher functions on Ω which are weakly

2-summable with sup
{ n

∑
k=1
〈x∗, rk〉2 : x∗ ∈ BLp

}
6 Bp, where Bp is the constant

appearing in Khintchine’s inequality for Lp(µ) (hence independent of n).
Let us now define for N ∈ N the operator TN : E→ F given by

TN( f ) =
∫

f dµ
m

∑
i=1

xN
i ,

and RN : E→ F given by

RN( f ) =
m

∑
i=1

( ∫
f r+i dµ

)
xN

i .

Clearly, these operators satisfy 0 6 RN 6 TN . Moreover, since TN is a rank

one operator it holds that π2(TN) = ‖TN‖ 6
∥∥∥ m

∑
i=1

xN
i

∥∥∥. Meanwhile, since the

Rademacher functions are weakly 2-summable in E, we have

π2(RN) >
1

Bp

( m

∑
k=1
‖RN(rk)‖2

)1/2
=

1
Bp

( m

∑
k=1

∥∥∥ m

∑
j=1

∫
rkr+j dµxN

j

∥∥∥2)1/2

=
1

Bp

( m

∑
k=1

∥∥∥1
2

xN
k

∥∥∥2)1/2
>

1
2Bp

N
∥∥∥ m

∑
k=1

xN
k

∥∥∥.

Since this holds for every N ∈ N there cannot be a constant C < ∞ such that
π2(R) 6 Cπ2(T) holds whenever 0 6 R 6 T : E → F. Hence, we have reached a
contradiction.

REMARK 3.7. Notice that, according to Proposition 3.1, the hypothesis of
finite cotype in the previous construction cannot be removed.

A particular case of the proof of Theorem 3.3 together with Proposition 3.6
actually yield the following characterization of Banach lattices satisfying a lower
2-estimate.

THEOREM 3.8. Let F be a Banach lattice. Then F satisfies a lower 2-estimate if
and only if for every 2-concave Banach lattice E, domination holds for the ideal Π2(E, F)
of 2-summing operators.
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Proof. Suppose F satisfies a lower 2-estimate, and let 0 6 R 6 T : E → F be
such that π2(T) < ∞. Hence, for every x1, . . . , xn ∈ E, we have( n

∑
i=1
‖T(xi)‖2

)1/2
6 π2(T) sup

{( n

∑
i=1
|〈x∗, xi〉|2

)1/2
: x∗ ∈ BE∗

}
.

As in the proof of Theorem 3.3, Pietsch Domination theorem, together with
Khinchine’s inequality, imply that

( 1∫
0

∥∥∥ n

∑
i=1

ri(t)T(xi)
∥∥∥2

dt
)1/2

6 B2π2(T) sup
{( n

∑
i=1
|〈x∗, xi〉|2

)1/2
: x∗ ∈ BE∗

}
.

Now, since F satisfies a lower 2-estimate, in particular it is q-concave for every
q > 2, so we can also use Maurey–Khinchine’s inequality ([13], Theorem 1.d.6)
and we get∥∥∥( n

∑
i=1
|T(xi)|2

)1/2∥∥∥ 6 C sup
{( n

∑
i=1
|〈x∗, xi〉|2

)1/2
: x∗ ∈ BE∗

}
for every x1, . . . , xn ∈ E, and some constant C < ∞. Since E is 2-concave, the set
BE∗ is clearly 2-convex, and we can apply Theorem 2.5. The rest of the argument
follows the one given in the proof of Theorem 3.3.

The converse implication follows directly from Proposition 3.6.

QUESTION 3.9. What can we say about the case of operators from a Banach
lattice without cotype 2? Is there a domination theorem if the range space has
cotype 2? Note that there is a domination theorem for absolutely summing oper-
ators, so we cannot expect a counterexample in the form of Proposition 3.6.

4. A REMARK ON THE CONSTANT INVOLVED IN THE DOMINATION THEOREM

The aim of this section is to show that we can not remove the constant ap-
pearing in Theorem 3.3. We will show that this constant is necessary even in the
simplest cases. In the first example, we will show the existence of two positive
operators 0 6 S 6 T : `2

1 → `2
2 such that π1(S) > π1(T). Note that these spaces

satisfy the conditions of Theorem 3.3. Furthermore, the domination is trivial here
because of the Grothendieck’s theorem. It is also interesting to note that we can
not expect a similar example for the 2-summing norm on these spaces. This is a
consequence of the non trivial fact that every operator T from `2

1 into `2
2 satisfies

‖T‖ = π2(T) (see [2]) and the easy fact that the operator norm is monotone with
respect to domination. However, we will show that if we consider `3

1, there exist
operators 0 6 S 6 T : `3

1 → `2
2 such that π2(S) > π2(T).

We begin with the example for the 1-summing norm.
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EXAMPLE 4.1. Let 0<ε<ε0 and consider the operator Tε : `2
1→`2

2 defined by

Tε(e1) = e1 + εe2, Tε(e2) =
1√
2
(e1 + e2).

It is clear that 0 6 Tε 6 Tε′ whenever 0 6 ε 6 ε′. We will see, however,
that π1(Tε) is not an increasing function of ε. Indeed, recall that the application
A : `2

∞ → `2
1 defined by

A(e1) =
1
2
(e1 + e2), A(e2) =

1
2
(e1 − e2),

is a linear isometry. Thus, by the injectivity of the ideal of 1-summing operators,
it suffices to compute the 1-summing norm, or equivalently, the integral norm (cf.
[5]) of the operator T̃ε : `2

∞ → `2
2 defined by

T̃ε(e1)=
1
2

((
1+

1√
2

)
e1+

(
ε+

1√
2

)
e2

)
, T̃ε(e2)=

1
2

((
1− 1√

2

)
e1+

(
ε− 1√

2

)
e2

)
.

An easy computation shows that

π1(Tε) =
1
2
[(2 + ε2 +

√
2(1 + ε))1/2 + (2 + ε2 −

√
2(1 + ε))1/2].

It is easy to see that this function is decreasing in a certain interval [0, ξ), for
some ξ > 0.

Next, we show an example for the 2-summing norm:

EXAMPLE 4.2. Consider now the operator Tε : `3
1 → `2

2 defined by

Tε(e1) = e1 + εe2, Tε(e2) =
1√
2
(e1 + e2), Tε(e3) = εe1 + e2.

Due to the simplicity of the operator we are able to compute the exact value of
π2(Tε). Obviously, we have Tε > Tε′ if ε > ε′. We will see that π2(Tε) does not
respect this order.

It is well known (see for instance Proposition 9.7 of [16]) that the 2-summing
norm of this operator can be obtained as

π2(T) = sup{π2(Tu) : u : `2
2 → `3

1, ‖u‖ 6 1}.

We will calculate π2(Tε)2 just to avoid the square root. Then, we have to solve the
following problem:

max
{(

x1 +
1√
2

x2 + εx3

)2
+
(

εx1 +
1√
2

x2 + x3

)2

+
(

y1 +
1√
2

y2 + εy3

)2
+
(

εy1 +
1√
2

y2 + y3

)2}
,
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subject to the restrictions

(x1 + x2 + x3)
2 + (y1 + y2 + y3)

261, (x1 + x2 − x3)
2 + (y1 + y2 − y3)

2 6 1,

(x1 − x2 + x3)
2 + (y1 − y2 + y3)

261, (−x1 + x2 + x3)
2 + (−y1 + y2 + y3)

261.

Now, by mean of several changes of variable and because of the “simplic-
ity” of the geometry of the problem, the previous optimization problem can be
reduced to the following one:

max
06u61

fε(u) =
1
2
{[C(ε)

√
u + (1 + ε)]2 + (1− u)D(ε)2},

where C(ε) =
√

2 − (1 + ε) and D(ε) = 1 − ε (we save the reader against the
tedious calculations).

Now it is easy to see that this function is decreasing in a certain [0, ξ), for
some ξ > 0.
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