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INTRODUCTION

Renault’s Equivalence Theorem is one of the fundamental tools in the the-
ory of groupoid C∗-algebras. It states that if G and H are equivalent via a (G, H)-
equivalence Z, then the groupoid C∗-algebras C∗(G) and C∗(H) are Morita equiv-
alent via an imprimitivity bimodule X which is a completion of Cc(Z). However,
one is often interested in the reduced C∗-algebras C∗r (G) and C∗r (H). For exam-
ple, it is the reduced C∗-algebras that play a role in Baum–Connes theory. Fur-
thermore, it is the reduced algebra, rather than the full one, which arises in many
applications because it, and its reduced norm, have much more concrete descrip-
tions than their universal counterparts. It is apparently “well known” to experts
that equivalent groupoids have Morita equivalent reduced C∗-algebras. For ex-
ample, the result is contained in embryonic form in Proposition 3 of [2]. It is listed
as a consequence of the main result in [19] (see Corollary 7.9 of [19]), and it is also
stated without proof immediately following Theorem 3.1 of [17].
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The purpose of this paper is three fold: firstly to give a precise statement
and proof of the equivalence result for reduced groupoid C∗-algebras; secondly to
illustrate that the equivalence result for reduced algebras is compatible with the
result for the full algebras and Rieffel induction; and thirdly, and possibly most
importantly, to highlight the role of the linking groupoid, which is the main tool
in our proofs. The concept of the linking groupoid L of an equivalence between
groupoids G and H is first alluded to at the end of Section 3 of [18] and appears
in work of Kumjian; see in particular, [6]. The linking groupoid was described in
general in Muhly’s unpublished notes ([8], Remark 5.35). A missing ingredient
up until recently has been a Haar system for L. We show that if G and H have
Haar systems, then so does L; we may then form C∗(L), and we show that it
is isomorphic to the linking algebra L(X) of Renault’s imprimitivity bimodule X
(Corollary 5.2). (Walther Paravicini has also recently produced a Haar system
for linking groupoids in his Ph.D. thesis ([11], Proposition 6.4.5). Parts of his
work appear in Section 1.6 of [12], where he also proves results related to ours
for Banach algebra completions of groupoid algebras. We also want to thank
Paravicini for bringing the results in [19] to our attention.)

Our main results imply that if G and H are equivalent groupoids, then their
reduced groupoid C∗-algebras C∗r (G) and C∗r (H) are Morita equivalent via a quo-
tient Xr of X (Theorem 5.3). Moreover, we show that the Rieffel correspondence
associated to X matches up the kernel IC∗r (G) of the canonical surjection of C∗(G)

onto C∗r (G) with the kernel IC∗r (H) of the surjection of C∗(H) onto C∗r (H). There-
fore for any representation π of C∗(H) that factors through C∗r (H), the induced
representation X- Ind π of C∗(G) factors through C∗r (G).

Our proof of the Equivalence Theorem for the universal algebras, like ex-
isting ones, relies heavily on Renault’s Disintegration Theorem ([16], Proposi-
tion 4.2) which is a highly nontrivial result. We have organized our work to il-
lustrate that, by contrast, the Morita equivalence for the reduced algebras can be
proved without invoking the Disintegration Theorem. Therefore there is a sense
in which the equivalence result for reduced C∗-algebras is a more elementary
result than the corresponding result for the universal algebras.

We review the set up of the Equivalence Theorem in Section 1, and we de-
scribe the linking groupoid and its Haar system in Section 2. In Section 3 we
review some basic facts about regular representations and the reduced groupoid
C∗-algebra. In Section 4 we prove our equivalence theorem for the reduced alge-
bras, and then tie this in with the universal constructs in Section 5.

Because we want to be able to appeal to both the original Equivalence The-
orem and to the Disintegration Theorem, it is convenient, and at times necessary,
to require all our groupoids and spaces to be second countable and locally com-
pact, and our groupoids to be locally Hausdorff (with Hausdorff unit spaces). As
we are interested in C∗-algebras associated to groupoids, all our groupoids are
assumed to be equipped with Haar systems. By convention, all homomorphisms
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between C∗-algebras are ∗-preserving, and all representations of C∗-algebras are
nondegenerate.

1. BACKGROUND

Throughout, G and H denote second countable, locally compact, locally
Hausdorff groupoids with Haar systems {λu}u∈G(0) and {βv}v∈H(0) , respectively.
We assume that G(0) and H(0) are Hausdorff. The adjustments to the theory nec-
essary to deal with not necessarily Hausdorff groupoids is laid out very nicely
in [4], [10], and [19]. We will use the notation and terminology of [10] here. In
particular, if X is a locally compact, locally Hausdorff space, then we will write
C (X) for Connes’s complex vector space of functions spanned by the elements of
Cc(U) for all open Hausdorff subsets U of X. (Some authors write Cc(X) in place
of C (X). This seems unfortunate as the elements in C (X) are, in general, neither
continuous nor compactly supported. For some other cautionary pathologies as-
sociated with C (X), see Example 2.1 of [10].)

First, recall that if G is a locally Hausdorff locally compact groupoid, then
we say that a locally Hausdorff locally compact space Z is a G-space if there is a
continuous, open map rZ : Z → G(0) and a continuous map (γ, z) 7→ γ · z from
G ∗ Z = { (γ, z) ∈ G × Z : sG(γ) = rZ(z) } to Z such that rX(z) · z = z for all
z and (γη) · z = γ · (η · z) for all (γ, η) ∈ G(2) with sG(η) = rZ(z). (Hereafter
we will often drop the subscripts on all r and s maps and trust that the domain
is clear from context.) The action is free if γ · z = z implies γ = r(z) and proper
if the map Θ : G ∗ X → X × X given by Θ(γ, x) = (γ · x, x) is a proper map of
G ∗ Z into Z× Z. Thus Θ is a closed map with the property that the inverse image
of a compact set is compact. (For a nice treatment of proper maps between not
necessarily Hausdorff spaces, see Section 1.3 of [19].) Right actions are dealt with
similarly except that the structure map is denoted by s instead of r.

REMARK 1.1. Nowadays, many authors do not require the structure map
rZ of a G-space Z to be open. Since it is critical in the definition of an equivalence
(see Definition 1.4) that both structure maps be open, we include the hypothesis
here to avoid ambiguities. It was also part of the definition of G-action in [9].

The following two lemmas will be used in Section 2 to define a system of
measures on an equivalence of groupoids and hence ultimately a Haar system on
the linking groupoid for a given equivalence.

LEMMA 1.2. Suppose that G is a locally Hausdorff locally compact groupoid which
acts freely and properly on a locally Hausdorff locally compact space X. Then the orbit
G · x = { γ · x : γ ∈ Gr(x) } is homeomorphic to Gr(x). In particular, each orbit is a
closed Hausdorff subset of X.
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Proof. For each u ∈ G(0), Gu = s−1(u) is Hausdorff (see p. 6 of [10] or
Proposition 2.8 of [19]). Let ϕ : Gr(x) → X be given by ϕ(γ) = γ · x. Then
ϕ is clearly a continuous bijection onto G · x, and it suffices to see that ϕ is a
closed map. Let F be a closed subset of Gr(x). Since points are closed in a locally
Hausdorff space, F× {x} is closed in G× X, and therefore in G ∗ X as well. Since
X is a proper G-space, Θ : G ∗ X → X × X is a closed map. Hence Θ(F×{x}) =
ϕ(F)×{x} is closed in X×X. It follows that ϕ(F) is closed in X.

LEMMA 1.3. Suppose that K is a compact Hausdorff subset of a second countable
locally Hausdorff locally compact space X. Then if f ∈ C(K) there is a g ∈ C (X) such
that f = g|K.

Proof. In the Hausdorff case, this is just the usual Tietze Extension Theorem.
In general, let {Vi}n

i=1 be a cover of K by precompact open Hausdorff subsets of
X. Let {ϕi} be a partition of unity in C(K) subordinate to {Vi ∩ K}. Then ϕi f ∈
Cc(Vi ∩ K) and the usual Tietze Extension Theorem implies there is a gi ∈ Cc(Vi)
such that gi|Vi∩K = ϕi f . Let g := ∑

i
gi. Then g ∈ C (X) and g|K = ∑ ϕi f = f .

In order to establish our notation, it will be useful to review the statement
and set-up of the Equivalence Theorem. This may be extracted as a special case of
the treatment in Section 5 of [10] where we identify the groupoid C∗-algebra with
the C∗-algebra of the groupoid dynamical system (G, G(0) × C, lt), where G acts
on the trivial bundle G(0)×C by “left translation”: γ · (s(γ), z) := (r(γ), z). Then
the formulas reduce to those in the Hausdorff case treated in Section 2 of [9].

DEFINITION 1.4. Let G and H be locally Hausdorff locally compact group-
oids. A (G, H)-equivalence is a locally Hausdorff locally compact space Z such
that:

(i) Z is a free and proper left G-space;
(ii) Z is a free and proper right H-space:

(iii) the actions of G and H on Z commute;
(iv) rZ induces a homeomorphism of Z/H onto G(0); and
(v) sZ induces a homeomorphism of G\Z onto H(0).

If Z is a (G, H)-equivalence, then there is a continuous map (y, z) 7→ G[y, z]
of Z ∗s Z to G uniquely determined by G[y, z] · z = y for all (y, z) ∈ Z ∗s Z. This
map induces a topological groupoid isomorphism of (Z ∗s Z)/H onto G. Simi-
larly, there is a continuous map (y, z) 7→ [y, z]H satisfying y · [y, z]H = z for all
(y, z) ∈ Z ∗r Z, and this map induces an isomorphism of G\(Z ∗r Z) onto H. It is a
consequence of the discussion in Section 5 of [10] that if Z is a (G, H)-equivalence,
then C (Z) is a C (G)-C (H)-bimodule with actions and pre-inner products given
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as follows: for f ∈ C (G), b ∈ C (H), and ϕ, ψ ∈ C (Z),

f · ϕ(z) =
∫
G

f (γ)ϕ(γ−1 · z)dλr(z)(γ),(1.1)

ϕ · b(z) =
∫
H

ϕ(z · η)b(η−1)dβs(z)(η),(1.2)

〈ϕ, ψ〉?(η) =
∫
G

ϕ(γ−1 · z)ψ(γ−1 · z · η)dλr(z)(γ)(1.3)

for any z ∈ Z such that s(z) = r(η), and

?〈ϕ, ψ〉(γ) =
∫
H

ϕ(γ · w · η)ψ(w · η)dβs(w)(η)(1.4)

for any w ∈ Z such that r(w) = s(γ).
The content of Renault’s Equivalence Theorem ([10], Theorem 5.5 or [9],

Theorem 2.8, in the Hausdorff case) is that C (Z) is a pre-C (G)-C (H)-imprimi-
tivity bimodule with respect to the universal norms on C (G) and C (H), and that
its completion X implements a Morita equivalence between C∗(G) and C∗(H).

We define the opposite space of a (G, H)-equivalence Z to be a homeomor-
phic copy Zop := {z : z ∈ Z} of Z with the structure of a (H, G)-equivalence
determined by

r(z) = s(z), s(z) = r(z), η · z := z · η−1 and z · γ = γ−1 · z;

and then C (Zop) becomes a pre-C (H)-C (G)-imprimitivity bimodule as above.
For ψ ∈ C (Zop), define ψ∗ ∈ C (Z) by ψ∗(z) := ψ(z). The map ψ 7→ ψ∗ deter-
mines an isomorphism from the C∗(H)-C∗(G)-imprimitivity bimodule comple-
tion of C (Zop) to the dual module X̃ defined in p. 49–50 of [14].

Since we will sometimes use the bimodules C (Z) and C (Zop) in close prox-
imity, we will write ψ : f and b : ψ for the right and left actions on C (Zop), respec-
tively, and 〈〈·, ·〉〉? and ∗〈〈·, ·〉〉 for the right and left inner products on C (Zop),
respectively.

We should mention that there are “one-sided” versions of the equivalence
theorems in the literature. In the Hausdorff case, Stadler and O’uchi [7] present a
definition of a correspondence Z from G to H which implies Cc(Z) can be com-
pleted to a C∗r (G)-C∗r (H)-correspondence Y ([7], Theorem 1.4). That is, Y is a
right-Hilbert C∗r (H)-module and there is a homomorphism of C∗r (G) into the ad-
jointable operatorsL(Y) on Y. (A correspondence is also known as a right-Hilbert
bimodule.) A (G, H)-equivalence is an example of a Stadler–O’uchi correspon-
dence. The Stadler–O’uchi approach was generalized considerably by Tu in [19],
and Tu’s work incorporates locally Hausdorff groupoids. As mentioned in the
introduction, the equivalence result for the reduced algebras should be a conse-
quence of his work and the functorality of the constructions, although few details
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are given (see Remark 7.17 of [19]). In addition to the Stadler–O’uochi and Tu ap-
proaches, Renault presents another definition of a correspondence Z from G to H
in Definition 2.5 of [17] which also extends the notion of equivalence. Neverthe-
less, we believe the linking groupoid approach developed in the next section has
wider applications. In particular, our results show that the equivalence theorem
for the reduced algebras is a quotient of the result for the full crossed products.

2. THE LINKING GROUPOID

LEMMA 2.1. Suppose that G and H are locally Hausdorff locally compact group-
oids and that Z is a (G, H)-equivalence. Let L be the topological disjoint union

L = G t Z t Zop t H,

and let L0 := G0 t H0 ⊂ L. Define r, s : L → L0 to be the maps inherited from the
range and source maps on G, Z, Zop and H. Let L(2) := {(k, l) ∈ L× L : s(k) = r(l)},
and let (k, l) 7→ kl be the map from L(2) to L which restricts to multiplication on G and
H and to the actions of G and H on Z and Zop, and satisfies

zy := G[z, y] for (z, y) ∈ Z ∗s Z and yz := [y, z]H for (y, z) ∈ Z ∗r Z.

Define l 7→ l−1 to be the map from L to L which restricts to inversion on G and H and
satisfies z−1 = z and z −1 = z for z ∈ Z. Under these operations, L is a locally compact
Hausdorff groupoid, called the linking groupoid of Z.

Proof. The inverse map is clearly an involution. Since [z, z]H = s(z) and
G[z, z] = r(z), it is easy to see that the formulas for r and s are satisfied.

The continuity of the inverse map follows from the continuity of the inverse
maps on G and H together with the definition of the topology on Zop. The con-
tinuity of multiplication follows from continuity of multiplication in G and H,
the continuity of the actions of G and H on Z and Zop, and the continuity of
(y, z) 7→ G[y, z] and (y, z) 7→ [y, z]H .

The associativity of multiplication follows from routine calculations using
the associativity of the groupoid operations and actions, and property (iii) of the
definition of groupoid equivalence. For example, if x, y, z ∈ Z with s(x) = s(y)
and r(y) = r(z), then

(xy)z=G[x, y] · z=G[x, y] · (y · [y, z]H)=(G[x, y] · y) · [y, z]H =x · [y, z]H =x(yz).

Given a (G, H)-equivalence Z, the range map on Z induces a homeomor-
phism from the orbit space Z/H to G(0). In particular, Z/H is Hausdorff. Since
the orbits are closed and Hausdorff (Lemma 1.2), and in view of Lemma 1.3, for
each u ∈ G(0) and z ∈ Z with r(z) = u, we can define a Radon measure σu

Z on Z,
supported on the orbit z · H, determined by

(2.1) σu
Z(ϕ) =

∫
H

ϕ(z · η)dβs(z)(η) for ϕ ∈ C (Z).
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As the notation suggests, σu
Z does not depend on the choice of z ∈ r−1(u): if

y ∈ Z with r(y) = u also, then y = z · η′ for some η′ ∈ H with r(η′) = s(z), so
left-invariance of β gives∫

H

ϕ(z · η)dβs(z)(η) =
∫
H

ϕ(z · η′η)dβs(η′)(η) =
∫
H

ϕ(y · η)dβs(y)(η).

Fix ϕ ∈ C (Z). Since Z/H is Hausdorff, C (Z/H) = Cc(Z/H) and Corollary 2.17
of [10] implies that the map z · H 7→

∫
H

ϕ(z · η)dβs(z)(η) is continuous on Z/H.

Since r induces a homeomorphism of Z/H onto G(0), it follows that there is a
continuous function in Cc(G(0)) given by

u 7→
∫
Z

ϕ(z)dσu
Z(z).

By symmetry, we can also define a family of measures σv
Zop on Zop with

supp σv
Zop = r−1

Zop(v).

LEMMA 2.2. For each w ∈ L(0), let κw be the Radon measure on L given on
F ∈ C (L) by

κw(F) =

{
λw(F|G) + σw

Z (F|Z) if w ∈ G(0), and
σw

Zop(F|Zop) + βw(F|H) if w ∈ H(0).

Then { κw }w∈L(0) is a Haar system for L.

Proof. It is clear that supp κw is r−1(w) = Lw. Continuity follows from con-
tinuity of σZ and σZop and of the Haar systems λ and β. It only remains to check
left invariance.

Thus, we need to establish that for k ∈ L,∫
L

F(l)dκr(k)(l) =
∫
L

F(kl)dκs(k)(l).

For convenience, assume that r(k) ∈ G(0). (The case where r(k) ∈ H(0) is similar.)
There are two possibilities: k ∈ G, or k ∈ Z. First suppose k ∈ G. Then for any z
satisfying r(z) = s(k),∫

L

F(kl)dκs(k)(l) =
∫
G

F(kγ)dλs(k)(γ) +
∫
H

F(k · z · η)dβs(z)(η)

=
∫
G

F(γ)dλr(k)(γ) +
∫
H

F((k · z) · η)dβs(k·z)(η)

=
∫
G

F(γ)dλr(k)(γ) +
∫
Z

F(w)dσr(k)(w) =
∫
L

F(l)dκr(k)(l).
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Now suppose that k ∈ Z. Then∫
L

F(kl)dκs(k)(l) =
∫

Zop

F(kz)dσ
s(k)
Zop (z) +

∫
H

F(k · η)dβs(k)(η).

Since we can evaluate σ
s(k)
Zop with any w such that r(w) = s(k), we may in particu-

lar take w = k, giving∫
L

F(kl)dκs(k)(l) =
∫
G

F(G[k, γ−1 · k])dλr(k)(γ) +
∫
Z

F(z)dσ
r(k)
Z (z).

Since G[k, γ−1 · k] = γ for all γ, we conclude that∫
L

F(kl)dκs(k)(l) =
∫
L

F(l)dκr(k)(l).

We will always use the Haar system κ on L, so we will henceforth write
C∗(L) in place of C∗(L, κ). (We have already adopted a similar convention of
writing C∗(G) in place of C∗(G, λ) and C∗(H) in place of C∗(H, β).)

Recall that there is a unital homomorphism M : Cb(L(0))→ M(C∗(L)) such
that for h ∈ Cb(L(0)) and F ∈ Cc(L),

(M(h)F)(l) = h(r(l))F(l) and (FM(h))(l) = F(l)h(s(l)).

In particular, we may regard the characteristic functions pG and pH of G(0) and
H(0) in Cb(G(0)) as complementary projections in M(C∗(L)).

For F ∈ C (L), let F11 = F|G ∈ C (G), F12 = F|Z ∈ C (Z), F21 = F|Zop ∈
C (Zop) and F22 = F|H ∈ C (H). We view F as a matrix

F =

(
F11 F12
F21 F22

)
.

The involution on C (L) is then given by

F∗ =
(

F∗11 F∗21
F∗12 F∗22

)
,

where F∗11 and F∗22 are the images of F11 and F22 under the standard involutions on
C (G) and C (H), while F∗12(z) = F12(z) and F∗21(z) = F21(z) for all z ∈ Z. Straight-
forward computations show that the convolution product on C (L) is given by

F ∗ K =

(
F11 F12
F21 F22

)
∗
(

K11 K12
K21 K22

)
=

(
F11 ∗ K11 + 〈〈F∗12, K21〉〉? F11 · K12 + F12 · K22

F21 : K11 + F22 : K21 〈F∗21, K12〉? + F22 ∗ K22

)
=

(
F11 ∗ K11 + ?〈F12, K∗21〉 F11 · K12 + F12 · K22

(K∗11 · F∗21)
∗ + (K∗21 · F∗22)

∗ 〈F∗21, K12〉? + F22 ∗ K22

)
.
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A routine norm calculation shows that we can identify C (L) with a dense subal-
gebra of the linking algebra L(X).

LEMMA 2.3. The complementary projections pG and pH are full in M(C∗(L)).

Proof. By symmetry, it will suffice to see that pG is full. For F, K ∈ C (L),

(2.2)
(

F11 F12
F21 F22

)
∗ pG ∗

(
K11 K12
K21 K22

)
=

(
F11 ∗ K11 F11 · K12
F21 · K11 〈F∗21, K12〉?

)
.

So it suffices to see that elements of the form appearing on the right-hand side
of (2.2) span a dense subspace of C∗(L) in the inductive-limit topology. That
elements of the form F11 ∗ K11 span a dense subspace of C (G) and that elements
of the form F11 · K12 span a dense subspace of C (Z) follow from the existence of
an approximate identity in C (G) for the left actions of C (G) on both itself and
C (Z) (see Proposition 6.8 of [10] or Proposition 2.10 of [9] in the Hausdorff case).
That elements of the form F21 ·K11 span a dense subspace of Cc(Zop) follows from
the corresponding property for C (H). That the image of 〈·, ·〉? is dense in Cc(H)
follows from the special form of the approximate identity from Proposition 6.8 of
[10] using standard techniques as in p. 115 of [20] (see the proof of Theorem 2.8
of [9]).

REMARK 2.4 (Our proofs of the equivalence theorems). By Lemma 2.3 and
Theorem 3.19 of [14], to prove the Equivalence Theorem for the full groupoid C∗-
algebras, it suffices to show that pGC∗(L)pG ∼= C∗(G) and similarly for C∗(H);
that is, to show that the norms on C∗(L) and C∗(G) agree on the subalgebra
C (G). Indeed, let ‖ · ‖α be any pre-C∗-norm on C (L) which is continuous in
the inductive-limit topology. Then ‖ · ‖α is dominated by the universal norm,
so the completion C∗α(L) is a quotient of C∗(L) whose multiplier algebra con-
tains Cb(L(0)). The projections pG and pH are complementary full projections,
and pGC∗α(L)pG is isomorphic to the ‖ · ‖α-completion, C∗α(G), of C (G). A similar
statement holds for H. Hence pGC∗α(L)pH , which is isomorphic to the
‖ · ‖α-completion of C (Z), is a C∗α(G)-C∗α(H)-imprimitivity bimodule ([14], Theo-
rem 3.19). So to prove the equivalence theorem for reduced groupoid C∗-algebras,
it will suffice to show that the reduced norms on C∗r (L) and C∗r (G) agree on the
subalgebra C (G), and similarly for H.

We will indeed prove (in Proposition 5.1) that the universal norms on C∗(L)
and C∗(G) coincide on C (G), and similarly for H. But our proof requires Re-
nault’s Disintegration Theorem ([10], Theorem 7.8) as well as the basic set-up
of Theorem 5.5 of [10]. So our proof of the equivalence theorem via the linking
groupoid does not substantially simplify the original proof.

By contrast, when we show in Theorem 4.1 that the reduced norms on C∗r (L)
and C∗r (G) coincide on C (G), we require only the algebraic machinery from The-
orem 5.5 of [10] and the approximate identity of Proposition 6.8 of [10] as required
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to prove Lemma 2.3. In particular, our proof of the equivalence theorem for re-
duced C∗-algebras does not require the Disintegration Theorem.

3. REGULAR REPRESENTATIONS

If µ is a finite Radon measure on G(0), we can form the Radon measure
ν := µ ◦ λ on G given on f ∈ C (G) by

ν( f ) =
∫

G(0)

∫
G

f (γ)dλu(γ)dµ(u).

(Radon measures on locally Hausdorff locally compact spaces are discussed in
Appendix A.2 of [10].) We write ν−1 for the image of ν under inversion. The
associated regular representation Ind µ is the representation on L2(G, ν−1) given by

(Ind µ)( f )ξ(γ) =
∫
G

f (η)ξ(η−1γ)dλr(γ)(η) for f and ξ in C (G).

With some effort, one can verify directly that ‖(Ind µ)( f )‖ 6 ‖ f ‖I for f ∈ C (G)
so that Ind µ extends to a representation of C∗(G).

If u ∈ G(0) and δu is the point mass, then the representation Ind δu is simply
the representation of C (G) on L2(Gu, λu) given by the convolution formula. By
definition, the reduced norm on C (G) is

‖ f ‖r = sup{ ‖(Ind δu)( f )‖ : u ∈ G(0) }.

So C∗r (G) is the quotient of C∗(G) by

IC∗r (G) :=
⋂

u∈G(0)

ker(Ind δu).

Alternatively, one can think of C∗r (G) as the completion of C (G) with respect to
the reduced norm ‖ · ‖r.

REMARK 3.1 (Variations on the Definition of the Reduced Norm). Our def-
inition of ‖ · ‖r is the same as that given in Section 2 of [5], and coincides with
the definitions in the Hausdorff case given, for example, in Section 6.1 of [1] and
in the unpublished notes ([8], Definition 2.46). There are some variations in the
literature, such as Definition II.2.8 of [15], but it is not hard to see that all these
variations result in the same norm. In particular, if G is Hausdorff, then G(0) is a
closed subgroupoid of G and G is a groupoid equivalence between the imprimi-
tivity groupoid H := G ∗s G and the space G(0). The equivalence theorem allows
us to complete Cc(G) into a C∗(H)-C0(G(0))-imprimitivity bimodule X = XG

G(0) .
As decribed, for example, in Section 2 of [3], there is a natural map of C∗(G) into
L(X) making X into a right Hilbert C∗(G)-C0(G(0))-bimodule. Thus we obtain a
Rieffel style induction process IndG

G(0) from C0(G(0)) to C∗(G) (see Section 2.4 of
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[14] for details on Rieffel induction). This means that if M and N are represen-
tations of C0(G(0)) with the same kernel, then IndG

G(0) N and IndG
G(0) M have the

same kernel ([14], Corollary 2.73). Furthermore, if µ is a measure on G(0), then the
representation Ind µ defined above is equivalent to the representation IndG

G(0) πµ

where πµ is the obvious representation of C0(G(0)) on L2(µ). Therefore if µ is a
measure on G(0) with full support, Ind µ factors through a faithful representation
of C∗r (G).

However, if G is not Hausdorff, then G(0) is not closed in G (for example, see
p. 7 of [10]). Therefore in the non-Hausdorff case, Ind µ must be defined on an ad
hoc basis, and Ind µ can fail to determine the reduced norm even when µ has full
support (see Example 2.5 of [5].)

REMARK 3.2 (The Khoshkam–Skandalis Module). A nice unified approach
to the reduced norm that incorporates potentially non-Hausdorff groupoids is
provided by Khoshkam and Skandalis in Section 2 of [5]. There they produce a
Hilbert module over the abelian C∗-algebra generated by the restriction of func-
tions in C (G) to G(0). The natural action of C∗(G) on this module factors through
a faithful action of C∗r (G). In the Hausdorff case, their module is just the module
XG

G(0) mentioned above. Since our methods only require the special representa-
tions Ind δu defined above (and some close cousins to be introduced presently),
we have opted to pursue the most direct route to our goal and not introduce the
Khoshkam–Skandalis module.

Let X be a second countable free and proper locally Hausdorff locally com-
pact left G-space. Then G\X is a locally compact Hausdorff space, and for each
x ∈ X, the map γ 7→ γ · x is a homeomorphism of Gr(x) onto the orbit G · x
(see Lemma 1.2). Just as for the measures σu

Z defined in (2.1), we define a Radon
measure ρG·x (or ρG·x

X if we want to keep X in view) on X with support G · x by

ρG·x( f ) =
∫
X

f (y)dρG·x(y) :=
∫
G

f (γ−1 · x)dλr(x)(γ) for f ∈ C (X).

Our definition is independent of our choice of x in its orbit by left-invariance of
the Haar system λ.

REMARK 3.3 (The κw). We will need to use the Radon measures {κw}w∈L(0)

on L, where κw is the forward image of the measure κw of Lemma 1.2 under
inversion. It is not hard to check that for F ∈ C (L) we have

κw(F) =

{
λw(F|G) + ρw

Zop(F|Zop) if w ∈ G(0), and
ρw

Z(F|Z) + βw(F|H) if w ∈ H(0),

where we have identified H(0) with G\Z, and G(0) with Z/H.

We can view H0 := C (G) as a dense subspace of L2(X, ρG·x) = L2(G ·
x, ρG·x) and let Lin(H0) be the linear operators on H0. Left multiplication with
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respect to the convolution product on C (G) determines a homomorphism RX
δG·x

:
C (G)→ Lin(H0), and some tedious computations show that RX

δG·x
is a homomor-

phism satisfying the hypotheses of Renault’s Disintegration Theorem (see Theo-
rem 7.8 of [10]). Hence RX

δG·x
is bounded and extends to a representation of C∗(G)

on L2(X, ρG·x) also denoted by RX
δG·x

.

EXAMPLE 3.4. The homeomorphism γ 7→ γ · x0 of Gr(x0)
onto G · x0 induces

a unitary from L2(G · x0, ρG·x0) onto L2(Gr(x0)
, λr(x0)

) which intertwines RX
δG·x0

and

Ind δr(x0)
.

4. THE EQUIVALENCE THEOREM FOR REDUCED GROUPOID C∗-ALGEBRAS

As mentioned in Remark 2.4, now that we have the linking groupoid to-
gether with its Haar system, the proof that an equivalence induces a Morita
equivalence of the reduced algebras is fairly close to the surface and does not
require the full power of the equivalence result for the universal algebras.

THEOREM 4.1. Suppose that G and H are second countable locally Hausdorff lo-
cally compact groupoids with Haar systems as above, and suppose that Z is a (G, H)-
equivalence. If f ∈ C (G), and

F :=
(

f 0
0 0

)
∈ C (L),

then ‖F‖C∗r (L) = ‖ f ‖C∗r (G). In particular, the completion Xr of C (Z) in the norm ‖x‖ :=

‖〈x, x〉?‖1/2
C∗r (G)

, equipped with the actions and inner products given in (1.1)–(1.4), is a
C∗r (G)-C∗r (H)-imprimitivity bimodule isometrically isomorphic to pGC∗r (L)pH . Hence
C∗r (G) and C∗r (H) are Morita equivalent.

REMARK 4.2. In the proof of Theorem 4.1 we will use the notation ρu
Zop for

the Radon measure on Zop which is the image of σu
Z on Z under inversion. Al-

though we don’t need to describe ρu
Zop for the proof of the theorem, for the sake

of symmetry, we note that it is the Radon measure on Zop supported on Zop
u such

that for all ψ ∈ C (Zop)

ρu
Zop(ψ) =

∫
H

ψ(η−1 · z0)dβr(z)(η),

for any z0 such that s(z0) = u. Thus after identifying H · z0 with u, ρu
Zop is the

measure on the free and proper left H-space Zop defined in Section 3.

Proof. Fix f ∈ C (G) and let F be the corresponding element of pGC (L)pG ⊂
C (L). The theorem follows from Remark 2.4 once we establish that ‖F‖C∗r (L) =

‖ f ‖C∗r (G).



RENAULT’S EQUIVALENCE THEOREM FOR REDUCED GROUPOID C∗ -ALGEBRAS 235

For u ∈ G(0), we have Lu = Gu t Zop
u , where Zop

u := { z ∈ Zop : s(z) =

r(z) = u }. By definition, IndL δu acts on L2(Lu, κu). Following Remark 3.3,
L2(Lu, κu) = L2(G, λu)⊕ L2(Zop, ρu

Zop), and with respect to this decomposition,
(IndL δu)(F) = (IndG δu)( f )⊕ 0. It follows that

‖F‖C∗r (L) := max
{

sup
u∈G(0)

‖(IndL δu)(F)‖, sup
v∈H(0)

‖(IndL δv)(F)‖
}

= max
{
‖ f ‖C∗r (G), sup

v∈H(0)
‖(IndL δv)(F)‖

}
.(4.1)

For v ∈ H(0), let Zv = { z ∈ Z : s(z) = v }. Then Lv = Zv t Hv. Further-
more, L2(Lv, κv) = L2(Z, ρv

Z) ⊕ L2(H, βv). Here ρv
Z is the image of σv

Zop under
inversion. It is the Radon measure on Z with support Zv given on ϕ ∈ C (Z) by

ρv
Z(ϕ) =

∫
G

ϕ(γ−1 · z0)dλr(z0)(γ)

for any z0 ∈ Z such that s(z0) = v. Thus, the identification of H(0) and G\Z
induced by the source map on Z carries ρv

Z to the measure on the free and proper
G-space Z defined in Section 3. Hence (IndL δv)(F) = RZ

δG·x0
( f ) ⊕ 0. By Exam-

ple 3.4, we have ‖RZ
δG·x0

( f )‖ 6 ‖ f ‖C∗r (G). It follows from (4.1) that ‖F‖C∗r (L) =

‖ f ‖C∗r (G).

5. THE UNIVERSAL NORM AND THE LINKING ALGEBRA

PROPOSITION 5.1. Suppose that G and H are second countable locally Hausdorff
locally compact groupoids with Haar systems, and that Z is a (G, H)-equivalence. Let L
be the linking groupoid. If f ∈ C (G) and

F :=
(

f 0
0 0

)
is the corresponding element of C (L), then ‖F‖C∗(L) = ‖ f ‖C∗(G).

Proof. Since every representation of C (L) restricts to a representation of
C (G) (possibly on a subspace of the original representation), we certainly have
‖F‖C∗(L) 6 ‖ f ‖C∗(G).

To obtain the reverse inequality, let π be a faithful representation of C∗(G)
on Hπ . By the universal properties of the tensor product, there is a sesquilinear
form (·|·) on the algebraic tensor productH00 := C (L) ∗ pG �Hπ such that for F
and K in C (L) we have

(F ∗ pG ⊗ ξ|K ∗ pG ⊗ ζ)π = (π(pG ∗ K∗ ∗ F ∗ pG)ξ|ζ)
= (π(K∗11 ∗ F11 + 〈〈K12, F21〉〉?)ξ|ζ).
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We want to see that (·|·) is positive. Fix t =
n
∑

i=1
Fi ⊗ ξi ∈ H00. Since Theo-

rem 5.5 of [10] applied to the (H, G)-equivalence Zop implies that 〈〈·, ·〉〉? makes
C (Zop) into a pre-Hilbert C∗(G)-module, Lemma 2.65 of [14] implies that the ma-
trix M = (〈〈Fi

21, Fj
21〉〉?)ij is positive in Mn(C∗(G)). Hence M = D∗D for some

D ∈ Mn(C∗(G)), so there are elements dij ∈ C∗(G) such that

〈〈Fi
21, Fj

21〉〉? =
n

∑
k=1

d∗kidkj.

Since ((Fj)∗)12 = (Fj
21)
∗,

(t|t) = ∑
ij
(π((Fi

11)
∗ ∗ Fj

11 + 〈〈F
i
21, Fj

21〉〉?)ξ j|ξi)

= ∑
ij
(π(Fj

11)ξ j|π(Fi
11)ξi) + ∑

ijk
(π(dkj)ξ j|π(dki)ξi)

=
(

∑
i

π(Fi
11)ξi|∑

i
π(Fi

11)ξi

)
+ ∑

k

(
∑

i
π(dki)ξi|∑

i
π(dki)ξi

)
> 0.

Therefore (·|·) is a pre-inner product on H00. Let N denote the subspace {ξ ∈
H00 : (ξ|ξ) = 0}. Then the Cauchy–Schwarz inequality (as in Section 3.1.1 of
[13]) implies that (·|·) descends to a bona fide inner product on the quotientH0 =
H00/N . Furthermore, for each F ∈ C (L), we can define a linear map R(F) :
H00 → H00 such that

R(F)(K⊗ ξ) := F ∗ K⊗ ξ.

Another application of the Cauchy–Schwarz inequality shows that R(F) defines
an operator onH0. An easy calculation shows that

(5.1) (R(F)t|t′) = (t|R(F∗)t′) for t, t′ ∈ H00.

Furthermore, since π is continuous in the inductive-limit topology, it is not hard
to see that

(5.2) F 7→ (R(F)t|t′)

is also continuous in the inductive-limit topology. Since C (L) has an approximate
unit for the inductive-limit topology,

(5.3) span{ R(F)t : F ∈ C (L) and t ∈ H00 }

is dense in H00. Equations (5.1), (5.2) and (5.3) imply that R : C (L) → Lin(H0)
satisfy the hypotheses of the Disintegration Theorem, and therefore R is a bound-
ed representation of C∗(L) on the completionHR ofH0.

Since π is faithful, it suffices to show that

(5.4) ‖R(F)‖C∗(L) > ‖π( f )‖ = ‖ f ‖C∗(G).
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Fix ε ∈ (0, ‖ f ‖) and fix ξ ∈ Hπ such that ‖ξ‖ = 1 and ‖π( f )ξ‖2 >
‖π( f )‖2− ε. Let { kα } be an approximate identity in C (G) for the inductive-limit
topology, and let

Kα =

(
kα 0
0 0

)
be the corresponding functions in C (L). Then, since π is nondegenerate,

lim
α
‖Kα ⊗ ξ‖2 = lim

α
(π(k∗α ∗ kα)ξ|ξ) = lim

α
‖π(kα)ξ‖2 = 1.

It follows that

‖R(F)‖2 > lim sup
α
‖R(F)(Kα)⊗ ξ‖2 = lim sup

α
(π( f ∗ ∗ k∗α ∗ kα ∗ f )ξ|ξ)

= lim
α
‖π(kα)π( f )ξ‖2 = ‖π( f )ξ‖2 > ‖π( f )‖2 − ε.

Since ε is arbitrary, (5.4) holds. This completes the proof.

As an immediate consequence of Proposition 5.1 and Remark 2.4, we get the
following.

COROLLARY 5.2. Suppose that G and H are second countable locally Hausdorff
locally compact groupoids with Haar systems, and that Z is a (G, H)-equivalence. If
X is the corresponding C∗(G)-C∗(H)-imprimitivity bimodule and if L is the linking
groupoid, then C∗(L) is isomorphic to the linking algebra L(X).

Recall that if X is an A-B-imprimitivity bimodule, then the Rieffel corre-
spondence provides a lattice isomorphism X- Ind from the lattice of ideals I (B)
of B and the lattice of ideals I (A) in A ([14], Theorem 3.22). We can now prove
the second part of our main result.

THEOREM 5.3. Suppose that G and H are second countable locally Hausdorff lo-
cally compact groupoids with Haar systems, and that Z is a (G, H)-equivalence. Let X be
the associated C∗(G)-C∗(H)-imprimitivity bimodule. Then X- Ind(IC∗r (H)) = IC∗r (G).
Furthermore if Xr is the C∗r (G)-C∗r (H)-imprimitivity bimodule of Theorem 4.1, then the
identity map from C (Z) ⊂ X to C (Z) ⊂ Xr induces an isomorphism of the quotient
imprimitivity bimodule X/X · IC∗r (H) onto Xr.

Proof. If ϕ ∈ C (Z), then

‖ϕ‖2
X = ‖〈ϕ, ϕ〉?‖C∗(H) > ‖〈ϕ, ϕ〉?‖C∗r (H) = ‖ϕ‖2

Xr
.

Therefore the identity map from C (Z) ⊂ Xr to C (Z) ⊂ X induces a surjection
of X onto Xr. Let Y denote the kernel of this surjection. Then Y is a closed sub-
bimodule of X such that Xr is isomorphic to X/Y as imprimitivity bimodules.

The Rieffel correspondence (in the form of Theorem 3.22 of [14] and Lem-
ma 3.23 of [14]) implies that

Y = X · I = J · X,
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where I and J are ideals in C∗(H) and C∗(G), respectively, such that X- Ind(I) =
J, and where

I = span{ 〈x, y〉? : x ∈ X and y ∈ Y } = span{ 〈y, y〉? : y ∈ Y }.

Thus I ⊂ IC∗r (H). On the other hand, if b ∈ IC∗r (H), then for all x and y in X, we
have 〈x, y〉?b = 〈x, y · b〉? ∈ I. Since 〈·, ·〉? is full, it follows that b ∈ I. Therefore
I = IC∗r (H). Similarly, we also must have J = IC∗r (G). This completes the proof.

COROLLARY 5.4. Suppose that G, H and Z are as in Theorem 5.3. If π is a repre-
sentation of C∗(H) that factors through C∗r (H), then X- Ind π factors through C∗r (G).

Proof. By assumption, IC∗r (H) ⊂ ker π. But then by Proposition 3.24 of [14],

IC∗r (G) = X- Ind(IC∗r (H)) ⊂ X- Ind(ker π) = ker(X- Ind π).

Acknowledgements. Aidan thanks Dana and the Department or Mathematics at Dart-
mouth College for their warm hospitality and support.

This research was supported by the Australian Research Council and the Edward
Shapiro fund at Dartmouth College.

REFERENCES

[1] C. ANANTHARAMAN-DELAROCHE, J. RENAULT, Amenable groupoids, Monograph.
Enseign. Math., vol. 36, L’Enseignement Math., Geneva 2000.

[2] M. HILSUM, G. SKANDALIS, Stabilité des C∗-algèbres de feuilletages, Ann. Inst.
Fourier (Grenoble) 33(1983), 201–208.

[3] M. IONESCU, D.P. WILLIAMS, Irreducible representations of groupoid C∗-algebras,
Proc. Amer. Math. Soc. 137(2009), 1323–1332.

[4] M. KHOSHKAM, G. SKANDALIS, Regular representation of groupoid C∗-algebras and
applications to inverse semigroups, J. Reine Angew. Math. 546(2002), 47–72.

[5] M. KHOSHKAM, G. SKANDALIS, Crossed products of C∗-algebras by groupoids and
inverse semigroups, J. Operator Theory 51(2004), 255–279.

[6] A. KUMJIAN, On C∗-diagonals, Canad. J. Math. 38(1986), 969–1008.

[7] M. MACHO STADLER, M. O’UCHI, Correspondence of groupoid C∗-algebras, J. Op-
erator Theory 42(1999), 103–119.

[8] P.S. MUHLY, Coordinates in operator algebra, CMBS Conf. Lecture Notes, Texas
Christian Univ. (Texas 1990), 1999, in preparation.

[9] P.S. MUHLY, J.N. RENAULT, D.P. WILLIAMS, Equivalence and isomorphism for
groupoid C∗-algebras, J. Operator Theory 17(1987), 3–22.

[10] P.S. MUHLY, D.P. WILLIAMS, Renault’s Equivalence Theorem for Groupoid Crossed Prod-
ucts, NYJM Monographs, vol. 3, State Univ. of New York, Univ. at Albany, Albany,
NY 2008.



RENAULT’S EQUIVALENCE THEOREM FOR REDUCED GROUPOID C∗ -ALGEBRAS 239

[11] W. PARAVICINI, KK-theory for Banach algebras and proper groupoids, Ph.D. Disser-
tation, Westfälische Wilhelms-Universität Münster, Münster 2007.

[12] W. PARAVICINI, Induction for Banach algebras, groupoids and KKban, J. K-Theory
4(2009), 405–468.

[13] G.K. PEDERSEN, Analysis Now, Grad. Texts in Math., vol. 118, Springer-Verlag, New
York 1989.

[14] I. RAEBURN, D.P. WILLIAMS, Morita Equivalence and Continuous-trace C∗-Algebras,
Math. Surveys Monographs, vol. 60, Amer. Math. Soc., Providence, RI 1998.

[15] J. RENAULT, A Groupoid Approach to C∗-Algebras, Lecture Notes in Math., vol. 793,
Springer-Verlag, New York 1980.

[16] J. RENAULT, Représentation des produits croisés d’algèbres de groupoïdes, J. Operator
Theory 18(1987), 67–97.

[17] J. RENAULT, Transverse properties of dynamical systems, in Representation Theory,
Dynamical Systems, and Asymptotic Combinatorics, Amer. Math. Soc. Transl. Ser. 2, vol.
217, Amer. Math. Soc., Providence, RI 2006, pp. 185–199.

[18] J. RENAULT, C∗-Algebras of groupoids and foliations, in Operator Algebras and Appli-
cations, Part I (Kingston, Ont., 1980), Proc. Sympos. Pure Math., vol. 38, Amer. Math.
Soc., Providence, RI 1982, pp. 339–350.

[19] J.-L. TU, Non-Hausdorff groupoids, proper actions and K-theory, Doc. Math. 9(2004),
565–597 (electronic).

[20] D.P. WILLIAMS, Crossed Products of C∗-Algebras, Math. Surveys Monographs, vol. 134,
Amer. Math. Soc., Providence, RI 2007.

AIDAN SIMS, SCHOOL OF MATHEMATICS AND APPLIED STATISTICS, UNIVERSITY

OF WOLLONGONG, NSW 2522, AUSTRALIA

E-mail address: asims@uow.edu.au

DANA P. WILLIAMS, DEPARTMENT OF MATHEMATICS, DARTMOUTH COLLEGE,
HANOVER, NH 03755-3551, U.S.A.

E-mail address: dana.williams@dartmouth.edu

Received February 16, 2010; revised September 17, 2010.


