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ABSTRACT. The paper gives an operator algebras model for the conditional
monotone independence, introduced by T. Hasebe. The construction is used
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algebras. Also, the formulas from the definition of conditional monotone in-
dependence are used to define the monotone product of maps which is shown
to preserve complete positivity, similarly to the results from the case of free
products.

KEYWORDS: Completely positive maps, monotone and conditional monotone inde-
pendence, monotone Fock spaces.

MSC (2000): 46L53, 47L55.

1. INTRODUCTION

This material presents some results in monotone probability, a non-unital
and non-symmetric type of non-commutative probability. More precisely, if (A, ψ)
is a non-commutative probability space and I a totally ordered set, then a family
of subalgebras {Ai}i∈I of A is said to be monotone independent with respect to
ψ if for any a1, . . . , an with ak ∈ Aik such that is 6= is+1, the following properties
are satisfied (for a more functorial treatment of monotone independence, see [19]
[12]):

(1) ψ(a1 · · · an) = ψ(a1)ψ(a2 · · · an) if i1 > i2;
(2) ψ(a1 · · · an) = ψ(a1 · · · an−1)ψ(an) if in > in−1;
(3) ψ(a1 · · · an) = ψ(a1 · · · ak−1ψ(ak)ak+1 · · · an), if ik−1 < ik > ik+1.

Many results from the free probabilities theory have non-trivial monotone
independence analogues - the monotone Fock space, respectively bimodule of
[18] and [21] are counterparts to the full Fock space ([23], [22]), the H- and K-
transforms from [18] and [13] are analogue to the Voiculescu’s R- and S-transforms
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etc. In [14], T. Hasebe introduced the notion of conditionally monotone indepen-
dence, in analogy to the notion of conditionally freeness from [5], [6]. More pre-
cisely, if A is a unital algebra endowed with two normalized linear functionals
ϕ and ψ, a family of subalgebras {Ai}i∈I of A is said to be conditionally mono-
tone independent if they are monotone independent with respect to ψ and for
any a1, . . . , an with ak ∈ Aik such that is 6= is+1, we have that:

(1’) ϕ(a1 · · · an) = ϕ(a1)ϕ(a2 · · · an) if i1 > i2;
(2’) ϕ(a1 · · · an) = ϕ(a1 · · · an−1)ϕ(an) if in > in−1;
(3’) ϕ(a1 · · · an) = ϕ(a1 · · · ak−1)[ϕ(ak) − ψ(ak)]ϕ(ak+1 · · · an) + ϕ(a1 · · · ak−1

ψ(ak)ak+1 · · · an), if ik−1 < ik > ik+1.

A Fock space model for the theory of conditional freeness is presented in [5].
Also, there is an important connection between conditional freeness and com-
plete positive maps: in [1], [2] and [8], it is shown how the relations from the
definition of the conditional freeness appear in the construction of the free prod-
uct of completely positive maps, which turns to also be complete positive. The
present material addresses all these topics for the case of conditionally monotone
independence.

The paper is organized in 4 sections, including the Introduction. In Sec-
tion 2 we will present a operator algebraic model for the conditionally monotone
independence using the “monotone Fock space” introduced in [18] and the ideas
from the Fock model for conditionally freeness from [5], thus completing the con-
struction from [14]. In Section 3 we construct the monotone product of maps, and
using the results and some techniques from [1] and [14] we prove that a mono-
tone product of completely positive maps is completely positive. In Section 4 we
define the montone product of C∗-algebras with conditional expectations, refin-
ing the construction from [18], and prove some embedding results similar to the
ones presented in Sections 1 and 2 of [8] for the free products.

2. REALIZATION OF CONDITIONALLY MONOTONE INDEPENDENCE

Let {(Ai, ϕi, ψi)}i∈I be a family of ∗-algebras, each endowed with two states
(throughout the paper I will always be a totally ordered set). If I has a minimal
element, 0I , since in the definition of the conditional monotone independence the
functional ψ0i does not appear, we will also suppose that ϕ0I = ψ0I .

As in [5], for each j ∈ I we consider ∗-representations πj, σj : Aj −→ B(Hj)
given by the GNS-constructions with states ϕj, ψj, respectively, i. e.

ϕj(aj) = 〈πj(aj)ξ j, ξ j〉 and ψj(aj) = 〈σj(aj)ξ j, ξ j〉

with aj ∈ Aj and ‖ξ j‖ = 1. As remarked in [5], we can always choose the same
vector ξ j for both states, but by doing so we may lose the cyclicity of ξ j.
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Let (H, ξ) be the monotone product of the family {(Hj, ξ j)}j>0 (see [18],
[21]):

H = Cξ ⊕
∞⊕

n=1

( ⊕
i1>···>in

H◦i1 ⊗ · · · ⊗H
◦
in

)
whereH◦j = Hj 	Cξ j. We also define

H(k) = Cξ ⊕
∞⊕

n=1

( ⊕
i1>···>in , i16k

H◦i1 ⊗ · · · ⊗H
◦
in

)
and consider the adjointable partial isometries Vk : H −→ Hk ⊗H(k− 1) given
by Vkξ = ξk ⊗ ξ and, for f1 ⊗ · · · ⊗ fn ∈ H◦i1 ⊗ · · · ⊗H

◦
in ,

Vk f1 ⊗ · · · ⊗ fn =


0 if i1 > k,
f1 ⊗ · · · ⊗ fn if i1 = k,
ξk ⊗ f1 ⊗ · · · ⊗ fn if i1 < k.

For T ∈ B(Hk), we define ωk(T) = V∗k (T⊗ IdH(k))Vk; a trivial computation
gives that ωk(T1T2) = ωk(T1)ωk(T2). We will consider the ∗-representation jk :
Ak −→ B(H)

jk(a) = ωk(πk(a))Pk ⊕ωk(σk(a))P⊥k

where Pk is the orthogonal projection on Cξ ⊕Hk.
Finally, let Φ be the state on B(H) given by Φ(T) = 〈Tξ, ξ〉.

REMARK 2.1. From the definition of ωi and πi, we have that Φ ◦ ji = ϕi for
all i ∈ I.

LEMMA 2.2. Suppose that ik 6= ik+1 for 1 6 k < n, that ak ∈ Aik and
Ak = jik (ak). Then

A1 · · · Anξ = Φ(A1 · · · An)ξ + η for some η ∈ H(k)◦ = H(k)	Cξ.

Proof. Induction on n. For n = 1, we have

A1ξ = ωi1(πi1(a1))Pi1 ξ ⊕ωi1(σi1(a1))P⊥i1 ξ = ωi1(πi1(a1))ξ, sinceP⊥i1 ξ = 0

= V∗i1 [πi1(a1)ξi1 ]⊗ ξ = V∗i1 [〈πi1(a1)ξi1 , ξi1〉ξi1 + P⊥ξi1
πi1(a1)ξi1 ]⊗ ξ

= V∗i1 [ϕi1 ξi1 + P⊥ξi1
πi1(a1)ξi1 ]⊗ ξ = ϕi1 ξ + P⊥ξi1

πi1(a1)ξi1

where Pξi1
is the orthogonal projection on Cξi1 . The conclusion follows now from

Remark 2.1.
For the induction step, we first write A2 · · · Anξ = η1 + η2 + αξ with η1 ∈

H◦i1 , η2 ∈ H(i2)◦ 	H◦i1 and α ∈ C.
The argument above gives A1(αξ) = α(ζ1 + α0ξ) with ζ1 ∈ H◦i1 and α0 ∈ C.
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On the other hand,

A1η1 = P⊥ξi1
A1η1 + α1ξ with α1 ∈ C and P⊥ξi1

A1η1 ∈ H◦i1 , and

A1η2 = V∗i1(σi1(a1)⊗ Id)Vi1 η2 = V∗i1(σi1(a1)ξi1 ⊗ η2) ∈ H(i1)◦.

Summing, we obtain A1 · · · Anξ = η + βξ, with β ∈ C and η ∈ H(i1)◦, and since
Φ(T) = 〈Tξ, ξ〉, the result is proved.

THEOREM 2.3. With the notations from above, if ik 6= ik+1, (k = 1, . . . , n− 1),
and ak ∈ Aik , then:

(i) for i1 > i2, we have that

Φ(ji1(a1) · · · jin(an)) = ϕi1(a1)Φ(ji2(a2) · · · jin(an));

(ii) for in > in−1, we have that

Φ(ji1(a1) · · · jin(an)) = Φ(jk1(a1) · · · jkn−1(an−1))ϕin(an);

(iii) for il−1 < il > il+1 (for some 1 < l < n), we have that

Φ(jk1(a1) · · · jkn(an))

= Φ(jk1(a1) · · · jkl−1
(al−1)ψ(al)jl+1(al+1) · · · jkn(an))) + Φ(jk1(a1) · · · jkl−1

(al−1))

[ϕkl
(al)− ψkl

(al)]Φ(jl+1(al+1) · · · jkn(an))).

Proof. First, to simplify the notations, we will write Al for jil (al), 1 6 l 6 n.
From Lemma 2.2 and Remark 2.1, we have that Anξ = η + ϕin(an)ξ with

η ∈ H◦in . Since in > in−1, the definition of Vin−1 gives

Φ(A1 · · · An) = 〈A1 · · · An−1 ϕin(an)ξ, ξ〉 = 〈A1 · · · An−1ξ, ξ〉ϕin(an)

so part (ii) is done.
For part (i), Lemma 2.2 gives

A2 · · · Anξ = η + αξ,

with α = Φ(A2 · · · An) ∈ C and η ∈ H(i2)◦. Since

A1η = Vi1(σi1(a1)⊗ Id)ξi1 ⊗ η = Vi1(σi1(a1)ξi1 ⊗ η) ∈ H(i1)◦,

we have that

Φ(A1 · · · An) = 〈A1αξ, ξ〉 = 〈A1ξ, ξ〉α = ϕi1(A1)Φ(A2 · · · An).

For part (iii), write Al+1 · · · Anξ = η + αξ, with η ∈ H(l + 1)◦ and α =
Φ(Al+1 · · · An) ∈ C. Also write

πil (al)ξil = ζ1 + β1ξil , σil (al)ξil = ζ2 + β2ξil

with β1 = ϕil (al), β2 = ψil (al) and ζ1, ζ2 ∈ H◦l .
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We have that

Al Al+1 · · · Anξ = Al(η + αξ) = Vil (σil (al)ξil ⊗ η) + Vil (πil (al)αξil ⊗ ξ)

= Vil ([ζ2+β2ξil ]⊗η+[ζ1α+β1αξil ]⊗ξ)= ζ2⊗η+β2η+ζ1α + β1αξ

= ζ2 ⊗ η + ζ2α + β2η + β2αξ + (ζ1 − ζ2)α + (β1 − β2)αξ

Since il > il−1 and ζ1, ζ2 ∈ H◦il , it follows that Al−1(ζ2 ⊗ η + ζ2α + (ζ1 − ζ2)α) =

0, therefore

Φ(A1 · · · An) = 〈A1 · · · Al−1 Al(Al+1 · · · Anξ), ξ〉
= 〈A1 · · · Al−1(β2[η + αξ] + (β1 − β2)αξ), ξ〉
= 〈A1 · · · Al−1β2 Al+1 · · · Anξ, ξ〉+ 〈A1 · · · Al−1ξ, ξ〉(β1 − β2)α.

3. MONOTONE PRODUCTS OF COMPLETELY POSITIVE MAPS

Let {Ai}i∈I be a family of ∗-algebras containing a C∗-algebra B as a common
∗-subalgebra and suppose that each Ai is endowed with a projection ψi : Ai −→
B. Let now D be another ∗-algebra containing B as a ∗-subalgebra and suppose
θi : Ai −→ D are a family of B-B bimodule maps such that θi |B = IdB.

We will write A◦i for the set ker(ψi) ⊂ Ai and denote be ∗
i∈I

Ai the free prod-

uct of ∗-algebras {Ai}i>0 with amalgamation over B.
We fist need to briefly review a result from [1].

DEFINITION 3.1. The free product of the maps {θi}i∈I is the map

θ∗ = ∗
i∈I

θi : ∗
i∈I

Ai −→ D

given by

θ∗(a1 · · · an) = θi1(a1) · · · θin(an) whenever ak ∈ A◦ik , ij 6= ij+1; θ∗ |B = IdB.

THEOREM 3.2 ([1], Theorem 3.2). If, with the notations above, {Ai}i∈I , B, and
D are unital C∗-algebras, ψi are projections of norm 1 and θi are completely positive
unital maps, then θ∗ extends to a unital completely positive map from the universal free
product of the C∗-algebras Ai(i ∈ I) to D.

As in [14], for each i ∈ I consider now Ãi = B1 ⊕ Ai (direct sum of B-
bimodules). If B is unital, then Ãi is a unitalization of Ai, but 1Ãi

6= 1Ai . let

Ã = ∗
i∈I

Ãi be the free product of ∗-algebras with amalgamation over B. Note

that we have the natural decomposition Ã = B1⊕ A, where A = ∗Ai, the free
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product of ∗-algebras without amalgamation over B. The algebra A is still a B-
ring, and we have the vector spaces identification

A ∼=
∞⊕

n=1

⊕
i1 6=i2···6=in

Ai1 ⊗B Ai2 ⊗B · · ·Ain .

DEFINITION 3.3. The monotone product of the maps {θi}i>0 is the map
θ = B

i∈I
θi : A −→ D given by:

θ(a1 · · · an) = θi1(a1)θ(a2 · · · an) if i1 > i2,(3.1)

θ(a1 · · · an) = θ(a1 · · · an−1)θin(an) if in > in−1,(3.2)

θ(a1 · · · an) = θ(a1 · · · ak−1ψik (ak)ak+1 · · · an)(3.3)

+ θ(a1 · · · ak−1)[θik (ak)− ψik (ak)]θ(ak+1 · · · an).

PROPOSITION 3.4. The monotone product of maps, defined above, is associative.

The proof is just a trivial (though tedious) re-writing of the argument from
the scalar case in Theorem 3.6 of [14].

PROPOSITION 3.5. Let A1,A2,D be ∗-algebras that contain B as a common ∗-
subalgebra. Suppose that ψ2 : A2 −→ B is a conditional expectation and that θk :
Ak −→ D, k = 1, 2 are B-bimodule maps.

Consider Ãk = B1⊕Ak, k = 1, 2 and ψ̃k, θ̃k : Ãk −→ B given by (b ∈ B, a1 ∈
A1, and a2 ∈ A2):

ψ̃1(b1 + a1) = b, ψ̃2(b1 + a2) = b + ψ2(a2), θ̃k(b1 + ak) = b + θk(ak).

Then, with the above notations, we have that θ̃2∗θ̃1|A1∗A2
= θ2 B θ1.

Proof. For simplicity, denote θ = θ2 B θ1. We just need to show that

θ(a1 · · · an) = θi1(a1) · · · θin(an)

whenever aj ∈ ker(ψij) ∩Aij , ij ∈ {1, 2} with ik 6= ik+1.
We will prove the assertion by induction on n. The case n = 1 is trivial. For

the induction step, note that if a1 or an are from A2, then the conclusion follows
from Definition 3.3, relations (3.1), (3.2).

If a1, an ∈ A1, then there exists k ∈ {2, . . . , n− 1} such that ak ∈ A2. Then
(3.3) implies

θ(a1· · ·an)=θ(a1· · ·ak−1ψ2(ak)ak+1· · ·an)+θ(a1· · ·ak−1)[θ2(a2)−ψ2(ak)]θ(ak+1· · ·an)

=θ(a1 · · · ak−1)θ2(a2)θ(ak+1 · · · an),

since ψ2(ak) = 0, and the conclusion follows from the induction hypothesis.

THEOREM 3.6. Suppose now that {Ai}i∈I ,D are unital C∗-algebras, and B is
a common C∗-subalgebra of theirs containing the unit. Suppose that ψi : Ai −→ B
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are positive conditional expectations and θi : Ai −→ D are unital, completely positive
B-bimodule maps. Then the map B

i>0
θi is also a completely positive B-bimodule map.

Proof. The proof relies heavily on Theorem 3.2 and the associativity of the
monotone product of maps. To simplify the writing, denote θ = B

i∈I
θi the mono-

tone product map and A = ∗
i∈I

Ai the free product ∗-algebra.

We need to show that, for any positive integer n, if A = [ai,j]
n
i,j=1 is a pos-

itive element from Mn(A) then the matrix θ(A) = [θ(ai,j)]
n
i,j=1 is also positive in

Mn(D). Each entry ai,j of A is a finite sum

ai,j =
N(i,j)

∑
l=1

αl(i, j)

where each αl(i, j) is a reduced product from A, i. e. is written as a product of the
form a1a2 · · · am with ak ∈ Aik , is 6= is+1.

Let N(A) = card{i ∈ I : there is a word in one of the entries of A that
contains elements from Ai}.

We will prove the assertion by induction on N(A). For N(A) = 1, the
conclusion is equivalent to the completely positivity of θ1.

If N(A) = 2, for k = 1, 2, let Ãk = B1 ⊕ Ak and, as in Proposition 3.5,
consider the maps ψ̃k, θ̃k : Ãk −→ B given by (b ∈ B, a1 ∈ A1 and a2 ∈ A2):

ψ̃1(b1 + a1) = b, ψ̃2(b1 + a2) = b + ψ2(a2), θ̃k(b1 + ak) = b + θk(ak).

Remark that θ̃k are unital completely positive B-bimodule maps from the
∗-algebras Ãk to D. First note that 1Ak are projections in Ãk, respectively, and so
are ek = 1Ãk

− 1Ak . Moreover, Ãk = Ak ⊕Bek (direct sum of C∗-algebras). If
ak ∈ Ak, b ∈ B, then b1 + ak = bek + (ak + b1Ak ) and ak + b1Ak = αk ∈ Ak. It
follows that

θ̃k(αk + bek) = θ̃k(b1 + ak) = b + θk(ak) = θk(αk).

Theorem 3.2 implies now that θ̃2∗θ̃1 is a completely positive map from
Ã2∗Ã1 to D, particularly from A2∗A1 to D, and the assertion follows now from
Proposition 3.5.

The induction step follows from the above argument and the associativity
of the monotone product of maps. To see that, we will again need an argument
from [1].

A ∗-algebra A is said to satisfy the Combes axiom if for each x ∈ A there is an
λ(x) > 0 such that x∗x 6 λ(x). As mentioned in [1], [2], the Stinespring Dilation
Theorem can be easily reformulated as follows:

Let A be a unital ∗-algebra satisfying the Combes axiom and let Φ : A −→ L(H)
be a unital completely positive linear map. Then there exist a Hilbert space K, a ∗-
representation π : A −→ L(K) and an isometry V ∈ L(H,K) such that:
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(i) Φ(x) = V∗π(x)V for all x ∈ A;
(ii) K is the closed linear span of π(A)VH.

Suppose now that θ(A) is positive whenever N(A) 6 n and let A′ be a
matrix from some Mm(A) such that N(A′) = n + 1, that is the words summing in
the entries of A′ are contain only elements from the subalgebras Ai1 ,Ai2 , . . . ,Ain+1 ,

with i1 < · · · < in+1. Let A(n) = ∗
16j6n

Aij . From the induction hypothesis, we

have that θ̃ = B
16j6n

θij is a completely positive map from A′ to D. Take now Ã(n)

the unitalization of A′ and extend θ̃ to a completely positive map on Ã′ as above.

Since Ã(n) is spanned by 1 and the unitaries of the C∗-algebras {Aij}
n
j=1 (in

Ã(n) they are only partial isometries), we have that it satisfies the Combes axiom.
The existence of the Stinespring dilation yields the extension of θ̃ to the greatest
C∗-algebra norm

‖a‖ = sup{‖π(a)‖ : π ∗ -representation of Ã(n)}

completion of Ã(n). Let Â(n) be this C∗-algebra.

Therefore the entries of A′ are words only in elements from Ain+1 and Â(n),
which are unital C∗-algebras endowed with the completely positive maps θin+1

and θ̃. The conclusion follows now from the argument in the case N(A) = 2 and
the associativity of the monotone products.

Remark that ∗
i∈I

Ai satisfies the Combes axiom, since it is generated by the

C∗-algebras {Ai}i∈I . The argument from above gives then the following

COROLLARY 3.7. With the notations from Theorem 3.6, the map θ = B
i>0

θi ex-

tends to a completely positive map on the universal free product (without amalgamation
over B) C∗-algebra ∗̂

i∈I
Ai.

4. EMBEDDINGS OF MONOTONE PRODUCTS OF C∗-ALGEBRAS
AND COMPLETELY POSITIVE MAPS

This section is in all regards very similar to the Sections 1 and 2 of [6]. Most
of the techniques are similar and the results are almost a verbatim translation
from the free case to the monotone case. This was to be expected, since the
monotone product of Hilbert bimodules is a subspace of the free product and
the partial isometries in the definition of the monotone product of C∗-algebras
are restrictions of the unitaries from the definition of the free product. The main
difference is that we will utilize the construction from Section 2, while [6] is using
the construction of the conditionally monotone product from [3].
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4.1. MONOTONE PRODUCTS OF C∗-ALGEBRAS. We will use the following version
of N. Muraki’s construction of the monotone product of C∗-algebras.

Let {(Ai, ψi)}i∈I be a family of unital C∗-algebras containing a common C∗-
algebra B with 1Ai ∈ B and each Ai endowed with a positive conditional expec-
tation ψi : Ai −→ B and having faithful GNS representations.

We let Ei = L2(Ai, ψi), ψi = 1̂Ai ∈ Ei, Ei = ξiB ⊕ E◦i . Similarly to the
previous section, consider the Hilbert B-bimodules

E = ξB⊕
∞⊕

n=1

( ⊕
i1>···>in

E◦i1 ⊗B · · · ⊗B E◦in
)

, and

E(k) = ξB⊕
∞⊕

n=1

( ⊕
i1>···>in

i16k

E◦i1 ⊗B · · · ⊗B E◦in
)

.

Remark that we can define Ṽk : E −→ Ek ⊗B E(k− 1) similarly to the oper-
ators Vk from the previous sections; they are adjointable partial isometries (con-
sidering the norm induced by the C∗-norm of B). For a ∈ Ak, define

jk(a) = Ṽ∗k (a⊗ Id)Ṽk ∈ L(E).

Finally, let A be the C∗-algebra generated by {ji(Ai)}i∈I in L(E) and let ψ,
ψ : L(E) −→ B, be the functional given by ψ(T) = 〈Tξ, ξ〉.

We will call the pair (A, ψ) = B
i∈I
(Ai, ψi) the monotone product of the family

of C∗-algebras {(Ai, ψi)}i∈I .
The following property was shown in [18] for the case B = C and in [21]

for the general setting:

PROPOSITION 4.1. The functional ψ from above is a conditional expectation with
respect to which the subalgebras {ji(Ai)}i∈I are monotone independent, i.e. for any ak ∈
jik (Aik ), 1 6 i 6 n such that is 6= is+1, we have:

(i) ψ(a1 · · · an) = ψi1(a1)ψ(a2 · · · an) if i1 > i2;
(ii) ψ(a1 · · · an) = ψ(a1 · · · an−1)ψin(an) if in > in−1;

(iii) ψ(a1 · · · an) = ψ(a1 · · · ak−1ψik (ak)ak+1 · · · an) if ik−1 < ik > ik+1.

REMARK 4.2. Actually the subalgebras {ji(Ai)}i∈I are satisfying a stronger
condition than (ii) and (iii) from the above Proposition. If k < l and a ∈ jk(Ak), b ∈
jl(Al), then

ab|E	E◦l ⊗E(l−1) = aψ(b)|E	E◦l ⊗E(l−1).

Particularly, a1a2a3 = a1ψ(a2)a3 whenever ai ∈ jki
(Aki

) with k1 < k2 > k3.

Proof. It suffices to show that abη = aψ(b)η for all η = f1 ⊗B · · · ⊗gB fn,
with f j ∈ E◦kj

such that l 6= k1 > · · · > kn.
If k1 > l, then both sides are zero. If k1 < l, then

abη = aṼl
∗
((b⊗ Id)ξl ⊗ η) = aṼl

∗
(ψ(b)ξl + P⊥ξl

bξl)⊗ η = aψ(b)η.
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The last part follows from the fact that ji(Ai)(E) ⊆ E(i).

REMARK 4.3. The above construction can easily be modified to obtain a rep-
resentation of the free product ∗-algebra of the family {Ai}i∈I that satisfies the
relations (i)–(iii) from Proposition 4.1 without the more restrictive condition from
Remark 4.2. With the above notations, let (E , ξ) be the free product bimodule of
the family {Ei, ξi}i∈I , that is

E = Bξ ⊕
∞⊕

n=1

( ⊕
i1 6=···6=in

E◦i1 ⊗ · · · ⊗ E◦in
)

where Ej = E◦j ⊕Bξ j.
We also define

E(k) = Bξ ⊕
∞⊕

n=1

( ⊕
i1 6=···6=in , i16k

E◦i1 ⊗ · · · ⊗ E◦in
)

and consider the partial isometries Wk : E −→ Ek ⊗ E(k − 1) given by Wkξ =
ξk ⊗ ξ and, for f1 ⊗ · · · ⊗ fn ∈ E◦i1 ⊗ · · · ⊗ E◦in ,

Wk f1 ⊗ · · · ⊗ fn =


0 if i1 > k,
f1 ⊗ · · · ⊗ fn if i1 = k,
ξk ⊗ f1 ⊗ · · · ⊗ fn if i1 < k.

For T ∈ Ai ⊆ L(Ei), define ui(T) = W∗k (T⊗ IdE(k−1))Wk and ψ(·) = 〈·ξ, ξ〉.
Since B

i∈I
Ei = E is a sub-bimodule of E and ui(a)|E = ji(a), it follows that Propo-

sition 4.1 holds true also for the family {ui(Ai)}i∈I .
To see that {ui(Ai)}i∈I do not satisfy the relations from Remark 4.2, consider

i1 < i2 > i3 from I and for j = 1, 2, 3 take aj ∈ Aij such that â∗j ∈ E◦ij
(that is

ψ(uij(aj)) = 0). Consider also f2 = â∗2 and f3 = 〈 f2, f2〉â∗3 .
Denoting Aj = uij(aj), we have that ψ(A2) = 0, hence A1ψ(A2)A3 = 0. On

the other hand, since 〈a3 f3, ξ〉 = 〈 f3, f3〉 6= 0, we have that a3 f3 = ζ + 〈 f3, f3〉
with ζ ∈ E◦i3 . Therefore

A2 A3 f3 ⊗ f2 = a2(ζ ⊗ f2) + 〈 f3, f3〉 f2 = â2 ⊗ ζ ⊗ f3 + A2〈 f3, f3〉 f2.

Since â2 ∈ E◦i2 and i1 < i2, we have that

A1 A2 A3 f3⊗ f2=A1 A2〈 f3, f3〉 f2= â1〈A2〈 f3, f3〉 f2, ξ〉= â1〈〈 f2, f2〉â∗3 , 〈 f2, f2〉â∗3〉6=0.

LEMMA 4.4 ([8], Lemma 1.1). Let {Ai}i∈I be a family of unital C∗-algebras con-
taining a common unital C∗-subalgebra B and having conditional expectations ψi :
Ai −→ B whose GNS representations are faithful. Let

(A, ψ) = B
i∈I

(Ai, ψi)
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be their monotone product of C∗-algebras as defined in Section 2. Then for every i0 > 0
there exists a conditional expectation Ψi0 : A −→ Ai0 such that Ψi0 |Ai

= ψi for every
i 6= i0 and, if ak ∈ Aik , is 6= is+1, then

(4.1) Ψi0(a1 · · · an) =


Ψi0(a1)Ψi0(a2 · · · an) if i1 > i2,
Ψi0(a1 · · ·ψik (ak) · · · an) if ik−1 < ik > ik+1,
Ψi0(a1 · · · an−1)Ψi0(an) if in > in−1.

Proof. Let Ei = L2(Ai, ψi), ξi = 1̂Ai ∈ Ei, Ei = ξiB ⊕ E◦i . By construc-
tion, the algebra A acts on the Hilbert bimodule (E, ξ) = B

i∈I
(Ei, ξi). Identify the

submodule ξB ⊕ E◦i0 with Ei0 and let Qi0 : E −→ Ei0 be the projection. Then
Ψi0(x) = Qio xQi0 has the desired properties.

REMARK 4.5. With the notations from Section 2, consider

F = Ai0 ⊕
⊕
n>1

⊕
i1>···>in 6=i0

E◦i1 ⊗B · · · E◦in ⊗B ⊗BAi0 .

Then Ψi0 = 〈·1Ai0
, 1Ai0

〉.
Let ρ : Ai0 −→ L(K) be a unital ∗-homomorphism for some Hilbert space

K. Then ρ induces a ∗-homomorphism ρ|A : A −→ L(F⊗ρ K) determined by its
restrictions ρi = ρ|Ai

−→ L(F⊗ρ K) given as follows.
Writing K = F⊗ρ K, we have

K = K⊕
⊕
n>1

⊕
i1>···>in 6=i0

E◦i1 ⊗B · · · E◦in ⊗B ⊗ρK.

Consider the Hilbert spaces

K(i) = (ηiB⊗ρ|B K)⊕
⊕
n>1

⊕
i1>···>in , i>i1,in 6=i0

E◦i1 ⊗B · · · E◦in ⊗B ⊗ρK. if i 6= i0,

K(i0) =
⊕
n>1

⊕
i1>···>in , i0>i1,in 6=i0

E◦i1 ⊗B · · · E◦in ⊗B ⊗ρK,

where ηiB is just the Hilbert B-bimodule B with identity element denoted by ηi.
If i 6= i0, consider the partial isometry Wi : Ei ⊗B K(i) −→ K given by

ξi ⊗ (ηi ⊗ v) 7→ v

ζi ⊗ (ηi ⊗ v) 7→ ζ ⊗ v

ξi ⊗ (ζ1 ⊗ · · · ⊗ ζn ⊗ v) 7→ ζ1 ⊗ · · · ⊗ ζn ⊗ v

ζ ⊗ (ζ1 ⊗ · · · ⊗ ζn ⊗ v) 7→ ζ ⊗ ζ1 ⊗ · · · ⊗ ζn ⊗ v

for all v ∈ K, ζ ∈ E◦i , ζ j ∈ E◦ij
. Then for every a ∈ Ai with i 6= i0 we have

ρi(a) = Wi(a⊗ IdK(i))W
∗
i .
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Similarly, for i0, we define the partial isometry Wi0 : K ⊕ (Ei0 ⊗B K(i0)) −→ K
given by

v⊕ 0 7→ v

0⊕ (ξi0 ⊗ (ζ1 ⊗ · · · ⊗ ζn ⊗ v) 7→ ζ1 ⊗ · · · ⊗ ζn ⊗ v

0⊕ (ζ ⊗ (ζ1 ⊗ · · · ⊗ ζn ⊗ v) 7→ ζ ⊗ ζ1 ⊗ · · · ⊗ ζn ⊗ v.

Then ρi0(a) = Wi0(ρ(a) ⊕ (a ⊗ 1K(i0)))W
∗
i0

. Note that the above description is
related to the construction from Section 2.

4.2. EMBEDDINGS OF MONOTONE PRODUCTS OF C∗-ALGEBRAS

AND COMPLETELY POSITIVE MAPS.

PROPOSITION 4.6 ([8], Theorem 1.3). Let B ⊆ B̃ be a (not necessarily unital)
inclusion of unital C∗-algebras. For each i ∈ I , suppose

1Ãi
∈ B̃ ⊆ Ãi

∪ ∪
1Ai ∈ B ⊆ Ai

are inclusions of C∗-algebras. Suppose that ψ̃i : Ãi −→ B̃ are conditional expectations
such that ψ̃i(Ai) ⊆ B and assume that ψ̃i and the restrictions ψ̃i |Ai

have faithful GNS
representations. Let

(Ã, ψ̃) = B
i∈I

(Ãi, ψ̃i), (A, ψ) = B
i∈I

(Ai, ψi),

be the monotone products of C∗-algebras. Then there is a unique ∗-homomorphism
κ : A −→ Ã such that for every i ∈ I the diagram

Ãi ↪−→ Ã

∪ ↑ κ
Ai ↪−→ A

commutes, where the horizontal arrows are the inclusions arising from the monotone
product construction. Moreover, κ is necessarily injective.

Proof. Note that, since A is generated by
⋃
Ai, it is clear that κ will be unique

if it exists. Also, we can suppose that the inclusions B ⊆ B̃ and A ⊆ Ã are
unital: if 1B 6= 1B̃, then we may replace B by B+C(1B̃ − 1B) and each Ai by
Ai +C(1Ãi

− 1Ai ).

Let (π̃i, Ẽi, ξ̃i) = GNS(Ãi, ψ̃i), (πi, Ẽi, ξi) = GNS(Ai, ψi) and (Ẽ, ξ̃) =

B
i∈I

(Ẽi, ξ̃i), respectively (E, ξ) = B
i∈I

(Ei, ξi).

The inclusion Ai↪→ Ãi gives an inner-product-preserving isometry of Ba-
nach spaces Ei↪→ Ẽi sending ξi to ξ̃i and E◦i to a subspace of Ẽ◦i and allowing, for
each i1 > · · · > in, a cannonical identification of

E◦i1 ⊗B · · · ⊗B E◦ip−1
⊗B Ẽ◦ip

⊗B̃ · · · ⊗B̃ Ẽ◦in
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with the a closed subspace of Ẽ◦i1 ⊗B̃ · · · ⊗B̃ Ẽ◦in . We will identify E with a sub-

space of Ẽ as follows:

E ∼= ξ̃B⊕
∞⊕

n=1

( ⊕
i1>···>in

E◦i1 ⊗B · · · ⊗B E◦in
)
⊂ Ẽ.

Let now U = ∗Ai be the universal algebraic free product without amalgama-
tion. Let σ : U −→ L(E), respectively σ̃ : U −→ L(Ẽ) be the homomorphism ex-
tending the homomorphisms πi : Ai −→ L(E), respectively π̃i|Ai

: Ai −→ L(Ẽ)
(particularly, σ(U) = A).

In order to show that κ exists, it suffices to show that ‖σ̃(x)‖ 6 ‖σ(x)‖, for
all x ∈ U.

Note that ‖σ̃(x)‖ > ‖σ(x)‖ for all x ∈ U, since the subspace E of Ẽ is invari-
ant under σ̃(U) and σ̃|E = σ. Henceforth, if κ exists, then it is injective.

Let τ be a faithful representation of B̃ on a Hilbert space W , then con-
sider the Hilbert space Ẽ ⊗τ W and let λ̃ : L(Ẽ) −→ L(Ẽ ⊗τ W) be the ∗-
homomorphism given by λ̃(x) = x ⊗ 1W . λ̃ is faithful, hence it will suffice to
show that ‖λ̃ ◦ σ̃(x)‖ 6 ‖σ(x)‖ for all x ∈ U.

We will show that λ̃ ◦ σ̃ decomposes as a direct sum of subrepresentations,
each of which is of the form (ν|A) ◦ σ, where ν|A is the ∗-representation of A

induced from a representation ν of some Ai.
For n > 0 and i1 > · · · > in and 1 6 p 6 n, consider the Hilbert space

H(i1,...,in)
p = E◦i1 ⊗B · · · ⊗B E◦ip−1

⊗B Kip ⊗B̃ Ẽ◦ip+1
⊗B̃ · · · ⊗B̃ Ẽ◦in ⊗τW defined as

E◦i1 ⊗B · · · ⊗B E◦ip−1
⊗B Ẽ◦ip

⊗B̃ · · · ⊗B̃Ẽ◦in ⊗τW 	

E◦i1⊗B · · · ⊗BE◦ip−1
⊗B E◦ip

⊗B̃ · · · ⊗B̃ Ẽ◦in ⊗τW .

Then

Ẽ⊗τW = (E⊗τ|BW)⊕
( ∞⊕

n=1

⊕
i1>···>in , 16p6n

H(i1,...,in)
p

)
.

As previously mentioned, σ̃(U)E ⊆ E and σ̃|E = σ, so E⊗τ|BW is invariant

under λ̃ ◦ σ̃(U), and ‖λ̃ ◦ σ̃(x)|E⊗τW‖ = ‖σ(x)‖ for all x ∈ U.

Define W̃(i1, . . . , in) = λ̃ ◦ σ̃(U)H(i1,...,in)
1 . Since π̃i(Ai)Ei ⊆ Ei we have that

W̃(i1, · · · , in) = H(i1,...,in)
1 ⊕

(⊕
l>1

⊕
k1>···>kl , kl>i1

E◦k1
⊗B · · · Eks ⊗B H(i1,...,in)

1

)
.

Thus,

Ẽ⊗τW = (E⊗τ|BW)⊕
⊕
n>1

⊕
i1>···>in

W̃(i1, . . . , in);
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Hence to prove the theorem it will suffice to show that for all i1 > · · · > in and
all x ∈ U,

(4.2) ‖λ̃ ◦ σ̃(x)|W̃(i1,...,in)
‖ 6 ‖σ(x)‖.

But letting ν : Ai1 −→ L(H(i1,...,in)
1 ) be the ∗-homomorphism

ν(a) = (π̃i1(a)⊗ 1Ẽ◦i2
⊗

B̃
···⊗

B̃
Ẽ◦in⊗τW )

|H(i1,...,in)
1

and considering ν|A be the representation of A induced from ν with respect to the
conditional expectation Ψi1 : A −→ Ai1 found in Lemma 4.4, it is straightforward
to check that

λ̃ ◦ σ̃|W̃(i1,··· ,in) = (ν|A) ◦ σ,

which, in turn implies (4.2).

THEOREM 4.7 ([8], Theorem 2.2). Let B be a unital C∗-algebra, and for every
i > 0 letAi and Di be unital C∗-algebras containing copies of B as unital C∗-subalgebras
and having conditional expectations φi : Ai −→ B, respectively ψi : Di −→ B, whose
GNS representations are faithful. Suppose that for each i > 0 there is a unital completely
positive map θi : Ai −→ Di that is also a B bimodule map and satisfies ψi ◦ θi = φi.
Denote

(A, φ) = B
i∈I
(Ai, φi), (D, ψ) = B

i∈I
(Di, ψi),

the monotone products of C∗-algebras. Then there is a unital completely positive map
θ : A −→ D such that for all i > 0 the diagram

Ai Di

B

A D
��

θi //

��?
??

??
??

??

��
ψ????

__????

φi

??
?

��?
??

? ψi
��
�

�����
�

φ����

??����

θ
//________

commutes, where the vertical arrows are the (non-unital) inclusions arising from the
monotone product construction. Moreover, the mapping θ satisfies:

(i) θ(a1 · · · an) = θ(a1)θ(a2 · · · an), if i1 > i2;
(ii) θ(a1 · · · an) = θ(a1 · · · an−1)θ(an), if in > in−1;

(iii) θ(a1 · · · an) = θ(a1 · · · al−1 · φil (al) · al+1 · · · an) if il−1 < il > il+1.

Proof. Let (πI , Ei, ξi) = GNS(Di, ψi), and (E, ξ) = B(Ei, ξi), as in the previ-
ous section.

Consider the Hilbert B-bimodule Fi = Ai ⊗πi◦θi Ei with the distinguished
element ηi = 1 ⊗ ξi ∈ Fi. The mapping θi restricts to the identity map on B,
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so in Fi we have that b ⊗ ζ = 1 ⊗ (bζ) for every b ∈ B. Consider the unital
∗-homomorphism σi : Ai −→ L(Fi)

σi(a1)(a2 ⊗ ζ) = (a1a)⊗ ζ, for all a1, a ∈ A1, ζ ∈ Ei

and the map ρi : L(Fi) −→ B given by ρi(x) = 〈ηi, xηi〉. As in [8] we have that,
identifying B with σi(B) ⊆ L(Fi), the map ρi : L(Fi) −→ B is a conditional
expectation, that L2(L(Fi), ρi) ∼= Fi, that the GNS representation of ρi is faithful
on L(Fi) and that ρi ◦ σi = φi.

Take now (M, ρ) = B(L(Fi), ρi) and note that (see [21])M ⊆ L(F), where
(F, η) = B(Fi, ηi). By Proposition 4.6 there is a ∗-homomorphism σ : A −→ M
such that σ|Ai

= σi.
Consider the operator vi : Ei −→ Fi given by ζ −→ 1⊗ ζ. As shown in

4.4, proof of Theorem 2.2, we have that vi is an adjointable (its adjoint being the
operator Fi −→ Ei sending a⊗ ζ to θi(a)ζ), that vi(E◦i ) ⊆ F◦i and v∗i vi = 1. Since
θi is a left B-bimodule map, vi(bζ) = 1⊗ (bζ) = b⊗ ζ = b(v(ζ)), for all b ∈ B,
ζ ∈ Ei.

Taking direct sum of operators vi1 ⊗ · · · ⊗ vin , we get that v ∈ L(E) such
that 〈vζ, ζ〉 = 〈ζ, ζ〉 for every ζ ∈ E, that vξ = η and

v(ζ1 ⊗ · · · ⊗ ζn) = (vi1 ζ1)⊗ · · · ⊗ (vin ζn), whenever ζ j ∈ Eij , i1 > · · · > in.

Let θ : A −→ L(E) be the unital completely positive map

θ(x) = v∗σ(x)v.

We will show that θ satisfies the Theorem. In order to show that the dia-
gram commutes, let wi : E −→ Ei ⊗B E(i − 1) and yi : F −→ Fi ⊗B F(i − 1)
be the partial isometries that we used in the monotone product construction for
the inclusions Ai↪ → A, respectively L(Fi)↪ → M. Exactly as in [8], note that
vi(E(i− 1)) ⊆ F(i− 1) and that yiv = (vi ⊗ v|Ei

)wi.
Hence, for a ∈ Ai, we have that

θ(a) = v∗σ(a)v = v∗σi(a)v = v∗yi[σi(a)⊗ 1F(i−1)]yiv

= w∗i [viσi(a)vi ⊗ (v|E(i−1))
∗v|E(i)]wi = w∗i [θi(a)⊗ 1− E(i)]wi = θi(a).

It suffices to show (i)–(iii), since they also imply that A ⊆ D, finishing the
proof.

For (i) we need to show that

(4.3) θ(a1 · · · an)ζ̃ = θ(a1 · · · an−1)θ(an)ζ̃

for all ζ̃ ∈ E and all ak ∈ Aik , is 6= is+1 and in > in−1.
To simplify the notations, for a ∈ Ai, we will write a◦ = a− φi(a) ∈ A◦i .
If ζ̃ = ξ, (4.3) becomes

v∗σ(a1 · · · an)vξ = v∗σ(a1 · · · an−1vv∗σ(an)vξ.
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But

σ(a1 · · · an)vξ = σ(a1 · · · an)(1⊗ ξ) = σ(a1) · · · σ(an)(1⊗ ξ)

= σ(a1) · · · σ(an−1)(an ⊗ ξ) = σ(a1) · · · σ(an−1)[a◦n + φn(an))⊗ ξ]

= σ(a1) · · · σ(an−1)(1⊗ φn(an)ξ)

since a◦n ⊗ ξ ∈ E◦n and φn(an)⊗ ξ = 1⊗ φn(an)ξ. Note also that

σ(a1 · · · an−1)vv∗σ(an)vξ = σ(a1 · · · an−1)vv∗(an ⊗ ξ) = σ(a1 · · · an−1)(1⊗ θ̂(an))

= σ(a1 · · · an−1)(1⊗ θ̂(a◦n) + 1⊗ φn(an)ξ)

= σ(a1 · · · an−1)(1⊗ φn(an)ξ), since θ̂(a◦n) ∈ E◦n.

Suppose now that ζ̃ = ζ1 ⊗ · · · ⊗ ζm, with ζ j ∈ E◦lj
, l1 > · · · > lm; we will

use the notation ζ̃ ′ for ζ2 ⊗ · · · ⊗ ζm.
If l1 > in, then both sides of (4.3) are zero. If l1 < in, then

σ(an)vζ̃ = σ(an)(1⊗ ξn)⊗ vζ̃

and the argument reduces to the case ζ̃ = ξ.
If l1 = in, then we have

σ(a1 · · · an−1)vv∗σ(an)vξ = σ(a1 · · · an−1)vv∗σ(an)(1⊗ ζ1)⊗ (vζ̃ ′)

= σ(a1 · · · an−1)v( ̂θ(an)ζ1 ⊗ ζ̃ ′)

= σ(a1 · · · an−1)(1⊗ ̂θ(an)ζ1)⊗ (vζ̃ ′)

= σ(a1 · · · an−1)〈 ̂θ(an)ζ1, ξin〉(vζ̃ ′).

On the other hand,

σ(a1 · · · an)v∗ ζ̃ = σ(a1 · · · an−1)σ(an)((1⊗ ζ1)⊗ (vζ̃ ′))

= σ(a1 · · · an−1)((an ⊗ ζ1)⊗ (vζ̃ ′)).

an ⊗ ζ1 decomposes as 〈an ⊗ ζ1, 1⊗ ξin〉ξin + η, with η ∈ F◦in , therefore the
equality above becomes

σ(a1 · · · an)v∗ ζ̃ = σ(a1 · · · an−1)〈an ⊗ ζ1, 1⊗ ξin〉(vζ̃ ′).

Since we defined Fi as Ai ⊗πi◦θi Ei, we have that

〈an ⊗ ζ1, 1⊗ ξin〉 = 〈θ̂(an)ζ1, ξin〉,

hence the proof of property (i) is complete.
For (ii), it suffices to prove the property for the biggest k ∈ {1, 2, . . . , n} such

that ik−1 < ik > ik+1; also, since (i) was proved, we can suppose that ik+1 > · · · >
in. In this framework, we need to show that

v∗σ(a1 · · · an)v = v∗σ(a1 · · · ak−1φik (ak)ak+1 · · · an)v,
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that is

v∗σ(a1 · · · ak−1ak)σ(ak+1 · · · an)v = v∗σ(a1 · · · ak−1)φik (ak)σ(ak+1 · · · an)v.

Since ik > i − k + 1 > · · · > in, it follows that σ(ak+1 · · · an)vζ̃ ∈ F(ik), for all
ζ̃ ∈ E, hence the assertion is equivalent to the first three cases from the proof of
property (i).

For part (iii), we need to show that

v∗σ(a1 · · · an)v = v∗σ(a1)vv∗σ(a2 · · · an)v

whenever i1 > i2. Since (i) and (ii) are proved, we can suppose that i1 > i2 >

· · · > in. In this framework we have that σ(a2 · · · an)vζ̃ ∈ F(i1) for all ζ̃ ∈ E,
therefore it suffices to show that

(4.4) v∗σ(a1)η = v∗σ(a1)vv∗η for all η ∈ F(i1).

But v∗σ(a1)η = v∗(a1 ⊗ ξi1) ⊗ η = θ(a1)ξi1 ⊗ v∗η. Also, since v∗η ∈ E(i1), we
have that vv∗η ∈ F(i1), hence

v∗σ(a1)vv∗η = v∗σ(a1)[(1⊗ ξi1)⊗ vv∗η]

= v∗[(a1 ⊗ ξi1)⊗ vv∗η] = θ(a1)ξi1 ⊗ v∗vv∗η

= θ(a1)ξi1 ⊗ v∗η, since v∗v = Id.
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