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ABSTRACT. In the paper, we prove that reduced free products of unital AH
algebras with respect to given faithful tracial states, in the sense of Voiculescu,
are Blackadar and Kirhcberg’s MF algebras. We also show that reduced free
products of unital AH algebras with respect to given faithful tracial states, un-
der mild conditions, are not quasidiagonal. Therefore we conclude, for a large
class of AH algebras, that the Brown–Douglas–Fillmore extension semigroups
of the reduced free products of these AH algebras with respect to given faith-
ful tracial states are not groups.

Our result is based on Haagerup and Thorbjørnsen’s work on the reduced
C∗-algebras of free groups.

KEYWORDS: MF algebras, reduced free products, BDF semigroups.

MSC (2000): Primary 46L10; Secondary 46L54.

INTRODUCTION

The concept of MF algebra was introduced by Blackadar and Kirchberg in
[5] in order to study the classification problem of C∗-algebras. If a separable C∗-
algebra A can be embedded into ∏

k
Mnk (C)/ ∑

k
Mnk (C) for a sequence of posi-

tive integers {nk}∞
k=1, then such C∗-algebra A is call an MF algebra. Many prop-

erties of MF algebras can be found discussed in [5].
The concept of MF algebras plays a role in Voiculescu’s free entropy theory

for C∗-algebras. From 1980s, D. Voiculescu started to develop his theory of free
probability and free entropy, which has now been an important tool in the study
of finite von Neumann algebras (see [30], [31], [33] etc.). In [32], Voiculescu in-
troduced the concept of free entropy for unital C∗-algebras as an analogue of his
theory of free entropy for finite von Neumann algebras. In his definition (see [32])
of free entropy for a family of self-adjoint elements in a unital C∗-algebra A, one
requires naturally that the C∗-subalgebra generated by such family of self-adjoint
elements inA needs to satisfy an embedding property, which is equivalent to say
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that such subalgebra is an MF algebra. Thus whether a unital C∗-algebra is an
MF algebra becomes an important question in the study of free entropy theory
for unital C∗-algebras.

The concept of MF algebras is also connected to BDF extension theory, which
was developed by Brown, Douglas and Fillmore in 1977 in [8]. In order to classify
essentially normal operators, they introduced an important invariant, Ext(A) (the
BDF extension semigroup), for a unital separable C∗-algebra A. Among many
other things they proved in [8] that Ext(C(X)) is a group when X is a compact
metric space. Later, Choi and Effros [12] showed that Ext(A) is a group if A is a
unital separable nuclear C∗-algebra. By a result of Voiculescu, we know that the
semigroup Ext(A) always has a unit if A is a unital separable C∗-algebra.

Anderson [1] provided the first example of a unital separable C∗-algebra A
such that Ext(A) is not a group. Using Kazhdan’s property T for groups, Wasser-
mann gave other examples of unital separable C∗-algebras A such that Ext(A) is
not a group in [34]. In [23], Kirchberg provided more examples of unital sepa-
rable C∗-algebras whose BDF extension semigroups are not groups by showing
the following result: A C∗-algebra A has the local lifting property if and only if
Ext(S(A)) is a group, where S(A) denotes the unitization of C0(R)⊗min A.

Ever since Anderson’s example in [1], it has been an open problem whether
Ext(C∗r (F2)), the BDF extension semigroup of the reduced C∗-algebra of free group
F2, is a group. This problem was studied by many mathematicians (see [29]) and
finally settled down in the negative by Haagerup and Thorbjørnsen [17] using
powerful tools developed from Voiculescu’s free probability theory and random
matrix theory. Their result that Ext(C∗r (F2)) is not a group follows from a com-
bination of Voiculescu’s result in [29] and their striking work on showing that
C∗r (F2) can be embedded into ∏

k
Mnk (C)/ ∑

k
Mnk (C) for a sequence of positive

integers {nk}∞
k=1.

Using the concept of MF algebras, Brown in [9] (see also [17]) generalized
Voiculescu’s result in [29] as follows: If a unital separable C∗-algebra A is an MF al-
gebra but not a quasidiagonal C∗-algebra, then Ext(A) is not a group. Note by a result
of Rosenberg, C∗r (F2) is not quasidiagonal. Now Haagerup and Thorbjørnsen’s
work can be restated as follows: C∗r (F2) is an MF algebra and Ext(C∗r (F2)) is not a
group.

The concept of reduced free products of unital C∗-algebras with respect to
given states was provided by Voiculescu in the context of his free probability the-
ory [33]. This concept plays an important role in the recent study of C∗-algebras
(for example see [13], [14], [15]). Assume that (A, τA) and (B, τB) are unital C∗-
algebras with faithful tracial states τA, and τB respectively. In [33], Voiculescu
introduced the reduced free product (A, τA) ∗red (B, τB) of (A, τA) and (B, τB).
A quick fact from the definition of reduced free product of C∗-algebras is the fol-
lowing statement:

(C∗r (F2), τF2) = (C∗r (Z), τZ) ∗red (C∗r (Z), τZ),
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where, for a discrete countable group G, we let C∗r (G) be the reduced C∗-algebra of group
G and τG the canonical tracial state induced by the left regular representation λ, i.e.
τG(λ(g)) = 〈λ(g)δe, δe〉 for any g in G with δe the distinguished vector in l2(G).

In view of Haagerup and Thorbjørnsen’s work on C∗r (F2) and the preceding
fact from the definition of reduced free products, one should naturally consider
the following question:

What are necessary and sufficient conditions on unital separable C∗-algebrasA
and B such that

Ext((A, τA) ∗red (B, τB)) is not a group,

where τA, and τB , are faithful tracial states of A, and B respectively?

This paper grows out in an attempt to understand Haagerup and Thorbjørnsen’s
result in [17] and search for answer to the preceding question. In fact, we are able
to prove the following generalizations of Haagerup and Thorbjørnsen’s result
mentioned as above.

THEOREM 3.14. Suppose thatA1 andA2 are unital separable AH algebras with
faithful tracial states τ1, and τ2 respectively. If A1 and A2 satisfy Avitzour’s condition,
i.e. there are unitaries u ∈ A1 and v, w ∈ A2 such that τ1(u) = τ2(v) = τ2(w) =
τ2(w∗v) = 0, then

Ext((A1, τ1) ∗red (A2, τ2)) is not a group.

Recall a unital separable C∗-algebra A is an approximately homogeneous
(AH) C∗-algebra if A is an inductive limit of a sequence of homogeneous C∗-
algebras (see [4]). Obviously, all AF algebras, AI algebras and AT algebras are
AH algebras.

THEOREM 3.15. LetA and B 6= C be separable unital AH algebras with faithful
traces φ, and ψ respectively. If A is partially diffuse in the sense of Definition 3.6, then

Ext((A, φ) ∗red (B, ψ)) is not a group.

THEOREM 3.16. Suppose that A and B are unital separable AF algebras with
faithful tracial states φ, and ψ respectively. If dimCA > 2 and dimCB > 3, then

Ext((A, φ) ∗red (B, ψ)) is not a group.

Using these results, one can easily produce new examples of unital separa-
ble C∗-algebras whose BDF extension semigroups are not groups. For example,
LetA and B be irrational C∗-algebras, or UHF algebras, with faithful traces φ, and ψ re-
spectively. Then Ext((A, φ) ∗red (B, ψ)) is not a group. Combining with results from
[18] and [22], one obtains more examples of unital separable C∗-algebras whose
BDF extension semigroups are not groups.

One crucial step in proving Theorem 3.14, Theorem 3.15 and Theorem 3.16
is our following result on Blackadar and Kirchberg’s MF algebra, whose proof
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is based on Haagerup and Thorbjørnsen’s brilliant result that C∗r (F2) is an MF
algebra.

THEOREM 2.18. Suppose that Ai, i = 1, . . . , n, is a family of unital separable
AH algebras with faithful tracial states τi, i = 1, . . . , n. Then

(A1, τ1) ∗red · · · ∗red (An, τn)

is an MF algebra.

By Theorem 2.18, we obtain the following application on Voiculescu’s the-
ory of free entropy for unital C∗-algebras.

COROLLARY 2.19. Suppose that (A, τ) is a C∗-free probability space. Let x1, . . . ,
xn be a family of self-adjoint elements in A such that x1, . . . , xn are free with respect to
τ. Then

δtop(x1, . . . , xn) > 0,

where δtop(x1, . . . , xn) is the Voiculescu’s topological free entropy dimension.

The organization of the paper is as follows. In Section 1, we introduce some
notation and basic concepts needed in the later sections. In Section 2, we start
with Haagerup and Thorbjørnsen’s result on C∗r (Fn) and show that the reduced
free products of finite dimensional C∗-algebras with respect to given tracial states
are MF algebras. Then we conclude that the reduced free products of AH algebras
with respect to given tracial states are MF algebras. In Section 3, we show that
the reduced free products of unital C∗-algebras, under mild conditions, are non-
quasidiagonal. Combining the results from Section 2, we reach our conclusions
on reduced free products of unital AH algebras whose BDF extension semigroups
are not groups in Section 3. In Section 4, we further discuss the reduced free
products of some tensor products of unital C∗-algebras, which are not covered in
Section 2.

1. NOTATION AND PRELIMINARIES

In this section, we will recall some basic facts on reduced free product of
unital C∗-algebras.

1.1. REDUCED FREE PRODUCTS OF UNITAL C∗-ALGEBRAS. The concept of re-
duced free products of unital C∗-algebras was introduced by Voiculescu in the
context of his free probability theory. (More details can be found in [33], see
also [3])

Assume that Ai, i = 1, 2, is a separable unital C∗-algebra with a state τi. For
each i = 1, 2, let (Hi, ξi, πi) be the GNS representation of Ai on the Hilbert space
Hi such that (i) τi(xi) = 〈πi(xi)ξi, ξi〉, ∀ xi ∈ Ai; (ii)Hi = {πi(xi)ξi : xi ∈ Ai}.
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Let
◦
Hi= Hi 	 Cξi for i = 1, 2. The Hilbert space free product of (H1, ξ1)

and (H2, ξ2) is given by

H = (H1, ξ1) ∗ (H2, ξ2) = Cξ ⊕
⊕
n>1

( ⊕
j1 6=j2 6=···6=jn

◦
Hj1 ⊗ · · · ⊗

◦
Hjn

)
,

where ξ is the distinguished unit vector inH. Let, for i = 1, 2,

H(i) = Cξ ⊕
⊕
n>1

( ⊕
i 6=j1 6=j2 6=···6=jn

◦
Hj1 ⊗ · · · ⊗

◦
Hjn

)
.

We can define unitary operators Vi : Hi ⊗H(i)→ H as follows:

ξi ⊗ ξ 7→ ξ,
◦
Hi ⊗ξ 7→

◦
Hi,

ξi ⊗ (
◦
Hj1 ⊗ · · · ⊗

◦
Hjn) 7→

◦
Hj1 ⊗ · · · ⊗

◦
Hjn ,

◦
Hi ⊗(

◦
Hj1 ⊗ · · · ⊗

◦
Hjn) 7→

◦
Hi ⊗

◦
Hj1 ⊗ · · · ⊗

◦
Hjn .

Let λi be the representation of Ai onH given by

λi(x) = Vi(πi(x)⊗ IH(i))V
∗
i , ∀ x ∈ Ai.

Then the reduced free product of (A1, τ1) and (A2, τ2), or the reduced free prod-
uct ofA1 andA2 with respect to τ1 and τ2, is the C∗-algebra generated by λ1(A1)
and λ2(A2) in B(H), and is denoted by

(A1, τ1) ∗red (A2, τ2).

Moreover, the free product state τ = τ1 ∗ τ2 on (A1, τ1) ∗red (A2, τ2), given by
τ(x) = 〈xξ, ξ〉, is a faithful tracial state if both τ1 and τ2 are faithful tracial states
on A1, and A2 respectively.

REMARK 1.1. Suppose that A1, and A2 are unital C∗-algebras with faithful
tracial states τ1, and τ2 respectively. Suppose that IA1 ∈ B1, and IA2 ∈ B2, are
unital C∗-subalgebras of A1, and A2 respectively. Then there is an embedding

(B1, τ1|B1) ∗red (B2, τ2|B2) ⊆ (A1, τ1) ∗red (A2, τ2).

1.2. BLACKADAR AND KIRCHBERG’S MF ALGEBRAS. Recall the definition of MF
algebras ([5]) as follows.

DEFINITION 1.2. A separable C∗-algebra A is called an MF algebra if there

is an embedding fromA into
∞
∏

k=1
Mnk (C)/

∞
∑

k=1
Mnk (C) for a sequence of positive

integers {nk}∞
k=1 whereMnk (C) is the nk × nk complex matrix algebra.

REMARK 1.3. A separable C∗-subalgebra of an MF algebra is also an MF
algebra.
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2. REDUCED FREE PRODUCTS OF AH ALGEBRAS

In this section, we are going to show that reduced free products of unital
AH algebras with respect to given faithful tracial states are MF algebras. First,
we need to consider GNS representation of a finite dimensional C∗-algebra.

2.1. GNS REPRESENTATION OF A FINITE DIMENSIONAL C∗-ALGEBRA. Suppose
that B is a finite dimensional C∗-algebra and ψ is a faithful tracial state of B.

Let d = dimCB, the complex dimension of B. Then there is a family of
elements 1, b1, . . . , bd−1 in B that forms a basis of B, where 1 is the identity of B.
Note ψ is a faithful tracial state of B. We can introduce an inner product on B as
follows:

〈x, y〉 = ψ(y∗x), ∀ x, y ∈ B.
Applying Gram–Schmidt orthogonalization process on the family of vectors 1,
b1, . . . , bd−1 of B, we obtain

P1(1, b1, . . . , bd−1 : ψ) = 1

and, for all 2 6 m 6 d

Pm(1, b1, . . . , bd−1 : ψ) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 ψ(b1) · · · ψ(bm−1)

ψ(b∗1) ψ(b∗1 b1) · · · ψ(b∗1 bm−1)

· · ·
ψ(b∗m−2) ψ(b∗m−2b1) · · · ψ(b∗m−2bm−1)

1 b1 · · · bm−1

∣∣∣∣∣∣∣∣∣∣∣∣
;

and, for all 1 6 m 6 d

pm(1, b1, . . . , bd−1 : ψ) =
Pm(1, b1, . . . , bd−1 : ψ)

(ψ(Pm(1, b1, . . . , bd−1 : ψ)∗Pm(1, b1, . . . , bd−1 : ψ)))1/2 .

Then

1 = p1(1, b1, . . . , bd−1 : ψ), p2(1, b1, . . . , bd−1 : ψ), . . . , pd(1, b1, . . . , bd−1 : ψ)

forms an orthonormal basis of B = L2(B, ψ).

LEMMA 2.1. Suppose that B is a finite dimensional C∗-algebra with a basis 1, b1,
. . . , bd−1, where d is the complex dimension of B. Suppose that ψ is a faithful tracial state
of B. Let

1 = p1(1, b1, . . . , bd−1 : ψ), p2(1, b1, . . . , bd−1 : ψ), . . . , pd(1, b1, . . . , bd−1 : ψ)

be defined as above.
Let Cd be a complex Hilbert space with an orthonormal basis e1, . . . , ed. Then there

is a faithful unital ∗-representation ρψ : B →Md(C) of B on Cd such that:
(i) (ρψ,Cd, e1) is a GNS representation of (B, ψ), i.e.

(a) ψ(a) = 〈ρψ(a)e1, e1〉 for all a ∈ B;
(b) Cd = {ρψ(a)e1 : a ∈ B}.
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(ii) For each 1 6 i 6 d− 1,

ρψ(bi) = Bi,ψ = [b(s, t : i, ψ)]ds,t=1 ∈ Md(C)

where b(s, t : i, ψ), the (s, t)-th entry of the matrix Bi,ψ, is given by

b(s, t : i, ψ) = ψ(pt(1, b1, . . . , bd−1 : ψ)∗bi ps(1, b1, . . . , bd−1 : ψ)).

Proof. Note that B is a finite dimensional C∗-algebra with a faithful tracial
state ψ. We can view B = L2(B, ψ) as a Hilbert space with the inner product
induced from ψ. Thus B = L2(B, ψ) is isomorphic to Cd as a Hilbert space. By the
explanation preceding the lemma, we can introduce a unitary U : L2(B, ψ)→ Cd

by mapping
pm(1, b1, . . . , bd−1 : ψ) 7→ em, ∀ 1 6 m 6 d.

Apparently, such U induces a faithful unital ∗-representation ρψ : B →Md(C) by

ρψ(b) = UbU∗, ∀ b ∈ B.

Now it is easy to verify that (ρψ,Cd, e1) is a GNS representation of (B, ψ) satisfy-
ing (a) and (b). Moreover, for each 1 6 i 6 d− 1,

ρψ(bi) = Bi,ψ = [b(s, t : i, ψ)]ds,t=1 ∈ Md(C)

satisfying

b(s, t : i, ψ) = ψ(pt(1, b1, . . . , bd−1 : ψ)∗bi ps(1, b1, . . . , bd−1 : ψ)).

This completes the proof.

LEMMA 2.2. Suppose that B is a finite dimensional C∗-algebra with a basis 1, b1,
. . . , bd−1, where d is the complex dimension of B. Suppose that {τ, τγ}∞

γ=1 is a family of
faithful tracial states of B satisfying

lim
γ→∞

τγ(b) = τ(b) ∀ b ∈ B.

Let Cd be a complex Hilbert space with an orthonormal basis e1, . . . , ed. Then there
is a sequence of faithful unital ∗-representations ρτ , ρτγ : B → Md(C) of B on Cd for
γ = 1, 2, . . . such that:

(i) (ρτ ,Cd, e1) and (ρτγ ,Cd, e1) are GNS representations of (B, τ), and (B, τγ) re-
spectively.

(ii) For each 1 6 i 6 d− 1,

lim
γ→∞

‖ρτγ(bi)− ρτ(bi)‖ = 0.

Proof. Note B is a finite dimensional C∗-algebras with a basis 1, b1, . . . , bd−1
and {τ, τγ}∞

γ=1 is a family of faithful tracial states of B. Cd is a d-dimensional
complex Hilbert space with an orthonormal basis e1, . . . , ed. By Lemma 2.1, there
is a sequence of faithful unital ∗-representations ρτ , ρτγ : B →Md(C) of B on Cd

for γ = 1, 2, . . . such that:
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(iii) (ρτ ,Cd, e1), (ρτγ ,Cd, e1) are GNS representations of (B, τ), and (B, τγ) re-
spectively.

(iv) Moreover, for each 1 6 i 6 d− 1,

ρτ(bi) = Bi,τ = [b(s, t : i, τ)]ds,t=1 ∈ Md(C)

satisfying

b(s, t : i, τ) = τ(pt(1, b1, . . . , bd−1 : τ)∗bi ps(1, b1, . . . , bd−1 : τ));

and, for γ = 1, 2, . . .

ρτγ(bi) = Bi,τγ
= [b(s, t : i, τγ)]

d
s,t=1 ∈ Md(C)

satisfying

b(s, t : i, τγ) = τγ(pt(1, b1, . . . , bd−1 : τγ)
∗bi ps(1, b1, . . . , bd−1 : τγ)).

Since
lim

γ→∞
τγ(b) = τ(b), ∀ b ∈ B,

by the choices of

1 = p1(1, b1, . . . , bd−1 : τ), . . . , pd(1, b1, . . . , bd−1 : τ), and

1 = p1(1, b1, . . . , bd−1 : τγ), . . . , pd(1, b1, . . . , bd−1 : τγ)

in the discussion before Lemma 2.1, we know that

lim
γ→∞

b(s, t : i, τγ) = b(s, t : i, τ).

It follows that, for all 1 6 i 6 d− 1

lim
γ→∞

‖ρτγ(bi)− ρτ(bi)‖ 6 lim
γ→∞

d2
(

max
16s,t6d

|b(s, t : i, τγ)− b(s, t : i, τ)|
)
= 0.

DEFINITION 2.3. Suppose that A and B are separable unital C∗-algebras.
Let ε > 0 be a positive number. Suppose that x1, . . . , xn is a family of elements in
A. Then we call

{x1, . . . , xn} ⊆ε B
if the following holds:

There are (i) y1, . . . , yn in B and (ii) unital faithful ∗-representations ρ1 :
A → B(H) and ρ2 : B → B(H) on a Hilbert spaceH such that

max
16i6n

‖ρ1(xi)− ρ2(yi)‖ 6 ε.

LEMMA 2.4. Suppose thatA is a separable unital C∗-algebra with a faithful tracial
state ψ. Suppose that B is a finite dimensional C∗-algebra with a family {τ, τγ}∞

γ=1 of
faithful tracial states of B such that

lim
γ→∞

τγ(b) = τ(b), ∀ b ∈ B.
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Suppose that x1, . . . , xn is a family of elements in (A, ψ) ∗red (B, τ). Then, for any
ε > 0, there is a γ0 > 0 such that

{x1, . . . , xn} ⊆ε (A, ψ) ∗red (B, τγ), ∀ γ > γ0.

Proof. Note that B is a finite dimensional C∗-algebra. Assume that 1, b1,
. . . , bd−1 is a basis of B, where d is the complex dimension of B. Let Cd be a
d-dimensional complex Hilbert space with an orthonormal basis e1, . . . , ed. By
Lemma 2.2, there is a sequence of faithful unital ∗-representations ρτ , ρτγ : B →
Md(C) of B on Cd for γ = 1, 2, . . . such that:

(i) (ρτ ,Cd, e1), (ρτγ ,Cd, e1) are GNS representations of (B, τ), and (B, τγ) re-
spectively.

(ii) For each 1 6 i 6 d− 1,

(2.1) lim
γ→∞

‖ρτγ(bi)− ρτ(bi)‖ = 0.

Let (π,H1, ξ1) be the GNS representation of (A, ψ) on a Hilbert space H1
such that ξ1 is cyclic for π(A) and ψ(a) = 〈π(a)ξ1, ξ1〉 for all a in A.

Let (H2, ξ2) = (Cd, e1) and H be the free product of Hilbert spaces (H1, ξ1)

and (H2, ξ2) as in Section 1.1. Let
◦
Hi and H(i) be defined as in Section 1.1 for

i = 1, 2 and V1, V2 be the unitary operators as defined in Section 1.1. Let λ be the
representation of A and B on the Hilbert spaceH defined as follows:

λ(a) = V1(π(a)⊗ IH(1))V
∗
1 , ∀ a ∈ A;(2.2)

λ(b) = V2(ρτ(b)⊗ IH(2))V
∗
2 , ∀ b ∈ B;(2.3)

Let λγ, γ = 1, 2, . . . , be a sequence of representations of A and B on the Hilbert
spaceH defined as follows:

λγ(a) = V1(π(a)⊗ IH(1))V
∗
1 , ∀ a ∈ A;(2.4)

λγ(b) = V2(ργ(b)⊗ IH(2))V
∗
2 , ∀ b ∈ B;(2.5)

Then by the definition of reduced free product in Section 1.1, we know that:
(a) (A, ψ) ∗red (B, τ) is the unital C∗-subalgebra of B(H) generated by

{λ(a) : a ∈ A} ∪ {λ(b) : b ∈ B};

(b) (A, ψ) ∗red (B, τγ) is the unital C∗-subalgebra of B(H) generated by

{λγ(a) : a ∈ A} ∪ {λγ(b) : b ∈ B}.

Moreover, by (2.2) and (2.4), we know that

(2.6) λ(a) = λγ(a), ∀ a ∈ A

By (2.1), (2.3) and (2.5), we know that, for 1 6 i 6 d− 1,
(2.7)

lim
γ→∞
‖λ(bi)−λγ(bi)‖= lim

γ→∞
‖V2(ργ(bi)⊗ IH(2))V

∗
2 −V2(ρτ(bi)⊗ IH(2))V

∗
2 ‖=0.
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Since x1, . . . , xn are in (A, ψ) ∗red (B, τ), there are elements a1, . . . , aN in A
and noncommutative polynomials P1, . . . , Pn such that, for all 1 6 j 6 n,

‖xj − Pj(λ(a1), . . . , λ(aN), λ(b1), . . . , λ(bd−1))‖ 6
ε

3
.

On the other hand, by (2.6) and (2.7), we know when γ is large enough, for all
1 6 j 6 n.

‖Pj(λ(a1), . . . , λ(aN), λ(b1), . . . , λ(bd−1))

− Pj(λγ(a1), . . . , λγ(aN), λγ(b1), . . . , λγ(bd−1))‖ 6
ε

3
.

Therefore, when γ is large enough,

‖xj − Pj(λγ(a1), . . . , λγ(aN), λγ(b1), . . . , λγ(bd−1))‖ 6 ε,

i.e. when γ is large enough, we have {x1, . . . , xn} ⊆ε (A, ψ) ∗red (B, τγ).

2.2. REDUCED FREE PRODUCTS OF MATRIX ALGEBRAS. In this subsection, we
will show that the reduced free products of matrix algebras with respect to given
tracial states are MF algebras. Recall the following remarkable result of Haagerup
and Thorbjørnsen.

LEMMA 2.5 (Haagerup and Thorbjørnsen). For all positive integer n > 2,
C∗r (Fn) is an MF algebra, where Fn is the nonabelian free group on n generators and
C∗r (Fn) is the reduced group C∗-algebra of the free group Fn.

The following result can be found in Theorem 4.1 of [22].

LEMMA 2.6. Suppose A is a unital MF algebra and G is a finite group. Suppose
that α : G → Aut(A) is a homomorphism from G into Aut(A). Then the reduced
crossed product, Aoα,r G, of A by G is an MF algebra.

A quick corollary of the preceding lemma is the following statement, whose
proof is omitted.

COROLLARY 2.7. For any positive integer n > 2, C∗r (Zn ∗ Fn) is an MF algebra,
where Zn is the quotient group Z/nZ and Zn ∗ Fn is the free product of group Zn and
the free group Fn.

LEMMA 2.8. For any n > 2, let τn be the normalized trace onMn(C). Then

(Mn(C), τn) ∗red (Mn(C), τn)

is an MF algebra.

Proof. Assume that the group Zn ∗ Fn is generated by the natural generators
u in Z and g1, . . . , gn in Fn. Let λ be the left regular representation of Zn ∗ Fn on
the Hilbert space l2(Zn ∗ Fn) with the cyclic and separating unit vector η1. Thus
C∗r (Zn ∗ Fn) is generated by λ(u) and λ(g1), . . . , λ(gn) in B(l2(Zn ∗ Fn)).
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Assume the second copy of Zn is generated by another natural generator v.
Let γ in C be the n-th root of unit. Let α : Zn → Aut(C∗r (Zn ∗ Fn)) be a homomor-
phism from Zn into Aut(C∗r (Zn ∗ Fn)) induced by the following mapping:

α(v)(λ(u)) = γλ(u),

α(v)(λ(gi)) = λ(gi+1) f or 1 6 i 6 n− 1,

α(v)(λ(gn)) = λ(g1).

Let C∗r (Zn ∗ Fn)oα,r Zn be the reduced crossed product of C∗r (Zn ∗ Fn) by
the group Zn. Recall the definition of reduced crossed product of C∗-algebras.
Let l2(Zn) be the Hilbert space with an orthonormal basis e1, ev, ev2 , . . . , evn−1 . Let
λ : Zn → B(l2(Zn)) be the left regular representation of Zn on the Hilbert space
l2(Zn) with the cyclic and separating unit vector e1. LetH = l2(Zn ∗ Fn)⊗ l2(Zn).
Then we introduce representation σ of Zn and Zn ∗ Fn onH as following:

σ(g) = Il2(Zn∗Fn)
⊗ λ(g) ∀ g ∈ Zn,

σ(h)(ξ ⊗ evi ) = (α−1(vi)(λ(h))(ξ))⊗ evi , ∀ h ∈ Zn ∗ Fn ∀ 1 6 i 6 n.

Then C∗r (Zn ∗ Fn)oα,r Zn is the C∗-algebra generated by {σ(g), σ(h) : g ∈ Zn and
h ∈ Zn ∗ Fn} in B(H). And we have

σ(v)σ(u) = γσ(u)σ(v).

Furthermore, there is a canonical faithful tracial state τ on C∗r (Zn ∗ Fn)oα,r Zn,
which is defined by

τ(x) = 〈x(η1 ⊗ e1), η1 ⊗ e1〉, ∀ x ∈ C∗r (Zn ∗ Fn)oα,r Zn.

CLAIM 2.9. {σ(v), σ(u)} and {σ(g1)} are free with respect to τ in C∗r (Zn ∗
Fn)oα,r Zn.

Proof. Note that {σ(ui)σ(vj) : 0 6 i, j 6 n − 1} forms a basis for the C∗-
subalgebra generated by σ(u) and σ(v) in C∗r (Zn ∗ Fn)oα,r Zn. And {σ(gt

1)}∞
t=−∞

forms a basis for the C∗-subalgebra generated by σ(g1) in C∗r (Zn ∗ Fn) oα,r Zn.
Therefore to prove the claim it suffices to show the following: For any positive inte-
ger r, nonzero integers n1, n2, , . . . , nr, and integers m1, k1, . . . , mr, kr with 0 6 mi, ki <
n and (mi, ki) 6= (0, 0) for 1 6 i 6 r, we have

τ(σ(gn1
1 )σ(um1)σ(vk1) · · · σ(gnr

1 )σ(umr )σ(vkr )) = 0.

Note that

τ(σ(gn1
1 )σ(um1)σ(vk1) · · · σ(gnr

1 )σ(umr )σ(vkr ))

= τ((σ(vkr )σ(gn1
1 )σ(vkr )∗)(σ(vkr )σ(um1)σ(vkr )∗)(σ(vkr+k1)σ(gn2

1 )σ(vkr+k1)∗)

· · · (σ(vkr+k1+···+kr−1)σ(umr )σ(vkr+k1+···+kr−1)∗)σ(vkr+k1+···+kr−1)).

Thus it will be enough if we are able to show the following is true: For any
positive integer r, nonzero integers n1, n2, , . . . , nr, and integers m1, p1, . . . , mr, pr with
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0 6 mi, pi < n and (mi, pi+1 − pi) 6= (0, 0) for 1 6 i 6 r, we have

τ((σ(vp1)σ(gn1
1 )σ(vp1)∗)σ(um1)(σ(vp2)σ(gn2

1 )σ(vp2)∗)

· · · (σ(vpr )σ(gnr
1 )σ(vp∗r ))σ(umr )) = 0.

The last equality is equivalent to:

τ(σ(gn1
1+p1

)σ(um1)σ(gn2
1+p2

) · · · σ(gnr
1+pr

)σ(umr )) = 0.

On the other hand, by the freeness of u and g1, . . . , gn in Zn ∗ Fn, we know, if
(mi, pi+1 − pi) 6= (0, 0) for 1 6 i 6 r then

gn1
1+p1

um1 gn2
1+p2
· · · gnr

1+pr
umr is a reduced word in Zn ∗ Fn.

Therefore
τ(σ(gn1

1+p1
)σ(um1)σ(gn2

1+p2
) · · · σ(gnr

1+pr
)σ(umr )) = 0.

This implies that {σ(v), σ(u)} and {σ(g1)} are free with respect to τ in C∗r (Zn ∗
Fn)oα,r Zn. This ends the proof of the claim.

We continue the proof of the lemma. Since u and v are two natural gener-
ators of the group Zn and σ(u)σ(v) = γσ(v)σ(u) where γ is the n-th root of the
unit, the C∗-subalgebra B generated by σ(u) and σ(v) in C∗r (Zn ∗ Fn)oα,r Zn is
∗-isomorphic to Mn(C). By Claim 2.9, we know that B and σ(g1)Bσ(g1)

∗ are
free with respect to τ in C∗r (Zn ∗ Fn)oα,r Zn. Since τ is a faithful tracial state on
C∗r (Zn ∗ Fn)oα,r Zn, τ is also a faithful tracial state on the C∗-subalgebra gener-
ated by B and σ(g1)Bσ(g1)

∗. Combining with the fact that B is ∗-isomorphic to
Mn(C), we know that

(Mn(C), τn) ∗red (Mn(C), τn) ' (B, τ|B) ∗red (B, τ|B) ' C∗(B, σ(g1)Bσ(g1)
∗)

⊆ C∗r (Zn ∗ Fn)oα,r Zn.

By Lemma 2.6 and Corollary 2.7, we know that

(Mn(C), τn) ∗red (Mn(C), τn)

is an MF algebra.

DEFINITION 2.10. Suppose that

B ' Mn1(C)⊕Mn2(C)⊕ · · · ⊕Mnr (C)

is a finite dimensional C∗-algebra. Let τni be the normalized tracial state on
Mni (C) for each 1 6 i 6 r. Moreover every element x in B can be written as

x = x1 ⊕ x2 ⊕ · · · ⊕ xr, with each xi ∈ Mni (C), ∀ 1 6 i 6 r.

Then a tracial state τ on B is called a rational tracial state if there are rational num-
bers 0 6 α1, . . . , αr 6 1 such that

τ(x) = α1τn1(x1) + · · ·+ αrτnr (xr), ∀ x ∈ B.
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PROPOSITION 2.11. Suppose that B1 and B2 are finite dimensional C∗-algebras
with faithful rational tracial states τ1, and τ2 respectively. Then

(B1, τ1) ∗red (B2, τ2)

is an MF algebra.

Proof. Since both τ1 and τ2 are faithful rational tracial states on B1, and B2
respectively, there are a positive integer n and trace-preserving, faithful, unital
∗-monomorphisms π1 : B1 →Mn(C), and π2 : B2 →Mn(C), such that

τn(π1(x1)) = τ1(x1) and τn(π2(x2)) = τ2(x2), ∀ x1 ∈ B1, x2 ∈ B2,

where τn is the tracial state onMn(C). Therefore,

(B1, τ1) ∗red (B2, τ2) ⊆ (Mn(C), τn) ∗red (Mn(C), τn).

By Lemma 2.6, we know that (B1, τ1) ∗red (B2, τ2) is an MF algebra.

2.3. REDUCED FREE PRODUCTS OF UNITAL AH ALGEBRAS. The following lemma
is quite useful.

LEMMA 2.12. Suppose that A is a separable C∗-algebra. Assume for every finite
family of elements x1, . . . , xn in A and every ε > 0, there is an MF algebra A1 such that

{x1, . . . , xn} ⊆ε A1 (in the sense of Definition 2.3).

Then A is also an MF algebra.

LEMMA 2.13. Suppose that B1 and B2 are finite dimensional C∗-algebras with
faithful tracial states τ, and ψ respectively. Then

(B1, τ) ∗red (B2, ψ)

is an MF algebra.

Proof. Suppose that x1, . . . , xn is a family of elements in (B1, τ) ∗red (B2, ψ)
and ε > 0 is a positive number.

Apparently, there is a sequence of faithful rational tracial states τα, α =
1, 2, . . ., on B1 such that

lim
α→∞

τα(b) = τ(b), ∀ b ∈ B1.

Thus by Lemma 2.4, there is a positive integer α such that

{x1, . . . , xn} ⊆ε (B1, τα) ∗red (B2, ψ), (in the sense of Definition 3.1.1)

whence there are elements y1, . . . , yn in (B1, τα) ∗red (B2, ψ) and unital faithful ∗-
representations ρ1 of (B1, τ) ∗red (B2, ψ) and ρ2 of (B1, τα) ∗red (B2, ψ) on a Hilbert
spaceH such that

max
16i6n

‖ρ1(xi)− ρ2(yi)‖ 6 ε.
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Applying Lemma 2.4 again, we know that there is a faithful rational tracial
state ψβ on B2 such that

{y1, . . . , yn} ⊆ε (B1, τα) ∗red (B2, ψβ).

i.e. there are z1, . . . , zn in (B1, τα) ∗red (B2, ψβ) and unital faithful ∗-representations
ρ3 of (B1, τα) ∗red (B2, ψ) and ρ4 of (B1, τα) ∗red (B2, ψβ) on a Hilbert spaceK such
that

max
16i6n

‖ρ3(yi)− ρ4(zi)‖ 6 ε.

Without loss of generality, we can assume that both ρ2 and ρ3 are unital, faithful,
essential representations, i.e. there is no nonzero compact operator in the ranges
of ρ2 and ρ3. By a result in [27], there is a sequence of unitaries uk : H → K, for
k = 1, 2, . . ., such that

lim sup
k→∞

‖ρ2(y)− u∗k ρ3(y)uk‖ = 0, ∀ y ∈ (B1, τα) ∗red (B2, ψ).

It follows that, ∀ 1 6 i 6 n,

lim sup
k→∞

‖ρ1(xi)− u∗k ρ4(zi)uk‖

6 lim sup
k→∞

(‖ρ1(xi)−ρ2(yi)‖+‖ρ2(yi)−u∗k ρ3(yi)uk‖+‖u∗k ρ3(yi)uk−u∗k ρ4(zi)uk‖)

6 2ε.

Altogether, we have that

{x1, . . . , xn} ⊆3ε (B1, τα) ∗red (B2, ψβ).

By Proposition 2.11, we know that (B1, τα) ∗red (B2, ψβ) is an MF algebra. Thus
by Lemma 3.3.1, we know that (B1, τ) ∗red (B2, ψ) is an MF algebra.

THEOREM 2.14. Suppose that A1 and A2 are unital separable AF subalgebras
with faithful tracial states τ1, and τ2 respectively. Then

(A1, τ1) ∗red (A2, τ2)

is an MF algebra.

Proof. Suppose that x1 . . . , xn is a family of elements in (A1, τ1) ∗red (A2, τ2)
and ε > 0 is a positive number.

By the definition of AF algebra, we know that there are finite dimensional
C∗-algebras IAi ∈ Bi ⊆ Ai for i = 1, 2 such that

{x1, . . . , xn} ⊆ε the C∗-subalgebra generated by B1, B2 in (A1, τ1) ∗red (A2, τ2) .

Since τ1 ∗ τ2 is a faithful tracial state of (A1, τ1) ∗red (A2, τ2) and IA1 ∈ B1, IA2 ∈
B2, we know that the C∗-subalgebra generated by B1 and B2 in (A1, τ1) ∗red
(A2, τ2) is ∗-isomorphic to

(B1, τ1|B1) ∗red (B2, τ2|B2).
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Therefore,
{x1, . . . , xn} ⊆ε (B1, τ1|B1) ∗red (B2, τ2|B2).

By Lemma 2.13, we know that (B1, τ1|B1) ∗red (B2, τ2|B2) is an MF algebra. It
follows from Lemma 2.12 that

(A1, τ1) ∗red (A2, τ2)

is an MF algebra.

The following result is well-known. We list it here for the purpose of com-
pleteness.

LEMMA 2.15. The following statements are true:
(i) Suppose that X is a compact metric space and C(X) is the unital C∗-algebra

consisting all continuous functions on X. Let τ be a faithful tracial state on C(X). Then
there are a unital separable AF algebra A with a faithful trace ψ and a unital embedding
ρ : C(X)→ A such that τ(x) = ψ(ρ(x)) for all x ∈ C(X).

(ii) Suppose that B '
k⊕

i=1
(Mni (C)⊗ C(Xi)) is a unital separable C∗-algebra with

a faithful tracial state τ, where each Xi is a compact metric space for 1 6 i 6 k. Then
there are a unital separable AF algebra A with a faithful trace ψ and a unital embedding
ρ : B → A such that τ(x) = ψ(ρ(x)) for all x ∈ B.

Now we are able to prove the main result in this section.

THEOREM 2.16. Suppose that A1 and A2 are unital separable AH algebras with
faithful tracial states τ1, and τ2 respectively. Then

(A1, τ1) ∗red (A2, τ2)

is an MF algebra.

Proof. For each i = 1, 2, the unital AH algebra Ai is an inductive limit of
homogeneous subalgebras {A(i)

m }∞
m=1, each of which is ∗-isomorphic to some

k⊕
j=1

(Mnj(C) ⊗ C(Xj)) where each Xj is a compact metric space for 1 6 j 6 k.

By Lemma 3.3.3, we know for every x1, . . . , xn in (A1, τ1) ∗red (A2, τ2) and ε > 0,
there are a positive integer m, unital AF algebras D1 and D2 with faithful tracial
states ψ1, and ψ2 respectively, such that

{x1, . . . , xn} ⊂ε (A(1)
m , τ1) ∗red (A(2)

m , τ2) ⊆ (D1, ψ1) ∗red (D2, ψ2).

By Lemma 2.12 and Theorem 2.14, we know that (A1, τ1) ∗red (A2, τ2) is an MF
algebra.

Recall a C∗-algebra A is called a local AH-algebra if for every ε > 0 and
for every finite subset a1, . . . , an of A there is a C∗-subalgebra B of A which (i) is

homogeneous, i.e. B is ∗-isomorphic to a C∗-algebra of the form
km⊕
i=1

(M[m,ni ]
(C)⊗
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C(X[m,i])), and (ii) contains elements b1, . . . , bn with ‖aj − bj‖ 6 ε for j = 1, . . . , n.
A similar argument as the one in the proof of Theorem 2.16 proves the following
statement.

PROPOSITION 2.17. Suppose that A1 and A2 are unital, separable, local AH al-
gebras with faithful tracial states τ1, and τ2 respectively. Then

(A1, τ1) ∗red (A2, τ2) is an MF algebra.

Obviously, Theorem 2.16 can be generalized as follows.

THEOREM 2.18. Suppose thatAi, i = 1, . . . , n, is a family of unital separable AH
algebras with faithful tracial states τi. Then

(A1, τ1) ∗red · · · ∗red (An, τn) is an MF algebra.

Proof. Let A = A1 ⊗min · · · ⊗min An be the minimal tensor product of A1,
. . . ,An and τ = τ1 ⊗min · · · ⊗min τn be the tensor product of the tracial states
τ1, . . . , τn. Then A is an AH algebra with a faithful trace τ. Let C∗r (Z) be the
reduced C∗-algebra of the group Z with a canonical faithful trace τZ.

By Proposition 2.17 or Theorem 2.16, we know that (A, τ) ∗red (C∗r (Z), τZ)
is an MF algebra. And we note that

(A1, τ1) ∗red · · · ∗red (An, τn) ⊆ (A, τ) ∗red · · · ∗red (A, τ) ⊆ (A, τ) ∗red (C∗r (Z), τZ).

Therefore

(A1, τ1) ∗red · · · ∗red (An, τn)

is an MF algebra.

COROLLARY 2.19. Suppose that (A, τ) is a C∗-free probability space. Let x1,
. . . , xn be a family of self-adjoint elements in A such that x1, . . . , xn are free with re-
spect to τ. Then the C∗-subalgebra generated by x1, . . . , xn in A is an MF algebra. In
particular,

δtop(x1, . . . , xn) > 0,

where δtop(x1, . . . , xn) is the Voiculescu’s topological free entropy dimension.

Proof. It follows directly from the definition of Voiculescu’s topological free
entropy dimension [32] and the definition of MF algebra.

More discussions on topological free entropy dimension can be found in
[20], [21], and [18].

2.4. REDUCED FREE PRODUCT OF UNITAL ASH ALGEBRAS. Recall an ASH al-
gebra (approximately sub-homogeneous C∗-algebra) is an inductive limit of a
sequence of sub-homogeneous C∗-algebras. By similar arguments as in Theo-
rem 2.16 and Theorem 2.18, we have the following result.
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THEOREM 2.20. Suppose that Ai, i = 1, . . . , n, is a family of unital separable
ASH algebras with faithful tracial states τi. Then

(A1, τ1) ∗red · · · ∗red (An, τn)

is an MF algebra.

3. BDF EXTENSION SEMIGROUPS AND REDUCED FREE PRODUCTS OF AH ALGEBRAS

We will use the fact that a C∗-subalgebra of a separable quasidiagonal C∗-
algebra is also quasidiagonal. In other words, a separable C∗-algebra, containing
a non-quasidiagonal C∗-subalgebra, is not quasidiagonal.

3.1. NON-QUASIDIAGONALITY OF REDUCED FREE PRODUCTS OF AH ALGEBRAS.
In this subsection, we are going to discuss quasidiagonality of reduced free prod-
ucts of unital C∗-algebras. Some of the conclusions stated in this subsection are
direct consequences of results from other literature.

The following result might have been known to experts. For the purpose of
completeness, we include it here.

THEOREM 3.1. Suppose that A1 and A2 are unital separable C∗-algebras with
faithful tracial states τ1, and τ2 respectively. If A1 and A2 satisfy Avitzour’s condition,
i.e. there are unitaries u ∈ A1 and v, w ∈ A2 such that

τ1(u) = τ2(v) = τ2(w) = τ2(w∗v) = 0,

then
(A1, τ1) ∗red (A2, τ2)

is not a quasidiagonal C∗-algebra.

Proof. Let a = uvuv and b = uwuw be unitaries in (A1, τ1) ∗red (A2, τ2).
Then we know that a and b are two Haar unitary elements in (A1, τ1) ∗red (A2, τ2)
with respect to the trace τ1 ∗ τ2. We note that

ab = uvuvuwuw ab∗ = uvu(vw∗)u∗w∗u∗

a∗b = v∗u∗(v∗w)uw a∗b∗ = v∗u∗v∗u∗w∗u∗w∗u∗

ba = uwuwuvuv ba∗ = uwu(wv∗)u∗v∗u∗

b∗a = w∗u∗(w∗v)uv b∗a∗ = w∗u∗w∗u∗v∗u∗v∗u∗.

Now it is not hard to check that a and b are free with respect to τ1 ∗ τ2. In
other words, C∗r (F2) is a C∗-subalgebra of (A1, τ1) ∗red (A2, τ2). Since C∗r (F2) is
not a quasidiagonal C∗-algebra, (A1, τ1) ∗red (A2, τ2) is not a quasidiagonal C∗-
algebra.

The following result of N. Brown (see Corollary 4.3.6 of [10]) is also useful
in determining the quasidiagonality of a unital C∗-algebra.
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LEMMA 3.2 (Brown). Suppose that A is a unital, separable, exact C∗-algebra
with a unique trace τ. Let ρ : A → B(L2(A, τ)) be the GNS representation of A on the
Hilbert space L2(A, τ). If A is quasidiagonal, then ρ(A)′′, the von Neumann algebra
generated by ρ(A) in B(L2(A, τ)), is a hyperfinite von Neumann algebra.

PROPOSITION 3.3. Suppose that C(T) is the unital C∗-algebra consisting all con-
tinuous functions on the unit circle T and τ is a faithful trace of C(T) induced by the
Lebesgue measure on T. Suppose that B 6= C is a unital, separable, C∗-algebra with a
faithful tracial state ψ. Then

(C(T), τ) ∗red (B, ψ)

is not a quasidiagonal C∗-algebra.

Proof. We might assume that B is an exact C∗-algebra. In fact, let 1 6= v
be a unitary in B and IB ∈ B1 be a unital C∗-subalgebra of B generated by v in
B. Since (C(T), τ) ∗red (B1, ψ) is a C∗-subalgebra of (C(T), τ) ∗red (B, ψ), to show
(C(T), τ) ∗red (B, ψ) is not quasidiagonal it suffices to show that (C(T), τ) ∗red
(B1, ψ) is not quasidiagonal. Obviously B1 6= C is a unital exact C∗-algebra with
a faithful trace ψ.

By Dykema’s result in Theorem 2 of [13], we know that (C(T), τ) ∗red (B, ψ)
is a simple C∗-algebra with a unique tracial state τ ∗ ψ. Also by his result in
Theorem 3.5 of [14], we know that (C(T), τ) ∗red (B, ψ) is an exact C∗-algebra.

Let ρ be the GNS representation of (C(T), τ) ∗red (B, ψ) on the Hilbert space
L2((C(T), τ) ∗red (B, ψ), τ ∗ ψ). Assume that (C(T), τ) ∗red (B, ψ) is a quasidiag-
onal C∗-algebra. Then by Lemma 3.2, we know that ρ((C(T), τ) ∗red (B, ψ))′′ is a
hyperfinite von Neumann algebra. Let u be a Haar unitary in C(T) with respect
to τ and v 6= 1 be a unitary in B. Then by Voiculescu’s result in [30], we know
that

δ0(ρ(u), ρ(v)) = δ0(ρ(u)) + δ0(ρ(v)) = 1 + δ0(ρ(v)) > 1,

where δ0 is the modified free entropy dimension for finite von Neumann algebras.
On the other hand, since ρ((C(T), τ) ∗red (B, ψ))′′ is a hyperfinite von Neumann
algebra, by [31] or [19], we know

δ0(ρ(u), ρ(v)) 6 1.

This is the contradiction. Hence ρ((C(T), τ) ∗red (B, ψ))′′ is not a hyperfinite von
Neumann algebra. It follows that (C(T), τ) ∗red (B, ψ) is not a quasidiagonal C∗-
algebra.

The next useful result was obtained by Dykema in Proposition 2.8 of [13].

LEMMA 3.4 (Dykema). Let A = A1 ⊕A2 be a direct sum of unital C∗-algebras.
Write p = 1⊕ 0 ∈ A and let φA be a state on A, such that 0 < α = φA(p) < 1. Let B
be a unital C∗-algebra with a state φB and let

(D, φ) = (A, φA) ∗red (B, φB).
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LetD1 be the C∗-subalgebra ofD generated by Cp+(0⊕A2)⊆A together with B. Then

pDp is generated by pD1 p and A1⊕0⊆A, which are free in
(

pDp, 1
α φ|pDp

)
, i.e.

(
pD1 p,

1
α

φ|pD1 p

)
∗red

(
A1,

1
α

φA|A1

)
'
(

pDp,
1
α

φ|pDp

)
⊆ D.

PROPOSITION 3.5. Let C(T) be the unital C∗-algebra consisting all continuous
functions on the unit circle T and τ a faithful trace of C(T) induced by the Lebesgue
measure on T. Let A2 and B 6= C be unital separable C∗-algebras with faithful traces
τ2, and ψ respectively. Let A = C(T) ⊕ A2 with a faithful trace φ given by φ =
ατ + (1− α)τ2 for some 0 < α < 1. Then

(A, φ) ∗red (B, ψ)

is not a quasidiagonal C∗-algebra.

Proof. Let (D, φ ∗ ψ) ' (A, φ) ∗red (B, ψ). By Lemma 3.4, there is a unital

C∗-subalgebra D2 6= C in D, such that (C(T), τ) ∗red

(
D2, 1

(φ∗ψ)(ID2
)
(φ ∗ ψ)|D2

)
can be embedded (not necessary to be unital) into (A, φ) ∗red (B, ψ). Combining
with Proposition 3.3, we completed the proof.

Recall a unital C∗-algebra A with a faithful trace φ is diffuse if there is a
unitary u such that φ(un) = 0 for all n 6= 0, i.e. u is a Haar unitary in A.

DEFINITION 3.6. Suppose thatA is a unital C∗-algebra with a faithful tracial
state φ. Then (A, φ) is called partially diffuse if there is a partial isometry v in A
such that vv∗ = v∗v and φ(vn) = 0 for all n 6= 0.

THEOREM 3.7. Suppose that A is a unital C∗-algebra with a faithful tracial state
φ. Then the following are equivalent:

(i) (A, φ) is partially diffuse.

(ii) There is a unital C∗-subalgebra B of A such that
(
B, 1

φ(IB)
φ|B
)

is diffuse. (Note
we do not require that B contains the unit of A.)

(iii) There is a unital C∗-subalgebra C of A such that:(
C,

1
φ(IC)

φ
)
' (C(T), τ),

where C(T) is the unital C∗-algebra consisting all continuous functions on the unit circle
T and τ is a faithful trace of C(T) induced by the Lebesgue measure on T.

(iv) There is a self-adjoint element x in A satisfying:
Suppose that X is the spectrum of x in A and µ is the Borel measure on X induced

from the trace φ. Then there are real numbers a < b in X such that (i) µ|X∩[a,b] has no
atom; (ii) the distance between X ∩ [a, b] and X \ [a, b] is larger than 0.

Proof. (i)⇔ (ii)⇔ (iii) is obvious. (i)⇔ (iv) is by Lemma 4.2 of [15].
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PROPOSITION 3.8. Let A and B 6= C be unital separable C∗-algebras with faith-
ful traces φ, and ψ respectively. If (A, φ) is partially diffuse, then

(A, φ) ∗red (B, ψ)

is not a quasidiagonal C∗-algebra.

Proof. Note that A is partially diffuse. By Theorem 3.7, there is a unital C∗-
subalgebra C of A such that(

C,
1

φ(IC)
φ
)
' (C(T), τ),

where C(T) is the unital C∗-algebra consisting of all continuous functions on the
unit circle T and τ is a faithful trace of C(T) induced by the Lebesgue measure
on T. Let p = IC and q = IA − p be the projections in A. Then φ is a faithful trace
on the unital C∗-subalgebra Cp +Cq of A and

(Cp +Cq, φ) ∗red (B, ψ) ⊆ (A, φ) ∗red (B, ψ).

By Proposition 3.5, we know that

(A, φ) ∗red (B, ψ)

is not a quasidiagonal C∗-algebra.

LEMMA 3.9. Let A = C ⊕ C and B = C ⊕ C with faithful traces φ, and ψ
respectively. Let p = 1⊕ 0 be a projection in B. Then(

p((A, φ) ∗red (B, ψ))p,
1

ψ(p)
(φ ∗ ψ)|p((A,φ)∗red(B,ψ))p

)
is partially diffuse.

Proof. The C∗-algebra (A, φ) ∗red (B, ψ) was totally determined in Theo-
rem 13 of [2] (see also Proposition 2.7 of [13]). Thus the structure of p(A, φ) ∗red
(B, ψ)p is also determined as listed in Theorem 13 of [2]. Now the rest follows
from Lemma 4.2 of [15] (see also the proof of Lemma 4.1 of [13]).

LEMMA 3.10. Let τ1, τ2 and ψ be faithful traces on the C∗-algebras A1 = C⊕C,
A2 = C⊕C⊕C and A3 =M2(C) respectively. Then:

(i) (A1, τ1) ∗red (A2, τ2) = (C⊕C, τ1) ∗red (C⊕C⊕C, τ2) is not a quasidiagonal
C∗-algebra;

(ii) (A1, τ1) ∗red (A3, ψ) = (C ⊕ C, τ1) ∗red (M2(C), ψ) is not a quasidiagonal
C∗-algebra.

Proof. (i) Let B = C ⊕ C ⊕ 0 ⊂ A2 be a C∗-subalgebra of A2. Let p =
1⊕ 1⊕ 0 and q = 0⊕ 0⊕ 1 be projections in A2. Let D1 be the C∗-subalgebra
generated by A1 and Cp +Cq in (A1, τ1) ∗red (A2, τ2). Then

(A1, τ1) ∗red (A2, τ2) ⊇ (D1, τ1 ∗ τ2|D1) ' (C⊕C, τ1) ∗red (Cp +Cq, τ2);

and, by Lemma 3.4, we have
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Fact 1. pD1 p and B ⊕ 0 are free in p((A1, τ1) ∗red (A2, τ2))p with respect to
1

τ2(p) (τ1 ∗ τ2)|p((A1,τ1)∗red(A2,τ2))p.

By Lemma 3.9, we know that
(

pD1 p, 1
τ2(p) (τ1 ∗ τ2)|pD1 p

)
is partially diffuse.

Note that B 6= C. Combining with Proposition 3.8 and Fact 1, we know that the
C∗-subalgebra generated pD1 p and B ⊕ 0 in (A1, τ1) ∗red (A2, τ2) is not quasidi-
agonal. Hence (A1, τ1) ∗red (A2, τ2) is not quasidiagonal.

(ii) Note A1 = C⊕C. Let

u1 =

(
1 0
0 −1

)
and u2 =

(
0 1
1 0

)
be unitaries inM2(C). Then A1, u1A1u∗1 and u2A1u∗2 are free in (C⊕C, τ1) ∗red
(M2(C), ψ). Let B be C∗-subalgebra generated by A1, u1A1u∗1 in (C⊕C, τ1) ∗red
(M2(C), ψ). Then

B ' (A1, τ1) ∗red (A1, τ1) = (C⊕C, τ1) ∗red (C⊕C, τ1);

and

Fact 2. B and u2A1u∗2 are free in (C⊕C, τ1) ∗red (M2(C), ψ).

By Lemma 3.9, B is partially diffuse. Combining with Proposition 3.8 and
Fact 2, we know that the C∗-subalgebra generatedB and u2A1u∗2 in (C⊕C, τ1) ∗red
(M2(C), ψ) is not quasidiagonal. Hence (C⊕C, τ1) ∗red (M2(C), ψ) is not qua-
sidiagonal.

The following proposition follows directly from preceding lemma.

PROPOSITION 3.11. Suppose that A1 and A2 are unital separable C∗-algebras
with faithful tracial states τ1, and τ2 respectively. If there are C∗-subalgebras IAi ∈ Bi ⊆
Ai for i = 1, 2 such that:

(i) B1 ' C⊕C; and
(ii) either B2 ' C⊕C⊕C or B2 'M2(C), then

(A1, τ1) ∗red (A2, τ2)

is not a quasidiagonal C∗-algebra.

We are ready to show the following statement.

THEOREM 3.12. Suppose that A1 and A2 are unital separable AF algebras with
faithful tracial states τ1, and τ2 respectively. If dimCA > 2 and dimCA2 > 3, then

(A1, τ1) ∗red (A2, τ2)

is not a quasidiagonal C∗-algebra.

Proof. Note that both A1 and A2 are unital AF algebras. Since dimCA1 > 2,
there is a C∗-subalgebra IA1 ∈ B1 of A such that B1 ' C⊕C. Since dimCA2 > 3,
there is a C∗-subalgebra IA2 ∈ B2 of A2 such that either B2 ' C⊕C⊕C or B2 '
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M2(C). Now it follows from Proposition 3.11, we know that (A1, τ1) ∗red (A2, τ2)
is not a quasidiagonal C∗-algebra.

3.2. BDF EXTENSION SEMIGROUPS OF REDUCED FREE PRODUCTS OF AH ALGE-
BRAS. Suppose A is a separable unital C∗-algebra. The invariant Ext(A) was
introduced by Brown, Douglas and Fillmore in [8].

By a result of Voiculescu, Ext(A) always has a unit. By a result of Choi
and Effros, Ext(A) is a group for every separable unital nuclear C∗-algebras A.
In [17], Haagerup and Thorbjørnsen solved a long standing open problem by
showing that Ext(C∗r (F2)) is not a group.

In this subsection, we consider the BDF extension semigroups of reduced
free products of some unital AH algebras. First we recall a useful fact, which can
be found in [9], [17] and [28]. (See also Lemma 2.4 of [22])

LEMMA 3.13. Suppose that A is a unital separable MF algebras. If A is not qua-
sidiagonal, then Ext(A) is not a group.

By Theorem 2.16 (or Theorem 2.20), Theorem 3.1 and Lemma 3.13, we have
the following result.

THEOREM 3.14. Suppose that A1 and A2 are unital separable AH (or ASH) al-
gebras with faithful tracial states τ1, and τ2 respectively. IfA1 andA2 satisfy Avitzour’s
condition, i.e. there are unitaries u ∈ A1 and v, w ∈ A2 such that

τ1(u) = τ2(v) = τ2(w) = τ2(w∗v) = 0,

then
Ext((A1, τ1) ∗red (A2, τ2)) is not a group.

By Theorem 2.16 (or Theorem 2.20), Proposition 3.8 and Lemma 3.13, we
have the following result.

THEOREM 3.15. Let A and B 6= C be unital separable AH (or ASH) algebras
with faithful traces φ, and ψ respectively. If A is partially diffuse in the sense of Defini-
tion 3.6, then

Ext((A, φ) ∗red (B, ψ)) is not a group.

By Theorem 2.16 (or Theorem 2.20), Theorem 3.12 and Lemma 3.13, we have
the following result.

THEOREM 3.16. Suppose that A and B are unital separable AF algebras with
faithful tracial states φ, and ψ respectively. If dimCA > 2 and dimCB > 3, then

Ext((A, φ) ∗red (B, ψ)) is not a group.

EXAMPLE 3.17. Let A and B be irrational C∗-algebras, or UHF algebras,
with faithful traces φ, and ψ respectively. Then Ext((A, φ) ∗red (B, ψ)) is not a
group.
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4. REDUCED FREE PRODUCTS OF TENSOR PRODUCTS OF UNITAL C∗-ALGEBRAS

In this section, we will discuss some generalizations of the results we ob-
tained in the previous sections. The following notation will be used in this sec-
tion. Suppose that G is a countable discrete group. We will denote C∗r (G) the
reduced group C∗-algebra of G and τG the canonical tracial state of C∗r (G).

4.1. A CLASS OF MF ALGEBRAS.

DEFINITION 4.1. Let S be the set of all these pairs (A, φ) such that A is a
separable unital C∗-algebra and ψ is a faithful trace of A satisfying (A, ψ) ∗red
(C∗r (Fn), τFn) is an MF algebra for every integer n > 1.

By Theorem 2.18, we have the following result.

PROPOSITION 4.2. Suppose that A is a unital separable AH algebra and ψ is a
faithful trace of A. Then

(A, ψ) ∈ S ,
where S is defined in Definition 4.1.

4.2. MINIMAL TENSOR PRODUCTS OF UNITAL C∗-ALGEBRAS. Using the defini-
tion of minimal tensor product of two unital C∗-algebras (see, for example, [24]
or [26]) and following the same strategy as in Lemma 2.2, we can prove the fol-
lowing result, whose proof is skipped.

LEMMA 4.3. Suppose thatA is a separable unital C∗-algebras with a faithful trace
ψ. Let H = L2(A, ψ). Suppose that B is a finite dimensional C∗-algebras with a basis
1, b1, . . . , bd−1, where d is the complex dimension of B. Suppose that {τ, τγ}∞

γ=1 is a
family of faithful tracial states of B satisfying

lim
γ→∞

τγ(b) = τ(b) ∀ b ∈ B.

Let Cd be a d-dimensional Hilbert space with an orthonormal basis e1, . . . , ed. Then
there is a sequence of faithful unital ∗-representations ρτ , ρτγ : A⊗min B → B(H)⊗min

Md(C) of A⊗min B onH⊗Cd for γ = 1, 2, . . . such that:
(i) (ρτ ,H ⊗ Cd, ÎA ⊗ e1) and (ρτγ ,H ⊗ Cd, ÎA ⊗ e1) are GNS representations of

(A⊗min B, ψ⊗min τ), and (A⊗min B, ψ⊗min τγ) respectively.
(ii) For each 1 6 i 6 d− 1,

lim
γ→∞

‖ρτγ(a⊗ bi)− ρτ(a⊗ bi)‖ = 0, ∀ a ∈ A.

The proof of the following result is similar to Lemma 2.4 and is skipped.

LEMMA 4.4. Suppose that Ai, i = 1, 2, is a separable unital C∗-algebra with a
faithful tracial state ψi. Suppose that B is a finite dimensional C∗-algebra with a family
{τ, τγ}∞

γ=1 of faithful tracial states of B such that

lim
γ→∞

τγ(b) = τ(b), ∀ b ∈ B.
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Suppose that x1, . . . , xn is a family of elements in (A1 ⊗min B, ψ1 ⊗min τ) ∗red
(A2, ψ2). Then, for any ε > 0, there is a γ0 > 0 such that

{x1, . . . , xn} ⊆ε (A1 ⊗min B, ψ1 ⊗min τγ) ∗red (A2, ψ2), ∀ γ > γ0.

4.3. SOME CONCLUSIONS. Suppose that (A, ψ) ∈ S , where S is defined in Defi-
nition 4.1. Then (A, ψ) ∗red (C∗r (Fn), τFn) is an MF algebra for all n > 2. Consider
an action α of Zn on (A, ψ) ∗red (C∗r (Fn), τFn), induced by the following mapping:
if g is a natural generator of Zn and u1, . . . , un are the natural generators of C∗r (Fn),
then:

α(g)(x) = x, ∀ x ∈ A;

α(g)(ui) =

{
ui+1 for 1 6 i 6 n− 1,
u1 for i = n.

Using the same strategy as in the proof of Corollary 2.7, we have the follow-
ing result.

LEMMA 4.5. Suppose that (A, ψ) ∈ S , where S is defined in Definition 4.1. Then
for all n > 2,

(A⊗min C∗r (Zn), ψ⊗ τZn) ∗red (C∗r (Fn), τFn)

is an MF algebra.

Following the notation as above. Consider an action β of Zn on

(A⊗min C∗r (Zn), ψ⊗min τZn) ∗red (C∗r (Fn), τFn),

induced by the following mapping: if h is a natural generator of Zn, then

β(h)(x) = x, ∀ x ∈ A;

β(h)(v) = e2πi/nv, where v is a natural generator o f C∗r (Zn);

β(h)(uj) = uj+1 f or 1 6 j 6 n− 1;

β(h)(un) = u1.

Modifying the proof of Lemma 2.8 slightly, we have the following result.

LEMMA 4.6. Suppose that (A, ψ) ∈ S , where S is defined in Definition 4.1. Then
for all n > 2,

(A⊗minMn(C), ψ⊗min τn) ∗red (A⊗minMn(C), ψ⊗min τn)

is a C∗-subalgebra of

((A⊗min C∗r (Zn), ψ⊗ τZn) ∗red (C∗r (Fn), τFn))oβ,r Zn;

and, therefore, is an MF algebra, whereMn(C) is n× n matrix algebra with a trace τn.

Combining Lemma 4.4, Lemma 4.6 and the strategy used in Theorem 2.14,
we have the following result.
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THEOREM 4.7. Suppose that (A, ψ) ∈ S , where S is defined in Definition 4.1.
Suppose that Bi is a unital separable AF algebra with a faithful trace φi for i = 0, 1, . . . , n.
Then

(A⊗min B0, ψ⊗min φ0) ∗red · · · ∗red (A⊗min Bn, ψ⊗min φn)

is an MF algebra.

By Lemma 2.15, we have the following result.

THEOREM 4.8. Suppose that (A, ψ) ∈ S , where S is defined in Definition 4.1.
Suppose that Bi is a unital separable AH algebra with a faithful trace φi for i = 0, 1,
. . . , n. Then

(A⊗min B0, ψ⊗min φ0) ∗red · · · ∗red (A⊗min Bn, ψ⊗min φn)

is an MF algebra. In particular, for every n > 1,

(A⊗min B0, ψ⊗min φ0) ∗red (C∗r (Fn), τFn)

is an MF algebra, i.e.
(A⊗min B0, ψ⊗min φ0) ∈ S .

COROLLARY 4.9. For i = 1, 2, let A(i)
1 , . . . ,A(i)

n ,B(i) be a family of unital sepa-

rable AH algebras with faithful tracial states ψ
(i)
1 , . . . , ψ

(i)
n , φ(i), respectively. Let

(A(i), ψ(i)) = (A(i)
1 , ψ

(i)
1 ) ∗red · · · ∗red (A(i)

n , ψ
(i)
n ), f or i = 1, 2;

and ψ(i) ⊗min φ(i) be a faithful trace on A(i) ⊗min B(i). Then

(A(1) ⊗min B(1), ψ(1) ⊗min φ(1)) ∗red (A(2) ⊗min B(2), ψ(2) ⊗ φ(2))

is an MF algebra.

Proof. Let

(A, τ) = (A(1), ψ(1)) ∗red (A(2), ψ(2)).

Let τ⊗min φ(1) ⊗min φ(2) be a faithful tracial state on A⊗min B1 ⊗min B2. By The-
orem 2.18 and Theorem 4.8, we know that

(A, τ) ∈ S ;

and

D = (A⊗min B1 ⊗min B2, τ ⊗min φ(1) ⊗min φ(2)) ∗red (C∗r (F2), τF2)

is an MF algebra. Therefore, embedded as a C∗-subalgebra of D,

(A(1) ⊗min B(1), ψ(1) ⊗min φ(1)) ∗red (A(2) ⊗min B(2), ψ(2) ⊗min φ(2))

is an MF algebra.
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EXAMPLE 4.10. Suppose that Ai, i = 1, 2, is an irrational C∗-algebra, or a
UHF algebra, with a faithful tracial state ψi. For all m, n > 1, let

D = (C∗r (Fm)⊗min A1, τFm ⊗min ψ1) ∗red (C∗r (Fn)⊗min A2, τFn ⊗min ψ2).

Then D is an MF algebra and Ext(D) is not a group.
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