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ABSTRACT. In this paper, self-adjoint extensions for Hermitian subspaces are
studied. By applying the results about self-adjoint extensions for Hermitian
subspaces obtained by E.A. Coddington in 1973, the Glazman–Krein–Naimark
theory for densely defined Hermitian operators is extended to Hermitian sub-
spaces. This result will provide a fundamental basis for characterizations of
self-adjoint extensions for linear Hamiltonian systems on general time scales
in terms of boundary conditions, including both continuous and discrete cases
with or without certain definiteness conditions.
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1. INTRODUCTION

Characterizations of self-adjoint extensions are one of the most important
problems in the study of the spectral theory for both continuous and discrete lin-
ear Hamiltonian systems [10], [11], [12], [16], [17], [19], [20], [22]. It is well known
that under a certain definiteness condition, the minimal operator H0 correspond-
ing to a singular linear continuous Hamiltonian system is a symmetric operator,
i.e., a densely defined Hermitian operator, and its adjoint is equal to the corre-
sponding maximal operator H in the related Hilbert space. If the definiteness
condition does not hold, H0 and H are multi-valued operators. In addition, for
a general singular linear discrete Hamiltonian system, its minimal operator may
be non-densely defined in the related Hilbert space and the maximal operator
is multi-valued even if the related definiteness condition holds. Further, corre-
sponding to a singular linear discrete Hamiltonian system on a general time scale,
its minimal operator is non-densely defined and its maximal operator may be
multi-valued in the related Hilbert space in general. Therefore, the classical von
Neumann self-adjoint extension theory and the Glazman–Krein–Naimark (GKN)
theory for symmetric operators are not applicable in these cases. The above fact
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was not noticed in the study of spectral problems for discrete Hamiltonian sys-
tems in some existing related literature including our papers [17], [20]. However,
the graph of the minimal operator for a linear Hamiltonian systems in a general
time scale is an Hermitian subspace in its related product space whether its re-
lated definiteness condition holds or does not hold. This strongly motivates us to
study self-adjoint extensions for Hermitian subspaces in the present paper.

E.A. Coddington studied self-adjoint extensions of Hermitian subspaces in
the product space X2 in 1973 [4], where X is a complex Hilbert space. He had suc-
cessfully extended the von Neumann self-adjoint extension theory for symmetric
operators to Hermitian subspaces, in which he gave out a sufficient and neces-
sary condition of existence of self-adjoint subspace extension for an Hermitian
subspace and a characterization of self-adjoint subspace extensions. A subspace
in X2 is also called a linear relation. R. Arens initiated the study of linear re-
lations [1]. For more results about non-densely defined Hermitian operators or
Hermitian subspaces, we refer to [3], [5], [6], [7], [8], [9], [13], [14], [15] and some
references cited therein.

The GKN theory gives a different characterization of self-adjoint extensions
for symmetric operators in terms of GKN-sets from that in the von Neumann
self-adjoint extension theory [12]. It is of particular advantage in the study of
boundary value problems for differential equations [10], [11], [12], [19] as well
as difference equations. So it is significant to extend it to general Hermitian sub-
spaces. In the present paper, we shall employ the above Coddington results to
establish the GKN theory for Hermitian subspaces. Here, we are only interested
in self-adjoint subspace extensions of an Hermitian subspace with equal positive
and negative defect indices.

The rest of this paper is organized as follows. In Section 2, some basic
concepts and fundamental results about subspaces are introduced. In Section
3, some symplectic properties of an Hermitian subspace and its defect spaces
are studied. Section 4 pays attention to the establishment of the GKN theory
for Hermitian subspaces. All the self-adjoint subspace extensions of an Hermit-
ian subspace with equal positive and negative defect indices d are characterized
in terms of GKN-sets. Finally, in Section 5, one-to-one correspondence relation-
ships among the set of all the self-adjoint subspace extensions of a closed Her-
mitian subspace, the set of all the d-dimensional Lagrangian subspaces in a re-
lated boundary space, and the set of all the complete Lagrangian subspaces in
the boundary space are established.

REMARK 1.1. We will apply the results obtained in the present paper to
characterizations of self-adjoint extensions for discrete linear Hamiltonian sys-
tems in terms of boundary conditions in the near future. As the simplest model,
second-order symmetric linear difference equations are first investigated [18].
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2. PRELIMINARIES

In this section, we recall some basic concepts and give some useful funda-
mental results about subspaces.

Let X be a complex Hilbert space with inner product 〈·, ·〉. Let T be a linear
subspace (briefly, subspace) in X2. The domain of T, D(T), is defined by

D(T) = {x ∈ X : (x, f ) ∈ T for some f ∈ X},

and the range of T, R(T), is defined by

R(T) = { f ∈ X : (x, f ) ∈ T for some x ∈ X}.

Denote

T(x) := { f ∈ X : (x, f ) ∈ T}.

It is evident that T(0) = {0} if and only if T is the graph of a linear operator from
D(T) into X.

Let T and S be subspaces in X2 and α ∈ C. Define

αT = {(x, α f ) : (x, f ) ∈ T}, T−1 = {( f , x) : (x, f ) ∈ T},
T + S = {(x, f + g) : (x, f ) ∈ T, (x, g) ∈ S, x ∈ D(T) ∩ D(S)}.

DEFINITION 2.1 ([1], [4]). Let T be a subspace in X2.
(i) Its adjoint, T∗, is defined by

T∗ = {(y, g) ∈ X2 : 〈 f , y〉 = 〈x, g〉 for all (x, f ) ∈ T}.

(ii) T is said to be an Hermitian subspace if T ⊂ T∗.
(iii) T is said to be a self-adjoint subspace if T = T∗.
(iv) Let T be an Hermitian subspace. T1 is said to be a self-adjoint subspace

extension (briefly, SSE) of T if T ⊂ T1 and T1 is a self-adjoint subspace.

LEMMA 2.2 ([4]). Let T be a subspace in X2. Then T∗ is a closed subspace in X2,
T∗ = (T)∗, and T∗∗ = T, where T is the closure of T.

REMARK 2.3. It can be easily verified that:
(i) T is an Hermitian subspace if and only if 〈 f , y〉=〈x, g〉 for all (x, f ), (y, g)∈T;

(ii) If T1 is a SSE of T, then T ⊂ T1 ⊂ T∗.

Let T be a subspace in X2 and λ ∈ C. Denote

Mλ := {(x, λx) ∈ T∗}.

Then Mλ is a closed subspace since T∗ is closed. For convenience, denote M± :=
M±i.

LEMMA 2.4. Let T be a subspace in X2. Then R(T − λI)⊥ = D(Mλ) for each
λ ∈ C.
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Proof. Fix any λ ∈ C. We first show that D(Mλ) ⊂ R(T − λI)⊥. For any
given (x, λx) ∈ Mλ, it is evident that (x, λx) ∈ T∗. Then, for any (y, g) ∈ T
one has that 〈g, x〉 = 〈y, λx〉, which implies that 〈g − λy, x〉 = 0. Hence, x ∈
R(T − λI)⊥, and consequently D(Mλ) ⊂ R(T − λI)⊥.

Now, we consider the inverse inclusion. For any given x ∈ R(T − λI)⊥,
we have that 〈g − λy, x〉 = 0 for each (y, g − λy) ∈ T − λI. This yields that
〈g, x〉 = 〈y, λx〉. So (x, λx) ∈ T∗, which implies x ∈ D(Mλ). Consequently,
R(T − λI)⊥ ⊂ D(Mλ). Therefore, D(Mλ) = R(T − λI)⊥. This completes the
proof.

REMARK 2.5. The result in Lemma 2.4 for λ ∈ C \R was referred without
proof in [9]. For completeness, its detailed proof has been given here.

LEMMA 2.6. Let T be a closed Hermitian subspace in X. Then, for each λ ∈ C \R,

X = R(T − λI)⊕ D(Mλ) (orthogonal sum).

Proof. Fix any λ = a + ib with a, b ∈ R and b 6= 0. By Lemma 2.4, it suffices
to show that R(T− λI) is a closed subspace in X. Suppose that {gn}∞

n=1 ⊂ R(T−
λI) is convergent as n→ ∞, where gn = fn − λxn with (xn, fn) ∈ T. Since T is an
Hermitian subspace, we have

‖gn − gm‖2 = ‖ fn − fm − a(xn − xm)− ib(xn − xm)‖2

= ‖ fn − fm − a(xn − xm)‖2 + |b|2‖xn − xm‖2 > |b|2‖xn − xm‖2,

which implies that {xn}∞
n=1 and { fn}∞

n=1 are convergent as n → ∞. By x and f
denote their limits, respectively. It follows from the closedness of T that (x, f ) ∈
T, and consequently f − λx ∈ R(T − λI). It is evident that gn → f − λx as
n→ ∞. Hence, R(T− λI) is a closed subspace in X. This completes the proof.

THEOREM 2.7. Let T be a closed Hermitian subspace in X2. Then, for each λ ∈
C \R,

(2.1) T∗ = T+̇Mλ+̇Mλ (direct sum).

Proof. We first show that T + Mλ + Mλ is a direct sum. Suppose that there
exist (y, g) ∈ T, (x1, λx1) ∈ Mλ, and (x2, λx2) ∈ Mλ such that (y, g) + (x1, λx1) +

(x2, λx2) = 0, which implies that

(2.2) y = −x1 − x2, g = −λx1 − λx2.

Since (x1, λx1) ∈ T∗, we have that 〈g, x1〉 = 〈y, λx1〉, which, together with (2.2),
yields that

〈−λx1 − λx2, x1〉 = 〈−x1 − x2, λx1〉;
that is, (λ − λ)‖x1‖2 = 0. So, x1 = 0 because of =λ 6= 0. Similarly, it can be
shown that x2 = 0. It follows from (2.2) that y = g = 0. Therefore, T + Mλ + Mλ
is a direct sum.



GLAZMAN–KREIN–NAIMARK THEORY FOR HERMITIAN SUBSPACES 245

In the rest of the proof, we show that T∗ = T + Mλ + Mλ. It is evident
that T + Mλ + Mλ ⊂ T∗. Consider its inverse inclusion. Fix any (x, f ) ∈ T∗.
By Lemma 2.6, there exist (y, g) ∈ T and (y1, λy1) ∈ Mλ such that f − λx =

g− λy + (λ− λ)y1, which implies that

(2.3) f − g− λy1 = λ(x− y− y1).

For any (z, h) ∈ T, one has

(2.4) 〈h, x〉 = 〈z, f 〉, 〈h, y〉 = 〈z, g〉, 〈h, y1〉 = 〈z, λy1〉.

By setting y2 = x− y− y1, it follows from (2.3) and (2.4) that

〈h, y2〉 − 〈z, λy2〉 = 〈h, x− y− y1〉 − 〈z, f − g− λy1〉 = 0.

Thus, (y2, λy2) ∈ T∗, and consequently (y2, λy2) ∈ Mλ. This, together with
(2.3), yields that (x, f ) = (y, g) + (y2, λy2) + (y1, λy1). This means that T∗ ⊂
T + Mλ + Mλ. Therefore, T∗ = T + Mλ + Mλ. The proof is complete.

REMARK 2.8. The result in Theorem 2.7 was referred without proof in [9].
For completeness, its detailed proof has been given here.

The following result can be easily verified by Theorem 2.7.

COROLLARY 2.9. Let T be a closed Hermitian subspace in X2. Then

(2.5) T∗ = T ⊕M+ ⊕M−.

Next, we introduce the concept of regularity domain of a subspace in X2,
which is motivated by that of an operator in X ([21], p. 229).

DEFINITION 2.10. Let T be a subspace in X2. The set

Γ(T) : = {λ ∈ C : there exists c(λ) > 0 such that

‖ f − λx‖ > c(λ)‖x‖ for all (x, f ) ∈ T}

is called the regularity domain of T.

THEOREM 2.11. Let T be a subspace in X2. Then Γ(T) is an open set of C.
Further, if T is Hermitian, then C \R ⊂ Γ(T).

Proof. We first show that Γ(T) is an open set. Fix any λ0 ∈ Γ(T). For each
λ ∈ C with |λ − λ0| < c(λ0), where c(λ0) is specified as in Definition 2.10 for
λ = λ0, we have that for any (x, f ) ∈ T,

‖ f − λx‖ > ‖ f − λ0x‖ − |λ− λ0|‖x‖ > (c(λ0)− |λ− λ0|)‖x‖,

which implies that λ ∈ Γ(T). Hence, Γ(T) is an open set.
Next, suppose that T is Hermitian. Fix any λ = a + ib ∈ C with a, b ∈ R

and b 6= 0. By (i) in Remark 2.3, we have that for any (x, f ) ∈ T,

‖ f − λx‖2 = ‖ f − ax‖2 + |b|2‖x‖2 > |b|2‖x‖2,
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which implies that λ ∈ Γ(T). Therefore, C \ R ⊂ Γ(T). This completes the
proof.

DEFINITION 2.12. Let T be a subspace in X2. The subspace R(T − λI)⊥ is
called the defect space of T and λ, and the number β(T, λ) := dim R(T − λI)⊥ is
called the defect index of T and λ.

THEOREM 2.13. The defect index β(T, λ) is constant in each connected subset of
Γ(T). If T is Hermitian, then β(T, λ) is constant in the upper and lower half-planes.

We first introduce the following two lemmas before the proof of The-
orem 2.13. The following result can be directly derived from the proof of (b)
in Theorem 4.3 in [21]:

LEMMA 2.14. Let T : X → X be a linear operator, Y be a subspace in X, and
R(T) ⊂ Y. Then, for each x ∈ D(T),

‖T(x)‖ = sup{|〈T(x), y〉| : y ∈ Y with ‖y‖ = 1}.
The following result extends Theorem 5.25 in [21] for operators to sub-

spaces:

LEMMA 2.15. Let A and B be subspaces in X2 with D(A) ⊂ D(B). Assume that
there exists a constant c > 0 such that ‖g‖ 6 c‖ f ‖ for all (x, f ) ∈ A and (x, g) ∈ B.
For every k ∈ C, let Pk denote the orthogonal projection from X onto R(A + kB). Then
‖Pk − P0‖ → 0 as k→ 0.

Proof. In the case of c = 0, the result holds obviously.
Now, we consider the case of c > 0. For every k ∈ C with |k| 6 1/(2c) and

for all (x, f ) ∈ A, (x, g) ∈ B, we have

‖g‖ 6 c‖ f ‖ 6 c(‖ f + kg‖+ |k|‖g‖) 6 c‖ f + kg‖+ 2−1‖g‖,

which implies that

(2.6) ‖g‖ 6 2c‖ f + kg‖.

Fix any h ∈ R(P0)
⊥ = R(A)

⊥
= R(A)⊥. Since X = R(A + kB)⊕ R(A + kB)⊥,

there exist h1 ∈ R(A + kB) and h2 ∈ R(A + kB)⊥ such that h = h1 + h2 and
Pk(h) = h1. For any (y, g) ∈ A + kB, there exist (y, g1) ∈ A and (y, g2) ∈ B such
that g = g1 + kg2. Then

〈Pk(h), g〉 = 〈h1, g〉 = 〈h, g〉 = 〈h, g1 + kg2〉 = k〈h, g2〉,

which yields that |〈Pk(h), g〉| 6 |k|‖h‖‖g2‖, which, together with (2.6), implies
that

|〈Pk(h), g〉| 6 2c|k|‖h‖‖g‖.
By Lemma 2.14, one has

(2.7) ‖Pk(h)‖ 6 2c|k|‖h‖.
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On the other hand, fix any h′ ∈ R(Pk)
⊥ = R(A + kB)

⊥
= R(A + kB)⊥.

There exist h′1 ∈ R(A) and h′2 ∈ R(A)
⊥

= R(A)⊥ such that h′ = h′1 + h′2 and
P0(h′) = h′1. Then, for any (x, f ) ∈ A we have

(2.8) 〈P0(h′), f 〉 = 〈h′1, f 〉 = 〈h′, f 〉.

By the assumption that D(A) ⊂ D(B), there exists g ∈ X such that (x, g) ∈
B. It is evident that f + kg ∈ R(A + kB). So, it follows from (2.8) that

〈P0(h′), f 〉 = 〈h′, f + kg〉 − k〈h′, g〉 = −k〈h′, g〉,

which, together by the assumption in the lemma, implies that

|〈P0(h′), f 〉| 6 |k|‖h′‖‖g‖ 6 c|k|‖h′‖‖ f ‖.

Again by Lemma 2.14, one has

(2.9) ‖P0(h′)‖ 6 c|k|‖h′‖.

By Theorem 4.33 in [21], (2.7), and (2.9), we get that ‖Pk− P0‖ 6 2c|k|, which
yields that ‖Pk − P0‖ → 0 as k→ 0. The proof is complete.

Proof of Theorem 2.13. By Theorem 2.11, it suffices to show that β(T, λ) is lo-
cally constant in Γ(T); that is, for each λ0 ∈ Γ(T) there exists ε0 > 0 such that
β(T, λ) = β(T, λ0) for all λ ∈ Γ(T) with |λ− λ0| < ε0.

Set A = λ0 I− T and B = I in Lemma 2.15, and let Qλ denote the orthogonal
projection from X onto R(λI − T). Then, ‖Qλ − Qλ0‖ → 0 as λ → λ0 by Lem-
ma 2.15. Moreover, let Q′λ denote the orthogonal projection from X onto R(λI −
T)⊥. Then ‖Q′λ − Q′λ0

‖ = ‖Qλ − Qλ0‖ → 0 as λ → λ0. Choose ε0 > 0 such that
‖Q′λ − Q′λ0

‖ < 1 for all |λ − λ0| < ε0. By Theorem 4.35 of [21], dim R(Q′λ) =

dim R(Q′λ0
), i.e., dim R(λI− T)⊥ = dim R(λ0 I− T)⊥. This means that β(T, λ) =

β(T, λ0) for all λ ∈ Γ(T) with |λ− λ0| < ε0. The proof is complete.

By Lemma 2.4, we get that dim Mλ = dim D(Mλ) = dim R(T − λI)⊥ =
β(T, λ) for all λ ∈ C. So the following result is a direct consequence of Theo-
rem 2.13:

COROLLARY 2.16. Let T be an Hermitian subspace in X2. Then dim Mλ =
dim M+ for all λ ∈ C with =λ > 0 and dim Mλ = dim M− for all λ ∈ C with
=λ < 0.

REMARK 2.17. The result in Corollary 2.16 is referred in Theorem 6.1 of [9]
and [14] without proof.

Denote d+ := β(T,−i) and d− := β(T, i). Then d+ := dim M+ and d− :=
dim M−. The pair (d+, d−) is called the defect indices of T, and d+ and d− are
called the positive and negative defect indices of T, respectively.

The following result extends the von Neumann self-adjoint extension the-
ory for symmetric operators to Hermitian subspaces:
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LEMMA 2.18 ([4], Theorem 15). Let T be a closed Hermitian subspace in X2.
(i) Subspace T has a SSE in X2 if and only if d+ = d−.

(ii) Subspace T1 in X2 is a SSE of T if and only if there exists an isometry U of M+

onto M− such that

(2.10) T1 = T ⊕ (I −U)M+.

3. SYMPLECTIC PROPERTIES OF A HERMITIAN SUBSPACE AND ITS DEFECT SPACES

In this section, by the inner product of a complex Hilbert space X we first
introduce a pre-symplectic form on X2 × X2, and then discuss some symplectic
properties of an Hermitian subspace in X2 and its defect spaces M±.

For convenience, first recall some basic concepts about complex symplectic
spaces, which are referred to [10].

DEFINITION 3.1. A complex symplectic space S is a complex linear one,
with a prescribed symplectic form [:] : S × S −→ C, (X, Y) 7→ [X : Y] satisfy-
ing:

(i) (conjugate bilinear property) for all X, Y, Z ∈ S and µ ∈ C,

[Z : X + Y] = [Z : X] + [Z : Y], [X + Y : Z] = [X : Z] + [Y : Z],

[µX : Y] = µ[X : Y], [X : µY] = µ[X : Y];

(ii) (skew-Hermitian property) [X : Y] = −[Y : X] for all X, Y ∈ S;
(iii) (non-degenerate property) [X : Y] = 0 for all Y ∈ S implies that X = 0.

If (i) and (ii) hold, then S is called a pre-symplectic space.

DEFINITION 3.2. Let S be a complex pre-symplectic space and L be a linear
subspace in S. The subspace L is called Lagrangian in case [L : L] = 0; that is,
[u : v] = 0 for all u, v ∈ L. Further, a Lagrangian subspace L ⊂ S is called complete
in case u ∈ S and [u : L] = 0 imply u ∈ L.

DEFINITION 3.3. Let S1 and S2 be two complex symplectic spaces with sym-
plectic forms [:]1 and [:]2, respectively. They are called symplectically isomorphic in
case there exists a bijective linear map h : S1 → S2 with [hu : hv]2 = [u : v]1 for
all u, v ∈ S1.

DEFINITION 3.4. Let S be a complex symplectic space with symplectic form
[:], and S1 and S2 be two subspaces in S. S1 and S2 are called symplectically orthog-
onal if [S1 : S2] = 0.

Now, we introduce the following form on X2 × X2 by

(3.1) [(x, f ) : (y, g)] := 〈 f , y〉 − 〈x, g〉, (x, f ), (y, g) ∈ X2.

It can be easily verified that [:] is conjugate bilinear and skew-Hermitian.
Then X2 with [:] is a pre-symplectic space.
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THEOREM 3.5. Let T be an Hermitian subspace in X2. Then [T : T∗] = 0, T is a
Lagrangian subspace of T∗, and

(3.2) T = {(x, f ) ∈ T∗ : [(x, f ) : T∗] = 0}.
Proof. Since T is Hermitian, T ⊂ T∗. It can be easily verified that [T : T] =

[T : T∗] = 0. Hence, T is a Lagrangian subspace of T∗.
By S denote the set on the right-hand side of (3.2). Then S is closed since T∗

is closed. It is evident that T ⊂ S ⊂ T∗. So T ⊂ S ⊂ T∗. On the other hand, for
any given (x, f ) ∈ S, [(x, f ) : (y, g)] = 0 for all (y, g) ∈ T∗, i.e., 〈 f , y〉 = 〈x, g〉.
So, (x, f ) ∈ T∗∗. By Lemma 2.4, (x, f ) ∈ T. This implies that S ⊂ T. Therefore,
S = T. The proof is complete.

In the rest of this section, we always assume that T is a closed Hermitian
subspace in X2.

Now, we introduce the following quotient space:

(3.3) Q := T∗/T.

Q is called a boundary (or endpoint) space of T. By Corollary 2.9 one has

(3.4) dim Q = dim M+ + dim M− = d+ + d−.

Denote the natural projection of T∗ onto Q by

(3.5) P : T∗ → Q, F 7→ {F + T}.
We also denote F̂ = P(F) for convenience.

The form [:] defined by (3.1) induces the following form on Q×Q:

(3.6) [F̂ : Ĝ] = [F : G], F̂, Ĝ ∈ Q,

which is well defined by Theorem 3.5. It is evident that Q is also a pre-symplectic
space with [:]. Further, we have

THEOREM 3.6. Let T be a closed Hermitian subspace in X2. Then Q is a (d+ +
d−)-dimensional complex symplectic space with form [:].

Proof. From (3.4), it suffices to show that the form [:] is non-degenerate on
Q×Q.

Suppose that [F̂ : Ĝ] = 0 for some F̂ ∈ Q and for all Ĝ ∈ Q. Then [F + T :
T∗] = 0, which implies that [F : T∗] = 0, and consequently F ∈ T = T by
Theorem 3.5; that is, F̂ = 0. Therefore, the form [:] is non-degenerate on Q× Q
and then Q is a complex symplectic space. This completes the proof.

THEOREM 3.7. Let T be a closed Hermitian subspace in X2. Then the subspaces
T and M± have the following properties:

(i) T, M+, and M− are pairwise symplectically orthogonal with [:];
(ii) M+ ⊕M− is a complex symplectic space with the form [:];

(iii) for F ∈ M+ ⊕M−, [F : M−] = 0 implies F ∈ M+, and [F : M+] = 0 implies
F ∈ M−;
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(iv) M+ ⊕M− and Q are symplectically isomorphic.

Proof. Result (i) can be easily verified by their definitions.
Now, consider (ii). It is evident that M+ ⊕ M− is a pre-symplectic space

with [:]. It suffices to show that form [:] is non-degenerate on M+⊕M−. Suppose
that for some F ∈ M+ ⊕M−, [F : G] = 0 for all G ∈ M+ ⊕M−. For any F′ ∈ T∗,
there exist F1 ∈ T and F2 ∈ M+ ⊕M− such that F′ = F1 + F2 by Corollary 2.9. So,
by the assumption and result (i) we have

[F : F′] = [F : F1] + [F : F2] = 0,

which implies that F ∈ T = T by Theorem 3.1. Since T and M+ ⊕ M− are or-
thogonal with inner product 〈·, ·〉 by Corollary 2.9, we get that F = 0, and con-
sequently [:] is non-degenerate on M+ ⊕M−. Therefore, M+ ⊕M− is a complex
symplectic space with the form [:].

Next, consider (iii). Suppose that F ∈ M+ ⊕M− satisfies [F : M−] = 0. Let
F = F+ + F−, F± ∈ M±. Then, by result (i) one has

[F : M−] = [F+ : M−] + [F− : M−] = [F− : M−] = 0,

which yields [F− : F−] = 0. Letting F− = (x,−ix), we have

[F− : F−] = −2i‖x‖2 = 0,

which implies that x = 0, and consequently F− = 0. Hence, F = F+ ∈ M+. With
a similar argument, one can show that for F ∈ M+ ⊕M−, [F : M+] = 0 implies
F ∈ M−.

Finally, we show that (iv) holds. Define the following natural projection
map:

π : M+ ⊕M− → Q, F 7→ F̂.
It is evident that π is a surjective linear map. It can be easily shown that π is
injective by Corollary 2.9. In addition, for any F, G ∈ M+ ⊕M−, we have

[π(F) : π(G)] = [F̂ : Ĝ] = [F : G],

where Theorem 3.5 and result (i) have been used. Therefore, π is a symplectic
isomorphism from M+ ⊕M− onto Q. The entire proof is complete.

4. SELF-ADJOINT SUBSPACE EXTENSIONS

In this section, we give a complete characterization of SSEs of an Hermitian
subspace T in X2 in terms of GKN-sets. By Lemma 2.18, T has a SSE in X2 if and
only if its positive and negative defect indices satisfy

(4.1) d+ = d− = d.

We are only interested in self-adjoint extensions of T in the original space X2 in
the present paper. So, we always assume that T satisfies (4.1) throughout this
section.
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We first consider the case that T is a closed Hermitian subspace in X2.

REMARK 4.1. Let T be a closed Hermitian subspace in X2 and satisfy (4.1).
A set {β j}d

j=1 in X2 is called a GKN-set for the pair of subspaces {T, T∗} if it
satisfies:

(i) β j ∈ T∗, 1 6 j 6 d;
(ii) β1, β2, . . . , βd are linearly independent in T∗ (modulo T);

(iii) [β j : βk] = 0, 1 6 j, k 6 d.

LEMMA 4.2. Let T be a closed Hermitian subspace in X2 and satisfy (4.1). And
let U be an isometry of M+ onto M− and {γj}d

j=1 be an orthogonal basis of M+. Then

{ψj}d
j=1 is a GKN-set for {T, T∗}, where ψj = (I −U)γj.

Proof. It is evident that ψj ∈ M+ ⊕M− ⊂ T∗, 1 6 j 6 d.

Suppose that there exist constants cj, 1 6 j 6 d, such that
d
∑

j=1
cjψj = 0 (mod-

ulo T). Then
d

∑
j=1

cjγj =
d

∑
j=1

cjUγj (modulo T).

Noting that
d
∑

j=1
cjγj ∈ M+,

d
∑

j=1
cjUγj ∈ M−, and T, M+ and M− are orthogo-

nal with inner product 〈·, ·〉 by Corollary 2.9, we get that
d
∑

j=1
cjγj = 0. Hence,

cj = 0, 1 6 j 6 d, by the assumption that {γj}d
j=1 is an orthogonal basis of M+.

Consequently, {ψ1, ψ2, . . . , ψd} are linearly independent in T∗ (modulo T).
On the other hand, it follows from (i) in Theorem 3.7 that

(4.2) [ψj : ψk] = [(I −U)γj : (I −U)γk] = [γj : γk] + [Uγj : Uγk], 1 6 j, k 6 d.

Setting γj = (xj, ixj), Uγj = (yj,−iyj), we have

(4.3) [γj : γk] = 2i〈xj, xk〉, [Uγj : Uγk] = −2i〈yj, yk〉.

Since U is isometric, 〈Uγj, Uγk〉 = 〈γj, γk〉, which implies that 〈yj, yk〉 = 〈xj, xk〉.
This, together with (4.2) and (4.3), yields that [ψj : ψk] = 0, 1 6 j, k 6 d. Therefore,
{ψj}d

j=1 is a GKN-set for {T, T∗}. This completes the proof.

LEMMA 4.3. Let T be a closed Hermitian subspace in X2 and satisfy (4.1). Assume
that {β j}d

j=1 is a GKN-set for {T, T∗}. Then

(4.4) {F ∈ T∗ : [F : β j] = 0, 1 6 j 6 d} = span{β j : 1 6 j 6 d}+ T.

Proof. The proof is similar to that of Lemma 3.2 of [20]. So its details are
omitted.

The following result is a direct consequence of Lemmas 4.2 and 4.3:
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LEMMA 4.4. Let T be a closed Hermitian subspace in X2 and satisfy (4.1). And
let U be an isometry of M+ onto M−, {γj}d

j=1 be an orthogonal basis of M+, and ψj =

(I −U)γj, 1 6 j 6 d. Then

T + (I −U)M+ = {F ∈ T∗ : [F : ψj] = 0, 1 6 j 6 d}.
The following result gives a necessary and sufficient condition satisfied by

a SSE of an Hermitian subspace:

LEMMA 4.5. Let T be an Hermitian subspace in X2 and satisfy (4.1). Then a
subspace T1 in X2 is a SSE of T if and only if it satisfies that:

(i) T ⊂ T1 ⊂ T∗;
(ii) [T1 : T1] = 0;

(iii) for F ∈ T∗, [F : T1] = 0 implies that F ∈ T1.

Proof. First, consider the necessity. Suppose that T1 is a SSE of T. Then
T ⊂ T1 ⊂ T∗ by (ii) in Remark 2.3, and [T1 : T1] = 0 by the self-adjointness of
T1. Further, suppose that [F : T1] = 0 for some F = (x, f ) ∈ T∗; that is, for all
(y, g) ∈ T1,

[(x, f ) : (y, g)] = 〈 f , y〉 − 〈x, g〉 = 0,

which implies that 〈 f , y〉 = 〈x, g〉. So, F ∈ T∗1 = T1 and the necessity has been
shown.

Next, consider the sufficiency. Suppose that T1 is a subspace in X2 and
satisfies conditions (i)–(iii). It follows from (ii) that T1 ⊂ T∗1 . On the other hand,
it follows from (i) that T∗1 ⊂ T∗. For any given F = (x, f ) ∈ T∗1 , one has that
〈 f , y〉 = 〈x, g〉 for all (y, g) ∈ T1. This implies that [F : T1] = 0, which, together
with condition (iii), yields that F ∈ T1. Thus, T∗1 ⊂ T1, and consequently T∗1 = T1.
Hence, T1 is a SSE of T. The sufficiency has been shown. This completes the
proof.

LEMMA 4.6. Let T be a closed Hermitian subspace in X2 and satisfy (4.1). Assume
that {β j}d

j=1 is a GKN-set for {T, T∗}. Then

(4.5) T1 = {F ∈ T∗ : [F : β j] = 0, 1 6 j 6 d}

is a SSE of T.

Proof. It suffices to show that T1 satisfies conditions (i)–(iii) in Lemma 4.5. It
is evident that T1 satisfies condition (i) in Lemma 4.5 by Lemma 4.3.

Fix any F, G ∈ T1. By Lemma 4.3, there exist G′ ∈ T and constants cj, 1 6

j 6 d, such that G = G′ +
d
∑

j=1
cjβ j. Then, by Theorem 3.5 one has

[F : G] = [F : G′] +
d

∑
j=1

cj[F : β j] = [F : G′] = 0.

Consequently, [T1 : T1] = 0. Hence, T1 satisfies condition (ii) in Lemma 4.5.
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Suppose that [F : T1] = 0 for some F ∈ T∗. Noting that β j ∈ T1, we have that
[F : β j] = 0, 1 6 j 6 d. Thus F ∈ T1. So T1 satisfies condition (iii) in Lemma 4.5.
By Lemma 4.5, T1 is a SSE of T. The proof is complete.

The following result is a direct consequence of Lemmas 2.18, 4.2, 4.4 and 4.6:

THEOREM 4.7. Let T be a closed Hermitian subspace in X2 and satisfy (4.1). A
subspace T1 in X2 is a SSE of T if and only if there exists a GKN-set {β j}d

j=1 for {T, T∗}
such that T1 is determined by (4.5).

Finally, we consider a characterization of SSEs of non-closed Hermitian sub-
spaces. Let T be a non-closed Hermitian subspace in X2. By Lemma 2.2, T∗ =
(T)∗. So M±(T) = M±(T), which implies that d±(T) = d±(T). Therefore, T has
a SSE if and only if T has a SSE by (i) in Lemma 2.18. Moreover, it can be easily
verified that T1 is a SSE of T if and only if it is a SSE of T. So the following result
can be directly derived from Theorem 4.7 and Lemma 4.3.

THEOREM 4.8. Let T be a non-closed Hermitian subspace in X2 and satisfy (4.1).
A subspace T1 in X2 is a SSE of T if and only if there exists a GKN-set {β j}d

j=1 for
{T, T∗} such that

T1 = {F ∈ T∗ : [F : β j] = 0, 1 6 j 6 d} = T + span{β j : 1 6 j 6 d}.

REMARK 4.9. Theorems 4.7 and 4.8 are the generalization of Theo-
rem 10.2.18 in [12] for symmetric operators to Hermitian subspaces.

5. RELATIONSHIPS BETWEEN SELF-ADJOINT SUBSPACE EXTENSIONS
AND LAGRANGIAN SUBSPACES

In the final section, we establish one-to-one correspondences among the set
of all the self-adjoint subspace extensions of a closed Hermitian subspace T in
X2 satisfying (4.1), the set of all the d-dimensional Lagrangian subspaces in the
boundary space Q, defined by (3.3), and the set of all the complete Lagrangian
subspaces in the boundary space Q.

Throughout this section, we always assume that T is a closed Hermitian
subspace in X2 and satisfies (4.1). It follows from Theorem 3.6 that the boundary
space Q is a (2d)-dimensional symplectic space with form [:], defined by (3.6).

LEMMA 5.1. Assume that T is a closed Hermitian subspace in X2 and satisfies
(4.1). Then L is a d-dimensional Lagrangian subspace in Q if and only if L is a complete
Lagrangian subspace in Q.

Proof. With a similar argument used in the proof of Lemma 3.4 in [20], one
can show Lemma 5.1 by Lemmas 2.18 and 4.3 and Theorem 4.7. So its details are
omitted.
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The following result can be easily verified by Lemmas 4.3 and 5.1 and The-
orem 4.7:

LEMMA 5.2. Assume that T is a closed Hermitian subspace in X2 and satis-
fies (4.1).

(i) If T1 is a SSE of T, then L = T1/T is a d-dimensional Lagrangian subspace in Q.
(ii) If L is a d-dimensional Lagrangian subspace in Q, then T1 = P−1L = {F ∈ T∗ :

F̂ ∈ L} is a SSE of T.

THEOREM 5.3. Assume that T is a closed Hermitian subspace in X2 and satis-
fies (4.1).

(i) There exists a natural one-to-one correspondence between the set of all the self-
adjoint subspace extensions of T and the set of all the d-dimensional Lagrangian sub-
spaces in Q.

(ii) There exists a natural one-to-one correspondence between the set of all the self-
adjoint subspace extensions of T and the set of all the complete Lagrangian subspaces
in Q.

Proof. For convenience, by T1 denote the set of all the self-adjoint subspace
extensions of T and by L1 denote the set of all the d-dimensional Lagrangian
subspaces in Q.

To show result (i), we define the following map:

Ψ : T1 → L1, Ψ(T1) = L1 = T1/T.

The map Ψ is well-defined and surjective by Lemma 5.2. Suppose that T1 and
T2 are any two different SSEs of T. And suppose that there exists an element
F ∈ T1, but F /∈ T2. Denote Lj = Ψ(Tj) = Tj/T, j = 1, 2. It is evident that
F̂ = P(F) = {F+ T} ∈ L1, but F̂ /∈ L2, which implies that L1 6= L2. Consequently,
Ψ is injective. Hence, Ψ is a bijective map. Result (i) is shown.

Result (ii) can be directly derived from result (i) and Lemma 5.1. The proof
is complete.

REMARK 5.4. The results in Theorems 4.7, 4.8 and 5.3 can be regarded as
a generalization of the GKN-EZ theorem ([10], p. 21, Theorem 1), where Everitt
and Zettl obtained similar results for quasi-differential expressions.
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